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SEARCH FOR FERMION UNIVERSALITY OF THEDIRAC COMPONENT OF NEUTRINO MASS MATRIX�Wojieh KrólikowskiInstitute of Theoretial Physis, Warsaw UniversityHo»a 69, 00�681 Warszawa, Poland(Reeived Marh 1, 2002)It is onjetured that a diagonal and degenerate 3 � 3 ative�ativeomponent (i.e., lefthanded omponent) dominates in the e�etive 6 � 6mass matrix for six Majorana neutrinos, three ative and three (onven-tional) sterile, while its 3 � 3 ative-sterile omponent (i.e., Dira om-ponent) arises through a bimaximal-mixing unitary transformation from astruture similar to the 3� 3 mass matries for harged leptons as well asup and down quarks. In suh a texture, three neutrino masses are nearlydegenerate, m1 ' m2 ' m3, though their mass-squared di�erenes ap-pear hierarhial, �m221 � �m232 ' �m231, whereas the remaining threeneutrino masses an be onstruted to vanish, m4 = m5 = m6 = 0, orto be, as in Appendix A, degenerate in square with the previous masses,m1 = jm4j;m2 = jm5j;m3 = jm6j, in ontrast to the familiar seesaw meh-anism (in both ases). Appendies B and C are devoted to the author'sidea of the algebrai ompositeness of fundamental partiles, resulting intothree generations of Standard Model fermions and two generations of newbosons.PACS numbers: 12.15.Ff, 14.60.Pq, 12.15.Hh1. IntrodutionAs is well known, three Dira neutrinos are �(D)� = ��L+��R(� = e; �; �),while three Majorana ative neutrinos and three Majorana (onventional)sterile neutrinos beome �(a)� = ��L + (��L) and �(s)� = ��R + (��R)(� = e; �; �), respetively. The neutrino mass term in the Lagrangian getsgenerially the form�Lmass = 12X�� ��(a)� ; �(s)� � M (L)�� M (D)��M (D)��� M (R)�� ! �(a)��(s)� ! : (1)� Supported in part by the Polish State Committee for Sienti� Researh (KBN),grant 5 P03B 119 20 (2001�2002). (1747)



1748 W. KrólikowskiIfM (L)�� andM (R)�� are not all zero, then in nature there are realized six Majo-rana neutrino mass �elds �i or states j�ii(i = 1; 2; 3; 4; 5; 6) onneted withsix Majorana neutrino �avor �elds �� or states j��i(� = e; �; �; es; �s; �s)through the unitary transformation�� =Xi U�i�i or j��i =Xi U��ij�ii ; (2)where we passed to the notation �� � �(a)� and ��s � �(s)� for � = e; �; � .Of ourse, �(a)�L = ��L, �(a)�R = (��L) and ��sR � �(s)�R = ��R, ��sL ��(s)�L = (��R) for � = e; �; � . Thus, the neutrino 6 � 6 mass matrixM = (M��) (�; � = e; �; �; es; �s; �s) is of the formM = � M (L) M (D)M (D)y M (R) � : (3)The neutrino 6 � 6 mixing matrix U = (U�i) (i = 1; 2; 3; 4; 5; 6) ap-pearing in Eqs. (2) is, at the same time, the unitary 6 � 6 diagonalizingmatrix, U yMU =Md � diag(m1; m2; m3; m4; m5; m6) ; (4)if the representation is used, where the harged-lepton 3� 3 mass matrix isdiagonal. This will be assumed heneforth.2. Model of neutrino textureIn this paper we study the model of neutrino texture, where the 3 � 3submatries in Eq. (3) areM (L) = 0m0� 1 0 00 1 00 0 1 1A ;M (D) = 0m0B� t14p2 t25p2 0� t142 t252 t36p2t142 � t252 t36p2 1CA ;M (R) = 0m0� t214 0 00 t225 00 0 t236 1A (5)with 0m > 0 being a mass sale and tij (ij = 14; 25; 36) denoting threedimensionless parameters.



Searh for Fermion Universality of the Dira Component . . . 1749One an show that the unitary diagonalizing matrix U for the massmatrix M de�ned in Eqs. (3) and (5) is of the formU = 1U 0U ; 1U = � U (3) 0(3)0(3) 1(3) � ; 0U = � C(3) �S(3)S(3) C(3) � ; (6)where U (3) = 0B� 1p2 1p2 0�12 12 1p212 �12 1p2 1CA ; 1(3) = 0� 1 0 00 1 00 0 1 1A ;C(3) = 0� 14 0 00 25 00 0 36 1A ; S(3) = 0� s14 0 00 s25 00 0 s36 1A (7)and sijij = tij (8)with sij = sin �ij and ij = os �ij , so that tij = tan �ij (ij = 14; 25; 36).Suh a diagonalizing matrix leads to the mass spetrumm1 = 0m �1 + t214� ; m4 = 0 ;m2 = 0m �1 + t225� ; m5 = 0 ;m3 = 0m �1 + t236� ; m6 = 0 (9)whih an be desribed equivalently by the equalities214m1 = 225m2 = 236m3 = 0m; m4 = m5 = m6 = 0 : (10)The easiest way to prove this theorem is to start with the diagonalizing ma-trix U given in Eqs. (6) and (7), and then to onstrut the mass matrixM de-�ned in Eqs. (3) and (5) by making use of the formulaM�� =Pi U�imiU��i ,where the mass spetrum (9) or (10) is to be taken into aount.We an see from Eqs. (5), (6) and (7) that our neutrino texture orre-sponds to the mixing angles giving 12 = 1=p2 = s12, 23 = 1=p2 = s23 and13 = 1, s13 = 0, while ij; sij (ij = 14; 25; 36) are to be determined fromthe experiment.In this neutrino texture, where the mass matrix M is given in Eqs. (3)and (5), an interesting role is played by the unitarily transformed massmatrix 0M de�ned as



1750 W. Królikowski0M = 1U yM 1U : (11)Then, writing 0M = 0� 0M (L) 0M (D)0M (D)y 0M (R) 1A ; (12)we obtain0M (L) = � 1U yM 1U�(L) = U (3)yM (L)U (3) =M (L) ;0M (D) = � 1U yM 1U�(D) = U (3)yM (D) = 0m0� t14 0 00 t25 00 0 t36 1A ;0M (R) = � 1U yM 1U�(R) = M (R) : (13)Thus, the Dira 3� 3 omponent 0M (D) of the mass matrix 0M (transformedunitarily fromM by means of the fator 1U of the mixing matrix U) beomesdiagonal and so, may get a hierarhial struture similar to the Dira massmatries for harged leptons and quarks, all dominated by their diagonalparts. The transforming fator 1U given in Eq. (6) works e�etively thanks toits 3�3 submatrix U (3) that is just the familiar bimaximal mixing matrix [1℄,spei� for neutrinos, desribing satisfatorily the observed osillations ofsolar �e's and atmospheri ��'s. Note that0U y 0M 0U = 0Md =Md = diag(m1; m2; m3; m4; m5; m6) ; (14)where the fator 0U of the mixing matrix U is de�ned in Eq. (6). Here,0M = � 0M ij�; 0U = � 0U ij� and 1U = � 1U�i�, as M = (M��) and U = (U�i).With the use of 0M given in Eq. (11) the neutrino mass term (1) in theLagrangian an be written as �Lmass = 12P�� ��M���� = 12Pij 0�i 0M ij 0�j,where �� =Pi U�i�i =Pi 1U�i 0�i, but 0�i=Pj 0U ij�j are not neutrino mass�elds, in ontrast to �i: in fat, 0M j 0�ii = mij 0�ii, while M j�ii = mij�ii( 0Mbeing a unitary transform of the full neutrino mass matrix M).



Searh for Fermion Universality of the Dira Component . . . 1751Spei�ally, the Dira 3�3 omponent 0M (D) of the neutrino mass matrix0M (where the bimaximal mixing harateristi for neutrinos is transformedout unitarily) may be onjetured in a fermion universal form that wasshown to work very well for the mass matrix of harged leptons [2℄ and neatlyfor mass matries of up and down quarks [3℄ (obviously, in those three asesof harged fundamental fermions there exist only Dira-type mass matries).Then, for neutrinos we get [4℄0M (D) = 129 0BBBB� �" 2� 02� 4� (80 + ")=9 8p3�0 8p3� 24� (624 + ")=25
1CCCCA ; (15)where � > 0 , � > 0 and " > 0 are some neutrino parameters. Sine alreadyfor harged leptons "(e) = 0:172329 is small [2℄, we will put for neutrinos" ! 0. We will also onjeture that for neutrinos �=� is negligible, as forharged leptons the small ��(e)=�(e)�2 = 0:023+0:029�0:025 [2℄ gives the preditionm� = mexp� = 1777:03+0:30�0:26 MeV [5℄ when me = mexpe and m� = mexp� areused as inputs, while with ��(e)=�(e)�2 = 0 the predition beomes m� =1776:80 MeV. In suh a ase, from Eqs. (13) and (15) we an onlude that0mt14 = �29"! 0 ; 0mt25 = �29 4� 809 = 1:23� ; 0mt36 = �29 24 � 62425 = 20:7�(16)in Eqs. (5), (8) and (9), and14 ! 1 ; 25 = 1q1 + 1:50 (�= 0m)2 ; 36 = 1q1 + 427 (�= 0m)2 ;s14 ! 0 ; s25 = 1:23�= 0mq1 + 1:50 (�= 0m)2 ; s36 = 20:7�= 0mq1 + 427(�= 0m)2 (17)in Eqs. (7) and (8). Hene, from Eqs. (9) and (16)m1 ! 0m; m2 = 0m+ 1:50�20m ; m3 = 0m+ 427�20m : (18)3. Neutrino osillationsAepting the formulae (16) and making tentatively the onjeture that� � 0m, we an operate with the approximation, where 0 � tij � 1 or



1752 W. Królikowski0 � sij � ij (ij = 14; 25; 36). Then, we get the ase of nearly degeneratespetrum of m1; m2; m3: m1 ' m2 ' m3 ' 0m, but with hierarhial mass-squared di�erenes �m221 � �m232 ' �m231, where�m221 = 2 0m2 (t225 � t214) = 3:01�2 ;�m232 = 2 0m2 (t236 � t225) = 850 �2 ;�m231 = 2 0m2 (t236 � t214) = 853 �2 (19)due to Eqs. (9) and (16).Notie that the option 0m� �, opposite to our onjeture �� 0m, leadsto tij � 1 or 0 � ij � sij (ij = 14; 25; 36). Then, we obtain the ase ofhierarhial spetrum of m1; m2; m3: m1 � m2 � m3 with mass-squareddi�erenes �m221 � �m232 ' �m231, where�m221 = 0m2 (t425 � t414) = 2:26 �40m2 ;�m232 = 0m2 (t436 � t425) = 1:82 � 105 �40m2 ;�m231 = 0m2 (t436 � t414) = 1:82 � 105 �40m2 (19')due to Eqs. (9) and (16). In this ase, the omponent M (R) of the neutrinomass matrix dominates over M (D) (as � over 0m ) that dominates in turnover M (L) (as � over 0m ): this is the situation, where the familiar see-saw mehanism an formally work in spite of the fat that entries of M (R)are very small, in partiular due to m4 = m5 = m6 = 0 (not as in thepopular seesaw, where they are as large as the GUT sale). With the Su-perKamiokande result �m232 � 3� 10�3 eV2 we get in this option �m221 �3:7 � 10�8 eV2 and �4= 0m2 � 1:6� 10�8 eV2 or �2= 0m � 1:3 � 10�4 eV i.e.,� � 1:3 � 10�4( 0m =�) eV � 1:3 � 10�4 eV. In ontrast, in the ase of ouronjeture � � 0m, the omponent M (L) dominates over M (D) whih domi-nates in turn over M (R) and so, we obtain for �m221 and � the muh largervalues given later on in Eqs. (26) and (24), respetively; also the value of�m225 = m22 ' 0m2 appearing in Eq. (28) is muh larger.The familiar formulae for probabilities of neutrino osillations �� ! ��on the energy shell,P (�� ! ��) = jh�� jeiPLj��ij2 = Æ�� � 4Xj>i U��jU�iU�jU��i sin2 xji (20)



Searh for Fermion Universality of the Dira Component . . . 1753with xji = 1:27�m2jiLE ; �m2ji = m2j �m2i ; pi ' E � m2i2E ; (21)valid when a possible CP violation an be ignored (then U��i = U�i), give inthe aepted approximation of �m221 � �m232 ' �m231 � 0m2 thatP (�e ! �e)sol = 1� 225 sin2(x21)sol � 12(1 + 225)s225 ;P (�� ! ��)atm = 1� 12(1 + 225)236 sin2(x32)atm�18(1 + 225 + 2236)(s225 + 2s236) ;P (�� ! �e)LSND = 12s425 sin2(x25)LSND ;P (��e ! ��e)Chooz = 1� (1 + 225)s225 sin2(x25)Chooz (22)for solar �e's, atmospheri ��'s, LSND aelerator ��'s (���'s) and Choozreator ��e's, respetively. The �rst two Eqs. (22) di�er from the familiartwo��avor osillation formulae (used often in analyzes of neutrino osilla-tions) by some additive terms that, fortunately, are small enough beause ofs2ij � 2ij onsistent with �2 � 0m2.From the seond formula (22) desribing atmospheri ��'s we infer dueto the SuperKamiokande result [6℄ that12(1 + 225)236 � sin2 2�atm � 1 ; �m232 � �m2atm � 3� 10�3eV ; (23)what gives �2 � 3:5� 10�6eV2 or � � 1:9� 10�3eV ; (24)when Eq. (19) is used. The nearly maximal atmospheri osillation ampli-tude sin2 2�atm � 1 implies 225 � 1 and 236 � 1, whih is onsistent with�2 � 0m2. For an illustration, taking sin2 2�atm & 0:85, we get from Eqs. (17)(�= 0m)2 . 4:1� 10�4 and so, 0m2 & 8:3� 10�3eV2 or 0m & 9:3� 10�2eV dueto Eq. (24). Thus, sin2 2�atm should be muh larger than 0.85 in order tohave 0m2 � �m232 � 3�10�3eV2. If e.g. 0m � 1 eV, then sin2 2�atm � 0:998.Making use of the estimate (24) in Eqs. (18) we obtainm1 ! 0m; m2 � 0m+ 5:3� 10�6 eV20m ; m3 � 0m+ 1:5� 10�3 eV20m : (25)The �rst formula (22) referring to solar �e's predits with the use ofEqs. (19) and (24) thatsin2 2�sol � 225 � 1 ; �m2sol � �m221 � 3:01�2 � 1:1� 10�5 eV2 : (26)



1754 W. KrólikowskiSuh a predition for solar �e's is not inonsistent with the Large MixingAngle (LMA) solution [7℄, though the solar osillation amplitude in thissolution seems to be a bit smaller than the SuperKamiokande atmospheriosillation amplitude (in ontrast to the inequality 225 > 12(1+225)236, where225 > 236 due to Eqs. (17); however the small additive terms 12(1+ 225)s225 <18(1+ 225+2236)(s225+2s236) may ompensate e�etively suh an inequality).From the third formula (22) we an see that in our texture there ispredited a very small version of the original LSND e�et for aelerator ��'s(���'s) [8℄ with the osillation amplitudesin2 2�LSND � 12s425 = 1:13(�= 0m)4[1 + 1:50(�= 0m)2℄2 � 1:4� 10�11  eV0m !4 ; (27)where Eqs. (17) and (24) are used (with �2 � 0m2). The mass-squared salefor suh a version of the LSND e�et is equal to�m2LSND � �m225 = m22 = 0m2 + 3:01�2 � 0m2 + 1:1 � 10�5 eV2 ; (28)where Eq. (19) is applied. Note that �m2LSND di�ers by the term 0m2from the solar mass-squared sale �m2sol given in Eq. (26). If e.g. 0m =O(10�1 eV) � O(1 eV) (still with �2 � 0m2), then sin2 2�LSND = O(10�7)�O(10�11) and � m2LSND = O(10�2 eV2)�O(1 eV2).The fourth formula (22) desribes the Chooz experiment for reator ��e's.Due to its negative result, P (��e ! ��e)Chooz � 1, there appears the experi-mental onstraint for s225 [9℄:(1 + 225)s225 � sin2 2�Chooz . 0:1 if �m225 � �m2Chooz & 0:1 eV2 : (29)This implies for the LSND e�et (in our texture) the Chooz upper boundsin2 2�LSND � 12s425 . 1:3� 10�3 (30)if �m225 � �m232 � 3� 10�3 eV2, what is onsistent with �m225 & 0:1 eV2and gives (x25)Chooz � (x32)Chooz ' (x32)atm = O(1) as (xji)Chooz '(xji)atm numerially. Then, sin2(x25)Chooz ' 12 (31)in the fourth formula (22). When ombined with Eq. (27), the Chooz bound(30) leads to the lower limit for 0m:0m& 1:0� 10�2 eV : (32)



Searh for Fermion Universality of the Dira Component . . . 1755This gives in turn the lower limits�m2LSND � �m225 & 1:1� 10�4 eV2 (33)and sin2 2�sol � 225 & 0:95 ; sin2 2�atm � 12(1 + 225)236 & 0:061 (34)due to Eqs. (17) and (28), respetively. Evidently, this lower limit forsin2 2�atm is not reahed experimentally. If e.g. 0m � 1 eV orrespond-ing to sin2 2�atm � 0:998, then sin2 2�LSND � 1:4 �10�11, �m2LSND � 1 eV2and sin2 2�sol � 1.The e�etive weighted sum of Majorana neutrino masses ontributingto the neutrinoless double � deay hmei � jPi U2�imij is in our textureequal to 0m. Thus, the experimental upper limit for hmei gives 0m = hmei <0:4 (0:2) eV � 1 (0.6) eV (f. Baudis 99B in Ref. [5℄). If e.g. 0m � 0:2 eV or-responding to sin2 2�atm � 0:96, then sin2 2�LSND � 8:8� 10�9, �m2LSND �4:0 � 10�2 eV2 and sin2 2�sol � 1.Very reently, a possible positive evidene of the neutrinoless double �deay has been reported for the �rst time [10℄. The proposed estimationis 0.05 eV � hmei � 0:84 eV with the best �t hmei � 0:39 eV. Then,in our texture, for 0m= hmei � (0:05 � 0:39 � 0:84) eV orresponding tosin2 2�atm � 0:63�0:99�0:998 one obtains sin2 2�LSND � 2:2�10�6�6:0�10�10 � 2:8� 10�11, �m2LSND � (2:5� 10�3 � 1:5� 10�1 � 7:1� 10�1) eV2and sin2 2�sol � 0:998 � 1 � 1. If this evidene is on�rmed, we will besure that �e is a Majorana neutrino and, moreover, we will gain the �rstexperimental estimate of its mass sale. In the ase suh as in our texture,where neutrino masses m1; m2; m3 are nearly degenerate, this sale shallbe also the mass sale of Majorana neutrinos �� and �� . The ase of neardegeneray of m1; m2; m3 is here supported by the onsiderably large best�t of the mass-squared sale, hmei2 � (0:39)2 eV2 = 0:15 eV2, distintlylarger than the mass-squared di�erenes �m221 � �m232 � 3� 10�3 eV2.4. ConlusionsWe presented in this note an e�etive texture for six Majorana neutrinos,three ative and three (onventional) sterile, based on the 6�6 mass matrixde�ned in Eqs. (3) and (5), and leading to the mixing matrix given in Eqs. (6)and (7), as well as to the mass spetrum (9) or (10). We onjetured that theDira 3�3 omponent of suh a neutrino mass matrix (when the bimaximalmixing, spei� for neutrinos, is transformed out unitarily) gets a fermion



1756 W. Królikowskiuniversal form (15) similar to the 3�3 mass matrix for harged leptons and3� 3 mass matries for up and down quarks, onstruted previously with aonsiderable suess [2,3℄.This texture predits reasonably osillations of solar �e's in a form notinonsistent with LMA solar solution, if the SuperKamiokande value of themass-squared sale for atmospheri ��'s is taken as an input. In both ases,neutrino osillations are pratially maximal. The proposed texture alsopredits very small, perhaps unobservable, LSND e�et with the osillationamplitude of the order O[10�11 (eV= 0m)4℄ and the mass-squared sale of theorder O( 0m2)+O(10�5 eV2). If e.g. 0m = O(10�1 eV)�O(1eV) orrespondingto sin2 2�atm = O(0:9) � O(1), then sin2 2�LSND = O(10�7) � O(10�11),�m2LSND = O(10�2 eV2)�O(1 eV2) and sin2 2�sol = O(1).The negative result of Chooz experiment imposes on the osillation am-plitude of LSND e�et (in our texture) an upper bound of the order O(10�3)whih orresponds for 0m to a lower limit of the order O(10�2 eV) and for�m2LSND to a lower limit of the order O(10�4 eV2). Notie that the estima-tions following from the original LSND experiment [8℄ are e.g. sin2 2�LSND =O(10�2) and �m2LSND = O(1 eV2). The new miniBooNE experiment mayon�rm or revise the original LSND results.As far as the neutrino mass spetrum is onerned, our model of neu-trino texture is of 3 + 3 type, in ontrast to the models of 3 + 1 or 2+ 2 types [11℄ disussed in the ase when, beside three ative neutrinos�e; ��; �� , there is one extra sterile neutrino �s. In those models, threeMajorana onventional sterile neutrinos �es ; ��s ; ��s are deoupled throughthe familiar seesaw mehanism, as being pratially idential with three veryheavy neutrino mass states �4; �5; �6 (of the GUT mass sale). In our model,on the ontrary, �es ; ��s ; ��s are pratially idential with three mass states�4; �5; �6 that this time are onstruted to be massless.In this paper, the most ruial may be the pertinent question, what isthe physial (Higgs?) origin of the Dira omponent M (D), Eq. (5), of theneutrino mass matrixM , where its bimaximal-mixing-free unitary transform0M (D), Eq. (13), is onjetured to be of the fermion universal form (15) (with�=� negligible in the ase of neutrinos). A somewhat di�erent question arisesalso about the physial (expliit or e�etive?) origin of the lefthanded andrighthanded omponents M (L) and M (R), Eqs. (5), of M .The reader an �nd three Appendies added at the end of this paper. InAppendix A, an alternative, e�etive 6�6 neutrino texture is skethed, wheredue to a spei� degeneray of the mass matrix there are no osillationsof the (onventional) sterile neutrinos and, therefore, no LSND e�et anarise. Appendix B ontains a proposal of the explanation, why in nature



Searh for Fermion Universality of the Dira Component . . . 1757there are three and only three generations of leptons and quarks, and alsoan argument for the partiular form of the Dira-type 3�3 mass matrix usedin this paper for neutrinos (and in Refs. [2℄ and [3℄ for harged leptons andquarks, respetively). Finally, Appendix C deals brie�y with the problem ofnew boson hierarhy, appearing as an unavoidable by-produt of explainingthe observed fermion hierarhy in the way presented in Appendix B.Appendix AAn alternative 6� 6 texture without the LSND e�etIn this Appendix, we report on another e�etive texture for three ativeand three (onventional) sterile neutrinos, where there are no osillations ofthe latter neutrinos due to a spei� degeneray of the mass matrix. Thus,they are deoupled from the former neutrinos, evidently in a di�erent waythan through the familiar seesaw mehanism.In suh a texture, the 3�3 omponents of the neutrino 6�6 mass matrix(3) get the formM (L) = 0m0� 1 0 00 1 00 0 1 1A = �M (R) ;M (D) = 0m0B� tan 2�14p2 tan 2�25p2 0� tan 2�142 tan 2�252 tan 2�36p2tan 2�142 � tan 2�252 tan 2�36p2 1CA (A.1)with 0m > 0 being a mass sale and tan 2�ij (ij = 14; 25; 36) denoting threedimensionless parameters. Its unitary diagonalizing matrix is given as beforein Eqs. (6) and (7), but now the relations2ij � s2ij = os 2�ij = 1p1 + tan2 2�ij (A.2)work and the neutrino mass spetrum beomesm1;4 = � 0mp1 + tan2 2�14 ;m2;5 = � 0mp1 + tan2 2�25 ;m3;6 = � 0mp1 + tan2 2�36 ; (A.3)satisfying the equalities�214 � s214�m1;4 = �225 � s225�m2;5 = �236 � s236�m3;6 = � 0m: (A.4)



1758 W. KrólikowskiThis an be seen by applying the formula M�� =Pi U�imiU��i with the useof mass spetrum desribed in Eqs. (A.3) or (A.4).For the new texture, the neutrino osillation formulae (20) lead to therelationsP (�e ! �e)sol = 1� sin2(x21)sol ;P (�� ! ��)atm = 1� 14 sin2(x21)atm � 12 �sin2(x31)atm + sin2(x32)atm�' 1� sin2(x32)atm ;P (�� ! �e)LSND = 12 sin2(x21)LSND ' 0 ;P (��e ! ��e)Chooz = 1� sin2(x21)Chooz ' 1 ; (A.5)where 0 ' (x21)atm � (x31)atm ' (x32)atm, (x21)LSND ' 0 and (x21)Chooz '(x21)atm ' 0. Note that the formulae (A.5) desribe osillations having thesame form as those in the ase of the simple bimaximal texture of three ativeneutrinos [12℄, but now with the spei� mass spetrum (A.3). On the otherhand, osillations of three (onventional) sterile neutrinos vanish in the newtexture, P (�� ! ��s) = 0 and P (��s ! ��s) = Æ�s �s (�; � = e; �; �), inonsequene of the degeneray �m241 = �m252 = �m263 = 0 following fromthe equalities m1 = �m4 ; m2 = �m5 ; m3 = �m6.The osillation formulae (A.5) imply bimaximal mixing for solar �e's andatmospheri ��'s, negative result for Chooz reator ��e's and no LSND e�etfor aelerator ��'s (���'s).In the ase of the onjeture (15) with 0M (D) = U (3)yM (D), the newtexture gives 0m tan 2�14 = �29"! 0 ;0m tan 2�25 = �29 4� 809 = 1:23� ;0m tan 2�36 = �29 24� 62425 = 20:7� ; (A.6)and then, from Eq. (A.3)m1;4 = � 0m; m2;5 = �q 0m2 + 1:50�2 ; m3;6 = �q 0m2 + 427�2 : (A.7)Hene, �m221 = 1:50�2 ; �m232 = 425�2 ; �m231 = 427�2 : (A.8)



Searh for Fermion Universality of the Dira Component . . . 1759Thus, using the SuperKamiokande result �m232 � 3 � 10�3 eV2 for atmo-spheri ��'s desribed by the seond formula (A.5), we obtain from Eq. (A.8)�2 � 7:1� 10�6 eV2 or � � 2:7� 10�3 eV (A.9)in plae of the estimate (24). Then, from Eq. (A.8) we predit�m221 � 1:1� 10�5 eV2 (A.10)for solar �e's presented in the �rst formula (A.5). So, the solar mass-squaredsale �m221 turns out to be the same as estimated before in Eq. (26), beingnot inonsistent with the LMA solar solution.Appendix BFoundations for the fermion hierarhyThe form of Dira mass matrixM (f) = 129 0� �(f)"(f) 2�(f) 02�(f) 4�(f)(80 + "(f))=9 8p3�(f)0 8p3�(f) 24�(f)(624 + "(f))=25 1A ;(B.1)explored previously for harged leptons (f = e) [2℄ as well as for up and downquarks (f = u; d) [3℄ with a onsiderable suess, is applied in the presentpaper [Eq. (15)℄ to neutrinos (f = �), namely to the bimaximal-mixing-freeunitary transform 0M (D) of Dira omponent of their 6 � 6 mass matrix M(f. also Ref. [4℄). In this ase, "(�) ! 0 and �(�)=�(�) is negligible. Inonsequene, �m2sol = �m221 is predited just a little bit below the rangesuggested by the LMA solar solution, if the SuperKamiokande result for�m2atm = �m232 is used. Notie that in the quark ase (f = u; d) theparameter "(f) must be replaed in the matrix element M (f)33 by "(f) +C(f),where C(f) > 0 is large.In this Appendix, we argue, �rst of all, for there being three and onlythree generations of leptons and quarks, and then, for the partiular form(B.1) of the Dira-type mass matrix. This argumentation is based on twoassumptions:(i) the onjeture that all kinds of matter's fundamental partiles existingin nature an be dedued from Dira square-root proedure pp2 !� � p, but onstrained by an intrinsi Pauli priniple, and(ii) a simple spei� ansatz for the shape of Dira mass matrix, formulatedon the ground of the �rst assumption.



1760 W. KrólikowskiThe onjeture (i) turns out to be su�ient to explain the puzzling existeneof three and only three generations of leptons and quarks. Then, the ansatz(ii) reprodues the spei� form (B.1) of the Dira mass matrix. At the endof this Appendix, we speulate on the physial origin of the ansatz (ii).It is not di�ult to see that, in the interation-free ase, Dira's square-root proedure implies generially the sequene N = 1; 2; 3; : : : of generalizedDira equations [13,2℄:�� (N) � p�M (N)� (N)(x) = 0 ; (B.2)where for any N the Dira algebran� (N)� ; � (N)� o = 2g�� (B.3)holds, onstruted by means of a Cli�ord algebra:� (N)� � 1pN NXi=1 (N)i� ; n(N)i� ; (N)j� o = 2Æijg�� (B.4)with i; j = 1; 2; : : : ; N and �; � = 0; 1; 2; 3. The mass M (N) is independentof � (N)� . In general, the mass M (N) should be replaed by a mass matrix ofelementsM (N;N 0) whih would ouple  (N)(x) with all appropriate  (N 0)(x),and it might be natural to assume for N 6= N 0 that (N)i� and (N 0)j� ommute,and so do � (N)� and � (N 0)� .For N = 1, Eq. (B.2) is evidently the usual Dira equation and for N = 2it is known as the Dira form [14℄ of Kähler equation [15℄, while for N � 3Eq. (B.2) give us new Dira-type equations [13,2℄. They desribe some spin-hal�nteger or spin-integer partiles for N odd or N even, respetively.The Dira-type matries � (N)� for any N an be embedded into the newCli�ord algebra n� (N)i� ; � (N)j� o = 2Æijg�� ; (B.5)isomorphi with the Cli�ord algebra of (N)i� , if � (N)i� are de�ned by theproperly normalized Jaobi linear ombinations of (N)i� :� (N)1� � � (N)� � 1pN NXi=1 (N)i� ;� (N)i� � 1pi(i� 1) h(N)1� + : : :+ (N)i�1 � � (i� 1)(N)i� i (B.6)



Searh for Fermion Universality of the Dira Component . . . 1761for i = 1 and i = 2; : : : ; N , respetively. So, � (N)1� and � (N)2� ; : : : ; � (N)N� ,respetively, present the �entre-of-mass� and �relative� Dira-type matries.Note that the Dira-type equation (B.2) for any N does not involve the�relative� Dira-type matries � (N)2� ; : : : ; � (N)N� , inluding solely the �entre-of-mass� Dira-type matrix � (N)1� � � (N)� . Sine � (N)i� = PNj=1Oij(N)j� ,where O = (Oij) is an orthogonal N �N matrix (OT = O�1), we obtain forthe total spin tensor the equalityNXi=1 �(N)i�� = NXi=1 �(N)i�� ; (B.7)where �(N)j�� � i2 h(N)j� ; (N)j� i ; �(N)j�� � i2 h� (N)j� ; � (N)j� i : (B.8)The total spin tensor (B.7) is the generator of Lorentz transformations for (N)(x).In plae of the hiral representations for individual (N)j = �(N)j� �, where(N)j5 � i(N)j0 (N)j1 (N)j2 (N)j3 ; �(N)j3 � �(N)j12 (B.9)are diagonal, it is onvenient to use for any N the hiral representations ofJaobi � (N)j = �� (N)j� �, where now� (N)j5 � i� (N)j0 � (N)j1 � (N)j2 � (N)j3 ; �(N)j3 � �(N)j12 (B.10)are diagonal (all matries (B.9) and similarly (B.10) ommute simultane-ously, both with equal and di�erent j).When using the Jaobi hiral representations, the �entre-of-mass� Dira-type matries � (N)1� � � (N)� and � (N)15 � � (N)5 � i� (N)0 � (N)1 � (N)2 � (N)3 an betaken in the redued forms� (N)� = � 
 1
 � � � 
 1| {z }N�1 times ; � (N)5 = 5 
 1
 � � � 
 1| {z }N�1 times ; (B.11)where �, 5 � i0123 and 1 are the usual 4� 4 Dira matries.Then, the Dira-type equation (B.2) for any N an be rewritten in theredued form � � p�M (N)��1�1  (N)�1�2:::�N (x) = 0 ; (B.12)where �1 and �2; : : : ; �N are the �entre-of-mass� and �relative� Dirabispinor indies, respetively (�i = 1; 2; 3; 4 for any i = 1; 2; : : : ; N). Note



1762 W. Królikowskithat in the Dira-type equation (B.12) for any N > 1 there appear the �rel-ative� Dira indies �2; : : : ; �N whih are free from any oupling, but stillare subjets of Lorentz transformations.The Standard Model gauge interations an be introdued to the Dira-type equations (B.12) by means of the minimal substitution p! p� gA(x),where p plays the role of the �entre-of-mass� four-momentum, and so, x �the �entre-of-mass� four-position. Then,n � [p� gA(x)℄ �M (N)o�1�1  (N)�1�2:::�N (x) = 0 ; (B.13)where g �A(x) symbolizes the Standard Model gauge oupling that involveswithin A(x) the familiar weak-isospin and olor matries as well as the usualDira hiral matrix 5. The last arises from the �entre-of-mass� Dira-typehiral matrix � (N)5 , when a generi g� (N) � A(x) is redued to g � A(x) inEq. (B.13) [see Eq. (B.11)℄.In Eq. (B.13) the Standard Model gauge �elds interat only with the�entre-of-mass� index �1 that, therefore, is distinguished from the physi-ally unobserved �relative� indies �2; : : : ; �N . This was the reason, whysome time ago we onjetured that the �relative� Dira bispinor indies�2; : : : ; �N are all indistinguishable physial objets obeying Fermi statis-tis along with the Pauli priniple requiring the full antisymmetry of wavefuntion  (N)�1�2:::�N (x) with respet to �2; : : : ; �N [13,2℄. Hene, due tothis �intrinsi Pauli priniple�, only �ve values of N satisfying the onditionN � 1 � 4 are allowed, namely N = 1; 3; 5 for N odd and N = 2; 4 forN even. Then, from the postulate of relativity and the probabilisti inter-pretation of  (N)(x) = � (N)�1�2:::�N (x)� we were able to infer that these Nodd and N even orrespond to states with total spin 1/2 and total spin 0,respetively [13,2℄.Thus, the Dira-type equation (B.13), jointly with the intrinsi Paulipriniple, if onsidered on a fundamental level, justi�es the existene in na-ture of three and only three generations of spin-1/2 fundamental fermionsoupled to the Standard Model gauge bosons (they are identi�ed with lep-tons and quarks). In addition, there should exist two and only two gen-erations of spin-0 fundamental bosons also oupled to the Standard Modelgauge bosons (they are not identi�ed yet).The wave funtions or �elds of spin-1/2 fundamental fermions (leptonsand quarks) of three generations N = 1; 3; 5 an be presented in terms of (N)�1�2:::�N (x) as follows: (f1)�1 (x) =  (1)�1 (x) ; (f3)�1 (x) = 14 �C�15��2�3  (3)�1�2�3(x) =  (3)�112(x) =  (3)�134(x) ;



Searh for Fermion Universality of the Dira Component . . . 1763 (f5)�1 (x) = 124"�2�3�4�5 (5)�1�2�3�4�5(x) =  (5)�11234(x) ; (B.14)where  (N)�1�2:::�N (x) arries also the Standard Model (omposite) label, sup-pressed in our notation, and C denotes the usual 4 � 4 harge-onjugationmatrix. Here, writing expliitly, f1 = �e; e�; u; d; f3 = ��; ��; ; s andf5 = �� ; ��; t; b, thus eah fN orresponds to the same suppressed StandardModel (omposite) label. We an see that, due to the full antisymmetry in�i indies for i � 2, the wave funtions or �elds N = 1; 3 and 5 appear (upto the sign) with the multipliities 1, 4 and 24, respetively. Thus, for them,there is de�ned the weighting matrix�1=2 = 1p29 0� 1 0 00 p4 00 0 p24 1A ; (B.15)where Tr � = 1.Conluding the �rst part of this Appendix, we would like to point outthat our algebrai onstrution of three and only three generations of lep-tons and quarks may be interpreted either as ingenuously algebrai (muhlike the famous Dira's algebrai disovery of spin-1/2), or as a summitof an ieberg of really omposite states of N spatial partons with spin-1/2 whose Dira bispinor indies manifest themselves as our Dira bispinorindies �1; �2; : : : ; �N (N = 1; 3; 5) whih thus may be alled �algebraipartons�, as being algebrai building bloks for leptons and quarks. Amongall N �algebrai partons� in any generation N of leptons and quarks, thereare one �entre-of-mass algebrai parton� (�1) and N � 1 �relative algebraipartons� (�2; : : : ; �N ), the latter undistinguishable from eah other and so,obeying our intrinsi Pauli priniple.In the seond part of this Appendix we introdue a simple spei� ansatzfor the shape of Dira mass matrix by putting [13,2℄M (f) = �1=2h(f)�1=2 ; (B.16)where �1=2 is given in Eq. (B.15) andh(f) = �(f) hN2 � (1� "(f))N�2i+ �(f)(a+ ay) (B.17)with �(f) > 0 and "(f) > 0 being parameters, while f = �; e; u; d refers toneutrinos, harged leptons, up quarks and down quarks, respetively. Here,the matrix N = 0� 1 0 00 3 00 0 5 1A = 1 + 2n (B.18)



1764 W. Królikowskidesribes the number of all �i indies with i = 1; 2; : : : ; N (all �algebraipartons�), appearing in any of three fermion generations N = 1; 3; 5, whilea = 0� 0 1 00 0 p20 0 0 1A ; ay = 0� 0 0 01 0 00 p2 0 1A (B.19)play the role of �trunated� annihilation and reation matries for pairs of�relative� indies �i�j with (i; j) = (2; 3); : : : ; (N � 1; N) (pairs of �relativealgebrai partons�):[a ; n℄ = a ; [ay ; n℄ = �ay ; n = aya = 0� 0 0 00 1 00 0 2 1A ; (B.20)where the �trunation� ondition a3 = 0 = ay 3 is satis�ed.It is not di�ult to show that the formulae (B.16) and (B.17) lead ex-pliitly to the partiular form (B.1) of Dira-type mass matrix.Finally, a few words about a possible physial origin of the ansatz (B.17).In the kernel (B.17) of the Dira mass matrix (B.16), the �rst term �(f)N2may be intuitively interpreted as oming from an interation of all N�algebrai partons� treated on equal footing, while the seond term��(f)(1 �"(f))N�2 may be onsidered as being a subtration term ausedby the fat that there is one �entre-of-mass algebrai parton� distinguished(due to its external oupling to the Standard Model gauge �elds) amongall N �algebrai partons� of whih N�1 are �relative algebrai partons�,indistinguishable from eah other. This distinguished �algebrai parton�appears, therefore, with the probability [N !=(N�1)!℄�1 = N�1 that, whensquared, leads to the additional term �(f)(1 � "(f))N�2 [with a oe�ient�(f)(1� "(f))℄ whih should be subtrated in the kernel (B.17) from the for-mer term in order to obtain the mass matrix element M (f)11 = �(f)"(f)=29tending to zero if "(f) ! 0. Eventually, the third term �(f)(a+ay) in the ker-nel (B.17) annihilates and reates pairs of �relative algebrai partons� andso, is responsible in a natural way for mixing of three fermion generationsin the Dira mass matrix M (f).Appendix CProblem of new boson hierarhyThe way of explanation of the observed fermion hierarhy (espeially, ofthe existene of three and only three generations of leptons and quarks),as is desribed in Appendix B, suggests also the existene of a new boson



Searh for Fermion Universality of the Dira Component . . . 1765hierarhy, onsisting of two and only two generations of spin-0 fundamentalbosons. These boson generations orrespond to the numbers N = 2; 4 of theDira bispinor indies �1; �2; : : : ; �N , among whih there are one �entre-of-mass� index �1 and N � 1 = 1; 3 �relative� indies �2 or �2; �3; �4,respetively. Only the �entre-of-mass� index �1 is oupled to the StandardModel gauge bosons.The wave funtions or �elds of spin-0 fundamental bosons of two gener-ations N = 2; 4 an be written down in terms of  (N)�1�2:::�N (x) as follows: (b2)(x) = 14(C�15)�1�2 (2)�1�2(x)=  (2)12 (x) = � (2)21 (x) =  (2)34 (x) = � (2)43 (x) ; (b4)(x) = 124"�1�2�3�4 (4)�1�2�3�4(x)=  (4)1234(x) = � (4)2134(x) =  (4)3412(x) = � (4)4312(x) ; (C.1)where the wave funtion or �eld  (N)�1�2:::�N (x) arries the suppressed Stan-dard Model (omposite) label. In onsequene, there are four sorts of funda-mental salars arrying the same Standard Model signature as four sorts offundamental fermions, namely as neutrinos (f = �), harged leptons (f = e),up quarks (f = u) and down quarks (f = d). These fermions, however, arerealized in three generations N = 1; 3; 5, while the fundamental salars arepredited in two generations N = 2; 4. So, one annot hope here for a on-strution of the full supersymmetry (at most, there might appear a partialsupersymmetry: two to two).Two lepton-like salar doublets (orresponding, as far as the StandardModel signature is onerned, to three lepton doublets) might play the roleof two generations of Higgs doublets [16℄. On the other hand, two quark-likesalar doublets (orresponding to three quark doublets) should lead to a lotof new (olorless) hadrons, omposed dynamially of these olored salarsfrom two generations and (also olored) quarks from three generations [17℄.Most of them should be highly unstable, but perhaps not all, allowing thenfor some new observations.In the rest of this Appendix, we disuss some strutural aspets of theproblem of new boson hierarhy, omparing it with the fermion hierarhy.It is not di�ult to derive the seond-order di�erential equation for (N)�1�2:::�N (x) arising from the Dira-type equation (B.13) through its matrixmultipliation from the left by  � [p� gA(�5)℄ +M (N), where the sign of5 within A�(�5) � A�(x;�5) is reversed in omparison with Eq. (B.13).Suh a Klein�Gordon-type equation gets the form



1766 W. Królikowskin[p�gA(5)℄2�M (N) 2� 12g���F��(5)�gM (N) �[A(5)�A(�5)℄o�1�1� (N)�1�2:::�N = 0 ; (C.2)with F��(5) = ��A�(5)���A�(5) + ig [A�(5); A�(5)℄ (C.3)denoting the Standard Model gauge fores. Here,  � A(�5) = A(5) � sine A�(5) � A�(0) +A0�(0)5. Thus, A�(5)�A�(�5) � 2A0�(0)5.For N even, when only the salar wave funtions or �elds  (bN )(x)(N = 2; 4) given in Eqs. (C.1) appear, the Klein�Gordon-type equation(C.2) an be redued to the usual Klein�Gordon equationn[p� gA(0)℄2 + g2A0(0)2 �M (N) 2o (bN ) = 0 ; (C.4)beause the 4 � 4 Dira matries 5; ��� ; ���5 and �5 appearing inEq. (C.2) are traeless and so, are redued to zero for the salars  (bN )(x)(N = 2; 4), when there are no other boson wave funtions or �elds withN = 2; 4. The Klein�Gordon equation (C.4) implies in turn the existene ofthe relativisti ovariant onserved urrent of the usual formj(bN )�KG � ��1bN (bN )� hi $� � �gA�(0)i (bN ) ; (C.5)where p� = i�� and $� �� 12 (���  � �) with f(x) � � � ��f(x). In fat,��j(bN )�KG = 0, beause Ay�(0) = A�(0) and ��A�(0) = 0. Here, �bN > 0 is anormalization mass sale suh that �(bN )(x) � ��1=2bN  (bN )(x) is normalizedas a Klein�Gordon wave funtion or �eld i.e., R d3xj(bN )0KG(x) is equal to 1 (forpositive energies) or to the operator of bN -boson number, respetively.For N even, the Dira-type equation (B.13) does not give any j(bN )�D (x),of ourse.The remainder of this Appendix is devoted to other onsequenes of theKlein�Gordon-type equation (C.2) and to its omparison with the Dira-typeequation (B.13).For N odd, where only the bispinor wave funtions or �elds  (fN )�1 (x)(N = 1; 3; 5) de�ned in Eq. (B.14) exist, the Dira-type equation (B.13) anbe redued to the usual Dira equationn � [p� gA(5)℄�M (N)o�1�1  (fN )�1 = 0 : (C.6)



Searh for Fermion Universality of the Dira Component . . . 1767This gives in turn the relativisti ovariant onserved urrent of the usualform j(fN )�D �  (fN )��1 (0�)�1�1  (fN )�1 ; (C.7)valid for N odd (N = 1; 3; 5). In fat, ��j(fN )�D (x) = 0 sine Ay�(5) = A�(5).For N odd, the Klein�Gordon-type equation (C.2) is reduible to theform�[p�gA(5)℄2�M (N) 2� 12g���F��(5)�gM (N) �[A(5)�A(�5)℄��1�1� (fN )�1 = 0 : (C.8)This implies in turn the following divergene relationship:��j(fN )�KG = �2gA0 �(0)j(fN )� 5KG ; (C.9)where j(fN )�KG � ��1fN (fN )��1 (0)�1�1 hi $� � �gA�(0)i (fN )�1 (C.10)and j(fN )� 5KG � ��1fN (fN )��1 (i05)�1�1 hi $� � �gA�(0)i (fN )�1 (C.11)are respetively the vetor and axial-vetor Klein�Gordon urrents of fNbispinor fermions. Here, the form A�(5) � A�(0) + 5A0�(0) is used, and�fN > 0 denotes a normalization mass sale. Due to the hiral harater ofeletroweak interations (where A0�(0) 6= 0), the urrent j(fN )�KG(x) is generi-ally nononserved loally, in ontrast to the urrent j(fN )�D (x).In Eq. (C.7) as well as in Eqs. (C.10) and (C.11), and also (C.5), thereappears the operation� = (omplex onjugation)�(transposition) = (hermi-tian onjugation), where the transposition pertains to the Standard Model(omposite) label, suppressed in this notation, and to the quantum-�eld de-grees of freedom, the latter if  (N)�1�2:::�N (x) is a �eld rather than a wavefuntion. For pure Dira degrees of freedom � is equivalent to the omplexonjugation, in partiular, when Dira bispinor indies are written downexpliitly as e.g. in Eq. (C.7).At this point, we would like to emphasize that the Standard Model (om-posite) label, suppressed in  (N)�1�2:::�N (x), is summed up in the disussedurrents within any generation N = 1,3,5 and N = 2; 4, separately. As wasmentioned already in Appendix B, in order to mix generations N = 1; 3; 5or N = 2; 4, separately for any Standard Model signature, we should intro-due nondiagonal mass matrix of elements M (N;N 0) with N;N 0 = 1; 3; 5 or



1768 W. KrólikowskiN;N 0 = 2; 4, dependent on the suppressed Standard Model signature. Weshould also stress that in the Dira-type equation (B.13) as well as in theKlein�Gordon-type equation (C.2) there are no soure terms whih ouldhange the global number of all f fermions and all b bosons, respetively. Ofourse, the numbers of gauge bosons and possible Higgs bosons do hange(the latter, due to their de�nition, do get nonzero f -fermion and b-bosonsoures).Now, some more formal remarks are due. The relativisti ovariantDira-type urrent and Klein�Gordon-type urrent must have the formsj(N)�D �  (N)��1�2:::�N �(N) �� (N)10 � (N)20 : : : � (N)N0 � (N)1� ��1�2:::�N ;�1�2:::�N  (N)�1�2:::�N(C.12)and j(N)�KG � ��1N  (N)��1�2:::�N �(N) �� (N)10 � (N)10 : : : � (N)N0 ��1�2:::�N ;�1�2:::�N� hi $� � �gA�(0)i (N)�1�2:::�N ; (C.13)respetively, where � (N)i� are the Dira-type matries in their Jaobi version,introdued in Eqs. (B.6), while �(N) and �(N) are phase fators makingHermitian the N � N bispinor matries appearing in these urrents and�N > 0 denote normalization mass sales.The Dira-type matries � (N)i� (i = 1; 2; : : : ; N), satisfying the antiom-mutation relations of Cli�ord algebra (B.5), an be represented in terms ofthe usual 4� 4 Dira matries as follows:� (N)1� = � 
 1 
 1 
 1 
: : :
 1
 1| {z }N�1 times ;� (N)2� = 5 
i�5
 1
 1
: : :
 1
 1 ;� (N)3� = 5 
 5 
 � 
 1
 : : : 
 1
 1 ;: : : : : : : : : : : : : : : : : : : : : :� (N)N� = 5 
 5 
 5 
 5 
 : : :
 5| {z }N�1 times 
�� forN oddi�5 forN even :(C.14)Then, forming their produt for � = 0,� (N)10 � (N)20 : : : � (N)N0 = ( iN�12 0 
 0 
 : : :
 0 for N odd(�i)N2 i05
i05
: : :
i05 for N even ;(C.15)



Searh for Fermion Universality of the Dira Component . . . 1769and multiplying from the right by � (N)1� , we obtain� (N)10 � (N)20 : : : � (N)N0 � (N)1� = ( iN�12 0 � 
 0 
 : : : 
 0 forN odd(�i)N�22 05�
i05
: : :
i05 forN even :(C.16)Hene, we an de�ne the phase fators in Eqs. (C.12) and (C.13) as follows:�(N) = ( (�i)N�12 = 1;�i;�1 for N = 1; 3; 5(�i)N�22 = 1;�i for N = 2; 4 ;�(N) = ( (�i)N�12 = 1;�i;�1 for N = 1; 3; 5(�i)N2 = �i;�1 for N = 2; 4 : (C.17)Making use of Eqs. (C.16) and (C.15) with (C.17) we an represent theurrents (C.12) and (C.13) in the following forms:j(N)�D =  (N)��1�2:::�N � (0 �)�1 �1 (0)�2 �2 : : : (0)�N �N(�1)N�22 (05�)�1�1 (i05)�2�2 : : : (i05)�N�N �� (N)�1�2:::�N (C.18)andj(N)�KG = ��1N  (N)��1�2:::�N � (0)�1�1 (0)�2�2 : : : (0)�N�N(�1)N2 (i05)�1�1 (i05)�2�2 : : : (i05)�N�N�� hi$� �� gA�(0)i (N)�1�2:::�N : (C.19)Here, the alternative � �� � is valid for � N oddN even �.For N = 1; 3; 5, the urrent j(N)�D (x) an be redued to the onservedurrent j(fN )�D (x) de�ned in Eq. (C.7). For N = 2; 4, on the other hand, theurrent j(N)�D (x) as well as the urrent j(bN )�D (x) do not exist.For N = 1; 3; 5, the urrent j(N)�KG(x) is reduible to the generially non-onserved urrent j(fN )�KG(x) introdued in Eq. (C.10). For N = 2; 4, however,the urrent j(N)�KG(x) an be redued to the onserved urrent j(bN )�KG(x) de�nedin Eq. (C.5). For an illustration we will perform the last redution in thease of N = 2.In fat, for N = 2, due to the de�nition (C.1) of the salar  (b2)(x) =14 Tr �C�15 (2) T(x)�, where  (2)(x) = � (2)�1�2(x)� is a 4�4 formal matrix,



1770 W. Królikowskiwe an infer that  (2)(x) = (5C)T  (b2)(x)+R(x) with Tr[C�15RT(x)℄=0.Here, T denotes the transposition with respet to Dira bispinor indies.Expanding the matrix  (2) T(x) in terms of the Dira relativisti ovariantsS, P, V, A, T, where S = 1, we an write (2) T = �1 (S) + 5 (P) + � (V) � + �5 (A) � + i2 [�; �℄ (T) ��� 5C= 5C (S) +RT (C.20)withRT = C (P) + �5C (V) � + �C (A) � + i2 [�; �℄ 5C (T) �� : (C.21)Hene,  (b2)(x) = 14(Tr 1) (S)(x) =  (S)(x). When for N = 2 only thesalar  (b2)(x) =  (S)(x) appears, we get the trunation R(x) = 0 and so, (2) =  (2)S � (5C)T (S) : (C.22)For a justi�ation of the absene of  (P)(x);  (V)�(x);  (A)�(x) and  (T)��(x)from the expansion (C.20) see Eqs. (C.30) and (C.31) later on. Now, aftera simple alulation, we show that the form (C.22) of  (2)(x) leads throughEq. (C.19) with N = 2 to the expression14j(2)�KG � 14��12  (2)��1�2(05)�1�1(05)�2�2 hi$� � � gA�(0)i (2)�1�2= ��12  (S)� hi$� � � gA�(0)i (S) (C.23)that with �2 = �b2 is equal to the Klein�Gordon urrent j(b2)�KG(x) of b2 salarbosons, introdued in Eq. (C.5). The fator 14 in Eq. (C.23) is aused byredution of the number of wave-funtion omponents due to the relations (2)�1�2(x) = � (2)�2�1(x) and  (2)12 (x) =  (2)34 (x) [see the de�nition (C.1)℄.These relations follow expliitly from the form of (2) � � (2)�1�2� = �5C (S) = 0BB� 0 1 0 0�1 0 0 00 0 0 10 0 �1 0 1CCA (S) ; (C.24)valid in the hiral representation, where5 = 0BB� 1 0 0 00 1 0 00 0 �1 00 0 0 �1 1CCA ;



Searh for Fermion Universality of the Dira Component . . . 1771C = 0BB� 0 �1 0 01 0 0 00 0 0 10 0 �1 0 1CCA =  �i�(P)2 00 i�(P)2 ! : (C.25)Here, (5C)T = �5C.In order to justify the trunated form (C.22) of  (2)(x), let us introduefor N = 2 the matrix of total internal parity:�(2)� (2)10 � (2)20 = 05 
 05 = ((05)�1�1(05)�2�2) ; (C.26)where �(2) = �i, and the matrix of total hirality:� (2)15 � (2)25 = 5 
 5 = ((5)�1�1(5)�2�2) (C.27)[see Eqs. (C.14) and (C.17)℄. With these matries ating on  (2)S (x) �(5C)T (S)(x) = � (2)S�1�2(x)� [see Eq. (C.22)℄ we an show after a simplealulation that�(2)� (2)10 � (2)20  (2)S =  (2)S ; � (2)15 � (2)25  (2)S =  (2)S : (C.28)In addition, of ourse, 12(�(2)1�� +�(2)2��) (2)S = 0. This means that our spin-0wave funtion or �eld  (2)S (x) = � (2)S�1�2(x)� gets the eigenvalue of totalinternal parity equal to +1 and the eigenvalue of total hirality equal also to+1. Here, evidently, the matries �(2)� (2)10 � (2)20 and � (2)15 � (2)25 ommute, andalso ommute with 12(�(2)1�� +�(2)2��) for �; � = 1; 2; 3.After a alulation, it turns out that, among the terms (2)P � CT (P);  (2)V � (�5C)T (V)�;  (2)A � (�C)T (A)� ; (2)T � � i2[�; �℄5C�T (T)�� (C.29)whose sum gives the matrix R(x) introdued through Eq. (C.21), only (2)P (x) is an eigenstate of the total internal parity �(2)� (2)10 � (2)20 (though,this time, with the eigenvalue equal to �1), while three others are not suheigenstates. In fat, �(2)� (2)10 � (2)20  (2)P = � (2)P ;�(2)� (2)10 � (2)20  (2)V = �0 (2)V T0 ;�(2)� (2)10 � (2)20  (2)A = +0 (2)A T0 ;�(2)� (2)10 � (2)20  (2)T = �0 (2)T T0 : (C.30)



1772 W. KrólikowskiNow, in view of Eqs. (C.30), we make tentatively the assumption that onlyterms with de�nite total intrinsi parity an ontribute to the expansionof the state  (2)(x), desribed in Eq. (C.20). Suh a onstraint imposedon  (2)(x) exludes  (2)V (x),  (2)A (x),  (2)T (x) from the set (C.29), whenEqs. (C.30) are referred to. Then, the Klein�Gordon-type urrent (C.19)for N = 2 may be evaluated as follows:�24 j(2)�KG �  (S)�[ ℄� (S) �  (P)�[ ℄� (P) �  (V)�� [ ℄� (V)�� (A)�� [ ℄� (A)� � 2 (T)��� [ ℄� (T)��=  (S)�[ ℄� (S) �  (P)�[ ℄� (P) ; (C.31)where [ ℄� � hi$� � � gA�(0)i. But, the seond term in Eq. (C.31) anspoil the positive-de�niteness of  (2)(x) (for positive energies), expressed bythe requirement of j(2)0KG(x) > 0 (for positive energies). This exludes  (2)P (x)from the set (C.29). Then, from Eq. (C.31) the Klein�Gordon urrent (C.23)follows.In general, for any N even, if the total internal parity is diagonal for (N)(x) = � (N)�1�2:::�N (x)� with the eigenvalue equal to +1:�(N)� (N)10 � (N)20 : : : � (N)N0  (N) =  (N) ; (C.32)then the onserved Klein�Gordon-type urrent (C.13) or (C.19) takes thesimpli�ed form:j(N)�KG = ��1N  (N)��1�2:::�N hi $� ��gA�(0)i (N)�1�2:::�N : (C.33)This form is relativisti ovariant only for states satisfying the onstraint(C.32) (whih is not expliitly ovariant). The form (C.33) implies thepositive-de�niteness of  (N)(x) (for positive energies), sine in the ase ofKlein�Gordon-type wave funtion (of positive energies)j(N)0KG = ��1N  (N)��1�2:::�N hi $� 0 �gA0(0)i (N)�1�2:::�N > 0 : (C.34)Note that the total internal parity �(N)� (N)10 � (N)20 : : : � (N)N0 is a onstant ofmotion, beause ��j(N)�KG(x) = 0 for N even. So, the onstraint (C.32) isstationary.As was seen in Eq. (C.28), the onstraint (C.32) is satis�ed for N =2 with  (2)�1�2(x) = (5C)�2�1 (b2)(x). Notie that also for N = 4 with



Searh for Fermion Universality of the Dira Component . . . 1773 (4)�1�2�3�4(x) = "�1�2�3�4 (b4)(x) the onstraint (C.32) holds. Here also,the total hrality � (4)15 � (4)25 � (4)35 � (4)45 gets its eigenvalue +1.For any N odd, an analogial role is played by the total �relative� internalparity whih, if diagonal for  (N)(x) = � (N)�1�2:::�N (x)� with the eigenvalueequal to +1: �(N)� (N)20 : : : � (N)N0  (N) =  (N) ; (C.35)simpli�es the form of onserved Dira-type urrent (C.12) or (C.18):j(N)�D =  (N)��1�2:::�N (0�)�1�1  (N)�1�2:::�N : (C.36)Similarly as before, this form is relativisti ovariant only for states ful�llingthe onstraint (C.35) (that is not expliitly ovariant in the world of �relative�Dira degrees of freedom). The form (C.36) leads to the positive-de�nitenessof  (N)(x) (for all energies), beause in the ase of Dira wave funtion (ofall energies) j(N)0D =  (N)��1�2:::�N (N)�1�2:::�N > 0 : (C.37)Note that, this time, the total �relative� internal parity �(N)� (N)20 : : : � (N)N0 isa onstant of motion, sine ��j(N)�D (x) = 0 for N odd. Thus, the onstraint(C.35) is stationary. For an illustration, we will show that the onstraint(C.35) is satis�ed for the form of  (3)�1�2�3(x) orresponding to the bispinor (f3)�1 (x) de�ned in Eq. (B.14).In fat, for N = 3, due to the de�nition (B.14) of the bispinor (f3)�1 (x) = 14(C�15)�2�3 (3)�1�2�3(x);we an onlude that  (3)�1�2�3(x) = (5C)�3�2 (f3)�1 (x), as for N = 3 onlythe bispinor  (f3)�1 (x) exists. Sine�(3)� (3)20 � (3)30 = 1
 0 
 0 = (Æ�1�1(0)�2�2(0)�3�3) ; (C.38)where �(3) = �i [see Eqs. (C.14) and (C.17)℄, the above form of  (3)�1�2�3(x)leads after a simple alulation to the equality�(3) �� (3)20 � (3)30 ��1�2�3;�1�2�3  (3)�1�2�3 =  (3)�1�2�3 (C.39)whih is the onstraint (C.35) for N = 3. Note that also for N = 5, where (f5)�1 (x)= 124"�2�3�4�5 (5)�1�2�3�4�5(x) and  (5)�1�2�3�4�5(x)="�2�3�4�5 (f5)�1 (x)(as for N = 5 only the bispinor  (f5)�1 (x) exists), we get the eigenvalue equalto +1 for the total �relative� intrinsi parity �(5)� (5)20 � (5)30 � (5)40 � (5)50 , where�(5) = �1, and so, the onstraint (C.35) for N = 5 holds.
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