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In this talk the results of the analytical and numerical analysis of the
nonlinear Balitsky-Kovchegov equation are presented. The characteristic
BFKL diffusion into infrared regime is suppressed by the generation of
the saturation scale (). We identify the scaling and linear regimes for
the solution. We also study the impact of subleading corrections onto the
nonlinear evolution.

PACS numbers: 12.38.Bx

1. Introduction

One of the major challenges in QCD is the description of high energy
scattering phenomena. In the high center-of-mass energy /s and in the
perturbative domain when «; < 1 the scattering amplitude is obtained
by the summation of diagrams leading in logs [1]. At this level, when
ag is frozen, the dependence of the resulting cross section on the energy
is governed by the power law z~“P where x is the Bjorken variable. The
critical exponent wp =4 In2 &5 (&5 = asm/N,) is provided by the minimum
of the eigenvalue function x(v) of the BFKL evolution kernel.

The conceptual problem in this approach is the fact that at sufficiently
high center-of-mass energies the BFKL amplitude violates the Froissart uni-
tarity bound. This means that the validity of this approach is strongly
limited and it has to be modified at very small « in order to guarantee the
unitarity of the resulting cross section.

The solution to this problem can be provided by including the recom-
bination effects, which are likely to occur at very small values of z [2|. By
decreasing the value of z at fixed gluon virtuality k2, the density of partons
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becomes so large that they start to overlap. In this case the gluon split-
ting process must be supplemented by a competing gluon recombination. In
terms of evolution the master equations become nonlinear with an additional
quadratic term which suppress the growth of the amplitude with energy and
restore the unitarity!.

There have been extensive studies on this problem, see |2,4-14]|, which
result in the nonlinear evolution. One of the important outcomes of these
studies is the existence of the saturation scale Q(z) which is a characteristic
scale at which the parton recombination effects become important. In par-
ticular case of the Balitsky—Kovchegov equation [14] the existence of such
scale has yet another important impact on the picture of the BFKL evolu-
tion. The diffusion into the infra-red, which is the characteristic property
of BFKL evolution is strongly limited due to the existence of the satura-
tion scale [9,23]. In fact, in the regime when the gluon transverse momenta
k < Qs(z), the solution to the nonlinear equation [14] becomes a function
of only one combined variable k/Qs(x) [16-24]. In the regime of high mo-
menta, k > Qs(z) the parton density is small and the evolution is governed
by a normal linear equation.

In this talk we present the analytical and numerical analysis of the
Balitsky—Kovchegov [14] equation which is a nonlinear evolution equation
in the leading log s limit. We illustrate the emergence of the saturation
scale and scaling and show that it leads to the suppression of the infra-red
diffusion. We also consider the case with additional NLL effects such as
kinematical constraint and running coupling.

The results presented in this talk have been obtained in the collaboration
with Golec-Biernat and Motyka. For the details of the calculation the reader
is referred to [23].

2. Nonlinear evolution equation

The Balitsky—Kovchegov equation [14] has been derived as an evolution
equation for the dipole—nucleus amplitude in the dipole picture by a sum-
mation of multiple Pomeron exchanges in the leading log s level and in the
large N, limit.

The resulting evolution equation reads

N(r,b,Y

% =a, (K®N)(r,b,Y)

_ [ dr r? , 7! , r+r
_as/ 5 r’2(7‘+7")2N<T+T’b+ 5,Y>N(r,b+ 5 ,Y), (1)

! Recently [3] it has been pointed out that the situation can be actually more compli-
cated in a sense that the Balitsky—Kovchegov equation [14] could lead to the local
saturation but not to the unitarisation due to the fact that the target radius in impact
parameter space could grow as fast as a power with energy.
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where @5 = N.a;/m, and the linear term is determined by the BFKL kernel

d2r/

7”"/2

(K ® N)(r,b,Y) = /

r? , 7’ r?
— N b+—Y)—-———=N(r,bY);.(2

The function N(r,b,Y) is the dipole-nucleus amplitude for the scattering of
the dipole with transverse size r at impact parameter b and at rapidity Y.
In the linear approximation, when each dipole scatters only once off the
nucleus, the BFKL equation in the dipole picture is obtained. The non-
linear term in (1) takes into account multiple scatterings and is essentially
determined by the triple pomeron vertex [13] in the large N, limit. Eq. (1)
unitarizes the BFKL pomeron in the sense that at z — 0 and Q? fixed,

Fy ~ Q%In G) . (3)

Thus the power-like rise with energy for the BFKL pomeron is tamed [15].

For the subsequent analysis we shall assume the approximation of the
big nucleus, 7.e. r < b which allows us to factorise the impact parameter
dependence in Eq. (1). We also consider the spherical symmetric solutions
in r and transform the equation (1) into the momentum space by performing
the Fourier transform

oo

dr
7’2 r
0

d(k,Y) /—exp(—zk r) N(rY), (4

where Jy is the Bessel function. In this case the following equation is ob-
tained

op(k,Y _ —
% = Qs (KI®¢)(k7Y) - O ¢2(kaY)7 (5)

and the action of the BFKL kernel is given by

[k (K2o(K.Y) — K2g(kY) K2k Y
k2 |k2 — k'2| 4k + k4
0
(6)
where now k and k' are the transverse momenta of the exchanged gluons in
the BFKL ladder.
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3. Saturation scale and geometric scaling

In order to study the diffusion and scaling properties of the solution we
shall consider the function k¢(k,Y’). In the case of the linear BFKL equa-
tion this function is a Gaussian concentrated around some initial scale kg
and with width increasing with rapidity, leading to a diffusion. In Fig. 1 we
illustrate this distribution for the case of the solution to the linear BFKL
and in the nonlinear Balitsky—Kovchegov equation for different choices of
rapidity. As an initial condition we have chosen a delta function 6(k — ko).
In the case of the linear BFKL evolution the solution is always peaked at
k = k¢ and exhibits the well known diffusion pattern, in which the mo-
mentum distribution has an increasing width with growing rapidity. In the
nonlinear case however the solution behaves quite differently. The peak of
the distribution kmax moves towards higher k values as the rapidity increases
and the solution becomes washed out from the k& < kg regime. Only in the
region k > kmax it coincides with the linear evolution.
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Fig.1. The functions k¢(k,Y) constructed from solutions to the BFKL and the
Balitsky—Kovchegov equations with the delta-like input for different values of the
evolution parameter Y = In(1/z) ranging from 1 to 10. The coupling constant
ags = 0.2.
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The impact of unitarization of the BFKL pomeron on the infra-red be-
haviour can be also visualised by studying the properties of the following
normalised distribution

k¢(k,Y)

Yk Y) = ) plhm (V). 7)

(7)

and by performing the projection of this function onto the (Ink/ko,Y") plane,
Fig. 2.
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Fig. 2. The lines of constant values of the BFKL and the BK re-normalised solutions
U(k,Y) (Y =1In(1/x)) in the (log,y(k),log,o(1/x))-plane.

Again, for small Y, when the non-linearity in the BK equation is neg-
ligible, the re-normalised solutions (7) of the BFKL and the BK equations
coincide. With increasing Y, when the non-linear effects become important,
the difference between them in the region of small & becomes fully visible.
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Note that in certain region of (Ink/kg,Y) in Fig. 2 the contours become
parallel straight lines. This means that ¥(k,Y") in this region is a function
of the combination

g:m(kﬁo)—AY:ln(m) A>0, (8)

instead of k and Y separately. This is referred as the geometric scaling
property. We note, that this scaling holds in the regime where k < Ekmax
and becomes violated when k > kpnax. This suggests that we can identify
the saturation scale Q(Y) with kmax

QS(Y) = kmax(Y) = Qo exp()\Y) ) (9)

with the exponential dependence on rapidity governed by the value of the
scaling parameter A.

The solution to Eq. (5) has the same scaling property as the function
¥ (k,Y) namely

k
$(k,Y) = ¢ ( Qs(y)) , (10)
provided that ¢(kmax,Y) = const. We have checked that this condition is
satisfied.

We have checked that the scaling coefficient X (9) is a universal quantity
and it does not depend on the type of the input distribution whereas the
normalisation (g is determined by the initial conditions.

The transition between the scaling and linear regime can be perhaps best
seen in Fig. 3 where the function k/Qs(Y) ¢(k,Y) is plotted as a function
of the scaling variable k/Q;(Y") for different values of the rapidity Y. The
scaling behaviour is represented by a common line to the left of the point
k/Qs(Y) = 1. The slow departure from scaling for k& > Q,(Y) is clearly
visible. In this sense the line k = Q4(Y") is only an approximation character-
ising the position of the transition region in the (k,Y')-plane. However, the
choice based on the position in k of the maximum of k¢(k,Y") as a function
of Y is the most natural one.

From the numerical solution we have extracted the value of the scaling
parameter and found A ~ 2.05 & which is in agreement with the estimates
of [18,19] for the Balitsky—Kovchegov equation and also with the previous
work [24].

The geometric scaling is also the property of the Golec-Biernat and
Wiisthoff saturation model [25] which successfully described the data on in-
clusive and diffractive proton structure function. In this model it is assumed
that the whole energy dependence of the dipole cross section og4(r,Y) =
oq(r?Q%(Y)) is driven through the saturation scale Q4(Y) (or saturation
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Fig. 3. The function (k/Qs(Y)) ¢(k,Y") plotted versus k/Qs(Y") for different values
of rapidity Y ranging from 10 to 23. The saturation scale Q4(Y") corresponds to
the position of the maximum of the function k ¢(k,Y").

radius 1/Qs(Y")). It then results in an approximate scaling property of the
data for the total photon—proton cross section

QQ
oyp(,Q%) = 0yep <W> : (11)

Such scaling law was found in the small-z DIS data [26].

4. Analysis beyond LL level

The Balitsky-Kovchegov equation has been derived in the leading log s
level, therefore it is important to study the impact of the subleading correc-
tions. Although it has been argued [27] that the unitarity corrections might
become important before next-to-leading ones, the study of the latter ones
is crucial due to the large numerical value of the subleading series. After
the evaluation of the NLL contribution to the BFKL amplitude has been
performed [28] it turned out that the corrections are very large and need to
be resummed [29] in order to stabilize the final result.
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We have tested two important types of the NLL corrections: the inclusion
of running of the coupling @&s(k?) and the so called kinematical constraint.

In the case of linear BFKL the running of the coupling poses serious
problems due to the existence of the Landau pole and thus it is necessary
to regularise @(k?) at small scales. This results in a strong dependence
of the solution on the cut-off (or freezing) parameter ky. The intercept of
the BFKL Pomeron turns out to be dominated by the values of a;(k2) and
instead of the typical diffusion pattern one has a factorised behaviour of
the solution k@(k,Y) ~ exp{AY}}[ln (k?/k3)]” at large rapidities. The
distribution of the gluon momenta is dominated by the virtualities in the
infrared regime ~ k.

In the case of the Balitsky—Kovchegov equation with the running cou-
pling one has still problem of regularisation around the Landau pole, however
the solution is itself much more stable with respect to the details of the phe-
nomenological regularisation. It turns out, that since the saturation effects
are very strong in the regime of small values of k, they tend to decrease the
rapid rise of the amplitude for the values of running coupling evaluated at
scales around the cutoff scale ky. The rapidity — dependent saturation scale,
Qs(Y) shifts the momentum distribution out of the infrared regime into the
perturbative domain. This phenomenon can be best visualised by means of
similar contour plots as before, Fig. 4. In the linear BFKL case one observes
that the solution initially undergoes the diffusion pattern, slightly asymmet-
ric due to corrections coming from the running coupling, and then suddenly
it drops into the small scales regime k ~ ky where it exhibits factorised (in Y’
and Ink/kg) behaviour. On the contrary, the Balitsky—Kovchegov equation
which initially coincides with BFKL, also undergoes some form of transition
but then the distribution moves away from the infrared regime due to the
generation of the saturation scale.

We have estimated the saturation scale in the case of Balitsky—Kovchegov
equation with running coupling. By taking the ansatz that the local expo-
nent A\(Y) = dIn(Qs(Y)/A) /dY takes the form A(Y) = 2a5(Q?(Y)) where
A = Aqcp we have found that the saturation scale is given by the solution
to the differential equation

din (22) . n
dy bo I (202)

(12)

with the initial condition Q4(Yp) = Qo and Y chosen in the region where
scaling sets in. The solution takes the form

Qs(Y) = A exp <\/% (Y —Yy) + L%) , Y >Y,, (13)
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Fig.4. The re-normalised solution ¥(k,Y) for the Balitsky—Kovchegov equation
with the running coupling constant and the infra-red cut-off k3 = 0.1GeV? as
function of log,o(1/z) and log,,(k/1 GeV).

where Ly = In(Qo/A4). It follows that the local exponent A\(Y) decreases
with increasing rapidity, and A(Y') ~ 1/V/Y for very large Y.
Such dependence is indeed seen in the numerical analysis.

In Fig. 5 we illustrate scaling in the case with running coupling by show-
ing the function (k/Qs(Y)) ¢(k,Y") plotted versus k/Q4(Y) for different val-
ues of rapidity. Qs(Y) is given by formula (13) with the initial condition
Qs(Y = 0) = 2 GeV. The overlapping curves at low values of the scaling
variable clearly indicate that for k¥ < Qs(Y) scaling is satisfied to a very
good accuracy, thus justifying our ansatz (13) for the saturation scale. We
have also tested the impact of the so called kinematical constraint onto the
solution of Balitsky—Kovchegov equation and found that though qualitative
features are the same (with generation of the saturation scale and scaling)
the absolute numerical value of the solution is strongly decreased and also
the saturation scale is shifted towards smaller value of gluon momenta. To
summarise, the diffusion into infrared in the case of the Balitsky—Kovchegov
equation is strongly suppressed due to the emergence of the saturation scale
which can be approximately identified with the maximum of the momen-
tum distribution k¢(k,Y). The solution to the nonlinear equation has the
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Fig. 5. The function (k/Qs(Y")) ¢(k,Y") in the running coupling case, plotted versus
k/Qs(Y) for different values of rapidity Y ranging from 15 to 32. The saturation
scale Q4(Y) is taken from equation (13) with the initial condition Qs(Y = 0) =
2.0 GeV.

property of the geometric scaling in the regime where k < Q4(Y) whereas
in the case when &k > Q4(Y) the solution enters the linear regime. In the
case of running coupling the nonlinear equation turns out to be more stable
as compared with the linear BFKL evolution. The sensitivity to the treat-
ment of the infra-red region is much smaller than in the linear case due to
the appearance of the saturation scale. In contrast to the BFKL equation
with the running coupling, the large Y asymptotics of the dipole scattering
amplitude arising from the BK equation is governed by gluon momenta in
the perturbative domain.
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