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CHAOS ENFORCED INSTANTON TUNNELLINGIN ONE-DIMENSIONAL MODELWITH PERIODIC POTENTIALV. Kuvshinov, A. Kuzmin and R. ShulyakovskyInstitute of Physi
s, National A
ademy of S
ien
es of BelarusS
arina av., 68, 220072 Minsk, Belaruse-mail: kuvshino�dragon.bas-net.byavkuzmin�dragon.bas-net.byshul�dragon.bas-net.by(Re
eived February 7, 2002; revised version re
eived April 10, 2002)The in�uen
e of 
haos on properties of dilute instanton gas in quantumme
hani
s is studied. We demonstrate on the example of one-dimensionalperiodi
 potential that small perturbation leading to 
haos squeezes instan-ton gas and in
reases the rate of instanton tunnelling.PACS numbers: 03.65.Xp, 05.45.Mt1. Introdu
tionSemi
lassi
al properties of 
lassi
ally 
haoti
 dynami
al systems (quan-tum 
haos [1℄) is a rapidly developing �eld of resear
h. One of the attra
tivephenomenon obtained in this dire
tion is 
haos assisted tunnelling ([2℄ andreferen
es therein).In this work we analyti
ally investigate in�uen
e of the perturbationleading to 
haos on the rate of instanton [3℄ transitions on the example ofone-dimensional periodi
 potential. Instantons represent alternative way todes
ribe quantum tunnelling and play an important role not only in quan-tum me
hani
s (re
ent example [4℄), but mainly in the modern theoriesof parti
le physi
s, e.g. ele
troweak theory, QCD, SUSY, et
. (for reviewsee [5℄). The sear
h of instantons, initiated in DESY, is one of the targetsof modern QCD [6℄. The main problem in this dire
tion is an extremelysmall probability of instanton-indu
ed events. It is of importan
e to studyif 
haos 
an in
rease probability of instanton tunnelling. We demonstrateon the parti
ular example of simple quantum me
hani
al system that it isreally possible. (1721)



1722 V. Kuvshinov, A. Kuzmin, R. ShulyakovskyHamiltonian of the system under 
onsideration is taken in the form~H = 12 ~p2 + !20 
os x� "x +1Xn=�1 Æ(t� n ~T ) ; (1)~T is the real time period of perturbation. The systems with spatially periodi
potential are well-studied in solid-state physi
s [7℄ and instanton physi
s [8℄.Perturbation used in (1) was widely exploited in the systems exhibitingquantum 
haos [9℄.For applying instanton te
hnique we have to 
onsider 
lassi
al solutionsof Hamilton's equations in imaginary (Eu
lidean) time. Hamiltonian (1) hasthe same form (translated on �) in Eu
lidean time as in real one.In Eu
lidean time 
lassi
al Hamiltonian of the system looks as followsH = H0 + V , H0 = 12p2 � !20 
os x ; (2)V = "x +1Xn=�1 Æ(� � nT ) : (3)Here H0 is non-perturbed Hamiltonian of the system and V is the Eu
lideanpotential of the perturbation. In these expressions variables without tildedenote 
orresponding quantities in imaginary time.2. Instanton gas in non-perturbed systemLet us 
onsider at �rst non-perturbed Hamiltonian (1), i.e. put " = 0.The system is 
hara
terised by degenerate va
uum stru
ture on the 
lassi
allevel: xva
n (t) � jni = �n; n = �1;�3 ; ::: : (4)As is well-known any tunnelling transition in this system 
an be representedin terms of path integral in imaginary time:hmje�H0� jni = Z [Dx℄e�S[x℄ ; (5)where � is a time of the transition between wells, S[x℄ denotes Eu
lideana
tion. The main 
ontribution to (5) is given by instantons. One-instanton
on�gurations are 
lassi
al solutions of Eu
lidean equations of motion anddes
ribe tunnelling between neighbouring va
ua. They 
an be easily foundas well as one-instanton a
tion (see, for example [8℄)xinst(�; �0) = ��ar
tan he!0(���0)i� �� ; S[xinst(�; �0)℄ � Sinst = 8!0 ;(6)



Chaos Enfor
ed Instanton Tunnelling in One-Dimensional Model . . . 1723where arbitrary parameter �0 is a 
entre of the instanton; sings `+' and `�'
orrespond to instantons and anti-instantons.Multi-instantons are not exa
t 
lassi
al solutions, but they give leading
ontribution to the amplitude of tunnelling (5) between distant wellsx(n)(�) = nXi=1 xinst(�; �i) ; S[x(n)(�)℄ = nSinst : (7)Here we suppose that time intervals between 
entres of single instantons �iare not too 
lose to ea
h other (dilute instanton gas approximation) [8℄.Let us fo
us our attention on the amplitude Aq(� ) of q one-instantontransitions during time interval � . The di�eren
e between instantons andanti-instantons is not essential in these 
al
ulations. Using standard in-stanton te
hnique [8℄ it is easy to obtain Poisson distribution of q for theamplitude in the Gauss approximation:Aq(� ) = N 1q! e�qSinst ��pSinst�q ; (8)where the fa
tor N provides 
orre
t normalization, A0(� ) means absen
e ofinstantons. The average number of instantons for the time � ishqi = e�Sinst�pSinst : (9)Thus in imaginary time we have a gas whi
h 
onsists of instantons (6) withaverage time interval between them �0 and average density �0:�0 = �hqi = eSinstpSinst ; �0 = ��10 = e�SinstpSinst = 2p2!0e�8!0 : (10)Here, as usual, we negle
ted the instanton size.Let us suppose a large value of one-instanton a
tion (6). It 
orrespondsto high energy barriers. In this 
ase we obtain strongly rare�ed instantongas.It should be noted that result (10) was obtained by using both exa
t(6) and approximate (7) 
lassi
al solutions. Taking into a

ount only exa
tsolutions leads to zero instanton density �0 (or in�nite interval �0). Finitedensity 
an appear in non-perturbed system (1) only due to approximatesolutions 
ontribution.3. Squeezing of instanton gas due to small perturbationNow we 
onsider the 
ase with " 6= 0 and estimate an average intervalbetween instanton transitions (inverse density of instantons in instanton gas)



1724 V. Kuvshinov, A. Kuzmin, R. Shulyakovskyfor the perturbed system. For this purpose we represent the perturbation (3)in the form V = "T x 2 +1Xm=�1 
os (m��) + 1! : (11)Here � � 2�=T .Perturbation (11) destroys separatrix of non-perturbed system (2) andin its pla
e sto
hasti
 layer appears [10℄. We primarily estimate the widthof sto
hasti
 layer. We use the method reviewed in [11℄. We apply it tothe system (2)�(3) whi
h was not 
onsidered in that works, although non-perturbed Hamiltonian (2) and perturbation (3) were used independentlyfrom ea
h other.Exa
t equation of motion for the a
tion variable is_I = dIdH0 _H0 = � "!T _x 2 +1Xm=0 
os (m��) + 1! ; (12)Here I denotes the a
tion variable and ! � dH0=dI is a frequen
y of non-linear os
illations (see [10℄).Consider behaviour of the system near separatrix (in imaginary time).Dependen
e of velo
ity _x on time has the form of rare soliton-like impulses.Ea
h impulse 
orresponds to rapid transition between two neighbouringpeaks of potential. Long time interval between two impulses is the timeto get over a peak. It is seen from equation (12) that the a
tion variable
hanges mainly during the impulse of velo
ity. Introdu
e phase of externalfor
e ' de�ned as _' = �.To study 
haoti
 behaviour of the system we transform di�erential equa-tion (12) to dis
rete mapping8<: I = I + "T!(I)C(I; ') ;' = '+ ��!(I) ; (13)where (I; ') denote values of a
tion and phase variables just after the impulseof velo
ity, (I; ') are the same quantities after previous impulse andC(I; ') = �Z�� d� _x 2 +1Xm=0 
os (m'(t)) + 1! : (14)Here we integrate over time interval of velo
ity's impulse �� . From (13) weobtain (for small ") ' ' '+ ��!(I) � "�22!3 d!dI C(I; ') : (15)
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al instability (de�ned in [11℄) isK = ����Æ'Æ' � 1���� = �"�T!3 ����d!dI ����C0 ; C0 � �����C�' ���� : (16)In the vi
inity of separatrix C0 
an be 
al
ulated asC0 ' 4� sinh (��=2!0)
osh2 (��=2!0) ; (17)Using (17) and estimation for jd!=dIj at jH �Hsj � Hs we 
an representthe parameter of lo
al instability (16) in the formK ' 2"�2!0 sinh (��=2!0)
osh2 (��=2!0) 1jH �Hsj : (18)Here Hs � !20 is the energy of non-perturbed system on the separatrix.Condition K � 1 means that dynami
s of the system is lo
ally unstable.Lo
al instability leads to mixing and 
haos [11℄. Thus 
ondition K = 1 givesthe estimation for the width of the sto
hasti
 layer as followsjHb �Hsj � 4"�2!0 e���=2!0 ; (19)under the assumption that � > !0. Here Hb is an estimated value of energyon the boundary of the sto
hasti
 layer. A set of traje
tories appearingin the sto
hasti
 layer 
an be 
onsidered as new multi-instanton-like exa
tsolutions of Eu
lidean equations of motion for perturbed system. Thesesolutions demonstrate �nite intervals between instanton transitions. Thereason is that for majority of traje
tories in sto
hasti
 layer �nite time isneeded to pass from one potential well to another. Thus density of instantongas strongly in
reases in 
omparison with density at " = 0.Average time interval between instantons in the instanton gas for per-turbed system 
an be estimated in the following way� � �!av : (20)Here !av � !([Hb+Hs℄=2). Near the separatrix the following approximationfor the frequen
y 
an be used [11℄!(H) � dH0dI � �p2 pHs +Hln 16(Hs+H)H�Hs ; jH �Hsj � Hs : (21)



1726 V. Kuvshinov, A. Kuzmin, R. ShulyakovskyThus the interval between instanton transitions is� � ��2!20 + 1!0 ln 8!30"�2 ; (22)and the density of instantons in instanton gas for the perturbed system 
anbe estimated as follows� = 1� = � ��2!20 + 1!0 ln 8!30"�2 ��1 : (23)We see that, 
ontrary to the 
ase of non-perturbed system, for perturbedsystem the density of instanton gas is large if we take into a

ount only exa
tsolutions of Eu
lidean equations of motion. Consideration of approximatesolutions only in
reases the density of instanton gas and does not lead toqualitative 
hanges. Comparing of densities for perturbed � (23) and non-perturbed �0 (10) systems gives��0 � 1p2 !0p!0e8!0�� + 2!0 ln 8!30"�2 : (24)This ratio is large at large enough !0 (or large enough one-instanton a
tion)and small but nonzero ". Thus we obtain that small perturbation (3) 
anstrongly in
rease the density of instanton gas. For 
al
ulation of � only exa
t
lassi
al solutions of Eu
lidean equations of motion were taken into a

ount,while to get non-zero value of �0 we had to 
onsider approximate solutions.Thus the limit "! 0 
annot be applied dire
tly in (24). Nevertheless we have
orresponden
e between results obtained for perturbed and non-perturbedsystems in this limit. Namely, � (see (23)) at " = 0 and �0 are equal tozero if we take into a

ount only exa
t solutions of Eu
lidean equations ofmotion for both 
ases.Let us apply now our formal 
omputation to the physi
al phenomenain real time. Classi
al instanton solutions in imaginary time (6-7) des
ribequantum tunnelling transitions in real time. Some observables 
an be di-re
tly expressed through the instanton density � [8℄. In parti
ular, rate ofthe tunnelling between neighbour potential wells (the number of tunnellingtransitions per unit of time) and probability of tunnelling are proportional tosquared density of instantons �2. Spe
trum and width of the lowest energyzone �E readE� � 12!0 � 2� 
os � ; 0 � � � � ; �E � 4� : (25)Thus squeezing of the instanton gas and in
rease of the density � in imag-inary time mean that small perturbation (3) leading to 
haos 
an essen-tially enhan
e the tunnelling rate and lead to the widening of the energy
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omparison with non-perturbed system (2). Both these results are
onsequen
es of the perturbation leading to destru
tion of the single non-perturbed instanton solution and appearan
e of manifold of 
haoti
 per-turbed instantons. An in
rease of the number of instanton solutions providesa larger number of variants for parti
le to rea
h one va
uum from anotherthat results in the in
rease of the rate of tunnelling. The de
rease of the life-time of the parti
le in a 
ertain va
uum of the system means the wideningof the energy zone that is obtained in (25).On the other hand our results 
an be 
onsidered as a demonstration onthe simple model of appli
ation of the instanton method to the problem of
haos assisted tunnelling. 4. Con
lusionIn this work we have demonstrated on the example of one-dimensionalperiodi
 potential that small perturbation leading to 
haoti
 behaviour of thesystem strongly in�uen
es the properties of instanton gas. Our estimationsshow that 
lassi
al 
haos 
an greatly in
rease the density of instanton gasand rate of instanton tunnelling.Both instanton solutions and 
haoti
 behaviour 
an exist in 
omplexsystems like �eld theories. The relation between 
haos and instantons insu
h theories is not trivial. Theory of strong intera
tions (QCD) is the mostinteresting example, where the investigation of instanton gas (or instantonliquid) 
ould shed light on the stru
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