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It is conjectured that a diagonal and degenerate 3 x 3 active—active
component (i.e., lefthanded component) dominates in the effective 6 x 6
mass matrix for six Majorana neutrinos, three active and three (conven-
tional) sterile, while its 3 x 3 active-sterile component (i.e., Dirac com-
ponent) arises through a bimaximal-mixing unitary transformation from a
structure similar to the 3 x 3 mass matrices for charged leptons as well as
up and down quarks. In such a texture, three neutrino masses are nearly
degenerate, mi; ~ mso ~ mgs, though their mass-squared differences ap-
pear hierarchical, Am3, < AmZ, ~ Am%,, whereas the remaining three
neutrino masses can be constructed to vanish, m4y = ms = mg = 0, or
to be, as in Appendix A, degenerate in square with the previous masses,
my = |ma|,ma = |ms|, m3 = |mg|, in contrast to the familiar seesaw mech-
anism (in both cases). Appendices B and C are devoted to the author’s
idea of the algebraic compositeness of fundamental particles, resulting into
three generations of Standard Model fermions and two generations of new
bosons.

PACS numbers: 12.15.Ff, 14.60.Pq, 12.15.Hh

1. Introduction
(D)

As is well known, three Dirac neutrinos are vy ° = Vo1, +Var(@ = €, p, 7),
while three Majorana active neutrinos and three Majorana (conventional)
sterile neutrinos become u,(la) = vor + (Van)¢ and u,(f) = Var + (Var)S
(o = e, pu, 7), respectively. The neutrino mass term in the Lagrangian gets

generically the form

S (L) (D) (a)
1 M M v
—Lmass = = E <Vc(\ca)a Vch)> ( (%ﬂ)* O(ég) ) ( ,((is) ) ' (1)
2 of Mﬁa Maﬁ Vg
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If MSE) and MS;) are not all zero, then in nature there are realized six Majo-
rana neutrino mass fields v; or states |v;)(i = 1,2,3,4,5,6) connected with
six Majorana neutrino flavor fields v, or states |vo)(a = e, pu, T, es, lig, Ts)
through the unitary transformation

Vo =Y Ui or |va) =Y Uklvi), (2)
) 7

(a)

where we passed to the notation v, = v’ and v,, = és) fora =e, , 7.
Of course, VSB = VuL, u&aﬁ = (Vor)¢ and vo g = uS& = VaR, Va, =
y(gs]} = (Var)® for @ = e, p, 7. Thus, the neutrino 6 x 6 mass matrix
M = (Myg) (o, =€, 1, T, €s, s, Ts) is of the form
ML) prD)
M= < MO y®) ) 3)

The neutrino 6 x 6 mixing matrix U = (Uy) (i = 1,2,3,4,5,6) ap-
pearing in Eqgs. (2) is, at the same time, the unitary 6 x 6 diagonalizing
matrix,

U'MU = My = diag(m,, ma, ms, ma, ms, me) (4)

if the representation is used, where the charged-lepton 3 x 3 mass matrix is
diagonal. This will be assumed henceforth.

2. Model of neutrino texture

In this paper we study the model of neutrino texture, where the 3 x 3
submatrices in Eq. (3) are

o o100
M® =m0 1 0|,
00 1
s tas
wor = bl B )
ha s b
2 2 V2
2, 0 0
M® =m| 0 # o0 (5)
0 0 t3

0
with m > 0 being a mass scale and t;; (ij = 14, 25, 36) denoting three
dimensionless parameters.
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One can show that the unitary diagonalizing matrix U for the mass
matrix M defined in Eqs. (3) and (5) is of the form

TN O G 0o (Cc® s
U=UU, U= < 03 103 ) ) U= < sB) B ) , (6)
where
4 1 9
V) 1 0 0
v = -3 3 K|, 1®=o01 0],
TR 0 0 1
2 2 2
Ci4 0 0 S14 0 0
o®) = 0 ¢ O , SG) = 0 so5 O (7)
0 0 c36 00 s3
and S
2y (8)
Cij J

with s;; = sinf;; and ¢;; = cos 6,5, so that ¢;; = tan8;; (ij = 14, 25, 36).
Such a diagonalizing matrix leads to the mass spectrum

mi zr%(1+t§4), my =0,
7%(1+t%5), ms =0,
my=m(1+1%), me=0 9)
which can be described equivalently by the equalities

2 2 2 0
Ci4m1 = CysMmg = Cigms =M, mg=mz=mg=0. (10)

The easiest way to prove this theorem is to start with the diagonalizing ma-
trix U given in Egs. (6) and (7), and then to construct the mass matrix M de-
fined in Eqgs. (3) and (5) by making use of the formula Mag = 3, UaimiUj; ,
where the mass spectrum (9) or (10) is to be taken into account.

We can see from Egs. (5), (6) and (7) that our neutrino texture corre-
sponds to the mixing angles giving c1o = 1/v/2 = 519, ¢23 = 1/4/2 = s93 and
ci3 = 1, s13 = 0, while ¢;5, si; (ij = 14, 25, 36) are to be determined from
the experiment.

In this neutrino texture, where the mass matrix M is given in Egs. (3)
and (5), an interesting role is played by the unitarily transformed mass

0
matrix M defined as
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0 1 1
M=U'MU. (11)
Then, writing
. o (L) o (D)
M M
M= Ton om® |- (12)
M M

we obtain

0 R Lo 1 R) "
MR = <U MU) - M®) (13)

0 0
Thus, the Dirac 3 x 3 component MP) of the mass matrix M (transformed

1
unitarily from M by means of the factor U of the mixing matrix U) becomes
diagonal and so, may get a hierarchical structure similar to the Dirac mass
matrices for charged leptons and quarks, all dominated by their diagonal

parts. The transforming factor é given in Eq. (6) works effectively thanks to
its 3 x 3 submatrix U®) that is just the familiar bimazimal mizing matriz 1],
specific for neutrinos, describing satisfactorily the observed oscillations of
solar v,’s and atmospheric v,’s. Note that

ot oo 0
U MU = Mg = My = diag(m1, ma, ms, ma, ms, mg) , (14)

0
where the factor U of the mixing matrix U is defined in Eq. (6). Here,
0 0 0 0 1 1
M= <Mz'j), U= <Uij) and U = <Uai)a as M = (Myp) and U = (Ua,).

0
With the use of M given in Eq. (11) the neutrino mass term (1) in the

. . _ 00 o
Lagrangian can be written as —Lpyags = %Zaﬂ VaMagrg = %ZU viM;jV;,

1 0 0 0 .
where v, = >, Ugiti = Y _; Uai Vi, but v;= 3 ; Uijvj are not neutrino mass

. . 0.0 0 ) 0
fields, in contrast to v;: in fact, M|v;) = m;|v;), while M|v;) = m;|vi)(M
being a unitary transform of the full neutrino mass matrix M).
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(D)

0
Specifically, the Dirac 3 x 3 component M\’ of the neutrino mass matrix

]\04 (where the bimaximal mixing characteristic for neutrinos is transformed
out unitarily) may be conjectured in a fermion wuniversal form that was
shown to work very well for the mass matrix of charged leptons |2] and neatly
for mass matrices of up and down quarks [3] (obviously, in those three cases
of charged fundamental fermions there exist only Dirac-type mass matrices).
Then, for neutrinos we get [4]

JE 2a 0

0 1

M = 59 | 20 4n(80+¢€)/9 8v3 . (15)
0 8v3 24 11 (624 + €) /25

where ¢t > 0, a > 0 and € > 0 are some neutrino parameters. Since already
for charged leptons £(®) = 0.172329 is small [2], we will put for neutrinos
e — 0. We will also conjecture that for neutrinos a/u is negligible, as for
charged leptons the small (oz(e)/u(e))2 = 0.02310-022 2] gives the prediction
m, = ms® = 1777.037038 MeV [5] when m, = m¢™ and m,, = m;> are
used as inputs, while with (oz(e)/u(e))2 = ( the prediction becomes m, =
1776.80 MeV. In such a case, from Eqs. (13) and (15) we can conclude that

0 7 0 w4 x 80 0 w24 x 624
tiy = — 0 tos = — =1.23 t3g = ————— = 20.7
miyy 296—> » 25 = 557 s 36 = 50 T on H
(16)
in Egs. (5), (8) and (9), and
1 1
cy = 1, 5= =, 036 = =
\/1—1—1.50(/1/m)2 \/1—1—427(u/m)2
0 0
1.23u/m 20.7p/m
s — 0, o5 = u — 536 = 4/ - (17)
\/1+ 1.50 (u/ m)? 14+427(pu/m)?
in Egs. (7) and (8). Hence, from Egs. (9) and (16)
2 2
mi = m, my=m+ 1505 my=m 4 d2rh (18)
m m

3. Neutrino oscillations

Accepting the formulae (16) and making tentatively the conjecture that

0 . . .
i < m, we can operate with the approximation, where 0 < #;; < 1 or
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0 < s4; < ¢jj (ij =14, 25, 36). Then, we get the case of nearly degenerate

0 . . .
spectrum of my, mo, m3: my =~ mg ~ m3z ~ m, but with hierarchical mass-
squared differences Am3, < Am2, ~ Am3,, where

Am3, = 2m? (5 — £3,) = 3.01 1%,
Am3, = 27%2 (56 — 135) = 850 p?,
Am2, = 2m2 (2, — 12,) = 853 12 (19)

due to Egs. (9) and (16).

Notice that the option T(I)”L < i, opposite to our conjecture p <K T(I)”L, leads
toti; > 1or 0 < ¢j < s (i = 14,25,36). Then, we obtain the case of
hierarchical spectrum of my, mo, m3: m; € me <K mg with mass-squared
differences Am3, < Am3, ~ Am3,, where

2 09 4 4 pt
Am?l =m (t25 - t14) =2.26 o
m2
2 09,4 4 5 pt
Amzy = m” (t3s — ty5) = 1.82 x 10 T
m2
2 09 .4 4 5 M4
Am2, = m? (ths — t1,) = 1.82 x 10 T
m
due to Egs. (9) and (16). In this case, the component M®) of the neutrino

(197)

. . 0 . .
mass matrix dominates over M(P) (as p over m) that dominates in turn

over M1 (as p over T(I)”L): this is the situation, where the familiar see-
saw mechanism can formally work in spite of the fact that entries of M(R)
are very small, in particular due to m4 = ms = mg = 0 (not as in the
popular seesaw, where they are as large as the GUT scale). With the Su-
perKamiokande result Am2, ~ 3 x 1072 eV? we get in this option Am2, ~

3.7 % 1078 eV2 and p*/m2 ~ 1.6 x 1078eV2 or u2/m ~ 1.3 x 10~ eV i.c.,
u~ 1.3 x 10*4(7% /i) eV < 1.3 x 10~* eV. In contrast, in the case of our

conjecture p <<7(r)z, the component ML) dominates over M(P) which domi-
nates in turn over M®) and so, we obtain for Am3, and u the much larger
values given later on in Egs. (26) and (24), respectively; also the value of
Am3s = m3 ~? appearing in Eq. (28) is much larger.

The familiar formulae for probabilities of neutrino oscillations v, — v
on the energy shell,

P(va = vg) = [l va)? = 0p0 — 4 UpUpilUaUs;sin® zj; - (20)
j>1



Search for Fermion Universality of the Dirac Component . .. 1753

with )
_ ji 2 _ .2 2 e
Tji = 1.27T , Amj=mi;-—m;, p=F 21% , (21)

valid when a possible CP violation can be ignored (then U}, = Uy;), give in

o 0
the accepted approximation of Am3, < Am2, ~ Am2; < m? that

P(ve = Ve)sol =1- 035 sing(le)sol — %(1 + 035)335 ,
Py, = vy)agm = 1— %(1 + C35)C36 8N (T32) atm
— 5 (14 &35 + 2c36) (535 + 2s36) ,
P(v, — ve)isnn = 5835 8in”(T25)LsND
P(Ve = Ve)choor = 1 — (14 ¢35)s55 5in*(225) Choo (22)

for solar v,’s, atmospheric v,’s, LSND accelerator v,’s (7,’s) and Chooz
reactor 7,’s, respectively. The first two Eqs. (22) differ from the familiar
two-flavor oscillation formulae (used often in analyzes of neutrino oscilla-
tions) by some additive terms that, fortunately, are small enough because of
s3; < ¢f; consistent with <m?.

From the second formula (22) describing atmospheric v,’s we infer due
to the SuperKamiokande result [6] that

(14 c35)c36 = 8in® 2054m ~ 1,  Amj3y = Am2,, ~3 x 107%V, (23)
what gives

p? ~3.5x107%V? or p~1.9x10 3V, (24)

when Eq. (19) is used. The nearly maximal atmospheric oscillation ampli-

tude sin®20,tm ~ 1 implies 035 ~ 1 and c§6 ~ 1, which is consistent with

p? < m2. For an illustration, taking sin? 20, > 0.85, we get from Eqgs. (17)

(/m)? < 4.1 x 10~* and so, m? > 8.3 x 10~3eV2 or m > 9.3 x 10~2eV due
to Eq. (24). Thus, sin? 20, should be much larger than 0.85 in order to

have m? > Am2, ~ 3x 103V If e.g. 1 ~ 1 6V, then sin? 205 ~ 0.998.
Making use of the estimate (24) in Eqgs. (18) we obtain

2 2

\ \
mi—m, my~mA53x 1070 my~m 15 x 1073 S (25)
m m

The first formula (22) referring to solar ve’s predicts with the use of
Egs. (19) and (24) that

sin? 2055 = ¢35 ~ 1, AmZ,; = Am3; ~3.01u% ~ 1.1 x 107°eV?.  (26)

sol
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Such a prediction for solar v,’s is not inconsistent with the Large Mixing
Angle (LMA) solution [7], though the solar oscillation amplitude in this
solution seems to be a bit smaller than the SuperKamiokande atmospheric
oscillation amplitude (in contrast to the inequality ¢35 > 1(1+c3;)c3g, where
35 > g due to Egs. (17); however the small additive terms 3 (1+c35)s3; <
$(1+ ¢35 4 2c34) (835 + 2s3;) may compensate effectively such an inequality).

From the third formula (22) we can see that in our texture there is
predicted a very small version of the original LSND effect for accelerator v,’s
(7,’s) [8] with the oscillation amplitude

0 4
1 1.13 4 \Y
[1 4 1.50(p/m)2]2 m

where Eqgs. (17) and (24) are used (with p? < 7%2). The mass-squared scale
for such a version of the LSND effect is equal to

Am2enp = Am2 =m2 = m2 + 30142 ~ m2 + 1.1 x 105eV2,  (28)

where Eq. (19) is applied. Note that Am?qp differs by the term m?2

from the solar mass-squared scale Am2; given in Eq. (26). If e.g. m =

0(10~" eV) — O(1 eV) (still with u? < m2), then sin 20 sxp = O(10~7) —
O(107™) and A mZ gy = O(1072 eV?) — O(1 eV?).

The fourth formula (22) describes the Chooz experiment for reactor v,’s.
Due to its negative result, P(Ve — Ve)Chooz ~ 1, there appears the experi-
mental constraint for s35 [9]:

(1 + c35)s25 = sin® 20cn00, S 0.1 if Am3ys = Amiy,., > 0.1eVZ.  (29)

This implies for the LSND effect (in our texture) the Chooz upper bound
sin? 20 snp = 3535 S 1.3 x 1077 (30)

if Am3s>> Am3, ~ 3 x 1073 eV what is consistent with Am35 > 0.1 eV?

and gives (#25)Chooz > (£32)Chooz =~ (%32)atm = O(1) as (Zji)Choor =~
(€ i)atm numerically. Then,

Sin2($25)Chooz = % (31)
in the fourth formula (22). When combined with Eq. (27), the Chooz bound

(30) leads to the lower limit for m:

m>1.0x102eV. (32)
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This gives in turn the lower limits

Amigp = Am3s > 1.1 x 107 eV? (33)
and
1
sin® 205, = ¢35 > 0.95,  sin® 20,m = S+ ca5)cae = 0.061 (34)

due to Egs. (17) and (28), respectively. Evidently, this lower limit for

sin® 20,im is not reached experimentally. If e.g. M ~ 1 eV correspond-
ing to sin? 20atm ~ 0.998, then sin? 20 snp ~ 1.4 x 1071 Amio iy ~ 1 eV?
and sin® 20, ~ 1.

The effective weighted sum of Majorana neutrino masses contributing
to the neutrinoless double 8 decay (m.) = |, UZm;| is in our texture

0 . .. . 0
equal to m. Thus, the experimental upper limit for (me) gives m = (m,) <

0.4(0.2) eV —1(0.6) eV (¢f. Baudis 99B in Ref. [5]). If e.g. M ~ 0.2 &V cor-
responding to sin® 20,im ~ 0.96, then sin? 20y gxp ~ 8.8 x 1077, Am%SND ~
4.0 x 1072 eV? and sin® 204, ~ 1.

Very recently, a possible positive evidence of the neutrinoless double
decay has been reported for the first time [10]. The proposed estimation
is 0.05 eV < (me) < 0.84 €V with the best fit (me) ~ 0.39 eV. Then,

in our texture, for m= (me) ~ (0.05 — 0.39 — 0.84) eV corresponding to
sin? 20,m ~ 0.63 —0.99 — 0.998 one obtains sin? 20y sxp ~ 2.2 x 1070 — 6.0 x
10710 —2.8 x 1071, AmZoyp ~ (25 x 1072 — 1.5 x 107! = 7.1 x 1071) eV?
and sin® 26y, ~ 0.998 — 1 — 1. If this evidence is confirmed, we will be
sure that v, is a Majorana neutrino and, moreover, we will gain the first
experimental estimate of its mass scale. In the case such as in our texture,
where neutrino masses mq, meo, ms are nearly degenerate, this scale shall
be also the mass scale of Majorana neutrinos v, and v;. The case of near
degeneracy of my, ma, ms is here supported by the considerably large best
fit of the mass-squared scale, (m¢)? ~ (0.39)% eV2 = 0.15 eV?, distinctly
larger than the mass-squared differences Am2, < Am2, ~ 3 x 1073 eV2.

4. Conclusions

We presented in this note an effective texture for six Majorana neutrinos,
three active and three (conventional) sterile, based on the 6 x 6 mass matrix
defined in Eqgs. (3) and (5), and leading to the mixing matrix given in Eqgs. (6)
and (7), as well as to the mass spectrum (9) or (10). We conjectured that the
Dirac 3 x 3 component of such a neutrino mass matrix (when the bimaximal
mixing, specific for neutrinos, is transformed out unitarily) gets a fermion
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universal form (15) similar to the 3 x 3 mass matrix for charged leptons and
3 x 3 mass matrices for up and down quarks, constructed previously with a
considerable success [2,3].

This texture predicts reasonably oscillations of solar v,’s in a form not
inconsistent with LMA solar solution, if the SuperKamiokande value of the
mass-squared scale for atmospheric v,,’s is taken as an input. In both cases,
neutrino oscillations are practically maximal. The proposed texture also
predicts very small, perhaps unobservable, LSND effect with the oscillation

amplitude of the order O[10~!! (eV/ T(I)”L)4] and the mass-squared scale of the

2
order O(T% )+0(107% eV?). If e.g. m = O(10~! eV)—0O(1eV) corresponding
to sin? 20, = O0(0.9) — O(1), then sin?20 sxp = O(1077) — O(10~1),
Am?op = 0(1072eV?) — O(1eV?) and sin? 205, = O(1).
The negative result of Chooz experiment imposes on the oscillation am-
plitude of LSND effect (in our texture) an upper bound of the order O(10~3)

which corresponds for m to a lower limit of the order O(1072eV) and for
Am?qxp to a lower limit of the order O(10~%eV?). Notice that the estima-
tions following from the original LSND experiment [8] are e.g. sin?26;sxp =
0(1072) and Am?qp = O(1eV?). The new miniBooNE experiment may
confirm or revise the original LSND results.

As far as the neutrino mass spectrum is concerned, our model of neu-
trino texture is of 3 + 3 type, in contrast to the models of 3 + 1 or 2
+ 2 types [11] discussed in the case when, beside three active neutrinos
Ve, Vy, V7, there is one eztra sterile neutrino vs. In those models, three
Majorana conventional sterile neutrinos v, v, v, are decoupled through
the familiar seesaw mechanism, as being practically identical with three very
heavy neutrino mass states vy, vs, vg (of the GUT mass scale). In our model,
on the contrary, ve,, v,,, V7, are practically identical with three mass states
V4, Vs, Vg that this time are constructed to be massless.

In this paper, the most crucial may be the pertinent question, what is
the physical (Higgs?) origin of the Dirac component M®) Eq. (5), of the
neutrino mass matrix M, where its bimaximal-mixing-free unitary transform

]\OJ(D), Eq. (13), is conjectured to be of the fermion universal form (15) (with
o/ negligible in the case of neutrinos). A somewhat different question arises
also about the physical (explicit or effective?) origin of the lefthanded and
righthanded components M®) and M®) Eqs. (5), of M.

The reader can find three Appendices added at the end of this paper. In
Appendix A, an alternative, effective 6x 6 neutrino texture is sketched, where
due to a specific degeneracy of the mass matrix there are no oscillations
of the (conventional) sterile neutrinos and, therefore, no LSND effect can
arise. Appendix B contains a proposal of the explanation, why in nature
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there are three and only three generations of leptons and quarks, and also
an argument for the particular form of the Dirac-type 3 x 3 mass matrix used
in this paper for neutrinos (and in Refs. [2] and [3] for charged leptons and
quarks, respectively). Finally, Appendix C deals briefly with the problem of
new boson hierarchy, appearing as an unavoidable by-product of explaining
the observed fermion hierarchy in the way presented in Appendix B.

Appendix A
An alternative 6 X 6 texture without the LSND effect

In this Appendix, we report on another effective texture for three active
and three (conventional) sterile neutrinos, where there are no oscillations of
the latter neutrinos due to a specific degeneracy of the mass matrix. Thus,
they are decoupled from the former neutrinos, evidently in a different way
than through the familiar seesaw mechanism.

In such a texture, the 3 x 3 components of the neutrino 6 X 6 mass matrix
(3) get the form

w_ofo 00 (R)
MO =m| o0 1 0 |=-M®,
0 0 1
tan 2014 tan 2095 0
(D) 0 tan\/%()u tan 221925 tan 2036
M = m - P) 2 2 (Al)
tan 2014 __tan 205 tan 2036
2 2 V2

0
with m > 0 being a mass scale and tan26;; (ij = 14,25,36) denoting three
dimensionless parameters. Its unitary diagonalizing matrix is given as before
in Egs. (6) and (7), but now the relations

c?j - s?j = cos 20;; = m
work and the neutrino mass spectrum becomes
mia = :l:?%\/l + tan? 20,4,
moys = :l:?%\/l + tan? 2095 ,
mag = £my/1+ tan? 203, (A.3)

satisfying the equalities

(A.2)

(034 - 5%4) mig = (035 — 535) M5 = (036 — 336) mae = :ET(I)”L. (A.4)
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This can be seen by applying the formula M, = )", UaimiUEi with the use
of mass spectrum described in Egs. (A.3) or (A.4).

For the new texture, the neutrino oscillation formulae (20) lead to the
relations

P(ve = Ve)so = 1 —sin®(z21)s01

P(v, = Vy)atm = 1-— isinQ(:ﬁgl)atm - % [sin® (231 )atm + sin®(232)atm]
~ 1 —sin®(232)atm ,

P(v, — ve)isnp = %Sin2($21)LSND ~0,

P(Ve = Ue)Choor = 1 — sin*(221)choor ~ 1, (A.5)

where 0 ~ (221)atm < (231)atm ~ (£32)atm, (£21)Ls8p ~ 0 and (221)choor =~
(221)atm =~ 0. Note that the formulae (A.5) describe oscillations having the
same form as those in the case of the simple bimaximal texture of three active
neutrinos [12], but now with the specific mass spectrum (A.3). On the other
hand, oscillations of three (conventional) sterile neutrinos vanish in the new
texture, P(vy — vg,) = 0 and P(vo, — v3,) = 0p,0. (@, B =€, i, 7), in
consequence of the degeneracy Am3, = Am2, = AmZ; = 0 following from
the equalities m1 = —my4 , mo = —ms , m3 = —myg.

The oscillation formulae (A.5) imply bimazimal mizing for solar v,’s and
atmospheric v,’s, negative result for Chooz reactor v.’s and no LSND effect
for accelerator v,’s (7,’s).

0
In the case of the conjecture (15) with A/(P) = UGTM®) | the new
texture gives

0
mtan 2014 = 2'u—96—>0,
0 w4 x 80
tan 20y = — =1.23
mtan 2025 29" 9 2z
0 © 24 x 624
tan 263y = ———— =20.7 A6
mtan 203 29 o5 I ( )

and then, from Eq. (A.3)

M4 = :i:’l'(l)’L, mos5 = + ’I'(I)’L2 + 150#2 , M3e = + 7(7)12 + 427#2 . (A?)

Hence,

Am3, = 1.50p%, Am3y =425, Ami, = 4272, (A.8)
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Thus, using the SuperKamiokande result Am2, ~ 3 x 103 eV? for atmo-
spheric v,,’s described by the second formula (A.5), we obtain from Eq. (A.8)

p? ~71x107% eV or p~2.7x 1072 eV (A.9)
in place of the estimate (24). Then, from Eq. (A.8) we predict
Am3, ~ 1.1 x 107° eV? (A.10)

for solar v,’s presented in the first formula (A.5). So, the solar mass-squared
scale Am3, turns out to be the same as estimated before in Eq. (26), being
not inconsistent with the LMA solar solution.

Appendix B

Foundations for the fermion hierarchy

The form of Dirac mass matrix

[ peD) 20 0
M) = 59 200 4 (80 + ) /9 8v/3 alf) ,
0 8v/3alf) 24,1 (624 + (D)) /25

(B.1)
explored previously for charged leptons (f = e) [2]| as well as for up and down
quarks (f = u, d) [3] with a considerable success, is applied in the present
paper [Eq. (15)] to neutrinos (f = v), namely to the bimaximal-mixing-free

0
unitary transform M (P) of Dirac component of their 6 x 6 mass matrix M
(¢f. also Ref. [4]). In this case, €®) — 0 and o) /u*) is negligible. In
consequence, Amgol = Am2, is predicted just a little bit below the range

suggested by the LMA solar solution, if the SuperKamiokande result for
Am?2,.. = Am2, is used. Notice that in the quark case (f = wu, d) the
parameter £(/) must be replaced in the matrix element Még) by e 4o,
where C() > 0 is large.

In this Appendix, we argue, first of all, for there being three and only
three generations of leptons and quarks, and then, for the particular form
(B.1) of the Dirac-type mass matrix. This argumentation is based on two
assumptions:

(i) the conjecture that all kinds of matter’s fundamental particles existing

in nature can be deduced from Dirac square-root procedure \/p? —
I" - p, but constrained by an intrinsic Pauli principle, and

(7i) a simple specific ansatz for the shape of Dirac mass matrix, formulated
on the ground of the first assumption.
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The conjecture (7) turns out to be sufficient to explain the puzzling existence
of three and only three generations of leptons and quarks. Then, the ansatz
(i) reproduces the specific form (B.1) of the Dirac mass matrix. At the end
of this Appendix, we speculate on the physical origin of the ansatz (4i).

It is not difficult to see that, in the interaction-free case, Dirac’s square-
root procedure implies generically the sequence N = 1,2,3, ... of generalized
Dirac equations [13,2]:

( ., M(N)) M (z) =0, (B.2)
where for any N the Dirac algebra

{r™, {1 = 2g,, (B.3)

holds, constructed by means of a Clifford algebra:

- JN Z’YW ? {fyzu )a 73(y )} = 252']'9#1/ (B4)

with i, 7 =1,2,...,N and g, v = 0,1,2,3. The mass M) is independent
of F;SN). In general, the mass M (V) should be replaced by a mass matrix of
elements M(NN') which would couple 4" (z) with all appropriate (V') (z),
and it might be natural to assume for N # N’ that 'yl-(iv) and fyjjyvl commute,

and so do FlSN) and F,SN’).

For N =1, Eq. (B.2) is evidently the usual Dirac equation and for N = 2
it is known as the Dirac form [14] of Kéhler equation [15], while for N > 3
Eq. (B.2) give us new Dirac-type equations [13,2]. They describe some spin-
halfinteger or spin-integer particles for N odd or N even, respectively.
The Dirac-type matrices F&N)
Clifford algebra

for any N can be embedded into the new

N N
{ri?, 0} = 2859, . (B.5)

isomorphic with the Clifford algebra of 'yi(iv), if FZ-(HN) are defined by the

properly normalized Jacobi linear combinations of 'yl-(iv):
™ _ v L s
Flu = ;L :T;%“ )
Y = s P -] e
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fort: = 1 and 7 = 2,..., N, respectively. So, Fl(;i\[) and 1"'2(5), ...,F](VJZ)
respectively, present the “centre-of-mass” and “relative” Dirac-type matrices.

Note that the Dirac-type equation (B.2) for any N does not involve the

Y

“relative” Dirac-type matrices FQ(IJLV) ) e ,F](V]X), including solely the “centre-
of-mass” Dirac-type matrix Fl(iv) = F&N). Since Fi(uN) = Zjvzl Oij'y](-N),

where O = (O;;) is an orthogonal N x N matrix (OT = O~!), we obtain for
the total spin tensor the equality

N N
PILHEDBRVE (B.7)
i=1 i=1
where ) )
(N) _ L[ (N) (V) (N) _ 2 [(N) ()
Tjuw = 5 [Vju »Vjv ] » Djw =5 [Fju 1y ] : (B.8)

The total spin tensor (B.7) is the generator of Lorentz transformations for
P ().

In place of the chiral representations for individual fyj(-N) = ( ﬁp) , where
(V)
5

¥ (V) (W) (N (N) (V) _ () (B.9)

=50 Y Y2 Vs s iz = Ojis
are diagonal, it is convenient to use for any N the chiral representations of
Jacobi Fj(N) = (F (N)>, where now

Jh
N . N N N N N N
Fj(5 ) = sz(O )Fj(l )Fj(2 )Fj(3 ) 25.3) = zg.u) (B.10)

are diagonal (all matrices (B.9) and similarly (B.10) commute simultane-
ously, both with equal and different 7).

When using the Jacobi chiral representations, the “centre-of-mass” Dirac-
type matrices Fl(iv) = F&N) and Fl(év) = FéN) = iFéN)Fl(N)FQ(N)FéN) can be
taken in the reduced forms

Ny — 192--.01. WV — 1®---®1 B.11
) YW®l®---®1, Ij BR1IQ---®1, ( )
N —1 times N—1times

where v, 75 = iy0y17273 and 1 are the usual 4 x 4 Dirac matrices.
Then, the Dirac-type equation (B.2) for any N can be rewritten in the
reduced form

o — M(N) (N) _
(’Y p M )a151 ¢51a2...aN (iE) - 07 (Bl?)
where a7 and asg, ..., ay are the “centre-of-mass” and “relative” Dirac

bispinor indices, respectively (o; = 1,2,3,4 for any i = 1,2,..., N). Note
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that in the Dirac-type equation (B.12) for any N > 1 there appear the “rel-
ative” Dirac indices a9, ..., ay which are free from any coupling, but still
are subjects of Lorentz transformations.

The Standard Model gauge interactions can be introduced to the Dirac-
type equations (B.12) by means of the minimal substitution p — p — gA(x),
where p plays the role of the “centre-of-mass” four-momentum, and so, x —
the “centre-of-mass” four-position. Then,

{v-p-gA@]-M™} g @=0,  (B13)

a1$
where gy- A(x) symbolizes the Standard Model gauge coupling that involves
within A(z) the familiar weak-isospin and color matrices as well as the usual
Dirac chiral matrix 5. The last arises from the “centre-of-mass” Dirac-type
chiral matrix FéN), when a generic gI"(™) . A(x) is reduced to gy - A(z) in
Eq. (B.13) [see Eq. (B.11)].

In Eq. (B.13) the Standard Model gauge fields interact only with the
“centre-of-mass” index a; that, therefore, is distinguished from the physi-
cally unobserved “relative” indices «a, ..., any. This was the reason, why
some time ago we conjectured that the “relative” Dirac bispinor indices
s, ..., ay are all indistinguishable physical objects obeying Fermi statis-
tics along with the Pauli principle requiring the full antisymmetry of wave
function 1/1&122___&]\, (z) with respect to ag, ..., ay [13,2]. Hence, due to
this “intrinsic Pauli principle”, only five values of N satisfying the condition
N — 1 < 4 are allowed, namely N = 1,3,5 for N odd and N = 2,4 for
N even. Then, from the postulate of relativity and the probabilistic inter-

pretation of QlJ(N) (x) = (1/1&]1\22,,,0”\, (m)) we were able to infer that these NV

odd and N even correspond to states with total spin 1/2 and total spin 0,
respectively [13,2].

Thus, the Dirac-type equation (B.13), jointly with the intrinsic Pauli
principle, if considered on a fundamental level, justifies the existence in na-
ture of three and only three generations of spin-1/2 fundamental fermions
coupled to the Standard Model gauge bosons (they are identified with lep-
tons and quarks). In addition, there should exist two and only two gen-
erations of spin-0 fundamental bosons also coupled to the Standard Model
gauge bosons (they are not identified yet).

The wave functions or fields of spin-1/2 fundamental fermions (leptons
and quarks) of three generations N = 1,3,5 can be presented in terms of

1/1&11\22 .ay (z) as follows:

P (@) = V()
P (2) = 1 (C75) g ¥ nsas (8) = 5 (x) = P (o),
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D) = LeasasarastCmasagas (®) = P 05(2) | (B.14)

where 1/),(1]:22,,@ ~ (z) carries also the Standard Model (composite) label, sup-
pressed in our notation, and C denotes the usual 4 x 4 charge-conjugation
matrix. Here, writing explicitly, f1 = ve,e ,u,d, f3 = v, ,c,s and
fs = vy, 77,1, b, thus each fy corresponds to the same suppressed Standard
Model (composite) label. We can see that, due to the full antisymmetry in
«; indices for 7 > 2, the wave functions or fields N = 1,3 and 5 appear (up
to the sign) with the multiplicities 1, 4 and 24, respectively. Thus, for them,
there is defined the weighting matrix

) 1 0 0

1/2 _

plP=——1 0 V4 0 , (B.15)
V2 \ o o v

where Tr p = 1.

Concluding the first part of this Appendix, we would like to point out
that our algebraic construction of three and only three generations of lep-
tons and quarks may be interpreted either as ingenuously algebraic (much
like the famous Dirac’s algebraic discovery of spin-1/2), or as a summit
of an iceberg of really composite states of N spatial partons with spin-
1/2 whose Dirac bispinor indices manifest themselves as our Dirac bispinor
indices aq, a9, ..., ay (N = 1,3,5) which thus may be called “algebraic
partons”, as being algebraic building blocks for leptons and quarks. Among
all N “algebraic partons” in any generation N of leptons and quarks, there
are one “centre-of-mass algebraic parton” (ap) and N — 1 “relative algebraic
partons” (ag, ..., ay), the latter undistinguishable from each other and so,
obeying our intrinsic Pauli principle.

In the second part of this Appendix we introduce a simple specific ansatz
for the shape of Dirac mass matrix by putting [13,2]

M) = pl2p(D 12 (B.16)
where p'/? is given in Eq. (B.15) and

WD =D [N = (1 =N 4 D (a+al) (BT

with ,u(f) >0 and e) >0 being parameters, while f = v, e, u, d refers to
neutrinos, charged leptons, up quarks and down quarks, respectively. Here,
the matrix

N = =1+2n (B.18)

o O =
o w o
oo O
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describes the number of all «; indices with ¢ = 1,2,..., N (all “algebraic
partons”), appearing in any of three fermion generations N = 1,3, 5, while

0
0
V2

play the role of “truncated” annihilation and creation matrices for pairs of
“relative” indices oya; with (4,75) = (2,3),..., (N — 1, N) (pairs of “relative
algebraic partons”):

01 0 0
a={0 0 v2 |, of=[1
0 0 0

0
0 (B.19)
0 0

, (B.20)

2
=,
Il
=
=)
=,
Il
|
=)
2,
3
Il
2
2,
2
Il
coo
o~ o
CR—

where the “truncation” condition a3 = 0 = a'? is satisfied.

It is not difficult to show that the formulae (B.16) and (B.17) lead ex-
plicitly to the particular form (B.1) of Dirac-type mass matrix.

Finally, a few words about a possible physical origin of the ansatz (B.17).
In the kernel (B.17) of the Dirac mass matrix (B.16), the first term p(f) N2
may be intuitively interpreted as coming from an interaction of all N
“algebraic partons” treated on equal footing, while the second term
—pl) il —&?(f))N*2 may be considered as being a subtraction term caused
by the fact that there is one “centre-of-mass algebraic parton” distinguished
(due to its external coupling to the Standard Model gauge fields) among
all N “algebraic partons” of which N —1 are “relative algebraic partons”,
indistinguishable from each other. This distinguished “algebraic parton”
appears, therefore, with the probability [N!/(N —1)!]7' = N~! that, when
squared, leads to the additional term p)(1 — e())N=2 [with a coefficient
p) (1 — e()] which should be subtracted in the kernel (B.17) from the for-
mer term in order to obtain the mass matrix element Ml({) = u(f)s(f)/29
tending to zero if e/) — 0. Eventually, the third term o) (a+a) in the ker-
nel (B.17) annihilates and creates pairs of “relative algebraic partons” and
S0, is responsible in a natural way for mixing of three fermion generations
in the Dirac mass matrix M ().

Appendix C
Problem of new boson hierarchy
The way of explanation of the observed fermion hierarchy (especially, of

the existence of three and only three generations of leptons and quarks),
as is described in Appendix B, suggests also the existence of a new boson
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hierarchy, consisting of two and only two generations of spin-0 fundamental
bosons. These boson generations correspond to the numbers N = 2,4 of the
Dirac bispinor indices a1, asg, ..., ay, among which there are one “centre-
of-mass” index a7 and N — 1 = 1,3 “relative” indices as or ag, az, ag,
respectively. Only the “centre-of-mass” index aq is coupled to the Standard
Model gauge bosons.

The wave functions or fields of spin-0 fundamental bosons of two gener-

ations N = 2,4 can be written down in terms of 1/1&122___&]\, (z) as follows:

") (z) = HCT5)a100P s (@)
= {3 (2) = =i} () = i () = —4i (@),
"/)(b4)($) = %5111&2&3&47/]&?@(13(14(*%)

= (@) = —9Sthi (@) = i) = —plga(z), (C.1)

where the wave function or field zp&ﬁ,,,m (x) carries the suppressed Stan-
dard Model (composite) label. In consequence, there are four sorts of funda-
mental scalars carrying the same Standard Model signature as four sorts of
fundamental fermions, namely as neutrinos (f = v), charged leptons (f = e),
up quarks (f = u) and down quarks (f = d). These fermions, however, are
realized in three generations N = 1,3,5, while the fundamental scalars are
predicted in two generations N = 2,4. So, one cannot hope here for a con-
struction of the full supersymmetry (at most, there might appear a partial
supersymmetry: two to two).

Two lepton-like scalar doublets (corresponding, as far as the Standard
Model signature is concerned, to three lepton doublets) might play the role
of two generations of Higgs doublets [16]. On the other hand, two quark-like
scalar doublets (corresponding to three quark doublets) should lead to a lot
of new (colorless) hadrons, composed dynamically of these colored scalars
from two generations and (also colored) quarks from three generations [17].
Most of them should be highly unstable, but perhaps not all, allowing then
for some new observations.

In the rest of this Appendix, we discuss some structural aspects of the
problem of new boson hierarchy, comparing it with the fermion hierarchy.

It is not difficult to derive the second-order differential equation for
ngng___aN (z) arising from the Dirac-type equation (B.13) through its matrix
multiplication from the left by v - [p — gA(—v5)] + M), where the sign of
vs within A,(—v5) = A, (@, —vs) is reversed in comparison with Eq. (B.13).
Such a Klein—-Gordon-type equation gets the form
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{ =940 =M™ 2190 F,, (35) =g M N)y-[A(75) = A(=75)] |

a1f1

><@bé£i22u41N = 0’ ((3-2)
with

F;W(’Y5) = auAU(’Y5)_aVAu('Y5) +1g9 [Au('75)a Ay (vs)] (C.3)

denoting the Standard Model gauge forces. Here, v - A(—7v5) = A(vs5) -y
since Ay (vs5) = Au(0) + A}, (0)ys. Thus, Au(ys) — Au(—s) = 245,(0)7s

For N even, when only the scalar wave functions or fields ¢(®~ )(x)
(N = 2,4) given in Egs. (C.1) appear, the Klein-Gordon-type equation
(C.2) can be reduced to the usual Klein-Gordon equation

{Ip = 940" + g4 () = M2} 4 — 0, (C.4)

because the 4 x 4 Dirac matrices 75, o*¥, o*’v5 and y*v5 appearing in
Eq. (C.2) are traceless and so, are reduced to zero for the scalars ¢(®~)(z)
(N = 2,4), when there are no other boson wave functions or fields with
N = 2,4. The Klein—-Gordon equation (C.4) implies in turn the existence of
the relativistic covariant conserved current of the usual form

>
GRS = Nl i 8,y —g4,(0)] ), (C.5)

where p, = i0, and 3u— (0 au) with f(x)gu = 0,f(z). In fact,
o+ ;SKC?‘, = 0, because AL(O) = A,(0) and 0"A,(0) = 0. Here, Ay, > 0is a

normalization mass scale such that ¢(O¥)(z) = A;}:/QQ/J(I’N)(QU) is normalized

(b )

as a Klein-Gordon wave function or field i.e., [ d®zjyd () is equal to 1 (for
positive energies) or to the operator of by-boson number, respectively.

For N even, the Dirac-type equation (B.13) does not give any j(D )( ),
of course.

The remainder of this Appendix is devoted to other consequences of the
Klein-Gordon-type equation (C.2) and to its comparison with the Dirac-type
equation (B.13).

For N odd, where only the bispinor wave functions or fields ¢&{N )(m)
(N =1,3,5) defined in Eq. (B.14) exist, the Dirac-type equation (B.13) can
be reduced to the usual Dirac equation

{71 - gA0s)] - MM}y —o. (C.6)

1B
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This gives in turn the relativistic covariant conserved current of the usual
form

];(LJ]C)N) = 1/)(fN) (’YO’YM)alﬁl 1/)/31]\7 s (07)

valid for N odd (N = 1,3,5). In fact, 9(5") () = 0 since Af,(y5) = A, (75).
For N odd, the Klein-Gordon-type equation (C.2) is reducible to the
form

{[p—gA<v5>]2—M<N>2—lgaﬂ”FM%)—gM%-[A<75>—A<—75)]}

2 aifi
<) = 0. (C.8)
This implies in turn the following divergence relationship:
o"j 0 = —2gA"1(0)5 5, (C.9)
where
0 = 0 —gAL0)] pi) C.10
juKG = fNQ/} (’70)0151 1 O0u—9g u( ) ¢/31 ( . )
and o
e = At (909 e [§ 9 —94u(0)| 5 (C11)

are respectively the vector and axial-vector Klein-Gordon currents of fxn
bispinor fermions. Here, the form A,(ys) = A,(0) + v54),(0) is used, and
Ary > 0 denotes a normalization mass scale. Due to the chiral character of

(fN)(
(fN)(I)‘

electrowealk interactions (where AJ,(0) # 0), the current j x) is generi-

cally nonconserved locally, in contrast to the current j

In Eq. (C.7) as well as in Egs. (C.10) and (C.11), and also (C.5), there
appears the operation* = (complex conjugation) X (transposition) = (hermi-
tian conjugation), where the transposition pertains to the Standard Model
(composite) label, suppressed in this notation, and to the quantum-field de-

grees of freedom, the latter if 1/1((1];22,,,0”\, () is a field rather than a wave
function. For pure Dirac degrees of freedom # is equivalent to the complex
conjugation, in particular, when Dirac bispinor indices are written down
explicitly as e.g. in Eq. (C.7).

At this point, we would like to emphasize that the Standard Model (com-
posite) label, suppressed in 1/)&]22,,,&]\, (x), 1is summed up in the discussed
currents within any generation N = 13,5 and N = 2,4, separately. As was
mentioned already in Appendix B, in order to mix generations N = 1,3,5
or N = 2,4, separately for any Standard Model signature, we should intro-
duce nondiagonal mass matrix of elements MWNNY) with N,N' = 1,3,5 or
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N,N' = 2,4, dependent on the suppressed Standard Model signature. We
should also stress that in the Dirac-type equation (B.13) as well as in the
Klein-Gordon-type equation (C.2) there are no source terms which could
change the global number of all f fermions and all b bosons, respectively. Of
course, the numbers of gauge bosons and possible Higgs bosons do change
(the latter, due to their definition, do get nonzero f-fermion and b-boson
sources).

Now, some more formal remarks are due. The relativistic covariant
Dirac-type current and Klein—-Gordon-type current must have the forms

(N) _ o (N)* (N) [ 7(N) (N) (N) 7(N) ()
Jup = Varas..an (FIO Iy . . I'yg' 1, >a1a2...aw,/31ﬂ2.../3N ¢ﬂ1ﬂ2...5N
(C.12)
and
(N) _ 1, (N)* (N) ( (N) ~(N) (N)>
Juka = AN Paras..ay Iy Iy 7. Iy o1z B1 B2 B
e (N)
x[i 9, —gAM(O)} P (C.13)
respectively, where ™) are the Dirac-type matrices in their Jacobi version,

i
introduced in Eqs. (B.6), while ¢(™) and 5™ are phase factors making
Hermitian the N x N bispinor matrices appearing in these currents and
Anxy > 0 denote normalization mass scales.
The Dirac-type matrices FZ-(HN) (1=1,2,...,N), satisfying the anticom-
mutation relations of Clifford algebra (B.5), can be represented in terms of
the usual 4 x 4 Dirac matrices as follows:

iy = 7%,0191018...0181,
N—l:imes
i = % ein;selele.elel,
Fzgiv) = BB VNRL®...0111,
(N) _ Vi for N odd
v = :Y5®75®75(%75®”'®751®{i7“75 for N even -(C.14)

N—1times
Then, forming their product for 4 = 0,
(V) p(N) (V) { i Yo ® 0 ®...® 79  for N odd

I =
10 +20 NO i)%i’yo%@i%%@' .. ®1y0ys for N even
(C.15)
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and multiplying from the right by I 1(5), we obtain

FORN  p ) _ [ 7 0 ® % @@ j  forNodd
10 f20 -4 N0 g .
(=)= ’Y()’YW;L@WO’YE)@ . ®iv07y5 for N even
(C.16)
Hence, we can define the phase factors in Egs. (C.12) and (C.13) as follows:

e _ [ 0 =i for N =135
(=i) 2 =1,—i for N =24
(=)' T =1,—i,—1 for N=1,3,5
—1 : - -1, — or —
" = AN U Y (C.17)
(—i)> = —i,—1 for N = 2,4

Making use of Egs. (C.16) and (C.15) with (C.17) we can represent the
currents (C.12) and (C.13) in the following forms:

j(N) _ "/J(N)* { N (’70 Yai g (W0)azps -+ (V0)ay By }
uD = Ferdeon U (1S sy )anpy ((005)asss -+ (9005)an b
Xl/}éjlvﬁ)&..ﬁN (C'18)
and
](]}\QG, :A;vldjg(]va)(* . { N (’70)04151 '(’70)0252 (70)aNﬂN }
o 1t (_1)7(1’70'75)04151 (1'70’75)042[32 I (1’70’75)04NﬁN
“
X [iau— gAu(O)}z/ngngmﬁN . (C.19)

Here, the alternative { } is valid for { Nodd }

N even
For N = 1,3,5, the current jl%) (z) can be reduced to the conserved

current j(fN)(I) defined in Eq. (C.7). For N = 2,4, on the other hand, the
(

current j HD) () as well as the current jsg")(m) do not exist.
For N =1,3,5, the current jfgz}(x) is reducible to the generically non-

conserved current j(fN)( ) introduced in Eq. (C.10). For N = 2,4, however,
(N) (bw)

the current j, ¢ (z) can be reduced to the conserved current j, ¢ () defined

in Eq. (C.5). For an illustration we will perform the last reduction in the
case of N = 2.
In fact, for N = 2, due to the definition (C.1) of the scalar () (z) =

T T [0_1751/1(2)T($)], where 92 (z) = (1&&21)@2 (m)) is a 4 x 4 formal matrix,
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we can infer that v @ (z) = (y50) " ") (2)+R(z) with Tr[C~'y5RT (z)] =0.
Here, T denotes the transposition with respect to Dirac bispinor indices.
Expanding the matrix ¢ T(z) in terms of the Dirac relativistic covariants
S, P, V, A, T, where S = 1, we can write
AT = {1¢(S) + 959 ™) + 97 4 759D 4 2, 7] 9 ""} 75C
= ~vCyp® + RT (C.20)
with
1
RT = Oy + 995097 44,092+ =y, o] 3 CpHP7 . (C.21)
Hence, () (z) = +(Tr 1)y (z) = ) (z). When for N = 2 only the
scalar 9(®2) (z) = ¢(9) (z) appears, we get the truncation R(z) =0 and so,
W =9 = (30) Ty (0.22)

For a justification of the absence of 1)(P) (z), (V)P (z), 4P () and (TP ()
from the expansion (C.20) see Egs. (C.30) and (C.31) later on. Now, after
a simple calculation, we show that the form (C.22) of ¢ (z) leads through
Eq. (C.19) with N = 2 to the expression

1. 1. . R
13;52}2(; = 0 U (075 ) a5 (075 ) s [Zau—gAu(O) Vhus,
<>
= 2519 i3, - 94,(0)] ¢® (C.23)

that with Ay = X, is equal to the Klein—Gordon current ]fﬁéé(I) of by scalar

bosons, introduced in Eq. (C.5). The factor { in Eq. (C.23) is caused by

reduction of the number of wave-function components due to the relations
P2 (2) = =9 (z) and ¥F(x) = {2 (z) [see the definition (C.1)].
These relations follow explicitly from the form of

0 1 0 0
-1 0 0 0

¢(2>E(¢gl>a2):_%g¢<8): 00 o 1 |¥®. (24
0O 0 -1 0

valid in the chiral representation, where

1 0 0 0
o1 0o o

=100 -1 o |
00 0 -1
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- (P)
_ —10, 0 C.95
( 0 iol” ) (C.25)
Here, (y5C)" = —5C.

In order to justify the truncated form (C.22) of 4(?)(z), let us introduce
for N = 2 the matrix of total internal parity:

OO = O
[ e e
_ o O O
O = OO

n(Q)FfS’FQ(? =% @ Y05 = ((7075)a18: (V07Y5)azps) » (C.26)
where r](2) = —1, and the matrix of total chirality:
2) (2
TPTR =95 @75 = ((45)arss (15)asss) (C.27)

[see Egs. (C.14) and (C.17)]. With these matrices acting on Ql}s (z) =

(v5C) TS (z) = (zpswz ) [see Eq. (C.22)] we can show after a simple
calculation that

N rw = ¢, 2 Py = ¢ . (C.28)

In addition, of course, %(Egu)u + EQW)Q/JS = 0. This means that our spin-0

wave function or field 1/)_9 (z) = (1/}_&21 s (x)) gets the eigenvalue of total
internal parity equal to +1 and the eigenvalue of total chirality equal also to
+1. Here, evidently, the matrices 77(2)1"'(2) @) and F1(5) 2(52) commute, and
also commute with %(Eﬁ)y + Egz)u) for p,v=1,2,3.

After a calculation, it turns out that, among the terms

P = CTp®) @ = (7,7,0) TP, P = (7,0) TR

T

pi) = <%hp, %]750> 3p(ee (C.29)

whose sum gives the matrix R(z) introduced through Eq. (C.21), only
1/11(32) (z) is an eigenstate of the total internal parity n(g)F@) 2((2)) (though,
this time, with the eigenvalue equal to —1), while three others are not such
eigenstates. In fact,

IO =~y

WO W = e
WA = v

WAy = v (C.30)
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Now, in view of Eqs. (C.30), we make tentatively the assumption that only
terms with definite total intrinsic parity can contribute to the expansion
of the state 9 (z), described in Eq. (C.20). Such a constraint imposed
on Y@ (z) excludes ¢£,2)(ac), ¢/(3)(m), w(TQ)(x) from the set (C.29), when
Egs. (C.30) are referred to. Then, the Klein-Gordon-type current (C.19)
for N = 2 may be evaluated as follows:

Ao |
Tl =V 11p® = [ — g0 (1,
—p N[ 1p P — 24 CD*[ ],y (I
— ¢(S)*[ ];ﬂ/’(s) _ ¢(P)*[ ];ﬂ/’(P) ’ (C.31)

where [ ], = [zgﬂ —gAM(O)]. But, the second term in Eq. (C.31) can

spoil the positive-definiteness of 1(?) () (for positive energies), expressed by
the requirement of j(()?G(x) > 0 (for positive energies). This excludes 1/)1(32) (x)
from the set (C.29). Then, from Eq. (C.31) the Klein-Gordon current (C.23)
follows.

In general, for any N even, if the total internal parity is diagonal for
QlJ(N) (z) = (¢&]¥3¢2...QN (m)) with the eigenvalue equal to +1:

(N) p(N) p(N) ['(N)Qp(N) — ¢(N)

n 0 Too - T'no , (C.32)

then the conserved Klein-Gordon-type current (C.13) or (C.19) takes the
simplified form:

. — * . <—>
it = AUy [ Ou =940 900y - (C:33)

This form is relativistic covariant only for states satisfying the constraint
(C.32) (which is not explicitly covariant). The form (C.33) implies the
positive-definiteness of ¢(V)(z) (for positive energies), since in the case of
Klein—Gordon-type wave function (of positive energies)

Ad
ikt = A5 Y% [ 90 —940(0)] 930, a0y > 0. (C.34)

Note that the total internal parity n(N)Fl(éV)F%V) . ..F](V]X) is a constant of

motion, because G“j!%z;(x) = 0 for N even. So, the constraint (C.32) is

stationary.
As was seen in Eq. (C.28), the constraint (C.32) is satisfied for N =

2 with 1/1&21)&2 (2) = (15C) aga, ) (x). Notice that also for N = 4 with
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ngﬁ)awsm(x) = Eaiasasas P (x) the constraint (C.32) holds. Here also,
the total chrality F1(§) FQ(;})F:,S;) le(g) gets its eigenvalue +1.

For any N odd, an analogical role is played by the total “relative” internal
parity which, if diagonal for (") (z) = (ng];[g?___a]v (x)) with the eigenvalue
equal to +1:

¢ P (N) = (V) (C.35)
simplifies the form of conserved Dirac-type current (C.12) or (C.18):
(N « N
J,SD) = 02 e V0V a5, wéligmw . (C.36)

Similarly as before, this form is relativistic covariant only for states fulfilling
the constraint (C.35) (that is not explicitly covariant in the world of “relative”
Dirac degrees of freedom). The form (C.36) leads to the positive-definiteness
of (M) (z) (for all energies), because in the case of Dirac wave function (of
all energies)

Note that, this time, the total “relative” internal parity ¢(N) Féév) . F](VJX) is
(N)

a constant of motion, since 8“j“D () =0 for N odd. Thus, the constraint
(C.35) is stationary. For an illustration, we will show that the constraint
(C.35) is satisfied for the form of ¢&31)a2a3 (x) corresponding to the bispinor
{)(z) defined in Eq. (B.14).
In fact, for N = 3, due to the definition (B.14) of the bispinor

1/}&{3) (.’B) = %(07175)112&31/}&31)042043 (:E),

we can conclude that 1/),(131)042043 (z) = (75C)a3a21/1((1{3)(x), as for N = 3 only
the bispinor ¢&{3)($) exists. Since

ENTHTR) =187 ®%0 = Gars (Waspa(Wasss) » (C:38)
where £¢) = —i [see Eqgs. (C.14) and (C.17)], the above form of 1/),(131)042043 (x)
leads after a simple calculation to the equality

(3) 1~(3) (3) _
6(3) <F20 F?’O ) ¢5152B3 - ¢l(131)0420¢3 (0-39)

arazas,f182083

which is the constraint (C.35) for N = 3. Note that also for N = 5, where
(fs) 1

oy (T)= 2_50420430440451/’&51)042043044&5 (z) and Q/’r(Ji)amsaws (T) =€arasasas ¢&€5) ()
(as for N = 5 only the bispinor 1/)&{5)(x) exists), we get the eigenvalue equal
to 41 for the total “relative” intrinsic parity 5(5)F2(8)F3(8)F4(8)Fé8), where
¢0) = —1, and so, the constraint (C.35) for N = 5 holds.
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