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SATURATION AT LOW xAND NONLINEAR EVOLUTION�A.M. Sta±toINFN Sezione di Firenze, Sesto Fiorentino (FI), ItalyHenryk Niewodni
za«ski Institute of Nu
lear Physi
sRadzikowskiego 152, 31-342 Kraków, Poland(Re
eived Mar
h 27, 2002)In this talk the results of the analyti
al and numeri
al analysis of thenonlinear Balitsky�Kov
hegov equation are presented. The 
hara
teristi
BFKL di�usion into infrared regime is suppressed by the generation ofthe saturation s
ale Qs. We identify the s
aling and linear regimes forthe solution. We also study the impa
t of subleading 
orre
tions onto thenonlinear evolution.PACS numbers: 12.38.Bx 1. Introdu
tionOne of the major 
hallenges in QCD is the des
ription of high energys
attering phenomena. In the high 
enter-of-mass energy ps and in theperturbative domain when �s � 1 the s
attering amplitude is obtainedby the summation of diagrams leading in log s [1℄. At this level, when�s is frozen, the dependen
e of the resulting 
ross se
tion on the energyis governed by the power law x�!IP where x is the Bjorken variable. The
riti
al exponent !IP = 4 ln 2 ��s (��s = �s�=N
) is provided by the minimumof the eigenvalue fun
tion �(
) of the BFKL evolution kernel.The 
on
eptual problem in this approa
h is the fa
t that at su�
ientlyhigh 
enter-of-mass energies the BFKL amplitude violates the Froissart uni-tarity bound. This means that the validity of this approa
h is stronglylimited and it has to be modi�ed at very small x in order to guarantee theunitarity of the resulting 
ross se
tion.The solution to this problem 
an be provided by in
luding the re
om-bination e�e
ts, whi
h are likely to o

ur at very small values of x [2℄. Byde
reasing the value of x at �xed gluon virtuality k2t , the density of partons� Presented at the Cra
ow Epiphany Conferen
e on Quarks and Gluons in ExtremeConditions, Cra
ow, Poland, January 3�6, 2002.(1571)
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omes so large that they start to overlap. In this 
ase the gluon split-ting pro
ess must be supplemented by a 
ompeting gluon re
ombination. Interms of evolution the master equations be
ome nonlinear with an additionalquadrati
 term whi
h suppress the growth of the amplitude with energy andrestore the unitarity1.There have been extensive studies on this problem, see [2, 4�14℄, whi
hresult in the nonlinear evolution. One of the important out
omes of thesestudies is the existen
e of the saturation s
ale Qs(x) whi
h is a 
hara
teristi
s
ale at whi
h the parton re
ombination e�e
ts be
ome important. In par-ti
ular 
ase of the Balitsky�Kov
hegov equation [14℄ the existen
e of su
hs
ale has yet another important impa
t on the pi
ture of the BFKL evolu-tion. The di�usion into the infra-red, whi
h is the 
hara
teristi
 propertyof BFKL evolution is strongly limited due to the existen
e of the satura-tion s
ale [9,23℄. In fa
t, in the regime when the gluon transverse momentak < Qs(x), the solution to the nonlinear equation [14℄ be
omes a fun
tionof only one 
ombined variable k=Qs(x) [16�24℄. In the regime of high mo-menta, k > Qs(x) the parton density is small and the evolution is governedby a normal linear equation.In this talk we present the analyti
al and numeri
al analysis of theBalitsky�Kov
hegov [14℄ equation whi
h is a nonlinear evolution equationin the leading log s limit. We illustrate the emergen
e of the saturations
ale and s
aling and show that it leads to the suppression of the infra-reddi�usion. We also 
onsider the 
ase with additional NLL e�e
ts su
h askinemati
al 
onstraint and running 
oupling.The results presented in this talk have been obtained in the 
ollaborationwith Gole
-Biernat and Motyka. For the details of the 
al
ulation the readeris referred to [23℄. 2. Nonlinear evolution equationThe Balitsky�Kov
hegov equation [14℄ has been derived as an evolutionequation for the dipole�nu
leus amplitude in the dipole pi
ture by a sum-mation of multiple Pomeron ex
hanges in the leading log s level and in thelarge N
 limit.The resulting evolution equation reads�N(r; b; Y )�Y = �s (K 
N)(r; b; Y )��s Z d2r02� r2r0 2(r + r0)2 N �r + r0; b+ r02 ; Y�N �r0; b+ r + r02 ; Y � ; (1)1 Re
ently [3℄ it has been pointed out that the situation 
an be a
tually more 
ompli-
ated in a sense that the Balitsky�Kov
hegov equation [14℄ 
ould lead to the lo
alsaturation but not to the unitarisation due to the fa
t that the target radius in impa
tparameter spa
e 
ould grow as fast as a power with energy.



Saturation at Low x and Nonlinear Evolution 1573where �s = N
�s=�, and the linear term is determined by the BFKL kernel(K 
N)(r; b; Y ) = Z d2r0�r0 2�� r2(r + r0)2 N �r + r0; b+ r02 ; Y�� r2r0 2 + (r + r0)2N(r; b; Y )� :(2)The fun
tion N(r; b; Y ) is the dipole�nu
leus amplitude for the s
attering ofthe dipole with transverse size r at impa
t parameter b and at rapidity Y .In the linear approximation, when ea
h dipole s
atters only on
e o� thenu
leus, the BFKL equation in the dipole pi
ture is obtained. The non-linear term in (1) takes into a

ount multiple s
atterings and is essentiallydetermined by the triple pomeron vertex [13℄ in the large N
 limit. Eq. (1)unitarizes the BFKL pomeron in the sense that at x! 0 and Q2 �xed,F2 � Q2 ln�1x� : (3)Thus the power-like rise with energy for the BFKL pomeron is tamed [15℄.For the subsequent analysis we shall assume the approximation of thebig nu
leus, i.e. r � b whi
h allows us to fa
torise the impa
t parameterdependen
e in Eq. (1). We also 
onsider the spheri
al symmetri
 solutionsin r and transform the equation (1) into the momentum spa
e by performingthe Fourier transform�(k; Y ) = Z d2r2� exp(�ik � r) N(r; Y )r2 = 1Z0 drr J0(kr)N(r; Y ) ; (4)where J0 is the Bessel fun
tion. In this 
ase the following equation is ob-tained ��(k; Y )�Y = �s (K 0 
 �)(k; Y ) � �s � 2(k; Y ); (5)and the a
tion of the BFKL kernel is given by(K 0 
 �)(k; Y ) = 1Z0 dk0 2k02 �k0 2 �(k0; Y ) � k2 �(k; Y )jk2 � k0 2j + k2 �(k; Y )p4k0 4 + k4� ;(6)where now k and k0 are the transverse momenta of the ex
hanged gluons inthe BFKL ladder.



1574 A.M. Sta±to3. Saturation s
ale and geometri
 s
alingIn order to study the di�usion and s
aling properties of the solution weshall 
onsider the fun
tion k�(k; Y ). In the 
ase of the linear BFKL equa-tion this fun
tion is a Gaussian 
on
entrated around some initial s
ale k0and with width in
reasing with rapidity, leading to a di�usion. In Fig. 1 weillustrate this distribution for the 
ase of the solution to the linear BFKLand in the nonlinear Balitsky�Kov
hegov equation for di�erent 
hoi
es ofrapidity. As an initial 
ondition we have 
hosen a delta fun
tion Æ(k � k0).In the 
ase of the linear BFKL evolution the solution is always peaked atk = k0 and exhibits the well known di�usion pattern, in whi
h the mo-mentum distribution has an in
reasing width with growing rapidity. In thenonlinear 
ase however the solution behaves quite di�erently. The peak ofthe distribution kmax moves towards higher k values as the rapidity in
reasesand the solution be
omes washed out from the k < k0 regime. Only in theregion k � kmax it 
oin
ides with the linear evolution.
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Fig. 1. The fun
tions k�(k; Y ) 
onstru
ted from solutions to the BFKL and theBalitsky�Kov
hegov equations with the delta-like input for di�erent values of theevolution parameter Y = ln(1=x) ranging from 1 to 10. The 
oupling 
onstant�s = 0:2.



Saturation at Low x and Nonlinear Evolution 1575The impa
t of unitarization of the BFKL pomeron on the infra-red be-haviour 
an be also visualised by studying the properties of the followingnormalised distribution	(k; Y ) = k �(k; Y )kmax(Y )�(kmax(Y ); Y ) ; (7)and by performing the proje
tion of this fun
tion onto the (lnk=k0; Y ) plane,Fig. 2.
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Fig. 2. The lines of 
onstant values of the BFKL and the BK re-normalised solutions	(k; Y ) (Y = ln(1=x)) in the (log10(k); log10(1=x))-plane.Again, for small Y , when the non-linearity in the BK equation is neg-ligible, the re-normalised solutions (7) of the BFKL and the BK equations
oin
ide. With in
reasing Y , when the non-linear e�e
ts be
ome important,the di�eren
e between them in the region of small k be
omes fully visible.



1576 A.M. Sta±toNote that in 
ertain region of (lnk=k0; Y ) in Fig. 2 the 
ontours be
omeparallel straight lines. This means that 	(k; Y ) in this region is a fun
tionof the 
ombination� = ln� kk0�� �Y = ln� kk0 exp(�Y )� � > 0 ; (8)instead of k and Y separately. This is referred as the geometri
 s
alingproperty. We note, that this s
aling holds in the regime where k < kmaxand be
omes violated when k > kmax. This suggests that we 
an identifythe saturation s
ale Qs(Y ) with kmaxQs(Y ) � kmax(Y ) = Q0 exp(�Y ) ; (9)with the exponential dependen
e on rapidity governed by the value of thes
aling parameter �.The solution to Eq. (5) has the same s
aling property as the fun
tion	(k; Y ) namely �(k; Y ) = �� kQs(Y )� ; (10)provided that �(kmax; Y ) = 
onst. We have 
he
ked that this 
ondition issatis�ed.We have 
he
ked that the s
aling 
oe�
ient � (9) is a universal quantityand it does not depend on the type of the input distribution whereas thenormalisation Q0 is determined by the initial 
onditions.The transition between the s
aling and linear regime 
an be perhaps bestseen in Fig. 3 where the fun
tion k=Qs(Y )�(k; Y ) is plotted as a fun
tionof the s
aling variable k=Qs(Y ) for di�erent values of the rapidity Y . Thes
aling behaviour is represented by a 
ommon line to the left of the pointk=Qs(Y ) = 1. The slow departure from s
aling for k > Qs(Y ) is 
learlyvisible. In this sense the line k = Qs(Y ) is only an approximation 
hara
ter-ising the position of the transition region in the (k; Y )-plane. However, the
hoi
e based on the position in k of the maximum of k�(k; Y ) as a fun
tionof Y is the most natural one.From the numeri
al solution we have extra
ted the value of the s
alingparameter and found � ' 2:05 ��s whi
h is in agreement with the estimatesof [18, 19℄ for the Balitsky�Kov
hegov equation and also with the previouswork [24℄.The geometri
 s
aling is also the property of the Gole
-Biernat andWüstho� saturation model [25℄ whi
h su

essfully des
ribed the data on in-
lusive and di�ra
tive proton stru
ture fun
tion. In this model it is assumedthat the whole energy dependen
e of the dipole 
ross se
tion �d(r; Y ) =�d(r2Q2s(Y )) is driven through the saturation s
ale Qs(Y ) (or saturation
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Fig. 3. The fun
tion (k=Qs(Y ))�(k; Y ) plotted versus k=Qs(Y ) for di�erent valuesof rapidity Y ranging from 10 to 23. The saturation s
ale Qs(Y ) 
orresponds tothe position of the maximum of the fun
tion k �(k; Y ).radius 1=Qs(Y )). It then results in an approximate s
aling property of thedata for the total photon�proton 
ross se
tion�
�p(x;Q2) = �
�p� Q2Q2s(Y )� : (11)Su
h s
aling law was found in the small-x DIS data [26℄.4. Analysis beyond LL levelThe Balitsky�Kov
hegov equation has been derived in the leading log slevel, therefore it is important to study the impa
t of the subleading 
orre
-tions. Although it has been argued [27℄ that the unitarity 
orre
tions mightbe
ome important before next-to-leading ones, the study of the latter onesis 
ru
ial due to the large numeri
al value of the subleading series. Afterthe evaluation of the NLL 
ontribution to the BFKL amplitude has beenperformed [28℄ it turned out that the 
orre
tions are very large and need tobe resummed [29℄ in order to stabilize the �nal result.



1578 A.M. Sta±toWe have tested two important types of the NLL 
orre
tions: the in
lusionof running of the 
oupling ��s(k2) and the so 
alled kinemati
al 
onstraint.In the 
ase of linear BFKL the running of the 
oupling poses seriousproblems due to the existen
e of the Landau pole and thus it is ne
essaryto regularise ��s(k2) at small s
ales. This results in a strong dependen
eof the solution on the 
ut-o� (or freezing) parameter k0. The inter
ept ofthe BFKL Pomeron turns out to be dominated by the values of ��s(k20) andinstead of the typi
al di�usion pattern one has a fa
torised behaviour ofthe solution k�(k; Y ) � expf�Y g 1k [ln �k2=k20�℄� at large rapidities. Thedistribution of the gluon momenta is dominated by the virtualities in theinfrared regime � k0.In the 
ase of the Balitsky�Kov
hegov equation with the running 
ou-pling one has still problem of regularisation around the Landau pole, howeverthe solution is itself mu
h more stable with respe
t to the details of the phe-nomenologi
al regularisation. It turns out, that sin
e the saturation e�e
tsare very strong in the regime of small values of k, they tend to de
rease therapid rise of the amplitude for the values of running 
oupling evaluated ats
ales around the 
uto� s
ale k0. The rapidity � dependent saturation s
ale,Qs(Y ) shifts the momentum distribution out of the infrared regime into theperturbative domain. This phenomenon 
an be best visualised by means ofsimilar 
ontour plots as before, Fig. 4. In the linear BFKL 
ase one observesthat the solution initially undergoes the di�usion pattern, slightly asymmet-ri
 due to 
orre
tions 
oming from the running 
oupling, and then suddenlyit drops into the small s
ales regime k � k0 where it exhibits fa
torised (in Yand lnk=k0) behaviour. On the 
ontrary, the Balitsky�Kov
hegov equationwhi
h initially 
oin
ides with BFKL, also undergoes some form of transitionbut then the distribution moves away from the infrared regime due to thegeneration of the saturation s
ale.We have estimated the saturation s
ale in the 
ase of Balitsky�Kov
hegovequation with running 
oupling. By taking the ansatz that the lo
al expo-nent �(Y ) = d ln(Qs(Y )=�) =dY takes the form �(Y ) = 2��s(Q2s(Y )) where� = �QCD we have found that the saturation s
ale is given by the solutionto the di�erential equationd ln�Qs(Y )� �dY = 12b0 ln�Qs(Y )� � ; (12)with the initial 
ondition Qs(Y0) = Q0 and Y0 
hosen in the region wheres
aling sets in. The solution takes the formQs(Y ) = � exp�r24b0 (Y � Y0) + L20� ; Y > Y0 ; (13)
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Fig. 4. The re-normalised solution 	(k; Y ) for the Balitsky�Kov
hegov equationwith the running 
oupling 
onstant and the infra-red 
ut-o� k20 = 0:1GeV2 asfun
tion of log10(1=x) and log10(k=1GeV).where L0 = ln(Q0=�). It follows that the lo
al exponent �(Y ) de
reaseswith in
reasing rapidity, and �(Y ) � 1=pY for very large Y .Su
h dependen
e is indeed seen in the numeri
al analysis.In Fig. 5 we illustrate s
aling in the 
ase with running 
oupling by show-ing the fun
tion (k=Qs(Y ))�(k; Y ) plotted versus k=Qs(Y ) for di�erent val-ues of rapidity. Qs(Y ) is given by formula (13) with the initial 
onditionQs(Y = 0) = 2 GeV. The overlapping 
urves at low values of the s
alingvariable 
learly indi
ate that for k < Qs(Y ) s
aling is satis�ed to a verygood a

ura
y, thus justifying our ansatz (13) for the saturation s
ale. Wehave also tested the impa
t of the so 
alled kinemati
al 
onstraint onto thesolution of Balitsky�Kov
hegov equation and found that though qualitativefeatures are the same (with generation of the saturation s
ale and s
aling)the absolute numeri
al value of the solution is strongly de
reased and alsothe saturation s
ale is shifted towards smaller value of gluon momenta. Tosummarise, the di�usion into infrared in the 
ase of the Balitsky�Kov
hegovequation is strongly suppressed due to the emergen
e of the saturation s
alewhi
h 
an be approximately identi�ed with the maximum of the momen-tum distribution k�(k; Y ). The solution to the nonlinear equation has the
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Fig. 5. The fun
tion (k=Qs(Y ))�(k; Y ) in the running 
oupling 
ase, plotted versusk=Qs(Y ) for di�erent values of rapidity Y ranging from 15 to 32. The saturations
ale Qs(Y ) is taken from equation (13) with the initial 
ondition Qs(Y = 0) =2:0 GeV.property of the geometri
 s
aling in the regime where k < Qs(Y ) whereasin the 
ase when k > Qs(Y ) the solution enters the linear regime. In the
ase of running 
oupling the nonlinear equation turns out to be more stableas 
ompared with the linear BFKL evolution. The sensitivity to the treat-ment of the infra-red region is mu
h smaller than in the linear 
ase due tothe appearan
e of the saturation s
ale. In 
ontrast to the BFKL equationwith the running 
oupling, the large Y asymptoti
s of the dipole s
atteringamplitude arising from the BK equation is governed by gluon momenta inthe perturbative domain.This resear
h was supported in part by the EU Framework TMR pro-gramme, 
ontra
t FMRX-CT98-0194 and by the Polish State Committeefor S
ienti�
 Resear
h (KBN) grants nos. 2P03B 120 19, 2P03B 051 19,5P03B 144 20.
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