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NON-ABELIAN CONSTRAINTSIN MULTIPARTICLE PRODUCTION�Ludwik TurkoInstitute of Theoretial Physis, University of WrolawPl. Maksa Borna 9, 50-204 Wroªaw, Polande-mail: turko�ift.uni.wro.pl(Reeived April 2, 2002)Internal mirosopi symmetry of a many body system leads to globalonstraints. We obtain expliit forms of the global marosopi onditionassuring that at the mirosopi level the evolution respets the overallsymmetry.PACS numbers: 11.30.�j, 24.10.Pa, 25.75.Gz1. IntrodutionLet us onsider a multipartile interating system with the internal sym-metry taken into aount. The internal symmetry leads to onservation lawswhih put onstraints on the evolution of the system. The problem arises:are there only onstraints due to the symmetry onservation? In the miro-sopi formulation with symmetry invariant dynamial equations the answeris given by an analysis of orresponding solutions � assuming that solutionsare known.We are looking here for global onditions to provide onsisteny with theoverall symmetry of the system. These onditions should not depend on theexat analyti form of the solutions. As an example one an take Kepler'slaws in the lassial mehanis whih are related to the orbital momentumonservation and an be proved without knowledge of the analyti solutionsof Newton equations. Another simple example is a ase of n speies ofharged partiles with individual harges qa; qb; : : : ; qn: Numbers of partilesare given by N (a); N (b); : : : ; N (n).� Presented at the Craow Epiphany Conferene on Quarks and Gluons in ExtremeConditions, Craow, Poland, January 3�6, 2002.(1533)



1534 L. TurkoPartile numbers are time-dependent but the global harges must beonserved (exat U(1) symmetry). So there is a onditionqadN (a)dt + qbdN (b)dt + � � �+ qndN (n)dt = 0 ; (1.1)valid for any harge onserving interation.Our aim [1℄ is to �nd a orresponding ondition for non-abelian sym-metries. In the non-abelian ase there is a subsidiary ondition besidesonditions of the type of Eq. (1.1) due to the harge onservation. This isthe demand to preserve the internal symmetry group representations duringthe evolution of the system.2. Generalized projetion methodLet us onsider a system big enough to use methods of statistial physis.When the system reahes the statistial equilibrium then one an extratontributions from partiular irreduible representation of the symmetrygroup [2℄. Group projetion tehniques allowed for a onsistent treatment ofequilibrium systems and gave tools to obtain anonial partition funtionsorresponding to the system transforming under a given representation ofthe symmetry group. This tehnique an also be used for a more generalnon-stati problem.Let us onsider a system onsisting of partiles belonging to multiplets �jof the symmetry group. Partiles from the given multiplet �j are harater-ized by quantum numbers �j related to the symmetry group, and quantumnumbers �j haraterizing di�erent multiplets of the same irreduible repre-sentation �j .The number of partiles of the speie f�; ��; �g is denoted here byN (�)��;(�):These oupation numbers are time dependent until the system reahes thehemial equilibrium. However, the representation of the symmetry groupfor the system remains onstant in the ourse of a time evolution. A multi-pliity N (�j) of the representation �j in this produt is equal to a numberof partiles whih transform under this representationN (�j ) =Xj 0�X�j N (�j)��j ;(�j)1A =Xj N (�j)��j : (2.1)We introdue a state vetor ���N (�1)��1 ; : : : ; N (�n)��n E in partile number represen-tation. The probability that N (�1)��1 ; : : : ; N (�n)��n partiles transforming under



Non-Abelian Constraints in Multipartile 1535the symmetry group representations �1; : : : ; �n ombine into a state trans-forming under representation � of the symmetry group is given byP�;��fN(�1)��1 ;:::;N(�n)��n g = DN (�1)��1 ; � � � ; N (�n)��n ���P� ���N (�1)��1 ; : : : ; N (�n)��n E : (2.2)The projetion operator P� has the form (see e.g. [3℄)P� = d(�)ZG d�(g)��(�)(g)U(g) : (2.3)Here �(�) is the harater of the representation �, d(�) is the dimension ofthe representation, d�(g) is the invariant Haar measure on the group, andU(g) is an operator transforming a state under onsideration. In partilenumber representation the operator U(g) is de�ned asU(g) ���N (�1)��1 ; : : : ; N (�n)��n E =X�(1)1 ;:::;�(N�n )n D(�1)�(1)1 �1� � �D(�1)�(N�1 )1 �1� � �D(�n)�(1)n �n � � �D(�n)�(N�n )n �n ���N (�1)��1 ; : : : ; N (�n)��n E :(2.4)D(�n)�;� is a matrix elements of the group element g orresponding to therepresentation �.One gets �nallyP�;��fN(�1)��1 ;:::; N(�n)��n g =AfNgd(�)ZG d�(g) ��(�)(g) hD(�1)�1�1iN(�1)��1 � � � hD(�n)�n�niN(�n)��n : (2.5)D(�n)�;� is a matrix elements of the group element g orresponding to therepresentation � and AfNg is an overall permutation normalization fatorAfNg =Yj Y�j A�j(�j) ; (2.6)where A�j(�j) are partial fators for partiles of the kind f�; �gA�(�) = N (�)(�) !d(�)N (�)(�) Q��N (�)��;(�)! : (2.7)



1536 L. TurkoThe permutation fator gives a proper normalization of state vetors re�et-ing indistinguishability of partilesDN (�1)��1 ; � � � ; N (�n)��n ��� N (�1)��1 ; : : : ; N (�n)��n E = AfNg : (2.8)Beause of the symmetry onservations all weights in Eq. (2.5) should beonstant ddt P�;��fN(�1)��1 ;:::; N(�n)��n g = 0 : (2.9)Introduing here the result of Eq. (2.5) one obtains0 = d logAfNgdt ZG d�(g)��(�)(g) hD(�1)�1�1iN(�1)��1 � � � hD(�n)�n�niN(�n)��n+ nXj=1X��j dN (�j )��jdt ZG d�(g)��(�)(g)hD(�1)�1�1iN(�1)��1 � � �hD(�n)�n�niN(�n)��n loghD(�j)�j�ji :(2.10)The integrals whih appear in Eq. (2.10) an be expressed expliitly inan analyti form for any ompat symmetry group.To write an expression for the time derivative of the normalization fatorAfNg we perform analyti ontinuation from integer to ontinuous values ofvariables N (�n)��n : All fatorials in Eq. (2.6) are replaed by the � -funtionof orresponding arguments. We enounter here also the digamma fun-tion  [5℄  (x) = d log � (x)d x : (2.11)This allows to writed logAfNgdt =Xj X�j 24dN (�j )(�j)dt  �N (�j )(�j) + 1��X��j dN (�j)��j ;(�j)dt  �N (�j)��;(�j) + 1�35 : (2.12)Eq. (2.10) an be written in a formnXj=1X��j dN (�j)��jdt d logP�;��fN(�1)��1 ;:::;N(�n)��n gdN (�j)��j = (2.13)Xj X�j 0��dN (�j )(�j)dt  �N (�j)(�j) + 1�+X��j dN (�j )��j ;(�j)dt  �N (�j )��j ;(�j) + 1�1A;



Non-Abelian Constraints in Multipartile 1537whereP�;��fN(�1)��1 ;:::;N(�n)��n g = ZG d�(g)��(�)(g) hD(�1)�1�1iN(�1)��1 � � � hD(�n)�n�niN(�n)��n (2.14)is analytially extended for ontinuous values of variables N (�j)��j : This givesd logP�;��fN(�1)��1 ;:::; N(�n)��n gdN (�j )��j =RG d�(g)��(�)(g) hD(�1)�1�1iN(�1)��1 � � � hD(�n)�n�niN(�n)��n log hD(�j)�j�jiRG d�(g)��(�)(g) hD(�1)�1�1iN(�1)��1 � � � hD(�n)�n�niN(�n)��n : (2.15)Eq. (2.15) gives a set of onditions related to the internal symmetry ofa system. They are meaningful only for nonzero values of oe�ients (2.5).It is easy to see that oe�ients P�;��fN(�1)��1 ;:::;N(�n)��n g are di�erent from zeroonly if parameters �� are onsistent with the onservation of the simulta-neously measurable harges related to the symmetry group. A number ofsuh harges is equal to the rank k of the symmetry group. For the isospinSU(2) group that is the third omponent of the isospin, for the �avor SU(3)that would be the third omponent of the isospin and the hyperharge. Ingeneral ase one has k linear relations between variables N (�j)��j what reduesorrespondingly the number of independent variables.3. Isotopi hadroni gasLet us onsider a ase of isotopi symmetry in a more detailed way.Diagonal matrix elements for the representation (j) in the Euler angles rep-resentation have the form [3, 4℄D(j)mm(�; �; ) = eim(�+)d(j)mm(�) ; (3.1)where d(j)mm(os �) = �1 + os �2 �m P (0; 2m)j�m (os �) :and P (0; 2m)j�m (os �) are Jaobi polynomialsP (0; 2m)j�m (x) = (�1)j�m2m(j �m)! (1+x)�2m dj�mdxj�m �(1�x)j�m(1 +m)j+m� : (3.2)



1538 L. TurkoThe measure d�(g) for the SU(2) group in this parametrization has the formZ d�(g)f [g℄ = 18�2 2�Z0 d� 2�Z0 d �Z0 d� sin�f [g(�; �; )℄ : (3.3)There are only three possible nontrivial hadroni isotopi multiplets. Theseare spinor (12), vetor (1), and (32) representations. Corresponding d fun-tions are d(1=2)�1=2;�1=2(�) = �1 + os �2 � 12 ; (3.4a)d(1)�1;�1(�) = 1 + os �2 ; (3.4b)d(1)0;0(�) = os� ; (3.4)d(3=2)�3=2;�3=2(�) = �1 + os �2 � 32 ; (3.4d)d(3=2)�1=2;�1=2(�) = 12�1 + os �2 � 12 (�1 + 3 os �) : (3.4e)The group theoreti fator (2.14) has the formZG d�(g)��(J)(g) hD(j1)mj1mj1 iN(j1)mj1 � � � hD(jn)mjnmjn iN(jn)mjn =18�2 JXM=�J 2�Z0 d� 2�Z0 d �Z0 d� sin� ei(N(j1)mj1mj1+���+N(jn)mjnmjn�M)(�+)� d(J)MM (os �) hd(j1)mj1mj1 (os �)iN(j1)mj1 � � � hd(jn)mjnmjn (os �)iN(jn)mjn ; (3.5)where N (j)mj is a number of partiles with the isotopi oordinates fj;mjg.The nonzero values are obtained only when the arguments of the expo-nent in Eq. (3.5) vanishN (j1)mj1mj1 + � � � +N (jn)mjnmjn �M = 0 : (3.6)For the hadroni system with the given value ~M of the third omponent ofthe isospin the fator (2.14) is



Non-Abelian Constraints in Multipartile 1539ZG d�(g)��(J)(g) hD(j1)mj1mj1 iN(j1)mj1 � � � hD(jn)mjnmjn iN(jn)mjn =18�2 Æ ~M;N(j1)mj1mj1+���+N(jn)mjnmjn 2�Z0 d� 2�Z0 d �Z0 d� sin�� d(J)~M ~M (os �) hd(j1)mj1mj1 (os �)iN(j1)mj1 � � � hd(jn)mjnmjn (os �)iN(jn)mjn : (3.7)These equations allow to write general forms of the isotopi symmetryfator (2.14) for the hadroni systemP(J; ~M)fN(1=2)�1=2 ;N(1=2)1=2 ;N(1)�1 ;N(1)0 ;N(1)1 ;N(3=2)�3=2 ;N(3=2)�1=2 ;N(3=2)1=2 ;N(3=2)3=2 g =2J + 12 1Z�1 dx�1 + x2 � ~M+R��1 + 3x2 �N(3=2)�1=2+N(3=2)1=2 xN(1)0 P (0; 2 ~M)J� ~M (x) ; (3.8)where R = N (j1)mj1 jmj1 j+ � � � +N (jn)mjn jmjn j : (3.9)The de�nition (3.9) and the onstraint (3.6) allow to writeR+ ~M = 2 Xfj;jmj jgN (j)jmj jjmj j : (3.10)This is beauseXfj;mjgN (j)mjmj = Xfj;jmj jgN (j)jmj jjmjj � Xfj;jmj jgN (j)�jmj jjmjj (3.11a)and Xfj;mjgN (j)mj jmj j = Xfj;jmj jgN (j)jmj jjmj j+ Xfj;jmj jgN (j)�jmj jjmj j : (3.11b)This allows to write Eq. (3.8) in the form



1540 L. TurkoP(J; ~M)fN(1=2)�1=2 ;N(1=2)1=2 ;N(1)�1 ;N(1)0 ;N(1)1 ;N(3=2)�3=2 ;N(3=2)�1=2 ;N(3=2)1=2 ;N(3=2)3=2 g =2J + 12 1Z�1 dx�1 + x2 �(N(1=2)1=2 +2N(1)1 +N(3=2)1=2 +3N(3=2)3=2 )� ��1 + 3x2 �N(3=2)�1=2+N(3=2)1=2 xN(1)0 P (0; 2 ~M)J� ~M (x) : (3.12)One should notie that this redution of independent variables is related onlyto that part of the total weight (2.5) whih omes from the group theory.The ondition (2.9) is obtained when the expression (3.12) is multiplied bythe ombinatori fator (2.6). Number of independent variables in the om-binatori fator an be redued only by onservation laws of orrespondingharges of the system.To be more spei� let us onsider as an example an iso-singlet systemonsisting only of pions and nuleons [1℄. We take as independent variables:N total number of partiles, B total baryon number, Q total eletri harge,n�0 number of neutral pions, nN number of neutrons. Thennumber of negative pions: n� = (N � nN � n0 �Q) =2 ;number of positive pions: n+ = �B + nN + (N � nN � n0 +Q)=2 ;number of protons: nP = B � nN :For iso-singlet state B = 2Q andn� = (N � nN � n0 �Q)2 ; (3.13a)n+ = �2Q+ nN + (N � nN � n0 +Q)2 ; (3.13b)nP = 2Q� nN : (3.13)Let us assume [1℄ that this system reahes the hemial equilibrium in theevolution proess governed by Vlasov�Boltzman kineti equations with theinterations restrited to binary ollisions. Then the total number of parti-les remains onstant but partiles ratios are subjeted to onstraints (2.9).For the given baryon number B and the given total number of partiles N;ondition P (0; 0)fnN ; nP ; n�; n0; n+g = onst. (3.14)



Non-Abelian Constraints in Multipartile 1541gives evolution lines in the nN � n0 plane. The system evolves along theselines whih are here the onsequenes of the isotopi SU(2) symmetry andbaryon number onservation. The weights (3.14) expressed by means ofvariables B; N; nN and n0 and alulated aording to Eqs. (2.7) and(3.13) have the formP (0; 0)fnN ; nP ; n�; n0; n+g = B!2BnN !(B � nN )!� (N �B)!3(N�B)n0! �N2 � nN2 � n02 � B4 �! �N2 + nN2 � n02 � 3B4 �!� 12 1Z�1 dx�1 + x2 �(N�n0�B=2) xn0 : (3.15)The orresponding evolution lines are shown in Fig. 1.
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Fig. 1. Evolution urves for the ��N iso-singlet system onsisting of 300 partiles� pions and nuleons. Baryon number B = 140. The hemial equilibrium isreahed along equal weights urves (Eq. (3.14)) in the plane n0�nN .



1542 L. Turko4. ConlusionsWe have got relations whih are neessary global onditions to provideonsisteny with the overall symmetry of the system. They do not dependon the form of the underlying mirosopi interation. Abelian internalsymmetries lead to simple and obvious linear relations as in Eq. (1.1). Non-abelian internal symmetries lead to nonlinear relations as in Eq. (2.10).If we knew the solutions of symmetry invariant evolution equations thenall those onstraints would beome identities. In other ase they give a sub-sidiary information about the system and an be used as a onsisteny hekfor approximative alulations. A ase of generalized Vlasov�Boltzman ki-neti equations was onsidered in [1℄.New onstraints lead to dereasing number of available states for thesystem during its evolution. New orrelations appear and the hange inthe thermodynamial behavior an be expeted. This an be observed inhydrodynamial systems formed in high energy heavy ion ollisions [6℄.A hallenging point is to �nd strutures whih would orrespond to hem-ial potentials when system approahes the equilibrium distribution. Theequilibrium distribution in the presene of onstraints an be onstruted bythe Lagrange multipliers method. The multipliers related to the �abelian�onstraints, suh as Eq. (1.1), are well known hemial potentials. Multi-pliers related to the �non-abelian� onstraints (2.10) are more ompliated.Beause these onstraints are nonlinear ones, orresponding multipliers an-not be treated as standard additive thermodynamial potentials.Work supported in part by the Polish State Committee for Sienti�Researh (KBN) under ontrat no. 2P03B 030 18.REFERENCES[1℄ L. Turko, J. Rafelski, Eur. Phys. J. C18, 587 (2001); L. Turko, J. Rafelski,Maroonstraints from Mirosymmetries of Marosystems, hep-th/0011047.[2℄ K. Redlih, L. Turko, Z. Phys. C5, 201 (1980); L. Turko, Phys. Lett. B104,153 (1981).[3℄ E.P. Wigner, Group Theory and Its Appliation to the Quantum Mehanis ofAtomi Spetra, Aademi Press, New York, London 1959.[4℄ A.R. Edmonts, Angular Momentum in Quantum Mehanis, Prineton 1957.[5℄ Handbook of Mathematial Funtions, Eds. M. Abramowitz, I.A. Stegun,National Bureau of Standards, Applied Mathematis Series, 55, 1964.[6℄ H.-Th. Elze, J. Rafelski, L. Turko, Phys. Lett. B506, 123 (2001).


