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UNINTEGRATED GLUON DISTRIBUTIONS FROMTHE TRANSVERSE COORDINATE REPRESENTATIONOF THE CCFM EQUATIONIN THE SINGLE LOOP APPROXIMATIONJ. Kwie
i«skiHenryk Niewodni
za«ski Institute of Nu
lear Physi
sRadzikowskiego 152, 31-342 Kraków, Poland(Re
eived Mar
h 19, 2002)We utilise the fa
t that the Catani�Ciafaloni�Fiorani�Mar
hesini(CCFM) equation in the single loop approximation 
an be diagonalisedby the Fourier�Bessel transform. The analyti
 solution of the CCFM equa-tion for the moments f!(b;Q) of the s
ale dependent gluon distribution isobtained, where b is the transverse 
oordinate 
onjugate to the transversemomentum of the gluon. The unintegrated gluon distributions obtainedfrom this solution are analysed. It is shown how the approximate treat-ment of the exa
t solution makes it possible to express the unintegratedgluon distributions in terms of the integrated ones. The 
orresponding ap-proximate expressions for the unintegrated gluon distribution are 
omparedwith exa
t solution of the CCFM equation in the single loop approximation.PACS numbers: 12.38.Bx, 13.40.-f1. Introdu
tionThe basi
, universal quantities of the QCD improved parton model arethe s
ale dependent parton distributions, like the gluon distribution g(x;Q2),where x denotes the momentum fra
tion. The (integrated) parton distri-butions 
an be related to the less in
lusive distributions f(x;Qt; Q) unin-tegrated over transverse momentum Qt of the parton. Those uninegrateddistributions are often needed in less in
lusive measurements whi
h are sen-sitive to the transverse momentum of the parton [1� 6℄.The unintegrated, s
ale dependent distributions are des
ribed in QCDby the CCFM equation [7�17℄ based upon quantum 
oheren
e whi
h impliesangular ordering [18℄. Its very ni
e feature is the fa
t that it embodies boththe DGLAP and BFKL evolutions at low x. In the region of large and(1809)
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i«skimoderately small values of x, where the small x e�e
ts 
an be negle
tedthe CCFM equation be
omes equivalent to the (LO) DGLAP evolution.This approximation 
orresponds to the so 
alled �single loop� approximation[9, 10℄.The CCFM equation interlo
ks in a rather 
ompli
ated way the tworelevant s
ales i.e. the transverse momentum Qt of the parton and the hards
ale Q. The main purpose of this paper is to explore the fa
t that in the�single loop� approximation the CCFM equation 
an be solved exa
tly in thetransverse 
oordinate representation 
onjugate to the transverse momentumof the parton. The unintegrated distributions 
an then be obtained fromthe Fourier�Bessel transform of this solution. Although the �single loop�approximation negle
ts small x e�e
ts and so it is not valid at very small xit 
an be a reasonable approximation at large and moderately small values ofx ( x � 0:01 or so), whi
h is 
ertainly the region of phenomenologi
al interest[2, 6℄. Analyti
 insight into the exa
t solution of the CCFM equation in thesingle loop approximation will also make it possible to 
riti
ally examineand justify approximate formulas linking the unintegrated distributions tothe integrated ones in the region where the (LO) DGLAP dynami
s shouldbe adequate [1, 2, 6℄.The 
ontent of our paper is as follows: In the next se
tion we re
allthe CCFM equation for the unintegrated gluon distribution. In Se
. 3 wedis
uss the �single loop� approximation of this equation in the transverse
oordinate representation. We show that it 
an be solved exa
tly for themoment fun
tion f!(b;Q), where b denotes the transverse 
oordinate 
onju-gate to the transverse momentum Qt of the gluon. We do also show how theapproximate forms of this solution expressing the unintegrated distributionsin terms of the integrated ones [1, 2℄ originate from the exa
t solution. InSe
. 4 we present numeri
al results for the unintegrated gluon distributionsbased on the solution of the CCFM equation in the transverse 
oordinaterepresentation. We also 
onfront exa
t solution with its approximate forms.Finally in Se
. 5 we summarise our main results and give our 
on
lusions.2. The CCFM equationParton 
as
ade with angular ordering generates the Catani�Ciafaloni�Fiorani�Mar
hesini (CCFM) equation [7℄ for the unintegrated, s
ale depen-dent gluon distribution f(x;Qt; Q) in the proton, where x;Qt and Q denotethe longitudinal momentum fra
tion 
arried by the gluon, transverse mo-mentum of the gluon and the hard s
ale, respe
tively. The latter is spe
i�edby the maximal value of the emission angle. The CCFM equation has thefollowing form:



Unintegrated Gluon Distributions from . . . 1811f(x;Qt; Q) = �f0(x;Qt; Q)+ Z d2q�q2 1Zx dzz �(Q� qz)�(q � q0)�s2��S(Q; q; z)� �2N
�NS(Qt; q; z) + 2N
z(1� z) + z �Pgg(z)�f �xz ; jQt + (1� z)qj; q�; (1)where �S(Q; q; z) and �NS(Qt; q; z) are the Sudakov and non-Sudakov formfa
tors. They are given by the following expressions:�S(Q; q; z) = exp264� Q2Z(qz)2 dp2p2 �s2� 1�q0=pZ0 dzzPgg(z)375 ; (2)�NS(Qt; q; z) = exp264� 1Zz dz0z0 Q2tZ(qz0)2 dp2p2 2N
�s2� 375 : (3)For simpli
ity we negle
t possible quark 
ontributions. The fun
tion�Pgg(z) is: �Pgg(z) = 2N
[�2 + z(1� z)℄ (4)and 
orresponds to the non-singular part of the g ! gg splitting fun
tionPgg(z) Pgg(z) = 2N
 �1z + 11� z�+ �Pgg(z) : (5)The argument of �s will be spe
i�ed later.In prin
iple the CCFM equation has been obtained using only the sin-gular parts of the splitting fun
tion proportional to 1=z and 1=(1 � z). Weadd the non-singular part �Pgg(z) to the kernel of this equation in order toobtain the 
omplete DGLAP evolution in the �single loop� approximation.The two-dimensional ve
tor q in equation (1) is related to the transversemomentum qt of the emitted gluonqt = (1� z)q : (6)The 
onstraint Q > qz re�e
ts the angular ordering and the inhomogeneousterm �f0(x;Qt; Q) is related to the input non-perturbative gluon distribution.It also 
ontains e�e
ts of both the Sudakov and non-Sudakov form fa
tors.
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i«skiIt should be observed that if the 
ut-o� qz0 in the de�nition of the non-Sudakov form fa
tor is repla
ed by the �xed 
ut-o� q0 then the non-Sudakovform fa
tor redu
es to the form fa
tor re�e
ting the reggeisation of the gluon,i.e.: qz0 ! q0 ! �NS = exp ��2�G(Q2t )� 2� ln�1z�� ;�G(Q2t ) = 1� Q2tZq20 dp2p2 N
�s2� :The unintegrated s
ale dependent gluon distribution f(x;Qt; Q) is re-lated in the following �standard� way to the 
onventional (s
ale dependent)integrated gluon distribution xg(x;Q2):xg(x;Q2) = Q2Z dQ2tf(x;Qt; Q) : (7)In the �single loop� approximation of the CCFM equation (1) the angularordering 
onstraint �(Q� qz) is repla
ed by �(Q� q) and the non-Sudakovform fa
tor �NS is set equal to unity [9, 10℄. Equation (1) then reads:f(x;Qt; Q) = �f0(x;Qt; Q)+ Z d2q�q2 1Zx dzz �(Q� q)�(q � q0)�s2��S(Q; q; z=1)� �2N
 + 2N
z(1� z) + z �Pgg(z)� f�xz ; jQt + (1� z)qj; q�: (8)It is useful to �unfold� the Sudakov form fa
tor in equation (8) in order totreat the real emission and virtual 
orre
tions terms on equal footing. Un-folded CCFM equation in the single loop approximation takes the followingform:f(x;Qt; Q) = f0(x;Qt)+Z d2q�q2�(q � q0)�s(q2)2� 1Z0 dzz zPgg(z)� h�(Q�q)�(z�x)f �xz ; jQt + (1�z)qj; q��z�(Q� q)f(x;Qt; q)i : (9)The inhomogeneous term f0(x;Qt) is equal to the input non-perturbativegluon distribution in x and Qt.



Unintegrated Gluon Distributions from . . . 18133. Transverse 
oordinate representation of the CCFM equationin the single loop approximationIt 
an be easily observed that the CCFM equation in the single loopapproximation (9) 
an be diagonalised by the Fourier�Bessel transform:f(x;Qt; Q) = 1Z0 dbbJ0(Qtb) �f(x; b;Q) ; (10)with the fun
tion �f(x; b;Q) given by:�f(x; b;Q) = 1Z0 dQtQtJ0(Qtb)f(x;Qt; Q) ; (11)where J0(u) is the Bessel fun
tion. From equations (7) and (11) we get:�f(x; b = 0; Q) = 12 x g �x;Q2� : (12)The 
orresponding equation for �f(x; b;Q), whi
h follows from equation (9)after taking the Fourier�Bessel transform of both sides of this equation reads:�f(x; b;Q) = �f0(x; b) + Q2Zq20 dq2q2 �s(q2)2� 1Z0 dzz zPgg(z)� n�(z � x)J0[bq(1� z)℄ �f �xz ; b; q�� z �f(x; b; q)o ; (13)where we put q2 as the argument of �s. This 
hoi
e of s
ale gives standard(LO) DGLAP equation for the integrated gluon distribution forxg(x;Q2) = 2 �f(x; b = 0; Q):In order to solve equation (13) it is useful to introdu
e the momentfun
tion �f!(b;Q) �f!(b;Q) = 1Z0 dxx!�1 �f(x; b;Q) : (14)
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i«skiEquation (13) implies the following equation for the moment fun
tion�f!(b;Q):�f!(b;Q) = �f0!(b)+ Q2Zq20 dq2q2 �s(q2)2� 1Z0 dzzPgg(z)nz!�1J0[bq(1�z)℄ �f!(b; q)� �f!(b; q)o: (15)The solution of this equation reads:�f!(b;Q) = f0!(b) exp [S!(b;Q)℄ ; (16)whereS!(b;Q) = Q2Zq20 dq2q2 �s(q2)2� 1Z0 dzzPgg(z)nz!�1J0[(1� z)bq℄� 1o : (17)At small values of b (i.e. b� 1=q0) we 
an negle
t b dependen
e in �f0!(b)and set �f0!(b) ' �f0!(b = 0) :We 
an identify �f0!(b=0) with the moment of the input (non-perturbative)integrated distribution, i.e. �f0!(b = 0) = 12 g0! ; (18)where g0! = Z dQ2t 1Z0 dxx!�1f0(x;Qt) : (19)We note that at b = 0 solution (16) redu
es to the solution of the DGLAPequation for the moment fun
tion g!(Q2) of the integrated gluon distributiong(x;Q2), i.e. g!(Q2) = 1Z0 dxx!g �x;Q2� : (20)



Unintegrated Gluon Distributions from . . . 1815To be pre
ise we getf(b = 0; Q) = 12g!(Q2) ;g!(Q2) = g0! exp8><>: Q2Zq20 dq2q2 �s(q2)2� 1Z0 dzzPgg(z) �z!�1 � 1�9>=>; : (21)It is useful to rearrange solution (16) as below:�f!(b;Q) = ~f!(b;Q)Tg(b;Q) ; (22)where~f!(b;Q)= �f0!(b) exp8><>: Q2Z dq2q2 �s(q2)2� 1Z0 dzzPgg(z)J0[(1� z)bq℄ �z!�1 � 1�9>=>; (23)and the Sudakov-like form fa
tor Tg(b; q) is given by:Tg(b;Q) = exp8><>: Q2Zq20 dq2q2 �s(q2)2� 1Z0 dzzPgg(z)hJ0[(1� z)bq℄� 1i9>=>; : (24)In order to obtain more insight into the stru
ture of the unintegrateddistribution whi
h follows from the CCFM equation in the single loop ap-proximation it is useful to adopt the following approximation of the Besselfun
tion: J0(u) ' �(1� u) : (25)Using this approximation in equation (11) we get:f(x;Qt; Q) ' 2d �f(x; b = 1=Qt; Q)dQ2t : (26)It may be useful to analyse solution (16) using approximation (25) whi
hgives �f!(b;Q) ' g0!2 Tg �1b ;Q� exp hSr!(b;Q) +�Sr!(b;Q)i ; (27)
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i«skiwhere Sr!(b;Q) ' min(1=b2;Q2)Zq20 dq2q2 �s(q2)2� 1Z0 dzzPgg(z)[z!�1 � 1℄ (28)and �Sr!(b;Q) = Q2Z1=b2 dq2q2 �s(q2)2� 1Z1�1=(bq) dzzPgg(z)[z!�1 � 1℄ ; (29)Tg(b;Q) ' exp(S0(b;Q)) ; (30)where S0(b;Q)) is given by:S0(b;Q) = � Q2Z1=b2 dq2q2 �s(q2)2� 1�1=(bq)Z0 dzzPgg(z) : (31)It may be seen that the form fa
tor Tg(1=b;Q) given by equations (30), (31)has the stru
ture of the Sudakov form fa
tor. It 
an also be seen that thefa
tor g0! exp[Sr!(b;Q)℄ in equation (27) with Sr!(b;Q) de�ned by equation(28) 
an be identi�ed with the moment fun
tion g!(�2) of the integratedgluon distribution at the s
ale �2 = min(1=b2; Q2). Negle
ting the term�Sr!(b;Q) we get: �f!(b;Q) ' Tg(b;Q)g! �min� 1b2 ; Q2�� (32)that gives:f!(Qt; Q) ' 2� �f!(b = 1=Qt; Q)�Q2t ' � �Tg(b = 1=Qt; Q)g! �Q2t���Q2t (33)for Qt < Q, and f!(Qt; Q) = 0for Qt > Q.Equation (33) gives:f(x;Qt; Q) ' � �Tg(b = 1=Qt; Q)xg �x;Q2t ���Q2t : (34)



Unintegrated Gluon Distributions from . . . 1817It should be noted that equation (33) 
orre
tly reprodu
es the double loga-rithmi
 e�e
ts in the region Qt � Q [1℄. The formalism presented above issimilar to that used for the des
ription of the pT distributions in(for instan
e) Drell�Yan pro
ess (see e.g. [19℄).Taking approximately into a

ount the remaining 
ontribution in equa-tion (27) gives:f(x;Qt; Q) ' Tg(b = 1=Qt; Q)Q2t� 1�Qt=QZ0 dzPgg(z)�s � Q2t(1�z)2�2� �(z � x)xz g xz ;� Qt1� z�2! : (35)Derivation of equation (35) is sket
hed in the Appendix.After repla
ement Q2t=(1 � z)2 ! Q2t in the argument of �s and in thegluon distribution g(x=z; �2) whi
h introdu
es subleading e�e
ts, expres-sion (35) 
oin
ides with the representation used in Ref. [2℄ (modulo sublead-ing terms in the de�nition of the Sudakov form fa
tor):f(x;Qt; Q) ' Tg(b = 1=Qt; Q)Q2t� 1�Qt=QZ0 dzPgg(z)�s �Q2t�2� �(z � x)xz g �xz ;Q2t� : (36)
4. Numeri
al resultsIn the previous se
tion we have shown that the CCFM equation in thesingle loop approximation 
an be solved analyti
ally in the b spa
e, whereb is the transverse 
oordinate 
onjugate to the transverse momentum Qt ofthe gluon. We have also indi
ated approximations whi
h make it possibleto relate the unintegrated distributions to the unintegrated ones. In thisse
tion we present results of the numeri
al analysis of the exa
t solutionof the CCFM equation utilising its diagonalisation in the transverse 
oor-dinate representation. We shall also 
onfront this exa
t solution with theapproximate expressions de�ned by equations (34) and (36).To this aim we solved equation (13) for the distribution �f(x; b;Q) and
omputed the unintegrated distribution f(x;Qt; Q) from the Fourier�Besseltransform:



1818 J. Kwie
i«skif(x;Qt; Q) = 1Z0 dbbJ0(bQt) �f(x; b;Q) : (37)We started from the input distribution �f0(x; b)�f0(x; b) = g0(x)2 exp��b2q204 � ;g0(x) = 3(1� x)5 ; (38)where we have set q0 = 1GeV.In �gure 1 we plot the fun
tion Q2tf(x;Qt; Q) as the fun
tion of Qt forQ2 = 100 GeV2 and for two values of x, x = 0:01 (upper 
urve) and x = 0:1(lower 
urve). The transverse momentum Qt is in GeV.

0 2 4 6 8 10

Qt

2.0

1.5

1.0

0.5

0.0

Qt
2
 f

Fig. 1. Fun
tion Q2tf(x;Qt; Q), where f(x;Qt; Q) is the unintegrated gluon dis-tribution obtained from the exa
t solution of the CCFM equation in the singleloop approximation, plotted as the fun
tion of the transverse momentum Qt of thegluon for Q2 = 100GeV2. The upper and lower 
urves 
orrespond to x = 0:01 andx = 0:1, respe
tively.In �gure 2 and 3 we 
ompare those exa
t solutions with approximateexpressions (34) and (36). We �nd that equation (36) gives somehow betterapproximation of the exa
t solution ex
ept for the �end points� Q2t � Q20and Q2t � Q2. The simple formula (34) is a reasonable approximation ofthe exa
t solution for small values of Qt. It may, however, give negative
ontribution at large x (x � 0:1) and large Q2t .
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Fig. 2. Fun
tion Q2tf(x;Qt; Q), where f(x;Qt; Q) is the unintegrated gluon dis-tribution obtained from the exa
t solution of the CCFM equation in the singleloop approximation, plotted as the fun
tion of the transverse momentum Qt of thegluon for Q2 = 100GeV2 and x = 0:01. The solid 
urve 
orresponds to f(x;Qt; Q)obtained from exa
t solution of the CCFM equation in the single loop approxima-tion, while the short dashed and long dashed 
urves 
orrespond to approximateexpressions for f(x;Qt; Q) given by equations (34) and (36), respe
tively.
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Fig. 3. Fun
tion Q2tf(x;Qt; Q), where f(x;Qt; Q) is the unintegrated gluon dis-tribution obtained from the exa
t solution of the CCFM equation in the singleloop approximation, plotted as the fun
tion of the transverse momentum Qt of thegluon for Q2 = 100GeV2 and x = 0:1. The solid 
urve 
orresponds to f(x;Qt; Q)obtained from the exa
t solution of the CCFM equation in the single loop approxi-mation, while the short dashed and long dashed 
urves 
orrespond to approximateexpressions for f(x;Qt; Q) given by equations (34) and (36), respe
tively.
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i«skiSummary and 
on
lusionsIn this paper we have utilised the transverse 
oordinate representationof the CCFM equation in order to get an analyti
al insight into its solution.The transverse 
oordinate representation has been widely used for the dis-
ussion of the soft gluon re-summation e�e
ts in the transverse momentumdistribution of Drell�Yan pair et
., [19℄. In our paper we have utilised thefa
t that this representation diagonalises the CCFM equation in the sin-gle loop approximation and 
an be very helpful for obtaining unintegratedparton distribution satisfying the CCFM equation in this approximation.We have shown that the CCFM equation in the single loop approximation
an be solved analyti
ally for the moment fun
tion f!(b;Q), where b is thetransverse 
oordinate 
onjugate to the transverse momentum of the gluon.We have also 
onfronted the unintegrated gluon distributions with approx-imate expressions whi
h were dis
ussed in the literature. The single loopapproximation negle
ts small x e�e
ts in the CCFM equation and, in par-ti
ular, it negle
ts virtual 
orre
tions responsible for the non-Sudakov formfa
tor. This form fa
tor generates 
ontributions whi
h are no longer diago-nal in the b spa
e and so the merit of using this representation beyond thesingle-loop approximation is less apparent. However, in the leading ln(1=x)approximation at small x the CCFM equation redu
es to the BFKL equa-tion with no s
ale dependen
e and the kernel of the BFKL equation in the bspa
e is the same as the BFKL kernel in the (transverse) momentum spa
e.One 
an expe
t that the transverse 
oordinate representation of the CCFMequation may eventually appear to be helpful beyond the single loop andBFKL approximations.I thank Krzysztof Gole
-Biernat for useful dis
ussions. This resear
hwas partially supported by the EU Fourth Framework Programme �Train-ing and Mobility of Resear
hers�, Network �Quantum Chromodynami
s andthe Deep Stru
ture of Elementary Parti
les�, 
ontra
t FMRX-CT98-0194and by the Polish State Committee for S
ienti�
 Resear
h (KBN) grantsno. 2P03B 05119 and 5P03B 14420.



Unintegrated Gluon Distributions from . . . 1821AppendixIn this Appendix we derive equation (35). To this aim we start from thefollowing improved approximation of the derivative � �f!(b = 1=Qt; Q)=�Q2t :2 � �f!(b = 1=Qt; Q)�Q2t ' �[Tg(b = 1=Qt; Q)g!(Q2t )℄�Q2t+Tg(b = 1=Qt; Q)g!(Q2t )��Sr(b = 1=Qt; Q)�Q2t ; (39)where the fun
tion �Sr(b = 1=Qt; Q) is given by equation (29). Usingequations (30) and (29) we get for Qt < Q:2� �f!(b = 1=Qt; Q)�Q2t ' Tg(b = 1=Qt; Q)Q2t� 264 1�Qt=QZ0 dzzPgg(z)�s � Q2t(1�z)2�2� g!(Q2t ) + dg!(Q2t )d ln(Q2t )375+ Tg(b = 1=Qt; Q)Q2t g!(Q2t )� 8><>:1�Qt=QZ0 dz�s � Q2t(1�z)2�2� zPgg(z)[z!�1�1℄� 1Z0 dz�s(Q2t )2� zPgg(z)[z!�1�1℄9>=>; : (40)Taking into a

ount the DGLAP evolution equation:�2dg!(�2)d�2 = �s(�2)2� 1Z0 dzzPgg(z)[z!�1 � 1℄g!(�2) (41)we get:2� �f!(1=Qt; Q)�Q2t' Tg(b = 1=Qt; Q)Q2t g!(Q2t )8><>: 1�Qt=QZ0 dz�s � Q2t(1�z)2�2� zPgg(z)z!�19>=>; : (42)Taking the inverse Mellin transform of both sides of equation (42) weget equation (35).
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