
Vol. 33 (2002) ACTA PHYSICA POLONICA B No 6
SATURATION AT LOW xAND NONLINEAR EVOLUTION�A.M. Sta±toINFN Sezione di Firenze, Sesto Fiorentino (FI), ItalyHenryk Niewodniza«ski Institute of Nulear PhysisRadzikowskiego 152, 31-342 Kraków, Poland(Reeived Marh 27, 2002)In this talk the results of the analytial and numerial analysis of thenonlinear Balitsky�Kovhegov equation are presented. The harateristiBFKL di�usion into infrared regime is suppressed by the generation ofthe saturation sale Qs. We identify the saling and linear regimes forthe solution. We also study the impat of subleading orretions onto thenonlinear evolution.PACS numbers: 12.38.Bx 1. IntrodutionOne of the major hallenges in QCD is the desription of high energysattering phenomena. In the high enter-of-mass energy ps and in theperturbative domain when �s � 1 the sattering amplitude is obtainedby the summation of diagrams leading in log s [1℄. At this level, when�s is frozen, the dependene of the resulting ross setion on the energyis governed by the power law x�!IP where x is the Bjorken variable. Theritial exponent !IP = 4 ln 2 ��s (��s = �s�=N) is provided by the minimumof the eigenvalue funtion �() of the BFKL evolution kernel.The oneptual problem in this approah is the fat that at su�ientlyhigh enter-of-mass energies the BFKL amplitude violates the Froissart uni-tarity bound. This means that the validity of this approah is stronglylimited and it has to be modi�ed at very small x in order to guarantee theunitarity of the resulting ross setion.The solution to this problem an be provided by inluding the reom-bination e�ets, whih are likely to our at very small values of x [2℄. Bydereasing the value of x at �xed gluon virtuality k2t , the density of partons� Presented at the Craow Epiphany Conferene on Quarks and Gluons in ExtremeConditions, Craow, Poland, January 3�6, 2002.(1571)



1572 A.M. Sta±tobeomes so large that they start to overlap. In this ase the gluon split-ting proess must be supplemented by a ompeting gluon reombination. Interms of evolution the master equations beome nonlinear with an additionalquadrati term whih suppress the growth of the amplitude with energy andrestore the unitarity1.There have been extensive studies on this problem, see [2, 4�14℄, whihresult in the nonlinear evolution. One of the important outomes of thesestudies is the existene of the saturation sale Qs(x) whih is a harateristisale at whih the parton reombination e�ets beome important. In par-tiular ase of the Balitsky�Kovhegov equation [14℄ the existene of suhsale has yet another important impat on the piture of the BFKL evolu-tion. The di�usion into the infra-red, whih is the harateristi propertyof BFKL evolution is strongly limited due to the existene of the satura-tion sale [9,23℄. In fat, in the regime when the gluon transverse momentak < Qs(x), the solution to the nonlinear equation [14℄ beomes a funtionof only one ombined variable k=Qs(x) [16�24℄. In the regime of high mo-menta, k > Qs(x) the parton density is small and the evolution is governedby a normal linear equation.In this talk we present the analytial and numerial analysis of theBalitsky�Kovhegov [14℄ equation whih is a nonlinear evolution equationin the leading log s limit. We illustrate the emergene of the saturationsale and saling and show that it leads to the suppression of the infra-reddi�usion. We also onsider the ase with additional NLL e�ets suh askinematial onstraint and running oupling.The results presented in this talk have been obtained in the ollaborationwith Gole-Biernat and Motyka. For the details of the alulation the readeris referred to [23℄. 2. Nonlinear evolution equationThe Balitsky�Kovhegov equation [14℄ has been derived as an evolutionequation for the dipole�nuleus amplitude in the dipole piture by a sum-mation of multiple Pomeron exhanges in the leading log s level and in thelarge N limit.The resulting evolution equation reads�N(r; b; Y )�Y = �s (K 
N)(r; b; Y )��s Z d2r02� r2r0 2(r + r0)2 N �r + r0; b+ r02 ; Y�N �r0; b+ r + r02 ; Y � ; (1)1 Reently [3℄ it has been pointed out that the situation an be atually more ompli-ated in a sense that the Balitsky�Kovhegov equation [14℄ ould lead to the loalsaturation but not to the unitarisation due to the fat that the target radius in impatparameter spae ould grow as fast as a power with energy.



Saturation at Low x and Nonlinear Evolution 1573where �s = N�s=�, and the linear term is determined by the BFKL kernel(K 
N)(r; b; Y ) = Z d2r0�r0 2�� r2(r + r0)2 N �r + r0; b+ r02 ; Y�� r2r0 2 + (r + r0)2N(r; b; Y )� :(2)The funtion N(r; b; Y ) is the dipole�nuleus amplitude for the sattering ofthe dipole with transverse size r at impat parameter b and at rapidity Y .In the linear approximation, when eah dipole satters only one o� thenuleus, the BFKL equation in the dipole piture is obtained. The non-linear term in (1) takes into aount multiple satterings and is essentiallydetermined by the triple pomeron vertex [13℄ in the large N limit. Eq. (1)unitarizes the BFKL pomeron in the sense that at x! 0 and Q2 �xed,F2 � Q2 ln�1x� : (3)Thus the power-like rise with energy for the BFKL pomeron is tamed [15℄.For the subsequent analysis we shall assume the approximation of thebig nuleus, i.e. r � b whih allows us to fatorise the impat parameterdependene in Eq. (1). We also onsider the spherial symmetri solutionsin r and transform the equation (1) into the momentum spae by performingthe Fourier transform�(k; Y ) = Z d2r2� exp(�ik � r) N(r; Y )r2 = 1Z0 drr J0(kr)N(r; Y ) ; (4)where J0 is the Bessel funtion. In this ase the following equation is ob-tained ��(k; Y )�Y = �s (K 0 
 �)(k; Y ) � �s � 2(k; Y ); (5)and the ation of the BFKL kernel is given by(K 0 
 �)(k; Y ) = 1Z0 dk0 2k02 �k0 2 �(k0; Y ) � k2 �(k; Y )jk2 � k0 2j + k2 �(k; Y )p4k0 4 + k4� ;(6)where now k and k0 are the transverse momenta of the exhanged gluons inthe BFKL ladder.



1574 A.M. Sta±to3. Saturation sale and geometri salingIn order to study the di�usion and saling properties of the solution weshall onsider the funtion k�(k; Y ). In the ase of the linear BFKL equa-tion this funtion is a Gaussian onentrated around some initial sale k0and with width inreasing with rapidity, leading to a di�usion. In Fig. 1 weillustrate this distribution for the ase of the solution to the linear BFKLand in the nonlinear Balitsky�Kovhegov equation for di�erent hoies ofrapidity. As an initial ondition we have hosen a delta funtion Æ(k � k0).In the ase of the linear BFKL evolution the solution is always peaked atk = k0 and exhibits the well known di�usion pattern, in whih the mo-mentum distribution has an inreasing width with growing rapidity. In thenonlinear ase however the solution behaves quite di�erently. The peak ofthe distribution kmax moves towards higher k values as the rapidity inreasesand the solution beomes washed out from the k < k0 regime. Only in theregion k � kmax it oinides with the linear evolution.
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Fig. 1. The funtions k�(k; Y ) onstruted from solutions to the BFKL and theBalitsky�Kovhegov equations with the delta-like input for di�erent values of theevolution parameter Y = ln(1=x) ranging from 1 to 10. The oupling onstant�s = 0:2.



Saturation at Low x and Nonlinear Evolution 1575The impat of unitarization of the BFKL pomeron on the infra-red be-haviour an be also visualised by studying the properties of the followingnormalised distribution	(k; Y ) = k �(k; Y )kmax(Y )�(kmax(Y ); Y ) ; (7)and by performing the projetion of this funtion onto the (lnk=k0; Y ) plane,Fig. 2.
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Fig. 2. The lines of onstant values of the BFKL and the BK re-normalised solutions	(k; Y ) (Y = ln(1=x)) in the (log10(k); log10(1=x))-plane.Again, for small Y , when the non-linearity in the BK equation is neg-ligible, the re-normalised solutions (7) of the BFKL and the BK equationsoinide. With inreasing Y , when the non-linear e�ets beome important,the di�erene between them in the region of small k beomes fully visible.



1576 A.M. Sta±toNote that in ertain region of (lnk=k0; Y ) in Fig. 2 the ontours beomeparallel straight lines. This means that 	(k; Y ) in this region is a funtionof the ombination� = ln� kk0�� �Y = ln� kk0 exp(�Y )� � > 0 ; (8)instead of k and Y separately. This is referred as the geometri salingproperty. We note, that this saling holds in the regime where k < kmaxand beomes violated when k > kmax. This suggests that we an identifythe saturation sale Qs(Y ) with kmaxQs(Y ) � kmax(Y ) = Q0 exp(�Y ) ; (9)with the exponential dependene on rapidity governed by the value of thesaling parameter �.The solution to Eq. (5) has the same saling property as the funtion	(k; Y ) namely �(k; Y ) = �� kQs(Y )� ; (10)provided that �(kmax; Y ) = onst. We have heked that this ondition issatis�ed.We have heked that the saling oe�ient � (9) is a universal quantityand it does not depend on the type of the input distribution whereas thenormalisation Q0 is determined by the initial onditions.The transition between the saling and linear regime an be perhaps bestseen in Fig. 3 where the funtion k=Qs(Y )�(k; Y ) is plotted as a funtionof the saling variable k=Qs(Y ) for di�erent values of the rapidity Y . Thesaling behaviour is represented by a ommon line to the left of the pointk=Qs(Y ) = 1. The slow departure from saling for k > Qs(Y ) is learlyvisible. In this sense the line k = Qs(Y ) is only an approximation harater-ising the position of the transition region in the (k; Y )-plane. However, thehoie based on the position in k of the maximum of k�(k; Y ) as a funtionof Y is the most natural one.From the numerial solution we have extrated the value of the salingparameter and found � ' 2:05 ��s whih is in agreement with the estimatesof [18, 19℄ for the Balitsky�Kovhegov equation and also with the previouswork [24℄.The geometri saling is also the property of the Gole-Biernat andWüstho� saturation model [25℄ whih suessfully desribed the data on in-lusive and di�rative proton struture funtion. In this model it is assumedthat the whole energy dependene of the dipole ross setion �d(r; Y ) =�d(r2Q2s(Y )) is driven through the saturation sale Qs(Y ) (or saturation



Saturation at Low x and Nonlinear Evolution 1577

10
-4

10
-3

10
-2

10
-1

10
-4

10
-3

10
-2

10
-1

1 10 10
2

10
3

αs = 0.2

k/Qs(Y)

k/
Q

s(
Y

) 
φ(

k,
y)

Fig. 3. The funtion (k=Qs(Y ))�(k; Y ) plotted versus k=Qs(Y ) for di�erent valuesof rapidity Y ranging from 10 to 23. The saturation sale Qs(Y ) orresponds tothe position of the maximum of the funtion k �(k; Y ).radius 1=Qs(Y )). It then results in an approximate saling property of thedata for the total photon�proton ross setion��p(x;Q2) = ��p� Q2Q2s(Y )� : (11)Suh saling law was found in the small-x DIS data [26℄.4. Analysis beyond LL levelThe Balitsky�Kovhegov equation has been derived in the leading log slevel, therefore it is important to study the impat of the subleading orre-tions. Although it has been argued [27℄ that the unitarity orretions mightbeome important before next-to-leading ones, the study of the latter onesis ruial due to the large numerial value of the subleading series. Afterthe evaluation of the NLL ontribution to the BFKL amplitude has beenperformed [28℄ it turned out that the orretions are very large and need tobe resummed [29℄ in order to stabilize the �nal result.



1578 A.M. Sta±toWe have tested two important types of the NLL orretions: the inlusionof running of the oupling ��s(k2) and the so alled kinematial onstraint.In the ase of linear BFKL the running of the oupling poses seriousproblems due to the existene of the Landau pole and thus it is neessaryto regularise ��s(k2) at small sales. This results in a strong dependeneof the solution on the ut-o� (or freezing) parameter k0. The interept ofthe BFKL Pomeron turns out to be dominated by the values of ��s(k20) andinstead of the typial di�usion pattern one has a fatorised behaviour ofthe solution k�(k; Y ) � expf�Y g 1k [ln �k2=k20�℄� at large rapidities. Thedistribution of the gluon momenta is dominated by the virtualities in theinfrared regime � k0.In the ase of the Balitsky�Kovhegov equation with the running ou-pling one has still problem of regularisation around the Landau pole, howeverthe solution is itself muh more stable with respet to the details of the phe-nomenologial regularisation. It turns out, that sine the saturation e�etsare very strong in the regime of small values of k, they tend to derease therapid rise of the amplitude for the values of running oupling evaluated atsales around the uto� sale k0. The rapidity � dependent saturation sale,Qs(Y ) shifts the momentum distribution out of the infrared regime into theperturbative domain. This phenomenon an be best visualised by means ofsimilar ontour plots as before, Fig. 4. In the linear BFKL ase one observesthat the solution initially undergoes the di�usion pattern, slightly asymmet-ri due to orretions oming from the running oupling, and then suddenlyit drops into the small sales regime k � k0 where it exhibits fatorised (in Yand lnk=k0) behaviour. On the ontrary, the Balitsky�Kovhegov equationwhih initially oinides with BFKL, also undergoes some form of transitionbut then the distribution moves away from the infrared regime due to thegeneration of the saturation sale.We have estimated the saturation sale in the ase of Balitsky�Kovhegovequation with running oupling. By taking the ansatz that the loal expo-nent �(Y ) = d ln(Qs(Y )=�) =dY takes the form �(Y ) = 2��s(Q2s(Y )) where� = �QCD we have found that the saturation sale is given by the solutionto the di�erential equationd ln�Qs(Y )� �dY = 12b0 ln�Qs(Y )� � ; (12)with the initial ondition Qs(Y0) = Q0 and Y0 hosen in the region wheresaling sets in. The solution takes the formQs(Y ) = � exp�r24b0 (Y � Y0) + L20� ; Y > Y0 ; (13)
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Fig. 4. The re-normalised solution 	(k; Y ) for the Balitsky�Kovhegov equationwith the running oupling onstant and the infra-red ut-o� k20 = 0:1GeV2 asfuntion of log10(1=x) and log10(k=1GeV).where L0 = ln(Q0=�). It follows that the loal exponent �(Y ) dereaseswith inreasing rapidity, and �(Y ) � 1=pY for very large Y .Suh dependene is indeed seen in the numerial analysis.In Fig. 5 we illustrate saling in the ase with running oupling by show-ing the funtion (k=Qs(Y ))�(k; Y ) plotted versus k=Qs(Y ) for di�erent val-ues of rapidity. Qs(Y ) is given by formula (13) with the initial onditionQs(Y = 0) = 2 GeV. The overlapping urves at low values of the salingvariable learly indiate that for k < Qs(Y ) saling is satis�ed to a verygood auray, thus justifying our ansatz (13) for the saturation sale. Wehave also tested the impat of the so alled kinematial onstraint onto thesolution of Balitsky�Kovhegov equation and found that though qualitativefeatures are the same (with generation of the saturation sale and saling)the absolute numerial value of the solution is strongly dereased and alsothe saturation sale is shifted towards smaller value of gluon momenta. Tosummarise, the di�usion into infrared in the ase of the Balitsky�Kovhegovequation is strongly suppressed due to the emergene of the saturation salewhih an be approximately identi�ed with the maximum of the momen-tum distribution k�(k; Y ). The solution to the nonlinear equation has the
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Fig. 5. The funtion (k=Qs(Y ))�(k; Y ) in the running oupling ase, plotted versusk=Qs(Y ) for di�erent values of rapidity Y ranging from 15 to 32. The saturationsale Qs(Y ) is taken from equation (13) with the initial ondition Qs(Y = 0) =2:0 GeV.property of the geometri saling in the regime where k < Qs(Y ) whereasin the ase when k > Qs(Y ) the solution enters the linear regime. In thease of running oupling the nonlinear equation turns out to be more stableas ompared with the linear BFKL evolution. The sensitivity to the treat-ment of the infra-red region is muh smaller than in the linear ase due tothe appearane of the saturation sale. In ontrast to the BFKL equationwith the running oupling, the large Y asymptotis of the dipole satteringamplitude arising from the BK equation is governed by gluon momenta inthe perturbative domain.This researh was supported in part by the EU Framework TMR pro-gramme, ontrat FMRX-CT98-0194 and by the Polish State Committeefor Sienti� Researh (KBN) grants nos. 2P03B 120 19, 2P03B 051 19,5P03B 144 20.
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