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UNINTEGRATED GLUON DISTRIBUTIONS FROMTHE TRANSVERSE COORDINATE REPRESENTATIONOF THE CCFM EQUATIONIN THE SINGLE LOOP APPROXIMATIONJ. Kwiei«skiHenryk Niewodniza«ski Institute of Nulear PhysisRadzikowskiego 152, 31-342 Kraków, Poland(Reeived Marh 19, 2002)We utilise the fat that the Catani�Ciafaloni�Fiorani�Marhesini(CCFM) equation in the single loop approximation an be diagonalisedby the Fourier�Bessel transform. The analyti solution of the CCFM equa-tion for the moments f!(b;Q) of the sale dependent gluon distribution isobtained, where b is the transverse oordinate onjugate to the transversemomentum of the gluon. The unintegrated gluon distributions obtainedfrom this solution are analysed. It is shown how the approximate treat-ment of the exat solution makes it possible to express the unintegratedgluon distributions in terms of the integrated ones. The orresponding ap-proximate expressions for the unintegrated gluon distribution are omparedwith exat solution of the CCFM equation in the single loop approximation.PACS numbers: 12.38.Bx, 13.40.-f1. IntrodutionThe basi, universal quantities of the QCD improved parton model arethe sale dependent parton distributions, like the gluon distribution g(x;Q2),where x denotes the momentum fration. The (integrated) parton distri-butions an be related to the less inlusive distributions f(x;Qt; Q) unin-tegrated over transverse momentum Qt of the parton. Those uninegrateddistributions are often needed in less inlusive measurements whih are sen-sitive to the transverse momentum of the parton [1� 6℄.The unintegrated, sale dependent distributions are desribed in QCDby the CCFM equation [7�17℄ based upon quantum oherene whih impliesangular ordering [18℄. Its very nie feature is the fat that it embodies boththe DGLAP and BFKL evolutions at low x. In the region of large and(1809)



1810 J. Kwiei«skimoderately small values of x, where the small x e�ets an be negletedthe CCFM equation beomes equivalent to the (LO) DGLAP evolution.This approximation orresponds to the so alled �single loop� approximation[9, 10℄.The CCFM equation interloks in a rather ompliated way the tworelevant sales i.e. the transverse momentum Qt of the parton and the hardsale Q. The main purpose of this paper is to explore the fat that in the�single loop� approximation the CCFM equation an be solved exatly in thetransverse oordinate representation onjugate to the transverse momentumof the parton. The unintegrated distributions an then be obtained fromthe Fourier�Bessel transform of this solution. Although the �single loop�approximation neglets small x e�ets and so it is not valid at very small xit an be a reasonable approximation at large and moderately small values ofx ( x � 0:01 or so), whih is ertainly the region of phenomenologial interest[2, 6℄. Analyti insight into the exat solution of the CCFM equation in thesingle loop approximation will also make it possible to ritially examineand justify approximate formulas linking the unintegrated distributions tothe integrated ones in the region where the (LO) DGLAP dynamis shouldbe adequate [1, 2, 6℄.The ontent of our paper is as follows: In the next setion we reallthe CCFM equation for the unintegrated gluon distribution. In Se. 3 wedisuss the �single loop� approximation of this equation in the transverseoordinate representation. We show that it an be solved exatly for themoment funtion f!(b;Q), where b denotes the transverse oordinate onju-gate to the transverse momentum Qt of the gluon. We do also show how theapproximate forms of this solution expressing the unintegrated distributionsin terms of the integrated ones [1, 2℄ originate from the exat solution. InSe. 4 we present numerial results for the unintegrated gluon distributionsbased on the solution of the CCFM equation in the transverse oordinaterepresentation. We also onfront exat solution with its approximate forms.Finally in Se. 5 we summarise our main results and give our onlusions.2. The CCFM equationParton asade with angular ordering generates the Catani�Ciafaloni�Fiorani�Marhesini (CCFM) equation [7℄ for the unintegrated, sale depen-dent gluon distribution f(x;Qt; Q) in the proton, where x;Qt and Q denotethe longitudinal momentum fration arried by the gluon, transverse mo-mentum of the gluon and the hard sale, respetively. The latter is spei�edby the maximal value of the emission angle. The CCFM equation has thefollowing form:



Unintegrated Gluon Distributions from . . . 1811f(x;Qt; Q) = �f0(x;Qt; Q)+ Z d2q�q2 1Zx dzz �(Q� qz)�(q � q0)�s2��S(Q; q; z)� �2N�NS(Qt; q; z) + 2Nz(1� z) + z �Pgg(z)�f �xz ; jQt + (1� z)qj; q�; (1)where �S(Q; q; z) and �NS(Qt; q; z) are the Sudakov and non-Sudakov formfators. They are given by the following expressions:�S(Q; q; z) = exp264� Q2Z(qz)2 dp2p2 �s2� 1�q0=pZ0 dzzPgg(z)375 ; (2)�NS(Qt; q; z) = exp264� 1Zz dz0z0 Q2tZ(qz0)2 dp2p2 2N�s2� 375 : (3)For simpliity we neglet possible quark ontributions. The funtion�Pgg(z) is: �Pgg(z) = 2N[�2 + z(1� z)℄ (4)and orresponds to the non-singular part of the g ! gg splitting funtionPgg(z) Pgg(z) = 2N �1z + 11� z�+ �Pgg(z) : (5)The argument of �s will be spei�ed later.In priniple the CCFM equation has been obtained using only the sin-gular parts of the splitting funtion proportional to 1=z and 1=(1 � z). Weadd the non-singular part �Pgg(z) to the kernel of this equation in order toobtain the omplete DGLAP evolution in the �single loop� approximation.The two-dimensional vetor q in equation (1) is related to the transversemomentum qt of the emitted gluonqt = (1� z)q : (6)The onstraint Q > qz re�ets the angular ordering and the inhomogeneousterm �f0(x;Qt; Q) is related to the input non-perturbative gluon distribution.It also ontains e�ets of both the Sudakov and non-Sudakov form fators.



1812 J. Kwiei«skiIt should be observed that if the ut-o� qz0 in the de�nition of the non-Sudakov form fator is replaed by the �xed ut-o� q0 then the non-Sudakovform fator redues to the form fator re�eting the reggeisation of the gluon,i.e.: qz0 ! q0 ! �NS = exp ��2�G(Q2t )� 2� ln�1z�� ;�G(Q2t ) = 1� Q2tZq20 dp2p2 N�s2� :The unintegrated sale dependent gluon distribution f(x;Qt; Q) is re-lated in the following �standard� way to the onventional (sale dependent)integrated gluon distribution xg(x;Q2):xg(x;Q2) = Q2Z dQ2tf(x;Qt; Q) : (7)In the �single loop� approximation of the CCFM equation (1) the angularordering onstraint �(Q� qz) is replaed by �(Q� q) and the non-Sudakovform fator �NS is set equal to unity [9, 10℄. Equation (1) then reads:f(x;Qt; Q) = �f0(x;Qt; Q)+ Z d2q�q2 1Zx dzz �(Q� q)�(q � q0)�s2��S(Q; q; z=1)� �2N + 2Nz(1� z) + z �Pgg(z)� f�xz ; jQt + (1� z)qj; q�: (8)It is useful to �unfold� the Sudakov form fator in equation (8) in order totreat the real emission and virtual orretions terms on equal footing. Un-folded CCFM equation in the single loop approximation takes the followingform:f(x;Qt; Q) = f0(x;Qt)+Z d2q�q2�(q � q0)�s(q2)2� 1Z0 dzz zPgg(z)� h�(Q�q)�(z�x)f �xz ; jQt + (1�z)qj; q��z�(Q� q)f(x;Qt; q)i : (9)The inhomogeneous term f0(x;Qt) is equal to the input non-perturbativegluon distribution in x and Qt.



Unintegrated Gluon Distributions from . . . 18133. Transverse oordinate representation of the CCFM equationin the single loop approximationIt an be easily observed that the CCFM equation in the single loopapproximation (9) an be diagonalised by the Fourier�Bessel transform:f(x;Qt; Q) = 1Z0 dbbJ0(Qtb) �f(x; b;Q) ; (10)with the funtion �f(x; b;Q) given by:�f(x; b;Q) = 1Z0 dQtQtJ0(Qtb)f(x;Qt; Q) ; (11)where J0(u) is the Bessel funtion. From equations (7) and (11) we get:�f(x; b = 0; Q) = 12 x g �x;Q2� : (12)The orresponding equation for �f(x; b;Q), whih follows from equation (9)after taking the Fourier�Bessel transform of both sides of this equation reads:�f(x; b;Q) = �f0(x; b) + Q2Zq20 dq2q2 �s(q2)2� 1Z0 dzz zPgg(z)� n�(z � x)J0[bq(1� z)℄ �f �xz ; b; q�� z �f(x; b; q)o ; (13)where we put q2 as the argument of �s. This hoie of sale gives standard(LO) DGLAP equation for the integrated gluon distribution forxg(x;Q2) = 2 �f(x; b = 0; Q):In order to solve equation (13) it is useful to introdue the momentfuntion �f!(b;Q) �f!(b;Q) = 1Z0 dxx!�1 �f(x; b;Q) : (14)



1814 J. Kwiei«skiEquation (13) implies the following equation for the moment funtion�f!(b;Q):�f!(b;Q) = �f0!(b)+ Q2Zq20 dq2q2 �s(q2)2� 1Z0 dzzPgg(z)nz!�1J0[bq(1�z)℄ �f!(b; q)� �f!(b; q)o: (15)The solution of this equation reads:�f!(b;Q) = f0!(b) exp [S!(b;Q)℄ ; (16)whereS!(b;Q) = Q2Zq20 dq2q2 �s(q2)2� 1Z0 dzzPgg(z)nz!�1J0[(1� z)bq℄� 1o : (17)At small values of b (i.e. b� 1=q0) we an neglet b dependene in �f0!(b)and set �f0!(b) ' �f0!(b = 0) :We an identify �f0!(b=0) with the moment of the input (non-perturbative)integrated distribution, i.e. �f0!(b = 0) = 12 g0! ; (18)where g0! = Z dQ2t 1Z0 dxx!�1f0(x;Qt) : (19)We note that at b = 0 solution (16) redues to the solution of the DGLAPequation for the moment funtion g!(Q2) of the integrated gluon distributiong(x;Q2), i.e. g!(Q2) = 1Z0 dxx!g �x;Q2� : (20)



Unintegrated Gluon Distributions from . . . 1815To be preise we getf(b = 0; Q) = 12g!(Q2) ;g!(Q2) = g0! exp8><>: Q2Zq20 dq2q2 �s(q2)2� 1Z0 dzzPgg(z) �z!�1 � 1�9>=>; : (21)It is useful to rearrange solution (16) as below:�f!(b;Q) = ~f!(b;Q)Tg(b;Q) ; (22)where~f!(b;Q)= �f0!(b) exp8><>: Q2Z dq2q2 �s(q2)2� 1Z0 dzzPgg(z)J0[(1� z)bq℄ �z!�1 � 1�9>=>; (23)and the Sudakov-like form fator Tg(b; q) is given by:Tg(b;Q) = exp8><>: Q2Zq20 dq2q2 �s(q2)2� 1Z0 dzzPgg(z)hJ0[(1� z)bq℄� 1i9>=>; : (24)In order to obtain more insight into the struture of the unintegrateddistribution whih follows from the CCFM equation in the single loop ap-proximation it is useful to adopt the following approximation of the Besselfuntion: J0(u) ' �(1� u) : (25)Using this approximation in equation (11) we get:f(x;Qt; Q) ' 2d �f(x; b = 1=Qt; Q)dQ2t : (26)It may be useful to analyse solution (16) using approximation (25) whihgives �f!(b;Q) ' g0!2 Tg �1b ;Q� exp hSr!(b;Q) +�Sr!(b;Q)i ; (27)



1816 J. Kwiei«skiwhere Sr!(b;Q) ' min(1=b2;Q2)Zq20 dq2q2 �s(q2)2� 1Z0 dzzPgg(z)[z!�1 � 1℄ (28)and �Sr!(b;Q) = Q2Z1=b2 dq2q2 �s(q2)2� 1Z1�1=(bq) dzzPgg(z)[z!�1 � 1℄ ; (29)Tg(b;Q) ' exp(S0(b;Q)) ; (30)where S0(b;Q)) is given by:S0(b;Q) = � Q2Z1=b2 dq2q2 �s(q2)2� 1�1=(bq)Z0 dzzPgg(z) : (31)It may be seen that the form fator Tg(1=b;Q) given by equations (30), (31)has the struture of the Sudakov form fator. It an also be seen that thefator g0! exp[Sr!(b;Q)℄ in equation (27) with Sr!(b;Q) de�ned by equation(28) an be identi�ed with the moment funtion g!(�2) of the integratedgluon distribution at the sale �2 = min(1=b2; Q2). Negleting the term�Sr!(b;Q) we get: �f!(b;Q) ' Tg(b;Q)g! �min� 1b2 ; Q2�� (32)that gives:f!(Qt; Q) ' 2� �f!(b = 1=Qt; Q)�Q2t ' � �Tg(b = 1=Qt; Q)g! �Q2t���Q2t (33)for Qt < Q, and f!(Qt; Q) = 0for Qt > Q.Equation (33) gives:f(x;Qt; Q) ' � �Tg(b = 1=Qt; Q)xg �x;Q2t ���Q2t : (34)



Unintegrated Gluon Distributions from . . . 1817It should be noted that equation (33) orretly reprodues the double loga-rithmi e�ets in the region Qt � Q [1℄. The formalism presented above issimilar to that used for the desription of the pT distributions in(for instane) Drell�Yan proess (see e.g. [19℄).Taking approximately into aount the remaining ontribution in equa-tion (27) gives:f(x;Qt; Q) ' Tg(b = 1=Qt; Q)Q2t� 1�Qt=QZ0 dzPgg(z)�s � Q2t(1�z)2�2� �(z � x)xz g xz ;� Qt1� z�2! : (35)Derivation of equation (35) is skethed in the Appendix.After replaement Q2t=(1 � z)2 ! Q2t in the argument of �s and in thegluon distribution g(x=z; �2) whih introdues subleading e�ets, expres-sion (35) oinides with the representation used in Ref. [2℄ (modulo sublead-ing terms in the de�nition of the Sudakov form fator):f(x;Qt; Q) ' Tg(b = 1=Qt; Q)Q2t� 1�Qt=QZ0 dzPgg(z)�s �Q2t�2� �(z � x)xz g �xz ;Q2t� : (36)
4. Numerial resultsIn the previous setion we have shown that the CCFM equation in thesingle loop approximation an be solved analytially in the b spae, whereb is the transverse oordinate onjugate to the transverse momentum Qt ofthe gluon. We have also indiated approximations whih make it possibleto relate the unintegrated distributions to the unintegrated ones. In thissetion we present results of the numerial analysis of the exat solutionof the CCFM equation utilising its diagonalisation in the transverse oor-dinate representation. We shall also onfront this exat solution with theapproximate expressions de�ned by equations (34) and (36).To this aim we solved equation (13) for the distribution �f(x; b;Q) andomputed the unintegrated distribution f(x;Qt; Q) from the Fourier�Besseltransform:



1818 J. Kwiei«skif(x;Qt; Q) = 1Z0 dbbJ0(bQt) �f(x; b;Q) : (37)We started from the input distribution �f0(x; b)�f0(x; b) = g0(x)2 exp��b2q204 � ;g0(x) = 3(1� x)5 ; (38)where we have set q0 = 1GeV.In �gure 1 we plot the funtion Q2tf(x;Qt; Q) as the funtion of Qt forQ2 = 100 GeV2 and for two values of x, x = 0:01 (upper urve) and x = 0:1(lower urve). The transverse momentum Qt is in GeV.
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Fig. 1. Funtion Q2tf(x;Qt; Q), where f(x;Qt; Q) is the unintegrated gluon dis-tribution obtained from the exat solution of the CCFM equation in the singleloop approximation, plotted as the funtion of the transverse momentum Qt of thegluon for Q2 = 100GeV2. The upper and lower urves orrespond to x = 0:01 andx = 0:1, respetively.In �gure 2 and 3 we ompare those exat solutions with approximateexpressions (34) and (36). We �nd that equation (36) gives somehow betterapproximation of the exat solution exept for the �end points� Q2t � Q20and Q2t � Q2. The simple formula (34) is a reasonable approximation ofthe exat solution for small values of Qt. It may, however, give negativeontribution at large x (x � 0:1) and large Q2t .
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Fig. 2. Funtion Q2tf(x;Qt; Q), where f(x;Qt; Q) is the unintegrated gluon dis-tribution obtained from the exat solution of the CCFM equation in the singleloop approximation, plotted as the funtion of the transverse momentum Qt of thegluon for Q2 = 100GeV2 and x = 0:01. The solid urve orresponds to f(x;Qt; Q)obtained from exat solution of the CCFM equation in the single loop approxima-tion, while the short dashed and long dashed urves orrespond to approximateexpressions for f(x;Qt; Q) given by equations (34) and (36), respetively.
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Fig. 3. Funtion Q2tf(x;Qt; Q), where f(x;Qt; Q) is the unintegrated gluon dis-tribution obtained from the exat solution of the CCFM equation in the singleloop approximation, plotted as the funtion of the transverse momentum Qt of thegluon for Q2 = 100GeV2 and x = 0:1. The solid urve orresponds to f(x;Qt; Q)obtained from the exat solution of the CCFM equation in the single loop approxi-mation, while the short dashed and long dashed urves orrespond to approximateexpressions for f(x;Qt; Q) given by equations (34) and (36), respetively.



1820 J. Kwiei«skiSummary and onlusionsIn this paper we have utilised the transverse oordinate representationof the CCFM equation in order to get an analytial insight into its solution.The transverse oordinate representation has been widely used for the dis-ussion of the soft gluon re-summation e�ets in the transverse momentumdistribution of Drell�Yan pair et., [19℄. In our paper we have utilised thefat that this representation diagonalises the CCFM equation in the sin-gle loop approximation and an be very helpful for obtaining unintegratedparton distribution satisfying the CCFM equation in this approximation.We have shown that the CCFM equation in the single loop approximationan be solved analytially for the moment funtion f!(b;Q), where b is thetransverse oordinate onjugate to the transverse momentum of the gluon.We have also onfronted the unintegrated gluon distributions with approx-imate expressions whih were disussed in the literature. The single loopapproximation neglets small x e�ets in the CCFM equation and, in par-tiular, it neglets virtual orretions responsible for the non-Sudakov formfator. This form fator generates ontributions whih are no longer diago-nal in the b spae and so the merit of using this representation beyond thesingle-loop approximation is less apparent. However, in the leading ln(1=x)approximation at small x the CCFM equation redues to the BFKL equa-tion with no sale dependene and the kernel of the BFKL equation in the bspae is the same as the BFKL kernel in the (transverse) momentum spae.One an expet that the transverse oordinate representation of the CCFMequation may eventually appear to be helpful beyond the single loop andBFKL approximations.I thank Krzysztof Gole-Biernat for useful disussions. This researhwas partially supported by the EU Fourth Framework Programme �Train-ing and Mobility of Researhers�, Network �Quantum Chromodynamis andthe Deep Struture of Elementary Partiles�, ontrat FMRX-CT98-0194and by the Polish State Committee for Sienti� Researh (KBN) grantsno. 2P03B 05119 and 5P03B 14420.



Unintegrated Gluon Distributions from . . . 1821AppendixIn this Appendix we derive equation (35). To this aim we start from thefollowing improved approximation of the derivative � �f!(b = 1=Qt; Q)=�Q2t :2 � �f!(b = 1=Qt; Q)�Q2t ' �[Tg(b = 1=Qt; Q)g!(Q2t )℄�Q2t+Tg(b = 1=Qt; Q)g!(Q2t )��Sr(b = 1=Qt; Q)�Q2t ; (39)where the funtion �Sr(b = 1=Qt; Q) is given by equation (29). Usingequations (30) and (29) we get for Qt < Q:2� �f!(b = 1=Qt; Q)�Q2t ' Tg(b = 1=Qt; Q)Q2t� 264 1�Qt=QZ0 dzzPgg(z)�s � Q2t(1�z)2�2� g!(Q2t ) + dg!(Q2t )d ln(Q2t )375+ Tg(b = 1=Qt; Q)Q2t g!(Q2t )� 8><>:1�Qt=QZ0 dz�s � Q2t(1�z)2�2� zPgg(z)[z!�1�1℄� 1Z0 dz�s(Q2t )2� zPgg(z)[z!�1�1℄9>=>; : (40)Taking into aount the DGLAP evolution equation:�2dg!(�2)d�2 = �s(�2)2� 1Z0 dzzPgg(z)[z!�1 � 1℄g!(�2) (41)we get:2� �f!(1=Qt; Q)�Q2t' Tg(b = 1=Qt; Q)Q2t g!(Q2t )8><>: 1�Qt=QZ0 dz�s � Q2t(1�z)2�2� zPgg(z)z!�19>=>; : (42)Taking the inverse Mellin transform of both sides of equation (42) weget equation (35).
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