ON TERAELECTRONVOLT MAJORANA NEUTRINOS

Janusz Gluza
Department of Field Theory and Particle Physics
Institute of Physics, University of Silesia
Uniwersytecka 4, 40-007 Katowice, Poland

(Received February 28, 2002; revised version received May 6, 2002)
The issue of existence of Majorana neutrinos with masses of the order of TeV and substantial couplings is addressed. A general neutrino mass matrix M_{ν} with both features is constructed, however, the form of M_{ν} is constrained very much by severe relations among the elements of m_{D} and M_{R} sub-matrices of M_{ν}. These general relations follow from the perturbative construction of the light neutrino mass spectrum. To avoid such large correlations between low mass parameters in m_{D} and large mass parameters in M_{R}, the Jeżabek-Sumino see-saw model of bi-maximal neutrino mixing adopted to the TeV scale and the issue of possible symmetries of the matrix M_{ν} are discussed. Results are supported by a few numerical examples which show directly the complexity of the problem.

PACS numbers: $14.60 . \mathrm{Pq}, 14.6 . \mathrm{Gh}, 13.15 .-\mathrm{f}$

1. Introduction

In the see-saw scenario [1] light neutrinos with masses of the eV scale demand heavy neutrino masses to be of the order of $10^{9} \mathrm{GeV}$ at least. The diagonalization of the neutrino mass matrix

$$
M_{\nu}=\left(\begin{array}{cc}
0 & m_{\mathrm{D}} \tag{1}\\
m_{\mathrm{D}}^{\mathrm{T}} & M_{\mathrm{R}}
\end{array}\right)
$$

in the case $m_{\mathrm{D}} \ll M_{\mathrm{R}}$ (we assume, without lose of generality, that both matrices are of dimension 3), gives three light m_{ν} and three heavy m_{N} masses of neutrinos. To a good approximation their scale is given by [2]

$$
\begin{align*}
m_{\nu} & \simeq-m_{\mathrm{D}}^{\mathrm{T}} M_{\mathrm{R}}^{-1} m_{\mathrm{D}} \tag{2}\\
m_{N} & \simeq M_{\mathrm{R}} \tag{3}
\end{align*}
$$

We can see that to get light neutrino masses of the order of electronvolts one needs elements of the matrix M_{R} larger than $10^{9} \mathrm{GeV}$ (elements of the m_{D} matrix are typically taken to be of the order of 1 GeV , scale of masses of charged leptons). Smaller masses of light neutrinos demand even larger than M_{R}.

It is clear that heavy neutrino states exhibit huge masses. Moreover, their couplings to the ordinary matter are negligible, namely, if $m_{\mathrm{D}} \ll M_{\mathrm{R}}$, the Light-Heavy (LH) neutrino mixing matrix U^{LH}, which is a part of the full unitary matrix U diagonalizing $M_{\nu}\left(U^{\mathrm{T}} M_{\nu} U=m_{\text {diag }} \equiv \operatorname{diag}\left[m_{i}, M_{i}\right]\right)$ defined as

$$
U=\left(\begin{array}{cc}
\left(U^{\mathrm{Ll}}\right)^{*} & \left(U^{\mathrm{LH}}\right)^{*} \tag{4}\\
U^{\mathrm{Rl}} & U^{\mathrm{Rh}}
\end{array}\right)
$$

exhibits very small elements

$$
\begin{equation*}
U^{\mathrm{LH}} \sim m_{\mathrm{D}} M_{\mathrm{R}}^{-1} \ll 1 \tag{5}
\end{equation*}
$$

In Eq. (4) the U^{Ll} sub-matrix is responsible for the neutrino mixing in the light sector, while the sub-matrix U^{Rh} describes neutrino mixings in the heavy neutrino sector. More details can be found for instance in [3,4]. If we look now into the form of the SM purely left-handed charged current written out in the mass eigenstates basis [4] (ν_{i} and N_{i} corresponds to light (heavy) neutrino mass states $m_{i}\left(M_{i}\right)$, respectively)
$\mathcal{L}_{\mathrm{CC}}=\frac{g}{\sqrt{2}}\left[\sum_{i=1}^{3} \bar{\nu}_{i}\left(U^{\mathrm{Ll}}\right)_{i l} \gamma^{\mu} P_{\mathrm{L}} l W_{\mu}^{+}+\sum_{i=1}^{3} \bar{N}_{i}\left(U^{\mathrm{LH}}\right)_{i l} \gamma^{\mu} P_{\mathrm{L}} l W_{\mu}^{+}\right]+$h.c.,
it is obvious that effects from the heavy neutrino sector on processes with charged currents are completely unimportant (the same is true for the neutral current interactions [4]). This is a typical situation when the see-saw mechanism is explored. However, from experimental data we only know, that neutral leptons with masses below around $\mathcal{O}\left(10^{2}\right) \mathrm{GeV}$ and with the typical weak neutrino coupling strength g are excluded [5]. There is no direct information on heavier neutral particles. From global fits to the data some bounds on the mixings of heavy neutrinos have been obtained [6]

$$
\begin{align*}
\sum_{N}\left|\left(U^{\mathrm{LH}}\right)_{N e}\right|^{2} & \leq 0.0054 \tag{7}\\
\sum_{N}\left|\left(U^{\mathrm{LH}}\right)_{N \mu(\tau)}\right|^{2} & \leq 0.0028(0.016) \tag{8}
\end{align*}
$$

These numbers are not negligible and effects of heavy neutrinos physics with the above mixings could be detected in future lepton (e.g. $e^{+} e^{-}[7]$, $\left.e^{-} e^{-}[8-10]\right)$ or hadron [11] colliders. They can also influence processes generated by higher order corrections [14]. Finally, they may modify neutrino oscillation phenomena [15].

However, a natural question arises: is there any natural mechanism of heavy neutrinos creation with reasonably large mixings, or more precisely, what is the form of M_{ν} which would give such neutrino properties? Obviously, heavy neutrinos with TeV masses may lead to large U^{LH} elements, but too large masses of light neutrinos m_{i} would simultaneously arise. Usually symmetry arguments are invoked to show that it is possible to build up an appropriate form of M_{ν} [16]. There are also other scenarios which implement TeV neutrinos. They go in different ways, e.g.: charged Higgs bosons [17], bulk neutrinos or scalars [18], higher dimensional operators [19], naturally suppressed Dirac masses (through the presence of an extra scalar doublet) [20]. Whether any of these scenarios can be really assumed to be "natural" (and, maybe, used by nature) is an open question.

Here we would like to present and discuss the issue paying special attention to numerical results and their consequences. In the next section three typical examples of possible M_{ν} are given. In the first case masses of light neutrinos are too large, in the second M_{ν} is constructed to give exactly three massless neutrinos and finally appropriate masses of light neutrinos are obtained. At the same time masses of heavy neutrinos in the range $\left(100 \mathrm{GeV} \leq M_{i} \leq 1 \mathrm{TeV}\right)$ and large U^{LH} elements which fulfill basic bounds Eqs. (7), (8) are obtained. Two Lepton Flavor Violating (LFV) processes, namely neutrino-less double beta and $\mu \rightarrow e \gamma$ decays are considered and the issue of large neutrino mixings in the light sector is discussed. Section 3 includes a discussion of a model with independent m_{D} and M_{R} matrices and the issue of possible symmetries of the matrix M_{ν} which could lead to the desired features of heavy neutrinos.

In the numerics we have to deal with huge differences of scales $\left(M_{i} / m_{i}\right.$ $\geq 10^{11}$) and the precision of calculations must be under control. To tackle this problem we used MATHEMATICA [21]. Simple cross checks of calculations are: unitarity of the U matrix Eq. (4) and recovering of M_{ν} to the same order of precision by the reverse relation $\left[U m_{\text {diag }} U^{\mathrm{T}}=M_{\nu}\right]$. All results are obtained for the case of the 6×6 matrix M_{ν}.

2. TeV neutrino mass models with correlations among m_{D} and M_{R} matrix elements

Example I: Too large masses of light neutrinos

Let us start from the most general case where we only assume the naturalness of the m_{D} and M_{R} scales, without deeper insight into the relation among their elements. Let us take then the elements of the M_{ν} mass matrix Eq. (1) in the following form

$$
\begin{align*}
& m_{\mathrm{D}}=\left(\begin{array}{ccc}
0.8 & 1 & 0.9 \\
1.5 & 0.5 & 0.1 \\
0.7 & 1.2 & 2
\end{array}\right)[\mathrm{GeV}] \tag{9}\\
& M_{\mathrm{R}} \tag{10}
\end{align*}=\operatorname{diag}(100,150,200)[\mathrm{GeV}] .
$$

Without loss of generality, M_{R} has been taken in a diagonal form [22] with its elements close to the present experimental limit [5]. The result is

$$
\begin{equation*}
m_{\mathrm{diag}} \simeq \operatorname{diag}\left(3.5 \times 10^{-4}, 0.013,0.062,100,150,200\right)[\mathrm{GeV}] \tag{11}
\end{equation*}
$$

$$
\begin{align*}
& U^{\mathrm{Ll}} \simeq i\left(\begin{array}{ccc}
0.854 & -0.022 & 0.519 \\
-0.28 & 0.822 & 0.496 \\
-0.438 & -0.57 & 0.695
\end{array}\right) \\
& U^{\mathrm{LH}} \simeq\left(\begin{array}{ccc}
0.008 & -0.007 & -0.005 \\
0.015 & 0.003 & -0.001 \\
0.007 & 0.007 & -0.01
\end{array}\right) \tag{12}
\end{align*}
$$

In the above we restrict ourselves to the only interesting cases of lightlight $\left(U^{\mathrm{Ll}}\right)$ and light-heavy (U^{LH}) neutrino mixing sectors. We can see that large LH neutrino mixings can be obtained but the masses of light neutrinos are too large. It is clear now, after neutrino oscillation data analysis that the mass of the heaviest of light neutrinos must be in the range [23]

$$
\begin{equation*}
0.04 \mathrm{eV} \leq m_{3} \leq 2.7 \mathrm{eV} \tag{13}
\end{equation*}
$$

Let us note that both mixing angles and the mass spectrum still satisfy the see-saw relations Eq. (2) and (5).

Similarly it can be checked that the LH mixings could be larger with larger m_{D} elements. However, larger m_{D} would increase masses of light neutrinos (in agreement with Eq. (2)). Taking smaller m_{D} would on the other hand lead to appropriate m_{i}, but this time LH mixings would be completely out of interest. So, we need m_{D} elements to be at $\mathcal{O}(1) \mathrm{GeV}$ level.

We can still try to change the ranks of m_{D} and M_{R} matrices. Then we can expect that additional light neutrinos appear. First, let us put the first entry in Eq. (10) as zero $(100 \rightarrow 0)$ without other changes in the m_{ν} matrix elements. The result is

$$
\begin{equation*}
m_{\mathrm{diag}} \simeq \operatorname{diag}\left(3.8 \times 10^{-4}, 0.0228,1.83,1.85,150,200\right)[\mathrm{GeV}] \tag{14}
\end{equation*}
$$

Second, let us also take the second entry in Eq. (10) as zero ($150 \rightarrow 0$). Then the mass spectrum is

$$
\begin{equation*}
m_{\mathrm{diag}} \simeq \operatorname{diag}(0.001,0.783,0.792,2.33,2.34,200)[\mathrm{GeV}] \tag{15}
\end{equation*}
$$

We can see that in the first case we get neutrinos with two masses of the order $m_{\mathrm{D}} / M_{\mathrm{R}}$, two of the order m_{D} and two of the order M_{R}. In the second case these are: one mass of the order $m_{\mathrm{D}} / M_{\mathrm{R}}$, four masses of the order m_{D} and one of the order M_{R}. This result fits to the discussion of the dependence between the rank of the M_{R} matrix and the scale of the obtained neutrino masses as given in [12].

We can also decrease the rank of the matrix m_{D}. For that we take as an example

$$
\begin{align*}
& m_{\mathrm{D}}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0.8 & 0.9 & 1
\end{array}\right)[\mathrm{GeV}] \tag{16}\\
& M_{\mathrm{R}}=\operatorname{diag}(0,150,200)[\mathrm{GeV}] . \tag{17}
\end{align*}
$$

The m_{D} matrix is of rank 1 , the M_{R} matrix has the rank 2 . The result is

$$
\begin{gather*}
m_{\text {diag }} \simeq \operatorname{diag}(0,0,0.793,0.807,150,200)[\mathrm{GeV}] \tag{18}\\
U^{\mathrm{Ll}} \simeq\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0.704
\end{array}\right), \quad U^{\mathrm{LH}} \simeq\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
-0.71 & -0.009 & 0.005
\end{array}\right) . \tag{19}
\end{gather*}
$$

Two massless neutrinos are obtained. Though the rank of the matrix m_{D} is 1 , we get two neutrinos with masses of the order of m_{D} elements. We cannot further decrease the rank of the m_{D} matrix as heavy neutrinos would not mix with light states at all. Taking only one nonzero entry in the M_{R} matrix would not change the situation. The neutrino mass spectrum includes in this case three massless neutrinos, two massive neutrinos of the order of m_{D} and one heavy neutrino.

In this way we have shown that changing ranks of m_{D} and M_{R} matrices is not sufficient to get appropriate spectrum of neutrino masses (for further discussion of the meaning of m_{D} and M_{R} matrices of different ranks in general see-saw models see e.g. [13]).

We can see that there is no way around and we have to look for some relations among m_{D} and M_{R} elements of the M_{ν} matrix which would give appropriate masses of light neutrinos and TeV neutrinos with substantial mixings.

Example II: Three massless neutrinos

Let us take [11]

$$
\begin{equation*}
m_{\mathrm{D}}=m_{\mathrm{D}}^{(0)}+m_{\mathrm{D}}^{(1)} \tag{20}
\end{equation*}
$$

and assume that $m_{\mathrm{D}}^{(0)} \gg m_{\mathrm{D}}^{(1)}$.
Using Eq. (2) we get

$$
\begin{align*}
m_{\nu}= & -m_{\mathrm{D}}^{(0)} \frac{1}{M_{\mathrm{R}}} m_{\mathrm{D}}^{(0) \mathrm{T}}-\left(m_{\mathrm{D}}^{(1)} \frac{1}{M_{\mathrm{R}}} m_{\mathrm{D}}^{(0) \mathrm{T}}+m_{\mathrm{D}}^{(0)} \frac{1}{M_{\mathrm{R}}} m_{\mathrm{D}}^{(1) \mathrm{T}}\right) \\
& -m_{\mathrm{D}}^{(1)} \frac{1}{M_{\mathrm{R}}} m_{\mathrm{D}}^{(1) \mathrm{T}} \tag{21}
\end{align*}
$$

The first term is the largest. It will give the largest contribution to $m_{\text {light }}$. Let us demand that it is zero, i.e. $m_{\mathrm{D}}^{(0)}\left(1 / M_{\mathrm{R}}\right) m_{\mathrm{D}}^{(0) \mathrm{T}}=0$ and parameterize $m_{\mathrm{D}}^{(0)}$ in the most general way (elements of Eq. (22) can be complex)

$$
m_{\mathrm{D}}^{(0)}=\left(\begin{array}{ccc}
\alpha_{1} & \alpha_{2} & \alpha_{3} \tag{22}\\
\beta_{1} & \beta_{2} & \beta_{3} \\
\gamma_{1} & \gamma_{2} & \gamma_{3}
\end{array}\right) \equiv\left(\begin{array}{c}
\alpha_{i} \\
\beta_{i} \\
\gamma_{i}
\end{array}\right), \quad i=1,2,3
$$

Then the following relation can be obtained (M_{R} has diagonal elements M_{1}, M_{2}, M_{3})

$$
\sum_{i}\left(\begin{array}{ccc}
\frac{\alpha_{i}^{2}}{M_{1}} & \frac{\alpha_{i} \beta_{i}}{M_{2}} & \frac{\alpha_{i} \beta_{i}}{M_{3}} \tag{23}\\
\frac{\alpha_{i} \beta_{i}}{M_{1}} & \frac{\beta_{i}^{2}}{M_{2}} & \frac{\beta_{i} \gamma_{i}}{M_{3}} \\
\frac{\alpha_{i} \gamma_{i}}{M_{1}} & \frac{\beta_{i} \gamma_{i}}{M_{2}} & \frac{\gamma_{i}^{2}}{M_{3}}
\end{array}\right)=0
$$

If $m_{\mathrm{D}}^{(1)}=0$, it is a set of equations for relations among $m_{\mathrm{D}}^{(0)}$ and M_{R} elements which assure that three massless neutrinos are constructed. To show a numerical example, we will leave for a moment the most general case Eq. (22) and use $m_{\mathrm{D}}^{(0)}$ with the following texture

$$
m_{\mathrm{D}}^{(0)}=\left(\begin{array}{l}
\alpha_{i} \tag{24}\\
a \alpha_{i} \\
b \alpha_{i}
\end{array}\right)
$$

Then, instead of Eq. (23) we get only one condition

$$
\begin{equation*}
\frac{\alpha_{1}^{2}}{M_{1}}+\frac{\alpha_{2}^{2}}{M_{2}}+\frac{\alpha_{3}^{2}}{M_{3}}=0 \tag{25}
\end{equation*}
$$

Now we will use also the second important relation among heavy neutrino mass matrix elements which comes from the neutrino-less double beta experiments [24]

$$
\begin{equation*}
\left|\sum_{i}\left(U^{\mathrm{LH}}\right)_{i e}^{2} \frac{1}{M_{i}}\right|=\omega^{2}, \tag{26}
\end{equation*}
$$

where $\omega^{2}<(2-2.8) \times 10^{-5} \mathrm{TeV}^{-1}$. There is no consensus concerning estimation of the ω parameter, nevertheless it appear that this relation is so severe that the possibility of heavy neutrinos detection in future colliders is drastically reduced [10] (see, however, $[9,25]$). It can be checked that conclusions of the present paper do not change when $\omega=0$ is assumed. Then relations (10), (25), (26) with $\alpha_{1}=3 \mathrm{GeV}$ allow to set α_{2} and α_{3}. U^{LH} is taken in the form of Eq. (5), $a=1, b=0$. Then the matrix in Eq. (1) is fixed and, after its diagonalization, the set of physical neutrino parameters is obtained

$$
\begin{gather*}
m_{\operatorname{diag}} \simeq \operatorname{diag}(0,0,0,100,151,201)[\mathrm{GeV}] \\
U^{\mathrm{Ll}} \simeq\left(\begin{array}{ccc}
0.998 & 0 & 0 \\
-0.004 & 0.998 & 0 \\
0 & 0 & 1
\end{array}\right), \quad U^{\mathrm{LH}} \simeq\left(\begin{array}{ccc}
0.03 & -0.048 i & 0.036 \\
0.03 & -0.048 i & 0.036 \\
0 & 0 & 0
\end{array}\right) \tag{28}
\end{gather*}
$$

The LH neutrino mixing is large (Eq. (28)) and fulfill Eqs. (7), (8). Three massless neutrinos are there. The spectrum of heavy states is as expected. In the SM massless neutrinos give diagonal U^{Ll}. Here some small non-diagonal entries reflect the existence of heavy neutrino states. Crucial is Eq. (25). If we disturb it slightly then some of light neutrino states exhibit unacceptable values, e.g. if $\alpha_{1} \rightarrow \alpha_{1}+10^{-6} \mathrm{GeV}$ then (with the other parameters chosen just as before) we get

$$
\begin{equation*}
m_{\mathrm{diag}}=\operatorname{diag}\left(0,0,2 \times 10^{-7}, 100,151,201\right)[\mathrm{GeV}] \tag{29}
\end{equation*}
$$

Example III: Realistic light neutrino masses

To make our construction realistic two final issues must be addressed. The first is the exact spectrum of light neutrino masses and the second is their mixing pattern.

As for the light neutrino parameters let us try to recover bi-maximal mixings where [5]

$$
\begin{align*}
& U_{\mathrm{MNS}} \simeq\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
-\frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}} \\
\frac{1}{2} & -\frac{1}{2} & \frac{1}{\sqrt{2}}
\end{array}\right), \\
& \Delta m_{\mathrm{atm}}^{2} \simeq(1.6 \div 4) \times 10^{-3} \mathrm{eV}^{2}, \\
& \Delta m_{\odot}^{2} \simeq 10^{-2} \Delta m_{\mathrm{atm}}^{2} . \tag{30}
\end{align*}
$$

The solar neutrino parameter Δm_{\odot}^{2} is realized by the LMA-MSW scenario of neutrino oscillations.

We take

$$
\begin{equation*}
m_{\mathrm{D}}^{(1)}=U_{\mathrm{MNS}} \operatorname{diag}\left(0, \quad 10^{-11}, \quad 8 \times 10^{-10}\right) \tag{31}
\end{equation*}
$$

Other parameters are the same as in Example II. This sort of additional contribution to the Dirac mass m_{D} does not affect the heavy neutrino sector. The result is

$$
\begin{align*}
m_{\text {diag }} & \simeq \operatorname{diag}\left(0,2 \times 10^{-11}, 6 \times 10^{-11}, 100,151,201\right)[\mathrm{GeV}], \tag{32}\\
U^{\mathrm{Ll}} & \simeq\left(\begin{array}{ccc}
0.577-0.01 i & -0.706-0.006 i & 0.003+0.405 i \\
-0.577+0.01 i & 0.001 & 0.007+0.814 i \\
0.577+0.01 i & 0.706+0.018 i & -0.01+0.409 i
\end{array}\right), \\
U^{\mathrm{LH}} & \simeq\left(\begin{array}{ccc}
0.03 & -0.048 i & 0.036 \\
0.03 & -0.048 i & 0.036 \\
0 & 0 & 0
\end{array}\right) . \tag{33}
\end{align*}
$$

The masses give appropriate $\Delta m_{\mathrm{atm}}^{2}$ and Δm_{\odot}^{2} (Eq. (30)). Large mixings in the U^{Ll} sector are obtained. Of course, this matrix is not unitary and differs from $U_{\text {MNS }}$ in Eq. (30), the effect expected as heavy neutrino states affect the light sector.

Finally let us comment on the $\mu \rightarrow e \gamma$ decay. Analyzes of experimental data give [5]

$$
\begin{equation*}
\operatorname{BR}(\mu \rightarrow e \gamma)=\frac{3 \alpha}{8 \pi}\left|\sum_{i}\left(U^{\mathrm{LH}}\right)_{e i}\left(U^{\mathrm{LH}}\right)_{i \mu}^{\dagger} \frac{M_{i}^{2}}{M_{W}^{2}}\right|^{2} \leq 4.9 \times 10^{-11} \tag{34}
\end{equation*}
$$

In Eq. (34) contributions from the light neutrinos have been safely neglected [14]. Taking into account Eq. (33), $\operatorname{BR}(\mu \rightarrow e \gamma) \simeq 1.4 \times 10^{-12}$. It fits to the present limit.

3. TeV neutrino mass models without fine-tuning problems and symmetry arguments

Is it possible to avoid the problem of strong correlations among m_{D} and M_{R} elements (Eq. (23) and Eq. (25))? As discussed in [27], m_{D} and M_{R} originate from apparently disconnected mechanisms of gauge symmetry breaking of the $\mathrm{SU}(2) \times \mathrm{U}(1)$ gauge group and some larger unification group, respectively. Thus, it is hard to believe that these are arranged to fulfill Eq. (25) just to give TeV neutrinos with large LH mixings. In [27] a phenomenological model of the matrix M_{ν} with uncorrelated m_{D} and M_{R} matrix elements which realizes bi-maximal neutrino mixing has been constructed. The result discussed explicitly in [27] is the following

$$
\begin{align*}
& m_{\mathrm{D}}=m_{3}\left(\begin{array}{ccc}
x^{2} y & 0 & 0 \\
0 & x & x \\
0 & -x^{2} & 1
\end{array}\right) \tag{35}\\
& M_{\mathrm{R}}^{-1}(x=0)=\frac{1}{M}\left(\begin{array}{ccc}
0 & 0 & \alpha \\
0 & 1 & 0 \\
\alpha & 0 & 0
\end{array}\right), \tag{36}
\end{align*}
$$

where m_{3} and M are of the order of the top quark and grand unification energy scale, respectively. $x=\mathcal{O}\left(m_{c} / m_{t}\right)$ is of the order of 10^{-2} (the ratio of the charm and the top quark mass), $y \simeq 10^{-1}, \alpha<1$. The relation $x=0$ in Eq. (36) stresses that M_{R} is independent of x being an element of m_{D}. Null matrix elements in Eq. (35) and (36) are higher order powers in x and y and are neglected. This model has been originally used in the context of see-saw models. To accommodate it to TeV neutrinos, the M scale must be lowered to the TeV level. Then masses of light neutrinos of the order of $x^{2} m_{3}^{2} / M$ appear (Eq. (31) in [27]) and, as in the previous section the finetuning problem shows up: the numerator must be tuned to fit light neutrino masses at the eV level. Moreover, using Eq. (5) we get

$$
U^{\mathrm{LH}} \simeq \frac{m_{3}}{M}\left(\begin{array}{ccc}
0 & 0 & 0 \tag{37}\\
x \alpha & x & 0 \\
\alpha & -x^{2} & 0
\end{array}\right) .
$$

We can see that these mixings are negligible. There is no contribution to the neutrino-less double beta decay and to the $\mu \rightarrow e \gamma$ decay from heavy neutrino mixing.

Let us finally comment on the possible symmetry of the full matrix M_{ν}. We note that the relations in Eq. (23) and (25) are not symmetries of M_{ν} but rather they are fine-tuning relations of elements of m_{D} and M_{R} what ensures
that appropriate masses of light neutrinos can be obtained simultaneously with TeV neutrinos. Symmetries act directly on M_{ν} and not on objects which are functions of elements of M_{ν}. As discussed in the Introduction (and Example I), TeV neutrinos may lead to large LH mixings, but too large masses of light neutrinos would simultaneously arise. A source of the problem lies in a different scale of the elements of M_{ν}. Could symmetry of M_{ν} be able to reconcile the problem? Let us consider a toy model with only light (ν) and heavy (N) neutrinos. Let us assume that in the $(\nu, N)^{\mathrm{T}}$ basis the neutrino mass matrix is (elements a, b, c are real numbers)

$$
M=\left(\begin{array}{ll}
a & b \tag{38}\\
b & c
\end{array}\right)
$$

The masses and a mixing angle are given by

$$
\begin{equation*}
m_{1,2}=\frac{1}{2}\left(a+c \mp \sqrt{(a-c)^{2}+4 b^{2}}\right) \tag{39}
\end{equation*}
$$

and

$$
\begin{equation*}
\sin 2 \xi=\frac{2 b}{\sqrt{(a-c)^{2}+4 b^{2}}} \tag{40}
\end{equation*}
$$

If $c \gg b, a$ then we get $\left|m_{1}\right| \simeq b^{2} / c, m_{2} \simeq c \gg|m 1|$ and $\xi \simeq b / c$. It is just a see-saw mechanism. If, however, $a c=b^{2}$ (due to symmetry!) then $m_{1} \simeq 0, m_{2}=a+c$ and $\sin 2 \xi=2 \sqrt{a c} /(a+c)$. We can see that $\sin 2 \xi \simeq 1$ if $a \simeq c$, which is, however, not a natural assumption. The problem does not vanish with larger dimension of M_{ν}. To summarize, a difficulty to build a symmetry of the M_{ν} matrix lies in the following: large LH mixings means that elements of the M_{ν} matrix are comparable. However, this is not true as long as the relation $m_{\mathrm{D}} \ll M_{\mathrm{R}}$ holds.

4. Conclusions

In summary, it has been shown that the present data from the light neutrino sector, especially their masses allow to construct the neutrino mass matrix M_{ν} with both TeV neutrinos and large LH mixings. However, the form of M_{ν} is constrained very much. In all three numerical examples of Section 2, LH mixings fulfill Eq. (5). The kind of relations (23) and (25) do not change this fact. There is no way around as long as $m_{\mathrm{D}} \ll M_{\mathrm{R}}$ which is, as discussed in Example I, a condition which must be fullfiled for our purposes.

The natural decomposition into $m_{\mathrm{D}}^{(0)}$ and $m_{\mathrm{D}}^{(1)}$ terms in Eq. (20) which has been used in this paper has been for the first time introduced in [11]. At this time an information on neutrino masses was completely different. Muon and tau neutrino masses at the level of keV and MeV , respectively has been allowed. Then some freedom of parameters in relations (23) and (25) was possible.

To avoid fine tuning problems we could look for a symmetry of the full matrix M_{ν} or build models with uncorrelated m_{D} and M_{R} matrices. However, as argued in Section 3, in the first case a kind of internal contradiction between a requirement of two different scales $m_{\mathrm{D}} \ll M_{\mathrm{R}}$ and large LH mixings arises. In the second case negligible LH mixings emerge.

The basic conclusions of the paper remain true regardless of the number of heavy neutrino states. The case when left-handed fields give a Majorana mass term M_{L} in Eq. (1) $[9,26]$ come to the same class of basic fine-tuning problems.

I would like to thank prof. M. Zrałek for useful discussions. The work was supported by the Polish State Committee for Scientific Research (KBN) under grants no. 2P03B04919 and 2P03B05418.

REFERENCES

[1] T. Yanagida, Procceedings of the Workshop on the Unified Theory and Baryon Number in the Universe, Eds. O. Sawada and A. Sugamoto (KEK, 1979), p. 95; M. Gell-Mann, P. Ramond, R. Slansky, Supergravity, Ed. P. Van Neiuwenhuizen and D. Freedman, North-Holland, Amsterdam 1979, p. 315.
[2] W. Grimus, L. Lavoura, J. High Energy Phys. 0011, 042 (2000).
[3] J. Schechter, J.W. Valle, Phys. Rev. D22, 2227 (1980); P. Langacker, D. London, Phys. Rev. D38, 886 (1988); D. Tommasini, G. Barenboim, J. Bernabeu, C. Jarlskog, Nucl. Phys. B444, 451 (1995).
[4] J. Gluza, M. Zralek, Phys. Rev. D48, 5093 (1993); Phys. Lett. B362, 148 (1995).
[5] D.E. Groom et al. Particle Data Group Collaboration, Eur. Phys. J. C15, 1 (2000) .
[6] E. Nardi, E. Roulet, D. Tommasini, Phys. Lett. B327, 319 (1994); E. Nardi, E. Roulet, D. Tommasini, Nucl. Phys. B386, 239 (1992); S. Bergmann, A. Kagan, Nucl. Phys. B538, 368 (1999).
[7] J. Gluza, M. Zralek, Phys. Rev. D55, 7030 (1997) and references therein; J. Gluza, J. Maalampi, M. Raidal, M. Zralek, Phys. Lett. B407, 45 (1997); G. Cvetic, C.S. Kim, C.W. Kim, Phys. Rev. Lett. 82, 4761 (1999); W. Rodejohann, K. Zuber, Phys. Rev. D62, 094017 (2000).
[8] T.G. Rizzo, Phys. Lett. B116, 23 (1982); J. Gluza, M. Zralek, Phys. Rev. D52, 6238 (1995); J. Gluza, Phys. Lett. B403, 304 (1997).
[9] P. Duka, J. Gluza, M. Zralek, Phys. Rev. D58, 053009 (1998).
[10] G. Belanger, F. Boudjema, D. London, H. Nadeau, Phys. Rev. D53, 6292 (1996).
[11] W. Buchmuller, C. Greub, Nucl. Phys. B381, 109 (1992); G. Ingelman, J. Rathsman, Z. Phys. C60, 243 (1993).
[12] M. Lindner, T. Ohlsson, G. Seidl, hep-ph/0109264.
[13] E.J. Chun, C.W. Kim, U.W. Lee, Phys. Rev. D58, 093003 (1998); R.N. Mohapatra, Phys. Rev. D64, 091301 (2001); M. Czakon, J. Gluza, M. Zralek, Phys. Rev. D64, 117304 (2001).
[14] A. Ilakovac, A. Pilaftsis, Nucl. Phys. B437, 491 (1995); J.I. Illana, T. Riemann, Phys. Rev. D63, 053004 (2001) and references therein; T.P. Cheng, L.F. Li, Phys. Rev. D44, 1502 (1991).
[15] M. Czakon, J. Gluza, M. Zralek, hep-ph/0109245 and references therein.
[16] D. Wyler, L. Wolfenstein, Nucl. Phys. B218, 205 (1983); R.N. Mohapatra, J.W. Valle, Phys. Rev. D34, 1642 (1986); J. Bernabeu, A. Santamaria, J. Vidal, A. Mendez, J.W. Valle, Phys. Lett. B187, 303 (1987).
[17] K.S. Babu, Phys. Lett. B203, 132 (1988).
[18] G.R. Dvali, A.Y. Smirnov, Nucl. Phys. B563, 63 (1999); R.N. Mohapatra, A. Perez-Lorenzana, Nucl. Phys. B576, 466 (2000); A. Ioannisian, J.W. Valle, Phys. Rev. D63, 073002 (2001); E. Ma, M. Raidal, U. Sarkar, Phys. Rev. Lett. 85, 3769 (2000).
[19] A. Perez-Lorenzana, C.A. De S. Pires, hep-ph/0108158.
[20] E. Ma, Phys. Rev. Lett. 86, 2502 (2001).
[21] S. Wolfram, MATHEMATICA, Wolfram Research Inc.
[22] A. Santamaria, Phys. Lett. B305, 90 (1993); J. Gluza, M. Zralek, Phys. Rev. D51, 4695 (1995).
[23] V.D. Barger, T.J. Weiler, K. Whisnant, Phys. Lett. B442, 255 (1998); M. Czakon, J. Gluza, M. Zralek, Phys. Lett. B465, 211 (1999); M. Czakon, J. Gluza, J. Studnik, M. Zralek, hep-ph/0110166.
[24] H.V. Klapdor-Kleingrothaus, A. Dietz, H.L. Harney, I.V. Krivosheina, Mod. Phys. Lett. A16, 2409 (2002). M. Hirsch, H.V. Klapdor-Kleingrothaus, O. Panella, Phys. Lett. B374, 7 (1996); C. Greub, P. Minkowski, Int. J. Mod. Phys. A13, 2363 (1998).
[25] J. Gluza, M. Zralek, Phys. Lett. B372, 259 (1996).
[26] J.F. Gunion, J. Grifols, A. Mendez, B. Kayser, F.I. Olness, Phys. Rev. D40, 1546 (1989); N.G. Deshpande, J.F. Gunion, B. Kayser, F.I. Olness, Phys. Rev. D44, 837 (1991).
[27] M. Jeżabek, Y. Sumino, Phys. Lett. B440, 327 (1998).

