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The Nijmegen baryon-baryon interaction models are used to determine
the X~ single particle potential in nuclei. For the XA conversion cross
section — which appears in the expression for the imaginary part of the
Y~ potential — two alternative parametrizations are used. With the help
of this complex X'~ potential the energy shifts and widths of the observed
levels of X'~ atoms are calculated. Comparison with the 23 existing data
shows that the lowest x? is obtained with the Nijmegen model F which leads
to the XY~ potential which is repulsive inside nuclei and has an attractive
pocket at the nuclear surface. The reasonable accuracy of the perturbation
approximation is discussed. The sensitivity of the results to the tail of the
nucleon density distributions is investigated.

PACS numbers: 13.75.Ev, 36.10.Gv

1. Introduction

The available data on strong interaction effects in ¥~ atoms, shown in
Table I, consist of 23 data points: strong-interaction shifts e and widths I’
of the observed levels. These shifts and widths can be measured directly
only in the lowest X'~ atomic levels with the principle quantum number n
and with the orbital quantum number [ = n — 1 (in the observed states the
orbits are circular). The widths of the n + 1 ‘upper’ levels can be obtained
indirectly from measurements of the relative yields of X-rays. As seen in
Table I the accuracy of the data is limited. Nevertheless these data provide
us with valuable information on the interaction between %'~ and nucleons.

This information was used in [4] and [5] (hereafter referred to as I and II)
to determine the best among the Nijmegen models of the baryon—baryon
interaction [6-9], i.e., the one which leads to the best description of the
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TABLE 1

Experimental values of the energy shifts €exp and widths I'exp, for the lower level
and the widths I'g;, for the upper level of the indicated X'~ atoms. All energies
are in €V.

Nucl. n+1—n Eexp TIexp Iy,
120 453 — — 0.031 4+ 0.012?
160 43 320 + 230P — 1.0 +0.7°
Mg 54 25 + 40P < 70P 0.11 +0.09"
27TA1 54 68 + 28P 43 + 75b 0.24 + 0.06P
28Gj 54 159+ 36> 220+ 110>  0.41 +£0.10P
329 54 360 + 220" 870 + 700P 1.5+ 0.8P
40Ca 6—5 — — 0.41 + 0.222
48y 6—5 — — 0.65 + 0.422
138Bgy 98 — — 2.9+ 3.5
184y 109 214+ 60° 18 + 149¢ 2+ 2¢
208phL 109 422 +56° 430 + 160° 17 + 3¢

& Data taken from Ref. [1].
b Data taken from Ref. [2].
¢ Data taken from Ref. [3].

observed properties of ¥~ atoms. To determine € and I', we were solving
in IT the Schrédinger equation, which describes the motion of X'~ in the %~
atom:
ﬁ2
21z

A+Vo(r)+V(r)| v =£w, (1)

where pya = My My /(Myx + My) is the ¥~ -nucleus (of mass My) reduced
mass (My is the mass of ¥ 7), and Vi is the Coulomb interaction between
2/~ and the nucleus.

Because of the XA conversion process X~ p — An, the strong interac-
tion single particle (s.p.) potential of the X~ hyperon V is complex, V =
V +iW, and consequently the eigenvalue £ is also complex, with its imag-
inary part connected with the width of the level, £ = E —4iI'/2. For the
strong interaction energy shift €, we have ¢ = E¢ — E, where E¢ is the
pure Coulomb energy, i.e., the eigenvalue of equation (1) without the strong
interaction potential V.

The complex potential V was calculated in T and IT with the help of the
Nijmegen interactions in the local density approximation: the X~ atom was
treated at each point as )~ moving in nuclear matter with the local proton
and neutron densities p,(r) and p,(r) of the X'~ atom,

V(r) = Vaulks, pp(r), pa(r)) (2)
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where Vnu is the s.p.  potential of X~ moving with a properly defined
average momentum ky in nuclear matter with the indicated local proton
and neutron densities.

The present paper is a continuation of I and II. In particular, we want
to consider the following points:

— The XA conversion cross section o — which appears explicitly in the
procedure of calculating ¢ and I'" applied in I and II — is not well
known. In the present paper, the results of II are extended to include
two alternative parametrizations of o.

— First order perturbation approximation was used in I, and we want to
discuss the accuracy of this approximation.

— Results obtained for € and I" depend on the nucleon densities applied
in the calculations, and we want to discuss this dependence.

2. The potential Vnm

To calculate Vxu, we apply the Low Order Brueckner (LOB) approxi-
mation:
Vau(ks) = Z(kszllClksz% (3)
kN

where the sum runs over all occupied nucleon states with momenta k. Spins
and isospins are suppressed in our notation. K denotes the XN Brueckner
reaction matrix. In the case of the Nijmegen baryon—baryon interaction
models, the reaction matrix K was calculated in the LOB approximation in
[9,10]. Its configuration space representation, the so called YNG interaction,
was used in I and IT in calculating Vxu = Re{Vnum}.

To get the expression for Wy = Im{ Vi }, we replace K in Eq. (3) by
its imaginary part Im{XC} and apply to it the optical theorem. In this way
— as shown in [11,12] — we get:

2

v [:Op<k2pQU> +Pp<k2pQUexlp> +Pn <k2nQUezln> )
(4)

where () denotes the average value in the Fermi sea, kyx is the ¥ N relative
momentum, uyy is the ¥ N reduced mass, and v/ is the ratio of the effec-
tive to the real nucleon mass. The total cross section for the elastic X~ N
scattering is denoted by aegl y (for N = p it also includes the cross section
for X~ p — X%n). The Q operators take care that the nucleons in the final
states of the respective YA conversion or elastic scattering processes obey
the exclusion principle.

Wxm(ks, pp, pn) = — ST
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The optical theorem leads to expression (4) with the cross sections for the
respective processes in nuclear matter, and we approximate these cross sec-
tions by the cross sections in free space. This approximation is particularly
accurate at low densities of nuclear matter relevant for X~ atoms.

Now — as in I and IT — we disregard the two last terms in expression
(4), which contain the cross sections for the elastic X'~ N scattering, and
obtain our final expression for Wywm:

2

h
Wxm (ks pps pn) = _%lep<k2PQU>' (5)

This procedure, discussed in [12], ensures that the width of the X'~ atomic
states is due only to the XA coupling to the continuum.

For the total X'A conversion cross section o we use two parametrizations
described in I. The first one, adjusted by Gal, Toker, and Alexander [13] to
the X'~ low energy regime up to 300 MeV /c in the laboratory frame, has the
form )

Yo = (1 + 139) 5.1 fm?, (6)
c c
where v is the X " p relative velocity.

The second one, suggested by Oset et al. [14] and adjusted to the X~

low energy regime up to 160 MeV /¢, has the form:

Yo~ 1.7 tm?. (7)
c
This form follows from the assumption that the transition matrix for the
Y ~p — An process is constant, and only the phase space factor introduces
the energy dependence of 0. The effect of this factor on (v/c)o is negligible
in the low energy range relevant in X'~ atoms and is not indicated in Eq. (7).

3. Results and discussion

We have followed the procedure applied in II to obtain our present results
for the four models of the Nijmegen baryon—baryon interaction: models D [6],
F [7], Soft-Core (SC) model [8], and the New Soft-Core (NSC) model [9].

For the average momentum % in Eq. (2), we used zero while calculat-
ing V(r), and the average value obtained with the hydrogen-like X'~ wave
function while calculating W (r).

The proton and neutron density distributions were taken from the Iso-
morphic Shell Model (ISM) of Anagnostatos [15-18] .

! In case of *¥*W and 2**Pb we assumed for the neutron density the form p,(r) =
(N/Z)py(r).
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For the Coulomb potential V¢ , we use the uniform charge distribution
with radius R = +/3/5(r?)'/? with empirical values of the mean square
radius (r2)'/2 of the charge distribution (collected in [18]).

In calculating the @ operator in Eq. (5), we followed the Appendix of II.

First let us consider the X~ ~Pb atom for which we have the most precise
data of Powers at al. [3]. Our results obtained for this case, together with
values of x2(Pb) calculated for the 3 experimental Pb data points, are shown
in Table I1. The big values of x?(Pb) for models D and NSC clearly indicate
that these models are completely inconsistent with the X'~ atomic data.
Consequently, we continue our discussion only for models F and SC.

TABLE II

Energy shifts ¢, e* and widths I', I'* calculated with the indicated models of the
Y N interaction, respectively for the lower and upper level of the ¥~ Pb atom and
the corresponding values of x? for the 3 experimental Pb data (see Table I). All
energies are in €eV.

Model ¢? e? rs b gus gub pua pub \2(ppya \2(pp)b
D 995.4 1023.57 1250.9 995.3 29.7 30.1 29.0 20.8 148.0 129.9
F 457.4  469.1 773.4 582.1 189 19.2 23.8 16.7 10.3 1.7
SC 380.0 396.0 8774 672.3 12.6 12.9 24.7 17.3 15.2 2.6

NSC 1899.5 1974.9 2603.8 2254.8 49.3 49.9 37.7 28.2 933.2 903.6

a Expression (6) was applied for o.
b Expression (7) was applied for o.

Table III contains our results obtained for ¢ and I' with models F and
SC for X~ atoms for which experimental data exist. For the XA conversion
cross section o two expressions, (6) and (7), have been applied. Results
obtained with expression(6), presented in II, are included into Table IIT for
comparison with the new results obtained with expression (7). For the 23
data points, we get the following values for X%(SC) for our results obtained

with model F (and SC):
38.1 55.0 . 6),
X2 = { 195 X = { 333 for o expression { 573 (8)

We conclude that we get the best agreement with the data, when we
apply model F. As discussed in I and IT model F has the property that it
leads to Vv which is attractive at low densities encountered at the nuclear
surface and repulsive at nucleon densities encountered inside nuclei. This
means — in our local density approximation — that V is repulsive inside
the nucleus, and has an attractive pocket at the nuclear surface (see Fig. 1).
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TABLE III

Energy shifts ¢/¢* and widths I'/I"* of the lower /upper level of the indicated X'~
atoms, calculated with models F and SC of the YN interaction. All energies are

in eV.

Nucl. Model e? ehb ra r® gua gub rea reb
12¢ F 819 860 222 16.1 0.007 0.007 0.011 0.007
SC 6.79 7.26 24.8 187 0.004 0.004 0.011 0.007
160 F 50.0 54.0 194.2 147.0 0.11 0.11 0.20 0.14
SC 63.0 67.9 2452 196.3 0.066 0.068 0.21 0.15
Mg F 326 33.8 504 31.7 0.08 0.086 0.10 0.06
SC 10.2  11.0 474  30.3 0.021 0.022 0.096 0.054
27A1 F 67.3 70.1 113.2 732 0.22 0.23 028 0.16
SC 244 272 1094 724 0.064 0.067 027 0.15
28Gj F 139.9 147.1 242.8 160.3 0.55 0.56 0.70  0.53
SC 436 502 226.0 152.1 0.14 0.15 0.66 0.39
329 F 433.8 466.0 873.2 605.7 249 2.55 3.43 2.12
SC 137.5 167.0 814.4 579.2 0.67 0.72 3.19 1.97
0Ca F 27.0 279 420 277 0.12 0.12 0.15 0.087
SC 7.5 84 39.0 26.0 0.028 0.029 0.14 0.082
BT F 449 469 104.0 742 030 030 048 0.31
SC 61.1 63.6 1173 861 0.39 0.39 0.50 0.33
138By F 326 332 739 51.7 092 092 134 0.85
SC 923 934 912 654 1.85 1.86 1.51 0.95
184y F 126.7 129.3 180.5 127.5 3.75 3.718 424  2.78
SC 87.6 90.6 190.4 1372 223 236 429 284
208pL F 4574 469.1 7734 582.1 18.9 19.2 238 16.7
SC 380.0 396.0 8774 6723 126 129 247 173

a Expression (6) was applied for o.
b Expression (7) was applied for o.

This conclusion of our analysis of X'~ atoms agrees with the result of the
phenomenological analysis of X'~ atoms of Batty, Friedman, and Gal [19],
and also with the analysis [20,21] of the pion spectra observed in Brookhaven
in the strangeness exchange reaction on ?Be target [22] 2.

The two parametrizations of o are possible and lead to different results
for ¢ and I', because the experimental points to which both of them are
adjusted have big error bars, and they start at py = hiky = 110 MeV /c, i.e.,

2 There is one argument more in favor of model F: when applied to the A + nuclear
matter system it leads to the semiempirical value of the A binding energy, i.e., it
solves the so called A overbinding problem [23].
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Fig. 1. Potentials V and W in 2°®Pb obtained with model F and SC of the Nijmegen
interaction. The potentials W were obtained with parametrization (6) of o.

above the average Y momenta in ¥~ atoms. As we see from Eq. (8), our
results obtained with parametrization (7) reproduce the data points better
then those obtained with parametrization (6). No doubt, a more precise
measurement of the YA conversion cross section at low energies would be
most desired for discussing € and I'.

Now let us discuss other aspects of our results. We shall consider as a
representative example the case the n = 9 state in Pb with parametrization
(6) of 0. The real and absorptive potentials V and W of X~ in Pb are shown
in Fig. 1. Here, W has been calculated with ks, = 0.40 fm ", the average X~
momentum in the lower (n = 9) state (if we used the average momentum in
the upper (n = 10) state, the resulting curve could hardly be distinguished
from the W curve in Fig. 1). Models F and SC of the Nijmegen interaction
were used to obtain the results shown in Fig. 1. To distinguish them we use
the subscripts F and SC.

The Bohr radius of the n = 9 orbit in Pb is 22.4 fm, whereas the r.m.s.
radius of the charge distribution, (r2)'/2 ~ 5.5 fm. Consequently, the finite
size of the nuclear charge distribution is expected to have a negligible effects
on the energy shift ¢ and the width I' of the level, which indeed turn out to
be about 0.2 % (for model F). Hence, one could safely neglect the effect of
finite size of the nuclear charge distribution, as it was done in I. Also in the
following discussion, we ignore this finite size effect.

Let us consider the problem whether perturbative treatment of the nu-
clear interaction in X~ atoms is justified. General arguments in favor of
the perturbative treatment were discussed in I. Here, we consider the con-
vergence of the perturbation expansion in the case of the lower state in Pb.
Namely, we investigate how accurate is the first order of this expansion. The
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pure Coulomb energy of the n = 9 state in Pb, Fc = —2.6 MeV, is changed
by the strong interaction (model F) by the amount Afp = —ep + iI7/2 =
(—0.00046 + 70.00039) MeV. We see that the change in the real part of the
energy, —ep, is extremely small compared to Ec, and we may expect the
first order approximation e1p = (3|Vr|1)) to be very close to € (here 1 is the
hydrogen-like function). Indeed, we find that in the n = 9 state in Pb model
F leads to ejp = 457.0 eV, whereas ep = 457.4 eV. A comparison of our
present results with the results of I shows that the situation with other X~
atoms is similar. There are two factors, Vg and Wg, which determine ep. In
the region essential for the X'~ atom, the real potential Vf has an attractive
pocket, and the X wave function is pulled into this region. This accumu-
lation of the wave function is counteracted by the absorptive potential Wp
which diminishes the wave function in this region and thus acts similarly as
repulsion. Thus the X wave function is not so much changed in this region
by the combined action of Vg and W, and consequently e1f is close to ep.
This may be illustrated in the case of the n = 9 state in Pb. If we consider
only real Vi, i.e., if we put W = 0, we get ep[W = 0] = 494.3 V. This
is greater than e1p = 457.0 €V which — in agreement with the variational
principle — is a lower bound for ep[W = 0]. After switching on the ab-
sorptive potential Wg, we decrease e to the value of 457.4 €V very close to
E1F-

No doubt, the striking agreement of our results for ep with the first order
perturbation results ey is partly accidental. In case of model SC, we have:
esc = 380.0 eV, egc[W = 0] = 438.9 eV, and e15c = 397.1 eV. Here, the
agreement — although reasonable — is less striking. The reason appears to
be the pure attractive character of Vgc — the “repulsive” effect is produced
entirely by Wsc 3.

The situation with the imaginary part of the energy is different. Here
the entire imaginary part is due to W, and we do not expect the first order
perturbation approximation, I't = —2(|W 1)), to be very accurate. For the
n =9 level in Pb, we get Il = 716.6 eV, whereas I'r = 773.4 eV, and here
the accuracy of first order approximation is about 7%. In case of SC model,
we have: I'igc = 715.2 eV, I'sc = 877.4 €V, and here the accuracy is about
18%, i.e., is worse.

In I, we used model F' and approximated I' by I';, the width of X in
nuclear matter with density equal to the average density in the XY~ atom,
p = (Y|p|), with the result I'; = 903.3 eV. Thus the approximation applied
in I turns out to be worse than the first order approximation I%.

3 Our estimate of the error in e; presented in I appears to be not correct because our
nonrelativistic £; was compared with relativistic value of € (determined in [19] from
Klein-Gordon equation).
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Now let us discuss another aspect of the theory of Y~ atoms, namely
the possibility of getting information on the nucleon distributions pp(r) and
pn (7). To explore this possibility, we investigate the sensitivity of the calcu-
lated energy shifts ¢ and widths I" to the applied forms of pp(r) and py,(r).

As an example, let us consider the properties of the ¥~ states in Ba 4 cal-
culated with model F of the Nijmegen interaction and with parametrization
(6) of o. For comparison with our results obtained with the ISM densities,
we consider a 2-parameter Fermi (2pF) form p(r) = po[1+exp((r—R)/a)] !
for both point proton and neutron distributions.

As our 2pF model of the two densities p, and p;,, we consider the model
applied in [19]. The parameters R, and a, of py(r) were adjusted — after
folding with a Gaussian proton charge distribution — to the tabulated charge
distribution [24]. For the much harder to determine neutron density, it was
assumed that a, = ap and R, = R,+0.25 fm in a qualitative agreement with
Hartree—Fock calculations. The parameters of the 2pF model are shown in
Table IV, together with the mean square radii of p, and pj.

TABLE 1V

Properties of X states in Ba calculated with different models of nucleon densities.
Model F of the YN interaction, and parametrization (6) of o were applied. All
energies are in eV, and lengths in fm.

Model R, apn Rn (27 @/* e I e I

ISM 4.80 5.41 326 739 092 1.34
2pF 580 0.433 6.05 4.77 4.96 6.84 22.0 0.17 0.29

Our results for the energy shifts and widths for the lower (n = 8) and
upper (n = 9) levels in Ba, obtained with nucleon density model 2pF, and
also ISM, are shown in Table IV. We see that when we switch from the ISM
to the 2pF densities, we essentially decrease the resulting energy shifts and
widths. The reason for it is that the ISM densities have longer tails than
the 2pF densities.

We illustrate it in Fig. 2 in case of W (r), and I' obtained for the n = 8
level in Ba with the ISM and 2pF densities. As we see from Egs. (2),
(5), W(r) depends predominantly on the proton density p,(r) (the de-
pendence on p,(r) is only indirect through the exclusion principle opera-
tor Q). As we see in Fig. 2, p,(r)igm has a much longer tail than p,(r)opr
— we have pp(r)ism > pp(r)epr for r > 6.4 fm. Consequently, as is

* In Ba we use the ISM results for both p, and p,, whereas in Pb (and W) the ISM
results are available only for py.
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seen in Fig. 2, W(r)igm has a much longer tail than W (r)spr — we have
W(r)ism < W(r)epr for r > 6.4 fm. Now, in ¥~ atoms just this tail
region is important. Namely the X~ wave function ¥ at small distances
behaves like ¥, and its square multiplied by —W (r) attains its maxi-
mum in the tail region. If we approximate ¥ by the hydrogen-like function
P(r) = R(r)r~'Yj—p_1m(7), then the product —R(r)2W (r) measures the
contribution of the region around r to I'/2 (when integrated this product
over r, we get I'1/2, the first order approximation of I'/2). The product
—R?W is shown in Fig. 2, and obviously this product for the ISM densi-
ties is much bigger and is shifted towards larger distances. The explanation
why the ISM densities lead to larger energy shifts than the 2pF densities is
similar.

(2]
E
4
2
x
% by
E
m
['4
<
0

5 10 r[fm]

Fig.2. Proton density p,, the imaginary potential W, and the product —R?*W
in the n = 8 state in Ba, obtained with the ISM (solid curves) and 2pF (broken
curves) densities. Model F and parametrization (6) of o were applied.

Let us notice that the product —R?W (and similarly the product —R?V)
attains its maximum in the tail of the density distributions, especially for
ISM, where both the densities and their gradients are small. This means that
the YNG effective interaction applied in our work may be less burdened by
the ambiguities in the choice of the intermediate state energies in the reac-
tion matrix equation, because this choice is less important at low densities.
Furthermore, the smallness of the density gradients certainly improves the
accuracy of the local density approximation.
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