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CHAOS ENFORCED INSTANTON TUNNELLINGIN ONE-DIMENSIONAL MODELWITH PERIODIC POTENTIALV. Kuvshinov, A. Kuzmin and R. ShulyakovskyInstitute of Physis, National Aademy of Sienes of BelarusSarina av., 68, 220072 Minsk, Belaruse-mail: kuvshino�dragon.bas-net.byavkuzmin�dragon.bas-net.byshul�dragon.bas-net.by(Reeived February 7, 2002; revised version reeived April 10, 2002)The in�uene of haos on properties of dilute instanton gas in quantummehanis is studied. We demonstrate on the example of one-dimensionalperiodi potential that small perturbation leading to haos squeezes instan-ton gas and inreases the rate of instanton tunnelling.PACS numbers: 03.65.Xp, 05.45.Mt1. IntrodutionSemilassial properties of lassially haoti dynamial systems (quan-tum haos [1℄) is a rapidly developing �eld of researh. One of the attrativephenomenon obtained in this diretion is haos assisted tunnelling ([2℄ andreferenes therein).In this work we analytially investigate in�uene of the perturbationleading to haos on the rate of instanton [3℄ transitions on the example ofone-dimensional periodi potential. Instantons represent alternative way todesribe quantum tunnelling and play an important role not only in quan-tum mehanis (reent example [4℄), but mainly in the modern theoriesof partile physis, e.g. eletroweak theory, QCD, SUSY, et. (for reviewsee [5℄). The searh of instantons, initiated in DESY, is one of the targetsof modern QCD [6℄. The main problem in this diretion is an extremelysmall probability of instanton-indued events. It is of importane to studyif haos an inrease probability of instanton tunnelling. We demonstrateon the partiular example of simple quantum mehanial system that it isreally possible. (1721)



1722 V. Kuvshinov, A. Kuzmin, R. ShulyakovskyHamiltonian of the system under onsideration is taken in the form~H = 12 ~p2 + !20 os x� "x +1Xn=�1 Æ(t� n ~T ) ; (1)~T is the real time period of perturbation. The systems with spatially periodipotential are well-studied in solid-state physis [7℄ and instanton physis [8℄.Perturbation used in (1) was widely exploited in the systems exhibitingquantum haos [9℄.For applying instanton tehnique we have to onsider lassial solutionsof Hamilton's equations in imaginary (Eulidean) time. Hamiltonian (1) hasthe same form (translated on �) in Eulidean time as in real one.In Eulidean time lassial Hamiltonian of the system looks as followsH = H0 + V , H0 = 12p2 � !20 os x ; (2)V = "x +1Xn=�1 Æ(� � nT ) : (3)Here H0 is non-perturbed Hamiltonian of the system and V is the Eulideanpotential of the perturbation. In these expressions variables without tildedenote orresponding quantities in imaginary time.2. Instanton gas in non-perturbed systemLet us onsider at �rst non-perturbed Hamiltonian (1), i.e. put " = 0.The system is haraterised by degenerate vauum struture on the lassiallevel: xvan (t) � jni = �n; n = �1;�3 ; ::: : (4)As is well-known any tunnelling transition in this system an be representedin terms of path integral in imaginary time:hmje�H0� jni = Z [Dx℄e�S[x℄ ; (5)where � is a time of the transition between wells, S[x℄ denotes Eulideanation. The main ontribution to (5) is given by instantons. One-instantonon�gurations are lassial solutions of Eulidean equations of motion anddesribe tunnelling between neighbouring vaua. They an be easily foundas well as one-instanton ation (see, for example [8℄)xinst(�; �0) = ��artan he!0(���0)i� �� ; S[xinst(�; �0)℄ � Sinst = 8!0 ;(6)



Chaos Enfored Instanton Tunnelling in One-Dimensional Model . . . 1723where arbitrary parameter �0 is a entre of the instanton; sings `+' and `�'orrespond to instantons and anti-instantons.Multi-instantons are not exat lassial solutions, but they give leadingontribution to the amplitude of tunnelling (5) between distant wellsx(n)(�) = nXi=1 xinst(�; �i) ; S[x(n)(�)℄ = nSinst : (7)Here we suppose that time intervals between entres of single instantons �iare not too lose to eah other (dilute instanton gas approximation) [8℄.Let us fous our attention on the amplitude Aq(� ) of q one-instantontransitions during time interval � . The di�erene between instantons andanti-instantons is not essential in these alulations. Using standard in-stanton tehnique [8℄ it is easy to obtain Poisson distribution of q for theamplitude in the Gauss approximation:Aq(� ) = N 1q! e�qSinst ��pSinst�q ; (8)where the fator N provides orret normalization, A0(� ) means absene ofinstantons. The average number of instantons for the time � ishqi = e�Sinst�pSinst : (9)Thus in imaginary time we have a gas whih onsists of instantons (6) withaverage time interval between them �0 and average density �0:�0 = �hqi = eSinstpSinst ; �0 = ��10 = e�SinstpSinst = 2p2!0e�8!0 : (10)Here, as usual, we negleted the instanton size.Let us suppose a large value of one-instanton ation (6). It orrespondsto high energy barriers. In this ase we obtain strongly rare�ed instantongas.It should be noted that result (10) was obtained by using both exat(6) and approximate (7) lassial solutions. Taking into aount only exatsolutions leads to zero instanton density �0 (or in�nite interval �0). Finitedensity an appear in non-perturbed system (1) only due to approximatesolutions ontribution.3. Squeezing of instanton gas due to small perturbationNow we onsider the ase with " 6= 0 and estimate an average intervalbetween instanton transitions (inverse density of instantons in instanton gas)



1724 V. Kuvshinov, A. Kuzmin, R. Shulyakovskyfor the perturbed system. For this purpose we represent the perturbation (3)in the form V = "T x 2 +1Xm=�1 os (m��) + 1! : (11)Here � � 2�=T .Perturbation (11) destroys separatrix of non-perturbed system (2) andin its plae stohasti layer appears [10℄. We primarily estimate the widthof stohasti layer. We use the method reviewed in [11℄. We apply it tothe system (2)�(3) whih was not onsidered in that works, although non-perturbed Hamiltonian (2) and perturbation (3) were used independentlyfrom eah other.Exat equation of motion for the ation variable is_I = dIdH0 _H0 = � "!T _x 2 +1Xm=0 os (m��) + 1! ; (12)Here I denotes the ation variable and ! � dH0=dI is a frequeny of non-linear osillations (see [10℄).Consider behaviour of the system near separatrix (in imaginary time).Dependene of veloity _x on time has the form of rare soliton-like impulses.Eah impulse orresponds to rapid transition between two neighbouringpeaks of potential. Long time interval between two impulses is the timeto get over a peak. It is seen from equation (12) that the ation variablehanges mainly during the impulse of veloity. Introdue phase of externalfore ' de�ned as _' = �.To study haoti behaviour of the system we transform di�erential equa-tion (12) to disrete mapping8<: I = I + "T!(I)C(I; ') ;' = '+ ��!(I) ; (13)where (I; ') denote values of ation and phase variables just after the impulseof veloity, (I; ') are the same quantities after previous impulse andC(I; ') = �Z�� d� _x 2 +1Xm=0 os (m'(t)) + 1! : (14)Here we integrate over time interval of veloity's impulse �� . From (13) weobtain (for small ") ' ' '+ ��!(I) � "�22!3 d!dI C(I; ') : (15)



Chaos Enfored Instanton Tunnelling in One-Dimensional Model . . . 1725Therefore, parameter of loal instability (de�ned in [11℄) isK = ����Æ'Æ' � 1���� = �"�T!3 ����d!dI ����C0 ; C0 � �����C�' ���� : (16)In the viinity of separatrix C0 an be alulated asC0 ' 4� sinh (��=2!0)osh2 (��=2!0) ; (17)Using (17) and estimation for jd!=dIj at jH �Hsj � Hs we an representthe parameter of loal instability (16) in the formK ' 2"�2!0 sinh (��=2!0)osh2 (��=2!0) 1jH �Hsj : (18)Here Hs � !20 is the energy of non-perturbed system on the separatrix.Condition K � 1 means that dynamis of the system is loally unstable.Loal instability leads to mixing and haos [11℄. Thus ondition K = 1 givesthe estimation for the width of the stohasti layer as followsjHb �Hsj � 4"�2!0 e���=2!0 ; (19)under the assumption that � > !0. Here Hb is an estimated value of energyon the boundary of the stohasti layer. A set of trajetories appearingin the stohasti layer an be onsidered as new multi-instanton-like exatsolutions of Eulidean equations of motion for perturbed system. Thesesolutions demonstrate �nite intervals between instanton transitions. Thereason is that for majority of trajetories in stohasti layer �nite time isneeded to pass from one potential well to another. Thus density of instantongas strongly inreases in omparison with density at " = 0.Average time interval between instantons in the instanton gas for per-turbed system an be estimated in the following way� � �!av : (20)Here !av � !([Hb+Hs℄=2). Near the separatrix the following approximationfor the frequeny an be used [11℄!(H) � dH0dI � �p2 pHs +Hln 16(Hs+H)H�Hs ; jH �Hsj � Hs : (21)



1726 V. Kuvshinov, A. Kuzmin, R. ShulyakovskyThus the interval between instanton transitions is� � ��2!20 + 1!0 ln 8!30"�2 ; (22)and the density of instantons in instanton gas for the perturbed system anbe estimated as follows� = 1� = � ��2!20 + 1!0 ln 8!30"�2 ��1 : (23)We see that, ontrary to the ase of non-perturbed system, for perturbedsystem the density of instanton gas is large if we take into aount only exatsolutions of Eulidean equations of motion. Consideration of approximatesolutions only inreases the density of instanton gas and does not lead toqualitative hanges. Comparing of densities for perturbed � (23) and non-perturbed �0 (10) systems gives��0 � 1p2 !0p!0e8!0�� + 2!0 ln 8!30"�2 : (24)This ratio is large at large enough !0 (or large enough one-instanton ation)and small but nonzero ". Thus we obtain that small perturbation (3) anstrongly inrease the density of instanton gas. For alulation of � only exatlassial solutions of Eulidean equations of motion were taken into aount,while to get non-zero value of �0 we had to onsider approximate solutions.Thus the limit "! 0 annot be applied diretly in (24). Nevertheless we haveorrespondene between results obtained for perturbed and non-perturbedsystems in this limit. Namely, � (see (23)) at " = 0 and �0 are equal tozero if we take into aount only exat solutions of Eulidean equations ofmotion for both ases.Let us apply now our formal omputation to the physial phenomenain real time. Classial instanton solutions in imaginary time (6-7) desribequantum tunnelling transitions in real time. Some observables an be di-retly expressed through the instanton density � [8℄. In partiular, rate ofthe tunnelling between neighbour potential wells (the number of tunnellingtransitions per unit of time) and probability of tunnelling are proportional tosquared density of instantons �2. Spetrum and width of the lowest energyzone �E readE� � 12!0 � 2� os � ; 0 � � � � ; �E � 4� : (25)Thus squeezing of the instanton gas and inrease of the density � in imag-inary time mean that small perturbation (3) leading to haos an essen-tially enhane the tunnelling rate and lead to the widening of the energy



Chaos Enfored Instanton Tunnelling in One-Dimensional Model . . . 1727zone in omparison with non-perturbed system (2). Both these results areonsequenes of the perturbation leading to destrution of the single non-perturbed instanton solution and appearane of manifold of haoti per-turbed instantons. An inrease of the number of instanton solutions providesa larger number of variants for partile to reah one vauum from anotherthat results in the inrease of the rate of tunnelling. The derease of the life-time of the partile in a ertain vauum of the system means the wideningof the energy zone that is obtained in (25).On the other hand our results an be onsidered as a demonstration onthe simple model of appliation of the instanton method to the problem ofhaos assisted tunnelling. 4. ConlusionIn this work we have demonstrated on the example of one-dimensionalperiodi potential that small perturbation leading to haoti behaviour of thesystem strongly in�uenes the properties of instanton gas. Our estimationsshow that lassial haos an greatly inrease the density of instanton gasand rate of instanton tunnelling.Both instanton solutions and haoti behaviour an exist in omplexsystems like �eld theories. The relation between haos and instantons insuh theories is not trivial. Theory of strong interations (QCD) is the mostinteresting example, where the investigation of instanton gas (or instantonliquid) ould shed light on the struture of hadrons [5, 12℄.REFERENCES[1℄ M.C. Gutzwiller, Chaos in Classial and Quantum Mehanis, Springer,New York 1990; Chaos and Quantum Physis, eds. M.-J. Giannoni,A. Voros, J. Zinn-Justin, North-Holland, Amsterdam 1991; M. Brak,R.K. Bhaduri, Semilassial Physis, Addison-Wesley, 1997.[2℄ W.A. Lin, L.E. Ballentine, Phys. Rev. Lett. 65, 2927 (1990); O. Bohigas,S. Tomsovi, D. Ullmo, Phys. Rep. 223, 43 (1993); S.D. Frishat, E. Doron,Phys. Rev. E57, 1421 (1998).[3℄ A. Belavin, A. Polyakov, A. Shwarz, Yu. Tyupkin, Phys. Lett. B59, 85(1975); G. 't Hooft, Phys. Rev. Lett. 37, 8 (1976); Phys. Rev. D14, 3432(1976).[4℄ K.-I. Aoki, A. Horikoshi, M. Taniguhi, H. Terao, hep-th/9812050.[5℄ T. Shaefer, E. Shuryak, Rev. Mod. Phys. 70, 323 (1998).
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