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SEARCH FOR FERMION UNIVERSALITY OF THEDIRAC COMPONENT OF NEUTRINO MASS MATRIX�Woj
ie
h KrólikowskiInstitute of Theoreti
al Physi
s, Warsaw UniversityHo»a 69, 00�681 Warszawa, Poland(Re
eived Mar
h 1, 2002)It is 
onje
tured that a diagonal and degenerate 3 � 3 a
tive�a
tive
omponent (i.e., lefthanded 
omponent) dominates in the e�e
tive 6 � 6mass matrix for six Majorana neutrinos, three a
tive and three (
onven-tional) sterile, while its 3 � 3 a
tive-sterile 
omponent (i.e., Dira
 
om-ponent) arises through a bimaximal-mixing unitary transformation from astru
ture similar to the 3� 3 mass matri
es for 
harged leptons as well asup and down quarks. In su
h a texture, three neutrino masses are nearlydegenerate, m1 ' m2 ' m3, though their mass-squared di�eren
es ap-pear hierar
hi
al, �m221 � �m232 ' �m231, whereas the remaining threeneutrino masses 
an be 
onstru
ted to vanish, m4 = m5 = m6 = 0, orto be, as in Appendix A, degenerate in square with the previous masses,m1 = jm4j;m2 = jm5j;m3 = jm6j, in 
ontrast to the familiar seesaw me
h-anism (in both 
ases). Appendi
es B and C are devoted to the author'sidea of the algebrai
 
ompositeness of fundamental parti
les, resulting intothree generations of Standard Model fermions and two generations of newbosons.PACS numbers: 12.15.Ff, 14.60.Pq, 12.15.Hh1. Introdu
tionAs is well known, three Dira
 neutrinos are �(D)� = ��L+��R(� = e; �; �),while three Majorana a
tive neutrinos and three Majorana (
onventional)sterile neutrinos be
ome �(a)� = ��L + (��L)
 and �(s)� = ��R + (��R)
(� = e; �; �), respe
tively. The neutrino mass term in the Lagrangian getsgeneri
ally the form�Lmass = 12X�� ��(a)� ; �(s)� � M (L)�� M (D)��M (D)��� M (R)�� ! �(a)��(s)� ! : (1)� Supported in part by the Polish State Committee for S
ienti�
 Resear
h (KBN),grant 5 P03B 119 20 (2001�2002). (1747)



1748 W. KrólikowskiIfM (L)�� andM (R)�� are not all zero, then in nature there are realized six Majo-rana neutrino mass �elds �i or states j�ii(i = 1; 2; 3; 4; 5; 6) 
onne
ted withsix Majorana neutrino �avor �elds �� or states j��i(� = e; �; �; es; �s; �s)through the unitary transformation�� =Xi U�i�i or j��i =Xi U��ij�ii ; (2)where we passed to the notation �� � �(a)� and ��s � �(s)� for � = e; �; � .Of 
ourse, �(a)�L = ��L, �(a)�R = (��L)
 and ��sR � �(s)�R = ��R, ��sL ��(s)�L = (��R)
 for � = e; �; � . Thus, the neutrino 6 � 6 mass matrixM = (M��) (�; � = e; �; �; es; �s; �s) is of the formM = � M (L) M (D)M (D)y M (R) � : (3)The neutrino 6 � 6 mixing matrix U = (U�i) (i = 1; 2; 3; 4; 5; 6) ap-pearing in Eqs. (2) is, at the same time, the unitary 6 � 6 diagonalizingmatrix, U yMU =Md � diag(m1; m2; m3; m4; m5; m6) ; (4)if the representation is used, where the 
harged-lepton 3� 3 mass matrix isdiagonal. This will be assumed hen
eforth.2. Model of neutrino textureIn this paper we study the model of neutrino texture, where the 3 � 3submatri
es in Eq. (3) areM (L) = 0m0� 1 0 00 1 00 0 1 1A ;M (D) = 0m0B� t14p2 t25p2 0� t142 t252 t36p2t142 � t252 t36p2 1CA ;M (R) = 0m0� t214 0 00 t225 00 0 t236 1A (5)with 0m > 0 being a mass s
ale and tij (ij = 14; 25; 36) denoting threedimensionless parameters.



Sear
h for Fermion Universality of the Dira
 Component . . . 1749One 
an show that the unitary diagonalizing matrix U for the massmatrix M de�ned in Eqs. (3) and (5) is of the formU = 1U 0U ; 1U = � U (3) 0(3)0(3) 1(3) � ; 0U = � C(3) �S(3)S(3) C(3) � ; (6)where U (3) = 0B� 1p2 1p2 0�12 12 1p212 �12 1p2 1CA ; 1(3) = 0� 1 0 00 1 00 0 1 1A ;C(3) = 0� 
14 0 00 
25 00 0 
36 1A ; S(3) = 0� s14 0 00 s25 00 0 s36 1A (7)and sij
ij = tij (8)with sij = sin �ij and 
ij = 
os �ij , so that tij = tan �ij (ij = 14; 25; 36).Su
h a diagonalizing matrix leads to the mass spe
trumm1 = 0m �1 + t214� ; m4 = 0 ;m2 = 0m �1 + t225� ; m5 = 0 ;m3 = 0m �1 + t236� ; m6 = 0 (9)whi
h 
an be des
ribed equivalently by the equalities
214m1 = 
225m2 = 
236m3 = 0m; m4 = m5 = m6 = 0 : (10)The easiest way to prove this theorem is to start with the diagonalizing ma-trix U given in Eqs. (6) and (7), and then to 
onstru
t the mass matrixM de-�ned in Eqs. (3) and (5) by making use of the formulaM�� =Pi U�imiU��i ,where the mass spe
trum (9) or (10) is to be taken into a

ount.We 
an see from Eqs. (5), (6) and (7) that our neutrino texture 
orre-sponds to the mixing angles giving 
12 = 1=p2 = s12, 
23 = 1=p2 = s23 and
13 = 1, s13 = 0, while 
ij; sij (ij = 14; 25; 36) are to be determined fromthe experiment.In this neutrino texture, where the mass matrix M is given in Eqs. (3)and (5), an interesting role is played by the unitarily transformed massmatrix 0M de�ned as



1750 W. Królikowski0M = 1U yM 1U : (11)Then, writing 0M = 0� 0M (L) 0M (D)0M (D)y 0M (R) 1A ; (12)we obtain0M (L) = � 1U yM 1U�(L) = U (3)yM (L)U (3) =M (L) ;0M (D) = � 1U yM 1U�(D) = U (3)yM (D) = 0m0� t14 0 00 t25 00 0 t36 1A ;0M (R) = � 1U yM 1U�(R) = M (R) : (13)Thus, the Dira
 3� 3 
omponent 0M (D) of the mass matrix 0M (transformedunitarily fromM by means of the fa
tor 1U of the mixing matrix U) be
omesdiagonal and so, may get a hierar
hi
al stru
ture similar to the Dira
 massmatri
es for 
harged leptons and quarks, all dominated by their diagonalparts. The transforming fa
tor 1U given in Eq. (6) works e�e
tively thanks toits 3�3 submatrix U (3) that is just the familiar bimaximal mixing matrix [1℄,spe
i�
 for neutrinos, des
ribing satisfa
torily the observed os
illations ofsolar �e's and atmospheri
 ��'s. Note that0U y 0M 0U = 0Md =Md = diag(m1; m2; m3; m4; m5; m6) ; (14)where the fa
tor 0U of the mixing matrix U is de�ned in Eq. (6). Here,0M = � 0M ij�; 0U = � 0U ij� and 1U = � 1U�i�, as M = (M��) and U = (U�i).With the use of 0M given in Eq. (11) the neutrino mass term (1) in theLagrangian 
an be written as �Lmass = 12P�� ��M���� = 12Pij 0�i 0M ij 0�j,where �� =Pi U�i�i =Pi 1U�i 0�i, but 0�i=Pj 0U ij�j are not neutrino mass�elds, in 
ontrast to �i: in fa
t, 0M j 0�ii = mij 0�ii, while M j�ii = mij�ii( 0Mbeing a unitary transform of the full neutrino mass matrix M).
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 Component . . . 1751Spe
i�
ally, the Dira
 3�3 
omponent 0M (D) of the neutrino mass matrix0M (where the bimaximal mixing 
hara
teristi
 for neutrinos is transformedout unitarily) may be 
onje
tured in a fermion universal form that wasshown to work very well for the mass matrix of 
harged leptons [2℄ and neatlyfor mass matri
es of up and down quarks [3℄ (obviously, in those three 
asesof 
harged fundamental fermions there exist only Dira
-type mass matri
es).Then, for neutrinos we get [4℄0M (D) = 129 0BBBB� �" 2� 02� 4� (80 + ")=9 8p3�0 8p3� 24� (624 + ")=25
1CCCCA ; (15)where � > 0 , � > 0 and " > 0 are some neutrino parameters. Sin
e alreadyfor 
harged leptons "(e) = 0:172329 is small [2℄, we will put for neutrinos" ! 0. We will also 
onje
ture that for neutrinos �=� is negligible, as for
harged leptons the small ��(e)=�(e)�2 = 0:023+0:029�0:025 [2℄ gives the predi
tionm� = mexp� = 1777:03+0:30�0:26 MeV [5℄ when me = mexpe and m� = mexp� areused as inputs, while with ��(e)=�(e)�2 = 0 the predi
tion be
omes m� =1776:80 MeV. In su
h a 
ase, from Eqs. (13) and (15) we 
an 
on
lude that0mt14 = �29"! 0 ; 0mt25 = �29 4� 809 = 1:23� ; 0mt36 = �29 24 � 62425 = 20:7�(16)in Eqs. (5), (8) and (9), and
14 ! 1 ; 
25 = 1q1 + 1:50 (�= 0m)2 ; 
36 = 1q1 + 427 (�= 0m)2 ;s14 ! 0 ; s25 = 1:23�= 0mq1 + 1:50 (�= 0m)2 ; s36 = 20:7�= 0mq1 + 427(�= 0m)2 (17)in Eqs. (7) and (8). Hen
e, from Eqs. (9) and (16)m1 ! 0m; m2 = 0m+ 1:50�20m ; m3 = 0m+ 427�20m : (18)3. Neutrino os
illationsA

epting the formulae (16) and making tentatively the 
onje
ture that� � 0m, we 
an operate with the approximation, where 0 � tij � 1 or



1752 W. Królikowski0 � sij � 
ij (ij = 14; 25; 36). Then, we get the 
ase of nearly degeneratespe
trum of m1; m2; m3: m1 ' m2 ' m3 ' 0m, but with hierar
hi
al mass-squared di�eren
es �m221 � �m232 ' �m231, where�m221 = 2 0m2 (t225 � t214) = 3:01�2 ;�m232 = 2 0m2 (t236 � t225) = 850 �2 ;�m231 = 2 0m2 (t236 � t214) = 853 �2 (19)due to Eqs. (9) and (16).Noti
e that the option 0m� �, opposite to our 
onje
ture �� 0m, leadsto tij � 1 or 0 � 
ij � sij (ij = 14; 25; 36). Then, we obtain the 
ase ofhierar
hi
al spe
trum of m1; m2; m3: m1 � m2 � m3 with mass-squareddi�eren
es �m221 � �m232 ' �m231, where�m221 = 0m2 (t425 � t414) = 2:26 �40m2 ;�m232 = 0m2 (t436 � t425) = 1:82 � 105 �40m2 ;�m231 = 0m2 (t436 � t414) = 1:82 � 105 �40m2 (19')due to Eqs. (9) and (16). In this 
ase, the 
omponent M (R) of the neutrinomass matrix dominates over M (D) (as � over 0m ) that dominates in turnover M (L) (as � over 0m ): this is the situation, where the familiar see-saw me
hanism 
an formally work in spite of the fa
t that entries of M (R)are very small, in parti
ular due to m4 = m5 = m6 = 0 (not as in thepopular seesaw, where they are as large as the GUT s
ale). With the Su-perKamiokande result �m232 � 3� 10�3 eV2 we get in this option �m221 �3:7 � 10�8 eV2 and �4= 0m2 � 1:6� 10�8 eV2 or �2= 0m � 1:3 � 10�4 eV i.e.,� � 1:3 � 10�4( 0m =�) eV � 1:3 � 10�4 eV. In 
ontrast, in the 
ase of our
onje
ture � � 0m, the 
omponent M (L) dominates over M (D) whi
h domi-nates in turn over M (R) and so, we obtain for �m221 and � the mu
h largervalues given later on in Eqs. (26) and (24), respe
tively; also the value of�m225 = m22 ' 0m2 appearing in Eq. (28) is mu
h larger.The familiar formulae for probabilities of neutrino os
illations �� ! ��on the energy shell,P (�� ! ��) = jh�� jeiPLj��ij2 = Æ�� � 4Xj>i U��jU�iU�jU��i sin2 xji (20)



Sear
h for Fermion Universality of the Dira
 Component . . . 1753with xji = 1:27�m2jiLE ; �m2ji = m2j �m2i ; pi ' E � m2i2E ; (21)valid when a possible CP violation 
an be ignored (then U��i = U�i), give inthe a

epted approximation of �m221 � �m232 ' �m231 � 0m2 thatP (�e ! �e)sol = 1� 
225 sin2(x21)sol � 12(1 + 
225)s225 ;P (�� ! ��)atm = 1� 12(1 + 
225)
236 sin2(x32)atm�18(1 + 
225 + 2
236)(s225 + 2s236) ;P (�� ! �e)LSND = 12s425 sin2(x25)LSND ;P (��e ! ��e)Chooz = 1� (1 + 
225)s225 sin2(x25)Chooz (22)for solar �e's, atmospheri
 ��'s, LSND a

elerator ��'s (���'s) and Choozrea
tor ��e's, respe
tively. The �rst two Eqs. (22) di�er from the familiartwo��avor os
illation formulae (used often in analyzes of neutrino os
illa-tions) by some additive terms that, fortunately, are small enough be
ause ofs2ij � 
2ij 
onsistent with �2 � 0m2.From the se
ond formula (22) des
ribing atmospheri
 ��'s we infer dueto the SuperKamiokande result [6℄ that12(1 + 
225)
236 � sin2 2�atm � 1 ; �m232 � �m2atm � 3� 10�3eV ; (23)what gives �2 � 3:5� 10�6eV2 or � � 1:9� 10�3eV ; (24)when Eq. (19) is used. The nearly maximal atmospheri
 os
illation ampli-tude sin2 2�atm � 1 implies 
225 � 1 and 
236 � 1, whi
h is 
onsistent with�2 � 0m2. For an illustration, taking sin2 2�atm & 0:85, we get from Eqs. (17)(�= 0m)2 . 4:1� 10�4 and so, 0m2 & 8:3� 10�3eV2 or 0m & 9:3� 10�2eV dueto Eq. (24). Thus, sin2 2�atm should be mu
h larger than 0.85 in order tohave 0m2 � �m232 � 3�10�3eV2. If e.g. 0m � 1 eV, then sin2 2�atm � 0:998.Making use of the estimate (24) in Eqs. (18) we obtainm1 ! 0m; m2 � 0m+ 5:3� 10�6 eV20m ; m3 � 0m+ 1:5� 10�3 eV20m : (25)The �rst formula (22) referring to solar �e's predi
ts with the use ofEqs. (19) and (24) thatsin2 2�sol � 
225 � 1 ; �m2sol � �m221 � 3:01�2 � 1:1� 10�5 eV2 : (26)



1754 W. KrólikowskiSu
h a predi
tion for solar �e's is not in
onsistent with the Large MixingAngle (LMA) solution [7℄, though the solar os
illation amplitude in thissolution seems to be a bit smaller than the SuperKamiokande atmospheri
os
illation amplitude (in 
ontrast to the inequality 
225 > 12(1+
225)
236, where
225 > 
236 due to Eqs. (17); however the small additive terms 12(1+ 
225)s225 <18(1+ 
225+2
236)(s225+2s236) may 
ompensate e�e
tively su
h an inequality).From the third formula (22) we 
an see that in our texture there ispredi
ted a very small version of the original LSND e�e
t for a

elerator ��'s(���'s) [8℄ with the os
illation amplitudesin2 2�LSND � 12s425 = 1:13(�= 0m)4[1 + 1:50(�= 0m)2℄2 � 1:4� 10�11  eV0m !4 ; (27)where Eqs. (17) and (24) are used (with �2 � 0m2). The mass-squared s
alefor su
h a version of the LSND e�e
t is equal to�m2LSND � �m225 = m22 = 0m2 + 3:01�2 � 0m2 + 1:1 � 10�5 eV2 ; (28)where Eq. (19) is applied. Note that �m2LSND di�ers by the term 0m2from the solar mass-squared s
ale �m2sol given in Eq. (26). If e.g. 0m =O(10�1 eV) � O(1 eV) (still with �2 � 0m2), then sin2 2�LSND = O(10�7)�O(10�11) and � m2LSND = O(10�2 eV2)�O(1 eV2).The fourth formula (22) des
ribes the Chooz experiment for rea
tor ��e's.Due to its negative result, P (��e ! ��e)Chooz � 1, there appears the experi-mental 
onstraint for s225 [9℄:(1 + 
225)s225 � sin2 2�Chooz . 0:1 if �m225 � �m2Chooz & 0:1 eV2 : (29)This implies for the LSND e�e
t (in our texture) the Chooz upper boundsin2 2�LSND � 12s425 . 1:3� 10�3 (30)if �m225 � �m232 � 3� 10�3 eV2, what is 
onsistent with �m225 & 0:1 eV2and gives (x25)Chooz � (x32)Chooz ' (x32)atm = O(1) as (xji)Chooz '(xji)atm numeri
ally. Then, sin2(x25)Chooz ' 12 (31)in the fourth formula (22). When 
ombined with Eq. (27), the Chooz bound(30) leads to the lower limit for 0m:0m& 1:0� 10�2 eV : (32)



Sear
h for Fermion Universality of the Dira
 Component . . . 1755This gives in turn the lower limits�m2LSND � �m225 & 1:1� 10�4 eV2 (33)and sin2 2�sol � 
225 & 0:95 ; sin2 2�atm � 12(1 + 
225)
236 & 0:061 (34)due to Eqs. (17) and (28), respe
tively. Evidently, this lower limit forsin2 2�atm is not rea
hed experimentally. If e.g. 0m � 1 eV 
orrespond-ing to sin2 2�atm � 0:998, then sin2 2�LSND � 1:4 �10�11, �m2LSND � 1 eV2and sin2 2�sol � 1.The e�e
tive weighted sum of Majorana neutrino masses 
ontributingto the neutrinoless double � de
ay hmei � jPi U2�imij is in our textureequal to 0m. Thus, the experimental upper limit for hmei gives 0m = hmei <0:4 (0:2) eV � 1 (0.6) eV (
f. Baudis 99B in Ref. [5℄). If e.g. 0m � 0:2 eV 
or-responding to sin2 2�atm � 0:96, then sin2 2�LSND � 8:8� 10�9, �m2LSND �4:0 � 10�2 eV2 and sin2 2�sol � 1.Very re
ently, a possible positive eviden
e of the neutrinoless double �de
ay has been reported for the �rst time [10℄. The proposed estimationis 0.05 eV � hmei � 0:84 eV with the best �t hmei � 0:39 eV. Then,in our texture, for 0m= hmei � (0:05 � 0:39 � 0:84) eV 
orresponding tosin2 2�atm � 0:63�0:99�0:998 one obtains sin2 2�LSND � 2:2�10�6�6:0�10�10 � 2:8� 10�11, �m2LSND � (2:5� 10�3 � 1:5� 10�1 � 7:1� 10�1) eV2and sin2 2�sol � 0:998 � 1 � 1. If this eviden
e is 
on�rmed, we will besure that �e is a Majorana neutrino and, moreover, we will gain the �rstexperimental estimate of its mass s
ale. In the 
ase su
h as in our texture,where neutrino masses m1; m2; m3 are nearly degenerate, this s
ale shallbe also the mass s
ale of Majorana neutrinos �� and �� . The 
ase of neardegenera
y of m1; m2; m3 is here supported by the 
onsiderably large best�t of the mass-squared s
ale, hmei2 � (0:39)2 eV2 = 0:15 eV2, distin
tlylarger than the mass-squared di�eren
es �m221 � �m232 � 3� 10�3 eV2.4. Con
lusionsWe presented in this note an e�e
tive texture for six Majorana neutrinos,three a
tive and three (
onventional) sterile, based on the 6�6 mass matrixde�ned in Eqs. (3) and (5), and leading to the mixing matrix given in Eqs. (6)and (7), as well as to the mass spe
trum (9) or (10). We 
onje
tured that theDira
 3�3 
omponent of su
h a neutrino mass matrix (when the bimaximalmixing, spe
i�
 for neutrinos, is transformed out unitarily) gets a fermion



1756 W. Królikowskiuniversal form (15) similar to the 3�3 mass matrix for 
harged leptons and3� 3 mass matri
es for up and down quarks, 
onstru
ted previously with a
onsiderable su

ess [2,3℄.This texture predi
ts reasonably os
illations of solar �e's in a form notin
onsistent with LMA solar solution, if the SuperKamiokande value of themass-squared s
ale for atmospheri
 ��'s is taken as an input. In both 
ases,neutrino os
illations are pra
ti
ally maximal. The proposed texture alsopredi
ts very small, perhaps unobservable, LSND e�e
t with the os
illationamplitude of the order O[10�11 (eV= 0m)4℄ and the mass-squared s
ale of theorder O( 0m2)+O(10�5 eV2). If e.g. 0m = O(10�1 eV)�O(1eV) 
orrespondingto sin2 2�atm = O(0:9) � O(1), then sin2 2�LSND = O(10�7) � O(10�11),�m2LSND = O(10�2 eV2)�O(1 eV2) and sin2 2�sol = O(1).The negative result of Chooz experiment imposes on the os
illation am-plitude of LSND e�e
t (in our texture) an upper bound of the order O(10�3)whi
h 
orresponds for 0m to a lower limit of the order O(10�2 eV) and for�m2LSND to a lower limit of the order O(10�4 eV2). Noti
e that the estima-tions following from the original LSND experiment [8℄ are e.g. sin2 2�LSND =O(10�2) and �m2LSND = O(1 eV2). The new miniBooNE experiment may
on�rm or revise the original LSND results.As far as the neutrino mass spe
trum is 
on
erned, our model of neu-trino texture is of 3 + 3 type, in 
ontrast to the models of 3 + 1 or 2+ 2 types [11℄ dis
ussed in the 
ase when, beside three a
tive neutrinos�e; ��; �� , there is one extra sterile neutrino �s. In those models, threeMajorana 
onventional sterile neutrinos �es ; ��s ; ��s are de
oupled throughthe familiar seesaw me
hanism, as being pra
ti
ally identi
al with three veryheavy neutrino mass states �4; �5; �6 (of the GUT mass s
ale). In our model,on the 
ontrary, �es ; ��s ; ��s are pra
ti
ally identi
al with three mass states�4; �5; �6 that this time are 
onstru
ted to be massless.In this paper, the most 
ru
ial may be the pertinent question, what isthe physi
al (Higgs?) origin of the Dira
 
omponent M (D), Eq. (5), of theneutrino mass matrixM , where its bimaximal-mixing-free unitary transform0M (D), Eq. (13), is 
onje
tured to be of the fermion universal form (15) (with�=� negligible in the 
ase of neutrinos). A somewhat di�erent question arisesalso about the physi
al (expli
it or e�e
tive?) origin of the lefthanded andrighthanded 
omponents M (L) and M (R), Eqs. (5), of M .The reader 
an �nd three Appendi
es added at the end of this paper. InAppendix A, an alternative, e�e
tive 6�6 neutrino texture is sket
hed, wheredue to a spe
i�
 degenera
y of the mass matrix there are no os
illationsof the (
onventional) sterile neutrinos and, therefore, no LSND e�e
t 
anarise. Appendix B 
ontains a proposal of the explanation, why in nature



Sear
h for Fermion Universality of the Dira
 Component . . . 1757there are three and only three generations of leptons and quarks, and alsoan argument for the parti
ular form of the Dira
-type 3�3 mass matrix usedin this paper for neutrinos (and in Refs. [2℄ and [3℄ for 
harged leptons andquarks, respe
tively). Finally, Appendix C deals brie�y with the problem ofnew boson hierar
hy, appearing as an unavoidable by-produ
t of explainingthe observed fermion hierar
hy in the way presented in Appendix B.Appendix AAn alternative 6� 6 texture without the LSND e�e
tIn this Appendix, we report on another e�e
tive texture for three a
tiveand three (
onventional) sterile neutrinos, where there are no os
illations ofthe latter neutrinos due to a spe
i�
 degenera
y of the mass matrix. Thus,they are de
oupled from the former neutrinos, evidently in a di�erent waythan through the familiar seesaw me
hanism.In su
h a texture, the 3�3 
omponents of the neutrino 6�6 mass matrix(3) get the formM (L) = 0m0� 1 0 00 1 00 0 1 1A = �M (R) ;M (D) = 0m0B� tan 2�14p2 tan 2�25p2 0� tan 2�142 tan 2�252 tan 2�36p2tan 2�142 � tan 2�252 tan 2�36p2 1CA (A.1)with 0m > 0 being a mass s
ale and tan 2�ij (ij = 14; 25; 36) denoting threedimensionless parameters. Its unitary diagonalizing matrix is given as beforein Eqs. (6) and (7), but now the relations
2ij � s2ij = 
os 2�ij = 1p1 + tan2 2�ij (A.2)work and the neutrino mass spe
trum be
omesm1;4 = � 0mp1 + tan2 2�14 ;m2;5 = � 0mp1 + tan2 2�25 ;m3;6 = � 0mp1 + tan2 2�36 ; (A.3)satisfying the equalities�
214 � s214�m1;4 = �
225 � s225�m2;5 = �
236 � s236�m3;6 = � 0m: (A.4)



1758 W. KrólikowskiThis 
an be seen by applying the formula M�� =Pi U�imiU��i with the useof mass spe
trum des
ribed in Eqs. (A.3) or (A.4).For the new texture, the neutrino os
illation formulae (20) lead to therelationsP (�e ! �e)sol = 1� sin2(x21)sol ;P (�� ! ��)atm = 1� 14 sin2(x21)atm � 12 �sin2(x31)atm + sin2(x32)atm�' 1� sin2(x32)atm ;P (�� ! �e)LSND = 12 sin2(x21)LSND ' 0 ;P (��e ! ��e)Chooz = 1� sin2(x21)Chooz ' 1 ; (A.5)where 0 ' (x21)atm � (x31)atm ' (x32)atm, (x21)LSND ' 0 and (x21)Chooz '(x21)atm ' 0. Note that the formulae (A.5) des
ribe os
illations having thesame form as those in the 
ase of the simple bimaximal texture of three a
tiveneutrinos [12℄, but now with the spe
i�
 mass spe
trum (A.3). On the otherhand, os
illations of three (
onventional) sterile neutrinos vanish in the newtexture, P (�� ! ��s) = 0 and P (��s ! ��s) = Æ�s �s (�; � = e; �; �), in
onsequen
e of the degenera
y �m241 = �m252 = �m263 = 0 following fromthe equalities m1 = �m4 ; m2 = �m5 ; m3 = �m6.The os
illation formulae (A.5) imply bimaximal mixing for solar �e's andatmospheri
 ��'s, negative result for Chooz rea
tor ��e's and no LSND e�e
tfor a

elerator ��'s (���'s).In the 
ase of the 
onje
ture (15) with 0M (D) = U (3)yM (D), the newtexture gives 0m tan 2�14 = �29"! 0 ;0m tan 2�25 = �29 4� 809 = 1:23� ;0m tan 2�36 = �29 24� 62425 = 20:7� ; (A.6)and then, from Eq. (A.3)m1;4 = � 0m; m2;5 = �q 0m2 + 1:50�2 ; m3;6 = �q 0m2 + 427�2 : (A.7)Hen
e, �m221 = 1:50�2 ; �m232 = 425�2 ; �m231 = 427�2 : (A.8)
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 Component . . . 1759Thus, using the SuperKamiokande result �m232 � 3 � 10�3 eV2 for atmo-spheri
 ��'s des
ribed by the se
ond formula (A.5), we obtain from Eq. (A.8)�2 � 7:1� 10�6 eV2 or � � 2:7� 10�3 eV (A.9)in pla
e of the estimate (24). Then, from Eq. (A.8) we predi
t�m221 � 1:1� 10�5 eV2 (A.10)for solar �e's presented in the �rst formula (A.5). So, the solar mass-squareds
ale �m221 turns out to be the same as estimated before in Eq. (26), beingnot in
onsistent with the LMA solar solution.Appendix BFoundations for the fermion hierar
hyThe form of Dira
 mass matrixM (f) = 129 0� �(f)"(f) 2�(f) 02�(f) 4�(f)(80 + "(f))=9 8p3�(f)0 8p3�(f) 24�(f)(624 + "(f))=25 1A ;(B.1)explored previously for 
harged leptons (f = e) [2℄ as well as for up and downquarks (f = u; d) [3℄ with a 
onsiderable su

ess, is applied in the presentpaper [Eq. (15)℄ to neutrinos (f = �), namely to the bimaximal-mixing-freeunitary transform 0M (D) of Dira
 
omponent of their 6 � 6 mass matrix M(
f. also Ref. [4℄). In this 
ase, "(�) ! 0 and �(�)=�(�) is negligible. In
onsequen
e, �m2sol = �m221 is predi
ted just a little bit below the rangesuggested by the LMA solar solution, if the SuperKamiokande result for�m2atm = �m232 is used. Noti
e that in the quark 
ase (f = u; d) theparameter "(f) must be repla
ed in the matrix element M (f)33 by "(f) +C(f),where C(f) > 0 is large.In this Appendix, we argue, �rst of all, for there being three and onlythree generations of leptons and quarks, and then, for the parti
ular form(B.1) of the Dira
-type mass matrix. This argumentation is based on twoassumptions:(i) the 
onje
ture that all kinds of matter's fundamental parti
les existingin nature 
an be dedu
ed from Dira
 square-root pro
edure pp2 !� � p, but 
onstrained by an intrinsi
 Pauli prin
iple, and(ii) a simple spe
i�
 ansatz for the shape of Dira
 mass matrix, formulatedon the ground of the �rst assumption.



1760 W. KrólikowskiThe 
onje
ture (i) turns out to be su�
ient to explain the puzzling existen
eof three and only three generations of leptons and quarks. Then, the ansatz(ii) reprodu
es the spe
i�
 form (B.1) of the Dira
 mass matrix. At the endof this Appendix, we spe
ulate on the physi
al origin of the ansatz (ii).It is not di�
ult to see that, in the intera
tion-free 
ase, Dira
's square-root pro
edure implies generi
ally the sequen
e N = 1; 2; 3; : : : of generalizedDira
 equations [13,2℄:�� (N) � p�M (N)� (N)(x) = 0 ; (B.2)where for any N the Dira
 algebran� (N)� ; � (N)� o = 2g�� (B.3)holds, 
onstru
ted by means of a Cli�ord algebra:� (N)� � 1pN NXi=1 
(N)i� ; n
(N)i� ; 
(N)j� o = 2Æijg�� (B.4)with i; j = 1; 2; : : : ; N and �; � = 0; 1; 2; 3. The mass M (N) is independentof � (N)� . In general, the mass M (N) should be repla
ed by a mass matrix ofelementsM (N;N 0) whi
h would 
ouple  (N)(x) with all appropriate  (N 0)(x),and it might be natural to assume for N 6= N 0 that 
(N)i� and 
(N 0)j� 
ommute,and so do � (N)� and � (N 0)� .For N = 1, Eq. (B.2) is evidently the usual Dira
 equation and for N = 2it is known as the Dira
 form [14℄ of Kähler equation [15℄, while for N � 3Eq. (B.2) give us new Dira
-type equations [13,2℄. They des
ribe some spin-hal�nteger or spin-integer parti
les for N odd or N even, respe
tively.The Dira
-type matri
es � (N)� for any N 
an be embedded into the newCli�ord algebra n� (N)i� ; � (N)j� o = 2Æijg�� ; (B.5)isomorphi
 with the Cli�ord algebra of 
(N)i� , if � (N)i� are de�ned by theproperly normalized Ja
obi linear 
ombinations of 
(N)i� :� (N)1� � � (N)� � 1pN NXi=1 
(N)i� ;� (N)i� � 1pi(i� 1) h
(N)1� + : : :+ 
(N)i�1 � � (i� 1)
(N)i� i (B.6)
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 Component . . . 1761for i = 1 and i = 2; : : : ; N , respe
tively. So, � (N)1� and � (N)2� ; : : : ; � (N)N� ,respe
tively, present the �
entre-of-mass� and �relative� Dira
-type matri
es.Note that the Dira
-type equation (B.2) for any N does not involve the�relative� Dira
-type matri
es � (N)2� ; : : : ; � (N)N� , in
luding solely the �
entre-of-mass� Dira
-type matrix � (N)1� � � (N)� . Sin
e � (N)i� = PNj=1Oij
(N)j� ,where O = (Oij) is an orthogonal N �N matrix (OT = O�1), we obtain forthe total spin tensor the equalityNXi=1 �(N)i�� = NXi=1 �(N)i�� ; (B.7)where �(N)j�� � i2 h
(N)j� ; 
(N)j� i ; �(N)j�� � i2 h� (N)j� ; � (N)j� i : (B.8)The total spin tensor (B.7) is the generator of Lorentz transformations for (N)(x).In pla
e of the 
hiral representations for individual 
(N)j = �
(N)j� �, where
(N)j5 � i
(N)j0 
(N)j1 
(N)j2 
(N)j3 ; �(N)j3 � �(N)j12 (B.9)are diagonal, it is 
onvenient to use for any N the 
hiral representations ofJa
obi � (N)j = �� (N)j� �, where now� (N)j5 � i� (N)j0 � (N)j1 � (N)j2 � (N)j3 ; �(N)j3 � �(N)j12 (B.10)are diagonal (all matri
es (B.9) and similarly (B.10) 
ommute simultane-ously, both with equal and di�erent j).When using the Ja
obi 
hiral representations, the �
entre-of-mass� Dira
-type matri
es � (N)1� � � (N)� and � (N)15 � � (N)5 � i� (N)0 � (N)1 � (N)2 � (N)3 
an betaken in the redu
ed forms� (N)� = 
� 
 1
 � � � 
 1| {z }N�1 times ; � (N)5 = 
5 
 1
 � � � 
 1| {z }N�1 times ; (B.11)where 
�, 
5 � i
0
1
2
3 and 1 are the usual 4� 4 Dira
 matri
es.Then, the Dira
-type equation (B.2) for any N 
an be rewritten in theredu
ed form �
 � p�M (N)��1�1  (N)�1�2:::�N (x) = 0 ; (B.12)where �1 and �2; : : : ; �N are the �
entre-of-mass� and �relative� Dira
bispinor indi
es, respe
tively (�i = 1; 2; 3; 4 for any i = 1; 2; : : : ; N). Note



1762 W. Królikowskithat in the Dira
-type equation (B.12) for any N > 1 there appear the �rel-ative� Dira
 indi
es �2; : : : ; �N whi
h are free from any 
oupling, but stillare subje
ts of Lorentz transformations.The Standard Model gauge intera
tions 
an be introdu
ed to the Dira
-type equations (B.12) by means of the minimal substitution p! p� gA(x),where p plays the role of the �
entre-of-mass� four-momentum, and so, x �the �
entre-of-mass� four-position. Then,n
 � [p� gA(x)℄ �M (N)o�1�1  (N)�1�2:::�N (x) = 0 ; (B.13)where g
 �A(x) symbolizes the Standard Model gauge 
oupling that involveswithin A(x) the familiar weak-isospin and 
olor matri
es as well as the usualDira
 
hiral matrix 
5. The last arises from the �
entre-of-mass� Dira
-type
hiral matrix � (N)5 , when a generi
 g� (N) � A(x) is redu
ed to g
 � A(x) inEq. (B.13) [see Eq. (B.11)℄.In Eq. (B.13) the Standard Model gauge �elds intera
t only with the�
entre-of-mass� index �1 that, therefore, is distinguished from the physi-
ally unobserved �relative� indi
es �2; : : : ; �N . This was the reason, whysome time ago we 
onje
tured that the �relative� Dira
 bispinor indi
es�2; : : : ; �N are all indistinguishable physi
al obje
ts obeying Fermi statis-ti
s along with the Pauli prin
iple requiring the full antisymmetry of wavefun
tion  (N)�1�2:::�N (x) with respe
t to �2; : : : ; �N [13,2℄. Hen
e, due tothis �intrinsi
 Pauli prin
iple�, only �ve values of N satisfying the 
onditionN � 1 � 4 are allowed, namely N = 1; 3; 5 for N odd and N = 2; 4 forN even. Then, from the postulate of relativity and the probabilisti
 inter-pretation of  (N)(x) = � (N)�1�2:::�N (x)� we were able to infer that these Nodd and N even 
orrespond to states with total spin 1/2 and total spin 0,respe
tively [13,2℄.Thus, the Dira
-type equation (B.13), jointly with the intrinsi
 Pauliprin
iple, if 
onsidered on a fundamental level, justi�es the existen
e in na-ture of three and only three generations of spin-1/2 fundamental fermions
oupled to the Standard Model gauge bosons (they are identi�ed with lep-tons and quarks). In addition, there should exist two and only two gen-erations of spin-0 fundamental bosons also 
oupled to the Standard Modelgauge bosons (they are not identi�ed yet).The wave fun
tions or �elds of spin-1/2 fundamental fermions (leptonsand quarks) of three generations N = 1; 3; 5 
an be presented in terms of (N)�1�2:::�N (x) as follows: (f1)�1 (x) =  (1)�1 (x) ; (f3)�1 (x) = 14 �C�1
5��2�3  (3)�1�2�3(x) =  (3)�112(x) =  (3)�134(x) ;
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 Component . . . 1763 (f5)�1 (x) = 124"�2�3�4�5 (5)�1�2�3�4�5(x) =  (5)�11234(x) ; (B.14)where  (N)�1�2:::�N (x) 
arries also the Standard Model (
omposite) label, sup-pressed in our notation, and C denotes the usual 4 � 4 
harge-
onjugationmatrix. Here, writing expli
itly, f1 = �e; e�; u; d; f3 = ��; ��; 
; s andf5 = �� ; ��; t; b, thus ea
h fN 
orresponds to the same suppressed StandardModel (
omposite) label. We 
an see that, due to the full antisymmetry in�i indi
es for i � 2, the wave fun
tions or �elds N = 1; 3 and 5 appear (upto the sign) with the multipli
ities 1, 4 and 24, respe
tively. Thus, for them,there is de�ned the weighting matrix�1=2 = 1p29 0� 1 0 00 p4 00 0 p24 1A ; (B.15)where Tr � = 1.Con
luding the �rst part of this Appendix, we would like to point outthat our algebrai
 
onstru
tion of three and only three generations of lep-tons and quarks may be interpreted either as ingenuously algebrai
 (mu
hlike the famous Dira
's algebrai
 dis
overy of spin-1/2), or as a summitof an i
eberg of really 
omposite states of N spatial partons with spin-1/2 whose Dira
 bispinor indi
es manifest themselves as our Dira
 bispinorindi
es �1; �2; : : : ; �N (N = 1; 3; 5) whi
h thus may be 
alled �algebrai
partons�, as being algebrai
 building blo
ks for leptons and quarks. Amongall N �algebrai
 partons� in any generation N of leptons and quarks, thereare one �
entre-of-mass algebrai
 parton� (�1) and N � 1 �relative algebrai
partons� (�2; : : : ; �N ), the latter undistinguishable from ea
h other and so,obeying our intrinsi
 Pauli prin
iple.In the se
ond part of this Appendix we introdu
e a simple spe
i�
 ansatzfor the shape of Dira
 mass matrix by putting [13,2℄M (f) = �1=2h(f)�1=2 ; (B.16)where �1=2 is given in Eq. (B.15) andh(f) = �(f) hN2 � (1� "(f))N�2i+ �(f)(a+ ay) (B.17)with �(f) > 0 and "(f) > 0 being parameters, while f = �; e; u; d refers toneutrinos, 
harged leptons, up quarks and down quarks, respe
tively. Here,the matrix N = 0� 1 0 00 3 00 0 5 1A = 1 + 2n (B.18)
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ribes the number of all �i indi
es with i = 1; 2; : : : ; N (all �algebrai
partons�), appearing in any of three fermion generations N = 1; 3; 5, whilea = 0� 0 1 00 0 p20 0 0 1A ; ay = 0� 0 0 01 0 00 p2 0 1A (B.19)play the role of �trun
ated� annihilation and 
reation matri
es for pairs of�relative� indi
es �i�j with (i; j) = (2; 3); : : : ; (N � 1; N) (pairs of �relativealgebrai
 partons�):[a ; n℄ = a ; [ay ; n℄ = �ay ; n = aya = 0� 0 0 00 1 00 0 2 1A ; (B.20)where the �trun
ation� 
ondition a3 = 0 = ay 3 is satis�ed.It is not di�
ult to show that the formulae (B.16) and (B.17) lead ex-pli
itly to the parti
ular form (B.1) of Dira
-type mass matrix.Finally, a few words about a possible physi
al origin of the ansatz (B.17).In the kernel (B.17) of the Dira
 mass matrix (B.16), the �rst term �(f)N2may be intuitively interpreted as 
oming from an intera
tion of all N�algebrai
 partons� treated on equal footing, while the se
ond term��(f)(1 �"(f))N�2 may be 
onsidered as being a subtra
tion term 
ausedby the fa
t that there is one �
entre-of-mass algebrai
 parton� distinguished(due to its external 
oupling to the Standard Model gauge �elds) amongall N �algebrai
 partons� of whi
h N�1 are �relative algebrai
 partons�,indistinguishable from ea
h other. This distinguished �algebrai
 parton�appears, therefore, with the probability [N !=(N�1)!℄�1 = N�1 that, whensquared, leads to the additional term �(f)(1 � "(f))N�2 [with a 
oe�
ient�(f)(1� "(f))℄ whi
h should be subtra
ted in the kernel (B.17) from the for-mer term in order to obtain the mass matrix element M (f)11 = �(f)"(f)=29tending to zero if "(f) ! 0. Eventually, the third term �(f)(a+ay) in the ker-nel (B.17) annihilates and 
reates pairs of �relative algebrai
 partons� andso, is responsible in a natural way for mixing of three fermion generationsin the Dira
 mass matrix M (f).Appendix CProblem of new boson hierar
hyThe way of explanation of the observed fermion hierar
hy (espe
ially, ofthe existen
e of three and only three generations of leptons and quarks),as is des
ribed in Appendix B, suggests also the existen
e of a new boson
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hy, 
onsisting of two and only two generations of spin-0 fundamentalbosons. These boson generations 
orrespond to the numbers N = 2; 4 of theDira
 bispinor indi
es �1; �2; : : : ; �N , among whi
h there are one �
entre-of-mass� index �1 and N � 1 = 1; 3 �relative� indi
es �2 or �2; �3; �4,respe
tively. Only the �
entre-of-mass� index �1 is 
oupled to the StandardModel gauge bosons.The wave fun
tions or �elds of spin-0 fundamental bosons of two gener-ations N = 2; 4 
an be written down in terms of  (N)�1�2:::�N (x) as follows: (b2)(x) = 14(C�1
5)�1�2 (2)�1�2(x)=  (2)12 (x) = � (2)21 (x) =  (2)34 (x) = � (2)43 (x) ; (b4)(x) = 124"�1�2�3�4 (4)�1�2�3�4(x)=  (4)1234(x) = � (4)2134(x) =  (4)3412(x) = � (4)4312(x) ; (C.1)where the wave fun
tion or �eld  (N)�1�2:::�N (x) 
arries the suppressed Stan-dard Model (
omposite) label. In 
onsequen
e, there are four sorts of funda-mental s
alars 
arrying the same Standard Model signature as four sorts offundamental fermions, namely as neutrinos (f = �), 
harged leptons (f = e),up quarks (f = u) and down quarks (f = d). These fermions, however, arerealized in three generations N = 1; 3; 5, while the fundamental s
alars arepredi
ted in two generations N = 2; 4. So, one 
annot hope here for a 
on-stru
tion of the full supersymmetry (at most, there might appear a partialsupersymmetry: two to two).Two lepton-like s
alar doublets (
orresponding, as far as the StandardModel signature is 
on
erned, to three lepton doublets) might play the roleof two generations of Higgs doublets [16℄. On the other hand, two quark-likes
alar doublets (
orresponding to three quark doublets) should lead to a lotof new (
olorless) hadrons, 
omposed dynami
ally of these 
olored s
alarsfrom two generations and (also 
olored) quarks from three generations [17℄.Most of them should be highly unstable, but perhaps not all, allowing thenfor some new observations.In the rest of this Appendix, we dis
uss some stru
tural aspe
ts of theproblem of new boson hierar
hy, 
omparing it with the fermion hierar
hy.It is not di�
ult to derive the se
ond-order di�erential equation for (N)�1�2:::�N (x) arising from the Dira
-type equation (B.13) through its matrixmultipli
ation from the left by 
 � [p� gA(�
5)℄ +M (N), where the sign of
5 within A�(�
5) � A�(x;�
5) is reversed in 
omparison with Eq. (B.13).Su
h a Klein�Gordon-type equation gets the form
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5)℄2�M (N) 2� 12g���F��(
5)�gM (N)
 �[A(
5)�A(�
5)℄o�1�1� (N)�1�2:::�N = 0 ; (C.2)with F��(
5) = ��A�(
5)���A�(
5) + ig [A�(
5); A�(
5)℄ (C.3)denoting the Standard Model gauge for
es. Here, 
 � A(�
5) = A(
5) � 
sin
e A�(
5) � A�(0) +A0�(0)
5. Thus, A�(
5)�A�(�
5) � 2A0�(0)
5.For N even, when only the s
alar wave fun
tions or �elds  (bN )(x)(N = 2; 4) given in Eqs. (C.1) appear, the Klein�Gordon-type equation(C.2) 
an be redu
ed to the usual Klein�Gordon equationn[p� gA(0)℄2 + g2A0(0)2 �M (N) 2o (bN ) = 0 ; (C.4)be
ause the 4 � 4 Dira
 matri
es 
5; ��� ; ���
5 and 
�
5 appearing inEq. (C.2) are tra
eless and so, are redu
ed to zero for the s
alars  (bN )(x)(N = 2; 4), when there are no other boson wave fun
tions or �elds withN = 2; 4. The Klein�Gordon equation (C.4) implies in turn the existen
e ofthe relativisti
 
ovariant 
onserved 
urrent of the usual formj(bN )�KG � ��1bN (bN )� hi $� � �gA�(0)i (bN ) ; (C.5)where p� = i�� and $� �� 12 (���  � �) with f(x) � � � ��f(x). In fa
t,��j(bN )�KG = 0, be
ause Ay�(0) = A�(0) and ��A�(0) = 0. Here, �bN > 0 is anormalization mass s
ale su
h that �(bN )(x) � ��1=2bN  (bN )(x) is normalizedas a Klein�Gordon wave fun
tion or �eld i.e., R d3xj(bN )0KG(x) is equal to 1 (forpositive energies) or to the operator of bN -boson number, respe
tively.For N even, the Dira
-type equation (B.13) does not give any j(bN )�D (x),of 
ourse.The remainder of this Appendix is devoted to other 
onsequen
es of theKlein�Gordon-type equation (C.2) and to its 
omparison with the Dira
-typeequation (B.13).For N odd, where only the bispinor wave fun
tions or �elds  (fN )�1 (x)(N = 1; 3; 5) de�ned in Eq. (B.14) exist, the Dira
-type equation (B.13) 
anbe redu
ed to the usual Dira
 equationn
 � [p� gA(
5)℄�M (N)o�1�1  (fN )�1 = 0 : (C.6)
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 Component . . . 1767This gives in turn the relativisti
 
ovariant 
onserved 
urrent of the usualform j(fN )�D �  (fN )��1 (
0
�)�1�1  (fN )�1 ; (C.7)valid for N odd (N = 1; 3; 5). In fa
t, ��j(fN )�D (x) = 0 sin
e Ay�(
5) = A�(
5).For N odd, the Klein�Gordon-type equation (C.2) is redu
ible to theform�[p�gA(
5)℄2�M (N) 2� 12g���F��(
5)�gM (N)
 �[A(
5)�A(�
5)℄��1�1� (fN )�1 = 0 : (C.8)This implies in turn the following divergen
e relationship:��j(fN )�KG = �2gA0 �(0)j(fN )� 5KG ; (C.9)where j(fN )�KG � ��1fN (fN )��1 (
0)�1�1 hi $� � �gA�(0)i (fN )�1 (C.10)and j(fN )� 5KG � ��1fN (fN )��1 (i
0
5)�1�1 hi $� � �gA�(0)i (fN )�1 (C.11)are respe
tively the ve
tor and axial-ve
tor Klein�Gordon 
urrents of fNbispinor fermions. Here, the form A�(
5) � A�(0) + 
5A0�(0) is used, and�fN > 0 denotes a normalization mass s
ale. Due to the 
hiral 
hara
ter ofele
troweak intera
tions (where A0�(0) 6= 0), the 
urrent j(fN )�KG(x) is generi-
ally non
onserved lo
ally, in 
ontrast to the 
urrent j(fN )�D (x).In Eq. (C.7) as well as in Eqs. (C.10) and (C.11), and also (C.5), thereappears the operation� = (
omplex 
onjugation)�(transposition) = (hermi-tian 
onjugation), where the transposition pertains to the Standard Model(
omposite) label, suppressed in this notation, and to the quantum-�eld de-grees of freedom, the latter if  (N)�1�2:::�N (x) is a �eld rather than a wavefun
tion. For pure Dira
 degrees of freedom � is equivalent to the 
omplex
onjugation, in parti
ular, when Dira
 bispinor indi
es are written downexpli
itly as e.g. in Eq. (C.7).At this point, we would like to emphasize that the Standard Model (
om-posite) label, suppressed in  (N)�1�2:::�N (x), is summed up in the dis
ussed
urrents within any generation N = 1,3,5 and N = 2; 4, separately. As wasmentioned already in Appendix B, in order to mix generations N = 1; 3; 5or N = 2; 4, separately for any Standard Model signature, we should intro-du
e nondiagonal mass matrix of elements M (N;N 0) with N;N 0 = 1; 3; 5 or



1768 W. KrólikowskiN;N 0 = 2; 4, dependent on the suppressed Standard Model signature. Weshould also stress that in the Dira
-type equation (B.13) as well as in theKlein�Gordon-type equation (C.2) there are no sour
e terms whi
h 
ould
hange the global number of all f fermions and all b bosons, respe
tively. Of
ourse, the numbers of gauge bosons and possible Higgs bosons do 
hange(the latter, due to their de�nition, do get nonzero f -fermion and b-bosonsour
es).Now, some more formal remarks are due. The relativisti
 
ovariantDira
-type 
urrent and Klein�Gordon-type 
urrent must have the formsj(N)�D �  (N)��1�2:::�N �(N) �� (N)10 � (N)20 : : : � (N)N0 � (N)1� ��1�2:::�N ;�1�2:::�N  (N)�1�2:::�N(C.12)and j(N)�KG � ��1N  (N)��1�2:::�N �(N) �� (N)10 � (N)10 : : : � (N)N0 ��1�2:::�N ;�1�2:::�N� hi $� � �gA�(0)i (N)�1�2:::�N ; (C.13)respe
tively, where � (N)i� are the Dira
-type matri
es in their Ja
obi version,introdu
ed in Eqs. (B.6), while �(N) and �(N) are phase fa
tors makingHermitian the N � N bispinor matri
es appearing in these 
urrents and�N > 0 denote normalization mass s
ales.The Dira
-type matri
es � (N)i� (i = 1; 2; : : : ; N), satisfying the anti
om-mutation relations of Cli�ord algebra (B.5), 
an be represented in terms ofthe usual 4� 4 Dira
 matri
es as follows:� (N)1� = 
� 
 1 
 1 
 1 
: : :
 1
 1| {z }N�1 times ;� (N)2� = 
5 
i
�
5
 1
 1
: : :
 1
 1 ;� (N)3� = 
5 
 
5 
 
� 
 1
 : : : 
 1
 1 ;: : : : : : : : : : : : : : : : : : : : : :� (N)N� = 
5 
 
5 
 
5 
 
5 
 : : :
 
5| {z }N�1 times 
�
� forN oddi
�
5 forN even :(C.14)Then, forming their produ
t for � = 0,� (N)10 � (N)20 : : : � (N)N0 = ( iN�12 
0 
 
0 
 : : :
 
0 for N odd(�i)N2 i
0
5
i
0
5
: : :
i
0
5 for N even ;(C.15)
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 Component . . . 1769and multiplying from the right by � (N)1� , we obtain� (N)10 � (N)20 : : : � (N)N0 � (N)1� = ( iN�12 
0 
� 
 
0 
 : : : 
 
0 forN odd(�i)N�22 
0
5
�
i
0
5
: : :
i
0
5 forN even :(C.16)Hen
e, we 
an de�ne the phase fa
tors in Eqs. (C.12) and (C.13) as follows:�(N) = ( (�i)N�12 = 1;�i;�1 for N = 1; 3; 5(�i)N�22 = 1;�i for N = 2; 4 ;�(N) = ( (�i)N�12 = 1;�i;�1 for N = 1; 3; 5(�i)N2 = �i;�1 for N = 2; 4 : (C.17)Making use of Eqs. (C.16) and (C.15) with (C.17) we 
an represent the
urrents (C.12) and (C.13) in the following forms:j(N)�D =  (N)��1�2:::�N � (
0 
�)�1 �1 (
0)�2 �2 : : : (
0)�N �N(�1)N�22 (
0
5
�)�1�1 (i
0
5)�2�2 : : : (i
0
5)�N�N �� (N)�1�2:::�N (C.18)andj(N)�KG = ��1N  (N)��1�2:::�N � (
0)�1�1 (
0)�2�2 : : : (
0)�N�N(�1)N2 (i
0
5)�1�1 (i
0
5)�2�2 : : : (i
0
5)�N�N�� hi$� �� gA�(0)i (N)�1�2:::�N : (C.19)Here, the alternative � �� � is valid for � N oddN even �.For N = 1; 3; 5, the 
urrent j(N)�D (x) 
an be redu
ed to the 
onserved
urrent j(fN )�D (x) de�ned in Eq. (C.7). For N = 2; 4, on the other hand, the
urrent j(N)�D (x) as well as the 
urrent j(bN )�D (x) do not exist.For N = 1; 3; 5, the 
urrent j(N)�KG(x) is redu
ible to the generi
ally non-
onserved 
urrent j(fN )�KG(x) introdu
ed in Eq. (C.10). For N = 2; 4, however,the 
urrent j(N)�KG(x) 
an be redu
ed to the 
onserved 
urrent j(bN )�KG(x) de�nedin Eq. (C.5). For an illustration we will perform the last redu
tion in the
ase of N = 2.In fa
t, for N = 2, due to the de�nition (C.1) of the s
alar  (b2)(x) =14 Tr �C�1
5 (2) T(x)�, where  (2)(x) = � (2)�1�2(x)� is a 4�4 formal matrix,
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an infer that  (2)(x) = (
5C)T  (b2)(x)+R(x) with Tr[C�1
5RT(x)℄=0.Here, T denotes the transposition with respe
t to Dira
 bispinor indi
es.Expanding the matrix  (2) T(x) in terms of the Dira
 relativisti
 
ovariantsS, P, V, A, T, where S = 1, we 
an write (2) T = �1 (S) + 
5 (P) + 
� (V) � + 
�
5 (A) � + i2 [
�; 
�℄ (T) ��� 
5C= 
5C (S) +RT (C.20)withRT = C (P) + 
�
5C (V) � + 
�C (A) � + i2 [
�; 
�℄ 
5C (T) �� : (C.21)Hen
e,  (b2)(x) = 14(Tr 1) (S)(x) =  (S)(x). When for N = 2 only thes
alar  (b2)(x) =  (S)(x) appears, we get the trun
ation R(x) = 0 and so, (2) =  (2)S � (
5C)T (S) : (C.22)For a justi�
ation of the absen
e of  (P)(x);  (V)�(x);  (A)�(x) and  (T)��(x)from the expansion (C.20) see Eqs. (C.30) and (C.31) later on. Now, aftera simple 
al
ulation, we show that the form (C.22) of  (2)(x) leads throughEq. (C.19) with N = 2 to the expression14j(2)�KG � 14��12  (2)��1�2(
0
5)�1�1(
0
5)�2�2 hi$� � � gA�(0)i (2)�1�2= ��12  (S)� hi$� � � gA�(0)i (S) (C.23)that with �2 = �b2 is equal to the Klein�Gordon 
urrent j(b2)�KG(x) of b2 s
alarbosons, introdu
ed in Eq. (C.5). The fa
tor 14 in Eq. (C.23) is 
aused byredu
tion of the number of wave-fun
tion 
omponents due to the relations (2)�1�2(x) = � (2)�2�1(x) and  (2)12 (x) =  (2)34 (x) [see the de�nition (C.1)℄.These relations follow expli
itly from the form of (2) � � (2)�1�2� = �
5C (S) = 0BB� 0 1 0 0�1 0 0 00 0 0 10 0 �1 0 1CCA (S) ; (C.24)valid in the 
hiral representation, where
5 = 0BB� 1 0 0 00 1 0 00 0 �1 00 0 0 �1 1CCA ;
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 Component . . . 1771C = 0BB� 0 �1 0 01 0 0 00 0 0 10 0 �1 0 1CCA =  �i�(P)2 00 i�(P)2 ! : (C.25)Here, (
5C)T = �
5C.In order to justify the trun
ated form (C.22) of  (2)(x), let us introdu
efor N = 2 the matrix of total internal parity:�(2)� (2)10 � (2)20 = 
0
5 
 
0
5 = ((
0
5)�1�1(
0
5)�2�2) ; (C.26)where �(2) = �i, and the matrix of total 
hirality:� (2)15 � (2)25 = 
5 
 
5 = ((
5)�1�1(
5)�2�2) (C.27)[see Eqs. (C.14) and (C.17)℄. With these matri
es a
ting on  (2)S (x) �(
5C)T (S)(x) = � (2)S�1�2(x)� [see Eq. (C.22)℄ we 
an show after a simple
al
ulation that�(2)� (2)10 � (2)20  (2)S =  (2)S ; � (2)15 � (2)25  (2)S =  (2)S : (C.28)In addition, of 
ourse, 12(�(2)1�� +�(2)2��) (2)S = 0. This means that our spin-0wave fun
tion or �eld  (2)S (x) = � (2)S�1�2(x)� gets the eigenvalue of totalinternal parity equal to +1 and the eigenvalue of total 
hirality equal also to+1. Here, evidently, the matri
es �(2)� (2)10 � (2)20 and � (2)15 � (2)25 
ommute, andalso 
ommute with 12(�(2)1�� +�(2)2��) for �; � = 1; 2; 3.After a 
al
ulation, it turns out that, among the terms (2)P � CT (P);  (2)V � (
�
5C)T (V)�;  (2)A � (
�C)T (A)� ; (2)T � � i2[
�; 
�℄
5C�T (T)�� (C.29)whose sum gives the matrix R(x) introdu
ed through Eq. (C.21), only (2)P (x) is an eigenstate of the total internal parity �(2)� (2)10 � (2)20 (though,this time, with the eigenvalue equal to �1), while three others are not su
heigenstates. In fa
t, �(2)� (2)10 � (2)20  (2)P = � (2)P ;�(2)� (2)10 � (2)20  (2)V = �
0 (2)V 
T0 ;�(2)� (2)10 � (2)20  (2)A = +
0 (2)A 
T0 ;�(2)� (2)10 � (2)20  (2)T = �
0 (2)T 
T0 : (C.30)



1772 W. KrólikowskiNow, in view of Eqs. (C.30), we make tentatively the assumption that onlyterms with de�nite total intrinsi
 parity 
an 
ontribute to the expansionof the state  (2)(x), des
ribed in Eq. (C.20). Su
h a 
onstraint imposedon  (2)(x) ex
ludes  (2)V (x),  (2)A (x),  (2)T (x) from the set (C.29), whenEqs. (C.30) are referred to. Then, the Klein�Gordon-type 
urrent (C.19)for N = 2 may be evaluated as follows:�24 j(2)�KG �  (S)�[ ℄� (S) �  (P)�[ ℄� (P) �  (V)�� [ ℄� (V)�� (A)�� [ ℄� (A)� � 2 (T)��� [ ℄� (T)��=  (S)�[ ℄� (S) �  (P)�[ ℄� (P) ; (C.31)where [ ℄� � hi$� � � gA�(0)i. But, the se
ond term in Eq. (C.31) 
anspoil the positive-de�niteness of  (2)(x) (for positive energies), expressed bythe requirement of j(2)0KG(x) > 0 (for positive energies). This ex
ludes  (2)P (x)from the set (C.29). Then, from Eq. (C.31) the Klein�Gordon 
urrent (C.23)follows.In general, for any N even, if the total internal parity is diagonal for (N)(x) = � (N)�1�2:::�N (x)� with the eigenvalue equal to +1:�(N)� (N)10 � (N)20 : : : � (N)N0  (N) =  (N) ; (C.32)then the 
onserved Klein�Gordon-type 
urrent (C.13) or (C.19) takes thesimpli�ed form:j(N)�KG = ��1N  (N)��1�2:::�N hi $� ��gA�(0)i (N)�1�2:::�N : (C.33)This form is relativisti
 
ovariant only for states satisfying the 
onstraint(C.32) (whi
h is not expli
itly 
ovariant). The form (C.33) implies thepositive-de�niteness of  (N)(x) (for positive energies), sin
e in the 
ase ofKlein�Gordon-type wave fun
tion (of positive energies)j(N)0KG = ��1N  (N)��1�2:::�N hi $� 0 �gA0(0)i (N)�1�2:::�N > 0 : (C.34)Note that the total internal parity �(N)� (N)10 � (N)20 : : : � (N)N0 is a 
onstant ofmotion, be
ause ��j(N)�KG(x) = 0 for N even. So, the 
onstraint (C.32) isstationary.As was seen in Eq. (C.28), the 
onstraint (C.32) is satis�ed for N =2 with  (2)�1�2(x) = (
5C)�2�1 (b2)(x). Noti
e that also for N = 4 with
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 Component . . . 1773 (4)�1�2�3�4(x) = "�1�2�3�4 (b4)(x) the 
onstraint (C.32) holds. Here also,the total 
hrality � (4)15 � (4)25 � (4)35 � (4)45 gets its eigenvalue +1.For any N odd, an analogi
al role is played by the total �relative� internalparity whi
h, if diagonal for  (N)(x) = � (N)�1�2:::�N (x)� with the eigenvalueequal to +1: �(N)� (N)20 : : : � (N)N0  (N) =  (N) ; (C.35)simpli�es the form of 
onserved Dira
-type 
urrent (C.12) or (C.18):j(N)�D =  (N)��1�2:::�N (
0
�)�1�1  (N)�1�2:::�N : (C.36)Similarly as before, this form is relativisti
 
ovariant only for states ful�llingthe 
onstraint (C.35) (that is not expli
itly 
ovariant in the world of �relative�Dira
 degrees of freedom). The form (C.36) leads to the positive-de�nitenessof  (N)(x) (for all energies), be
ause in the 
ase of Dira
 wave fun
tion (ofall energies) j(N)0D =  (N)��1�2:::�N (N)�1�2:::�N > 0 : (C.37)Note that, this time, the total �relative� internal parity �(N)� (N)20 : : : � (N)N0 isa 
onstant of motion, sin
e ��j(N)�D (x) = 0 for N odd. Thus, the 
onstraint(C.35) is stationary. For an illustration, we will show that the 
onstraint(C.35) is satis�ed for the form of  (3)�1�2�3(x) 
orresponding to the bispinor (f3)�1 (x) de�ned in Eq. (B.14).In fa
t, for N = 3, due to the de�nition (B.14) of the bispinor (f3)�1 (x) = 14(C�1
5)�2�3 (3)�1�2�3(x);we 
an 
on
lude that  (3)�1�2�3(x) = (
5C)�3�2 (f3)�1 (x), as for N = 3 onlythe bispinor  (f3)�1 (x) exists. Sin
e�(3)� (3)20 � (3)30 = 1
 
0 
 
0 = (Æ�1�1(
0)�2�2(
0)�3�3) ; (C.38)where �(3) = �i [see Eqs. (C.14) and (C.17)℄, the above form of  (3)�1�2�3(x)leads after a simple 
al
ulation to the equality�(3) �� (3)20 � (3)30 ��1�2�3;�1�2�3  (3)�1�2�3 =  (3)�1�2�3 (C.39)whi
h is the 
onstraint (C.35) for N = 3. Note that also for N = 5, where (f5)�1 (x)= 124"�2�3�4�5 (5)�1�2�3�4�5(x) and  (5)�1�2�3�4�5(x)="�2�3�4�5 (f5)�1 (x)(as for N = 5 only the bispinor  (f5)�1 (x) exists), we get the eigenvalue equalto +1 for the total �relative� intrinsi
 parity �(5)� (5)20 � (5)30 � (5)40 � (5)50 , where�(5) = �1, and so, the 
onstraint (C.35) for N = 5 holds.
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