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The influence of chaos on properties of dilute instanton gas in quantum
mechanics is studied. We demonstrate on the example of one-dimensional
periodic potential that small perturbation leading to chaos squeezes instan-
ton gas and increases the rate of instanton tunnelling.
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1. Introduction

Semiclassical properties of classically chaotic dynamical systems (quan-
tum chaos [1]) is a rapidly developing field of research. One of the attractive
phenomenon obtained in this direction is chaos assisted tunnelling ([2] and
references therein).

In this work we analytically investigate influence of the perturbation
leading to chaos on the rate of instanton [3] transitions on the example of
one-dimensional periodic potential. Instantons represent alternative way to
describe quantum tunnelling and play an important role not only in quan-
tum mechanics (recent example [4]), but mainly in the modern theories
of particle physics, e.g. electroweak theory, QCD, SUSY, etc. (for review
see [5]). The search of instantons, initiated in DESY, is one of the targets
of modern QCD [6]. The main problem in this direction is an extremely
small probability of instanton-induced events. It is of importance to study
if chaos can increase probability of instanton tunnelling. We demonstrate
on the particular example of simple quantum mechanical system that it is
really possible.
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Hamiltonian of the system under consideration is taken in the form

+oo
ﬁ:%ﬁ—i—wgcosx—ex Z 6(t —nT), (1)
n=—oo
T is the real time period of perturbation. The systems with spatially periodic
potential are well-studied in solid-state physics [7] and instanton physics [8].
Perturbation used in (1) was widely exploited in the systems exhibiting
quantum chaos [9].

For applying instanton technique we have to consider classical solutions
of Hamilton’s equations in smaginary (Euclidean) time. Hamiltonian (1) has
the same form (translated on m) in Euclidean time as in real one.

In Euclidean time classical Hamiltonian of the system looks as follows
H=Hy+V,

Hy = %pQ—wgcosx, (2)
+o0
V =cz Y 0&r—nl). (3)

Here Hj is non-perturbed Hamiltonian of the system and V' is the Euclidean
potential of the perturbation. In these expressions variables without tilde
denote corresponding quantities in imaginary time.

2. Instanton gas in non-perturbed system

Let us consider at first non-perturbed Hamiltonian (1), i.e. put € = 0.
The system is characterised by degenerate vacuum structure on the classical
level:

zy(t) = |n) =7mn, n==£1,43,... (4)

As is well-known any tunnelling transition in this system can be represented
in terms of path integral in imaginary time:

(mle "7 |n) = [ 1Dafe 55 (5)

where I' is a time of the transition between wells, S[x] denotes Euclidean
action. The main contribution to (5) is given by instantons. One-instanton
configurations are classical solutions of Euclidean equations of motion and
describe tunnelling between neighbouring vacua. They can be easily found
as well as one-instanton action (see, for example [8])

2" (7, 7p) = £ (arctan [e“’o(T_TO)] - 7T> , S (7, 79)] = 5™ = 8uy,

(6)
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where arbitrary parameter 7y is a centre of the instanton; sings ‘+’ and ‘—’
correspond to instantons and anti-instantons.

Multi-instantons are not exact classical solutions, but they give leading
contribution to the amplitude of tunnelling (5) between distant wells

m(”)(T) = Z xinSt(T, Ti) s S[:E(") (1)) = nSnst (7)
=1

Here we suppose that time intervals between centres of single instantons 7;
are not too close to each other (dilute instanton gas approximation) [8].

Let us focus our attention on the amplitude A,(I") of ¢ one-instanton
transitions during time interval I'. The difference between instantons and
anti-instantons is not essential in these calculations. Using standard in-
stanton technique [8] it is easy to obtain Poisson distribution of ¢ for the
amplitude in the Gauss approximation:

A (I) = N L gas (F\/Sinst)q, (8)

q!

where the factor N provides correct normalization, Ay(I") means absence of
instantons. The average number of instantons for the time I is

(q) = e 5" [V gimst | (9)

Thus in imaginary time we have a gas which consists of instantons (6) with
average time interval between them 79 and average density po:

F eSinst a  cins _ B
=S e M= = SVt = 2v/Bwge "0 (10)

Here, as usual, we neglected the instanton size.

Let us suppose a large value of one-instanton action (6). It corresponds
to high energy barriers. In this case we obtain strongly rarefied instanton
gas.

It should be noted that result (10) was obtained by using both exact
(6) and approximate (7) classical solutions. Taking into account only exact
solutions leads to zero instanton density pg (or infinite interval 7g). Finite
density can appear in non-perturbed system (1) only due to approximate
solutions contribution.

3. Squeezing of instanton gas due to small perturbation

Now we consider the case with ¢ # 0 and estimate an average interval
between instanton transitions (inverse density of instantons in instanton gas)
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for the perturbed system. For this purpose we represent the perturbation (3)

in the form
“+o0

€

V= e (2 Z cos (mvT) + 1) . (11)
m=—oQ

Here v = 27/T.

Perturbation (11) destroys separatrix of non-perturbed system (2) and
in its place stochastic layer appears [10]. We primarily estimate the width
of stochastic layer. We use the method reviewed in [11]. We apply it to
the system (2)-(3) which was not considered in that works, although non-
perturbed Hamiltonian (2) and perturbation (3) were used independently
from each other.

Exact equation of motion for the action variable is

Y £ -—
I= d—HOHO = —w—Tg'c (2 Z cos (mvT) + 1) ) (12)

m=0

Here I denotes the action variable and w = dHy/dI is a frequency of non-
linear oscillations (see [10]).

Consider behaviour of the system near separatrix (in imaginary time).
Dependence of velocity £ on time has the form of rare soliton-like impulses.
Each impulse corresponds to rapid transition between two neighbouring
peaks of potential. Long time interval between two impulses is the time
to get over a peak. It is seen from equation (12) that the action variable
changes mainly during the impulse of velocity. Introduce phase of external
force ¢ defined as ¢ = v.

To study chaotic behaviour of the system we transform differential equa-
tion (12) to discrete mapping

(13)

where (I, ) denote values of action and phase variables just after the impulse
of velocity, (I, ) are the same quantities after previous impulse and

+0oo
C(I,p) = — /A dri (2 > cos (me(t)) + 1) . (14)

m=0

Here we integrate over time interval of velocity’s impulse A7. From (13) we
obtain (for small ¢)

2 ev? dw

et

o) ﬁﬂc(ﬂ ®) . (15)
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Therefore, parameter of local instability (defined in [11]) is

dw

0P TEV
K — | — -
- T

| dp - Twd

oC
Co, Co=|=—|. 16
. Cr=g (16

In the vicinity of separatrix Cy can be calculated as

sinh (7v/2wy)

Co ~4n———"——,
0 cosh? (mv/2wq)

(17)
Using (17) and estimation for |dw/dI| at |H — Hs| < Hs we can represent

the parameter of local instability (16) in the form

2ev? sinh (7v/2wg) 1
wo cosh? (v /2uw) |H — Hg|

(18)

Here Hy = w? is the energy of non-perturbed system on the separatrix.

Condition K > 1 means that dynamics of the system is locally unstable.
Local instability leads to mixing and chaos [11|. Thus condition K = 1 gives
the estimation for the width of the stochastic layer as follows

4 2
|Hb _ HS| ~ iei””}/Qwo , (19)
wo

under the assumption that v > wy. Here Hy is an estimated value of energy
on the boundary of the stochastic layer. A set of trajectories appearing
in the stochastic layer can be considered as new multi-instanton-like exact
solutions of Euclidean equations of motion for perturbed system. These
solutions demonstrate finite intervals between instanton transitions. The
reason is that for majority of trajectories in stochastic layer finite time is
needed to pass from one potential well to another. Thus density of instanton
gas strongly increases in comparison with density at € = Q.

Average time interval between instantons in the instanton gas for per-
turbed system can be estimated in the following way

n~—. (20)

Way

Here wyy = w([Hp+ Hg]/2). Near the separatrix the following approximation
for the frequency can be used [11]
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Thus the interval between instanton transitions is

v 1 . 8w
n~ —In—5

— 22
202wy ev?’ (22)

and the density of instantons in instanton gas for the perturbed system can
be estimated as follows

1 TV 1 8w\ !
=-=(—+—In—2 . 23
p n <2w§ +w0 n6u2) (23)

We see that, contrary to the case of non-perturbed system, for perturbed
system the density of instanton gas is large if we take into account only exact
solutions of Euclidean equations of motion. Consideration of approximate
solutions only increases the density of instanton gas and does not lead to
qualitative changes. Comparing of densities for perturbed p (23) and non-
perturbed pg (10) systems gives
8wo
P L wove™ (24)

~ "
Po \/§7TV+2w01n6w78

This ratio is large at large enough wq (or large enough one-instanton action)
and small but nonzero €. Thus we obtain that small perturbation (3) can
strongly increase the density of instanton gas. For calculation of p only exact
classical solutions of Euclidean equations of motion were taken into account,
while to get non-zero value of py we had to consider approximate solutions.
Thus the limit & — 0 cannot be applied directly in (24). Nevertheless we have
correspondence between results obtained for perturbed and non-perturbed
systems in this limit. Namely, p (see (23)) at ¢ = 0 and py are equal to
zero if we take into account only exact solutions of Euclidean equations of
motion for both cases.

Let us apply now our formal computation to the physical phenomena
in real time. Classical instanton solutions in imaginary time (6-7) describe
quantum tunnelling transitions in real time. Some observables can be di-
rectly expressed through the instanton density p [8]. In particular, rate of
the tunnelling between neighbour potential wells (the number of tunnelling
transitions per unit of time) and probability of tunnelling are proportional to
squared density of instantons p?. Spectrum and width of the lowest energy
zone AF read

Ey ~ twy —2pcosf, 0<6<m, AE ~4p. (25)

Thus squeezing of the instanton gas and increase of the density p in imag-
inary time mean that small perturbation (3) leading to chaos can essen-
tially enhance the tunnelling rate and lead to the widening of the energy
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zone in comparison with non-perturbed system (2). Both these results are
consequences of the perturbation leading to destruction of the single non-
perturbed instanton solution and appearance of manifold of chaotic per-
turbed instantons. An increase of the number of instanton solutions provides
a larger number of variants for particle to reach one vacuum from another
that results in the increase of the rate of tunnelling. The decrease of the life-
time of the particle in a certain vacuum of the system means the widening
of the energy zone that is obtained in (25).

On the other hand our results can be considered as a demonstration on
the simple model of application of the instanton method to the problem of
chaos assisted tunnelling.

4. Conclusion

In this work we have demonstrated on the example of one-dimensional
periodic potential that small perturbation leading to chaotic behaviour of the
system strongly influences the properties of instanton gas. Our estimations
show that classical chaos can greatly increase the density of instanton gas
and rate of instanton tunnelling.

Both instanton solutions and chaotic behaviour can exist in complex
systems like field theories. The relation between chaos and instantons in
such theories is not trivial. Theory of strong interactions (QCD) is the most
interesting example, where the investigation of instanton gas (or instanton
liquid) could shed light on the structure of hadrons [5,12].
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