
Vol. 33 (2002) ACTA PHYSICA POLONICA B No 7
FORMATION OF SINGULARITIESIN YANG�MILLS EQUATIONS�Piotr Bizo«M. Smoluhowski Institute of Physis, Jagellonian UniversityReymonta 4, 30-059 Kraków, Poland(Reeived May 29, 2002)This is a survey of reent studies of singularity formation in solutions ofspherially symmetri Yang�Mills equations in higher dimensions. Themain attention is foused on �ve spae dimensions beause this ase exhibitsinteresting similarities with Einstein's equations in the physial dimension,in partiular the dynamis at the threshold of singularity formation sharesmany features (suh as universality, self-similarity, and saling) with ritialphenomena in gravitational ollapse. The borderline ase of four spaedimensions is also analysed and the formation of singularities is shown tobe intimately tied to the existene of the instanton solution.PACS numbers: 11.10.Lm, 04.20.Dw1. IntrodutionOne of the most interesting features of many nonlinear evolution equa-tions is the spontaneous onset of singularities in solutions starting fromperfetly smooth initial data. Suh a phenomenon, usually alled �blowup�,has been a subjet of intensive studies in many �elds ranging from �uiddynamis to general relativity. Whether or not the blowup an our fora given nonlinear evolution equation is the entral mathematial questionwhih, from the physial point of view, has a diret bearing on our under-standing of the limits of validity of the orresponding model. Unfortunately,this is often a di�ult question. Two famous examples, for whih the answeris not known, are the Navier�Stokes equation and the Einstein equations.One the existene of blowup is established for a partiular equation, many� This work has been ommissioned by the Editor of Ata Physia Polonia B. Ithas been �naned by Stowarzyszenie Zbiorowego Zarz¡dzania Prawami AutorskimiTwórów Dzieª Naukowyh i Tehniznyh KOPIPOL z siedzib¡ w Kielah, from theinome oming from implementation of Art. 20 of the law on authorship and relatedto its regulations. (1893)



1894 P. Bizo«further questions ome up, suh as: When and where does the blowup o-ur? What is the harater of blowup and is it universal? Can a solution beontinued past the singularity?In this paper we onsider these questions for the Yang�Mills (YM) equa-tions in higher dimensions. In the physial 3 + 1 dimensions, where theYM equations are the basi equations of gauge theories desribing the weakand strong interations of elementary partiles, it is known that no singu-larities an form. This was shown by Eardley and Monrief [1℄ who provedthat solutions starting from smooth initial data remain smooth for all futuretimes. The motivation for studying the YM equations in unphysial D + 1dimensions for D > 3 is twofold (and unrelated to the latest fashion of do-ing physis in extra dimensions). From the mathematial point of view, itis the obvious thing to ask how the property of global regularity dependson the dimension of the underlying spaetime and whether singularities anform in D + 1 dimensions for D > 3. However, there is also a less evidentphysial reason whih is motivated by the hope that by understanding theproblem of singularity formation for the YM equations one might get insightinto the analogous, but muh more di�ult, problem in general relativity.From this viewpoint � in whih the YM equations are onsidered as a toymodel for the Einstein equations � it is essential that these two equationsbelong to the same ritiality lass. Let us reall that the ritiality lassis de�ned as the degree � in the homogeneous saling of energy E ! ��Eunder dilations x ! x=�. The lassi�ation of equations into subritial(� < 0), ritial (� = 0), and superritial (� > 0) is a basis of the heuristimeta-priniple aording to whih subritial equations are globally regular,while superritial equations may develop singularities for some (large) ini-tial data [2℄. For the YM equations we have �YM = D � 4, while for theEinstein equations �E = D�2. Therefore, the YM equations in D = 5 havethe same ritiality, � = 1, as the Einstein equations in the physial dimen-sion. Another way of seeing this is to note that in D = 5 the dimension ofthe YM oupling onstant [e2℄ = M�1LD�4 (in  = 1 units) is the same asthe dimension of the physial Newton's onstant [G℄ = M�1L.For the reason just explained, the main body of this paper is foused onthe lowest super-ritial dimension D = 5. In Setion 3 we show that inthis ase there exists a ountable family of regular (by regularity we meananalytiity inside the future light one) spherially symmetri self-similarsolutions labelled by a nonnegative integer n (a nodal number). Next, usinglinear stability analysis we show in Setion 4 that the number of unstablemodes around a given solution is equal to its nodal number. The role of self-similar solutions in the dynamial evolution is studied in Setion 5, wherewe show that: (i) the n = 0 solution determines a universal asymptotisof singularity formation for solutions starting from generi �large� initial



Formation of Singularities in Yang�Mills Equations 1895data; (ii) the n = 1 solution plays the role of a ritial solution sittingat the threshold of singularity formation. The latter is in many respetssimilar to the ritial behaviour at the threshold of blak hole formation ingravitational ollapse. In both ases the threshold of singularity (or blakhole) formation an be identi�ed with the odimension-one stable manifoldof a self-similar solution with exatly one unstable mode. These similaritiesare disussed in detail in Setion 6.We onsider also the Cauhy problem for the YM equations in D = 4.Despite intensive studies of this borderline ase, the problem of global ex-istene is open. In Setion 7 we desribe numerial simulations whih, inombination with analyti results, strongly suggest that large-energy solu-tions do blow up. We show that the proess of singularity formation is due toonentration of energy and proeeds via adiabati shrinking of the instan-ton solution. At the end, a reent attempt of determining the asymptotirate of shrinking is skethed.We remark that there are lose parallels between YM equations in D+1dimensions and wave maps in (D � 2) + 1 dimensions [3℄. Indeed, many ofthe phenomena desribed here are mirrored for the equivariant wave mapsinto spheres in three [4,5℄ and two [6℄ spatial dimensions.Setions 5 and 7 of this survey are based on joint work with Tabor [7℄.The material of Setions 3 and 4 is new.2. SetupWe onsider Yang�Mills (YM) �elds in D + 1 dimensional Minkowskispaetime (in the following Latin and Greek indies take the values 1; 2; : : : ;Dand 0; 1; 2; : : : ;D respetively). The gauge potential A� is a one-form withvalues in the Lie algebra g of a ompat Lie group G. In terms of theurvature F�� = ��A� � ��A� + [A�; A� ℄ the ation isS = 1e2 Z Tr (F��F��)dDx dt ; (1)where e is the gauge oupling onstant. Hereafter we set e = 1. The YMequations derived from (1) are��F�� + [A�; F�� ℄ = 0 : (2)As written, this equation is underdetermined beause of the gauge invarianeA� ! U�1A�U + U�1��U ; (3)where U is an arbitrary funtion with values in G. In order to orretlyformulate the Cauhy problem for equation (2), one must impose additional



1896 P. Bizo«onditions whih �x this gauge ambiguity. We shall not disuss this issuehere beause in the spherially symmetri ansatz, to whih this paper isrestrited, the gauge is �xed automatially.For simpliity, we take here G = SO(D) so the elements of SO(D) anbe onsidered as skew-symmetri D�D matries and the Lie braket is theusual ommutator. Assuming the spherially symmetri ansatz [8℄Aij� (x) = �Æi�xj � Æj�xi� 1� w(t; r)r2 ; (4)the YM equations redue to the salar semilinear wave equation for themagneti potential w(t; r)�wtt +�(D�2)w + D � 2r2 w(1 � w2) = 0; (5)where �(D�2) = �2r + D�3r �r is the radial Laplaian in D � 2 dimensions.The entral question for equation (5) is: an solutions starting from smoothinitial data w(0; r) = f(r) ; wt(0; r) = g(r) (6)beome singular in future? As mentioned above, in the physial D = 3dimensions Eardley and Monrief answered this question in the negative [1℄.However, simple heuristi arguments indiate that the property of globalregularity enjoyed by the YM equations in D = 3 might break down inhigher dimensions. In order to see why the global behaviour of solutions isexpeted to depend ritially on the dimension D, we reall two basi fats.The �rst fat is the onservation of (positive de�nite) energyE = ZRD Tr �F 20i + F 2ij�dDx = (D) 1Z0 �w2t + w2r + D � 22r2 (1� w2)2� rD�3dr;(7)where the oe�ient (D) = (D � 1)vol(SD�1) follows from the integrationover the angles and taking the trae. The seond fat is sale-invariane ofthe YM equations: if A�(x) is a solution of (2), so is ~A�(x) = ��1A�(x=�),or equivalently, if w(t; r) is a solution of (5), so is ~w(t; r) = w(t=�; r=�). Un-der this saling the energy sales as ~E = �D�4E, hene the YM equationsare subritial for D � 3, ritial for D = 4, and superritial for D � 5. Inthe subritial ase, shrinking of solutions to arbitrarily small sales ostsin�nite amount of energy, so it is forbidden by energy onservation. In otherwords, transfer of energy to arbitrarily high frequenies is impossible andonsequently the Cauhy problem should be well posed in the energy norm.This important fat was proved in D = 3 by Klainerman and Mahedon [9℄,



Formation of Singularities in Yang�Mills Equations 1897who thereby strengthened the result of Eardley and Monrief. In the su-perritial ase, shrinking of solutions might be energetially favourable andonsequently singularities are antiipated. In fat, we shall show below thatsingularities do form already in the lowest superritial dimension D = 5.In the ritial dimension D = 4 the problem of singularity formation is moresubtle beause the saling argument is inonlusive.3. Self-similar solutions in D = 5In order to set the stage for the disussion of singularity formation we �rstneed to analyse in detail the struture of self-similar solutions of equation(5). As we shall see, these solutions play a key role in understanding thenature of blowup. By de�nition, self-similar solutions are invariant underdilations w(t; r)! w(t=�; r=�), hene they have the formw(t; r) = W (�) ; � = rT � t ; (8)where a positive onstant T , learly allowed by the time translation invari-ane, is introdued for later onveniene. Note that for a self-similar solutionwe have �2rW (�)���r=0 = 1(T � t)2W 00(0) ; (9)hene the solution beomes singular at the entre when t ! T (there is noblowup in the �rst derivative beause regularity demands that W 0(0) = 0).Thus, eah self-similar solution W (�) provides an expliit example of a sin-gularity developing in �nite time from smooth initial data.Substituting the ansatz (8) into (5) one obtains the ordinary di�erentialequationW 00 +�D � 3� + (D � 5)�1� �2 �W 0 + D � 2�2(1� �2)W (1�W 2) = 0 : (10)As explained in the introdution, beause of the expeted onnetions withthe Einstein equations, we are mainly interested in the lowest super-ritialdimension D = 5. In this ase equation (10) redues toW 00 + 2�W 0 + 3�2(1� �2)W (1�W 2) = 0 : (11)Although the similarity oordinate � is natural in the disussion of singu-larity formation, it has a disadvantage of not overing the region t > T , inpartiular it does not extend to the future light one of the point (T; 0).For this reason we de�ne a new oordinate x = 1=� whih overs the whole



1898 P. Bizo«spaetime: the past and the future light ones are loated at x = 1 andx = �1, respetively; while the entre r = 0 orresponds to x = 1 (fort < T ) and x = �1 (for t > T ). In terms of x equation (11) beomes(x2 � 1)W 00 + 3W (1�W 2) = 0 : (12)We �rst onsider this equation inside the past light one, that is for 1 � x <1and impose the boundary onditionsW (1) = 0 and W (1) = �1 ; (13)whih follow from the demand of smoothness at the endpoints. As we shallsee below, one a solution to this boundary value problem is onstruted,its extension beyond the past light one an be easily done.To show that equation (12) admits solutions satisfying (13) we shallemploy a shooting tehnique. The main idea of this method is to replaethe boundary value problem by the initial value problem with initial dataimposed at one of the endpoints and then adjusting these data so that thesolution hits the desired boundary value at the seond endpoint. In the aseat hand we shall shoot from x = 1 towards in�nity. Substituting a formalpower series expansion about x = 1 into (12) one �nds the asymptotibehaviour W (x) = a(x� 1)� 3a4 (x� 1)2 +O �(x� 1)3� ; (14)where a is a free parameter determining uniquely the whole series. In thefollowing a solution of equation (12) starting at x = 1 with the asymptotibehaviour (14) will be alled an a-orbit. Without loss of generality we mayassume that a � 0. We laim that there is a ountable set of values fang forwhih the an-orbits exist for all x � 1 and have the desired asymptotis atin�nity (suh orbits will be alled onneting). The proof onsists of severalsteps.Step 1 (Loal existene). First, we need to show that a-orbits do in fatexist, that is, the series (14) has a nonzero radius of onvergene. Sine thepoint x = 1 is singular, this fat does not follow from standard theorems.Fortunately, in [10℄ Breitelohner, Forgás, and Maison have derived the fol-lowing result onerning the behaviour of solutions of a system of ordinarydi�erential equations near a singular point:Theorem [BFM℄. Consider a system of �rst order di�erential equations forn+m funtions u = (u1; : : : ; un) and v = (v1; : : : ; vm)yduidy = y�ifi(y; u; v); y dvidy = ��ivi + y�igi(y; u; v); (15)



Formation of Singularities in Yang�Mills Equations 1899where onstants �i > 0 and integers �i; �i � 1 and let C be an open subsetof Rn suh that the funtions f and g are analyti in the neighbourhood ofy = 0; u = ; v = 0 for all  2 C. Then there exists an n-parameter familyof solutions of the system (15) suh thatui(y) = i +O(y�i); vi(y) = O(y�i); (16)where ui(y) and vi(y) are de�ned for all  2 C; jyj < y0() and are analytiin y and .We shall make use of this theorem to prove the loal existene of a-orbits.In order to put equation (12) into the form (16) we de�ne the variablesy = x� 1; u(y) = W 0; v(y) = Wx� 1 �W 0; (17)and getyv0 = �v + yf; yu0 = yf; f = 3(u+ v) �1� y2(u+ v)2�2 + y : (18)Sine the funtion f(y; u; v) is analyti near y = 0 for any u and v, aordingto the BFM theorem, there exists a one-parameter family of loal solutionssuh that u(y) = a+O(y); v(y) = O(y) : (19)Transforming (19) bak to the original variables we obtain the behaviour ofa-orbits.Step 2 (A priori global behaviour). It follows immediately from (12) thatfor x > 1 a solution annot have a maximum (resp. minimum) for W > 1(resp. W < �1). Thus, one the solution leaves the strip jW j < 1, it annotreenter it (atually, suh a solution beomes singular for a �nite x). It isalso lear that as long as jW j < 1 the solution annot go singular. To derivethe asymptotis at in�nity of a-orbits that stay in the strip jW j < 1 we shallmake use of the following funtionalQ(x) = 12(x2 � 1)W 02 � 34(1�W 2)2: (20)For solutions of equation (12) we haveQ0(x) = xW 02; (21)so Q(x) is monotone inreasing. Now, we shall show that solutions satisfyingjW j < 1 for all x � 1 tend to W = �1 as x ! 1. To see this, �rst notie



1900 P. Bizo«that for suh solutions Q must be negative beause if Q(x0) > 0 for somex0 > 1 then jW 0j is stritly positive for x > x0 so the solution must leavethe strip jW j < 1 in �nite time. Sine Q0 � 0 and Q � 0, it follows thatQ has a nonpositive limit at in�nity whih in turn implies by (21) thatlimx!1 xW 0 = 0 and by (20) that limx!1W exists. By L'H�pital's rule wehave limx!1 x2W 00 = 0 and using (12) again, we get that limx!1W equals�1 or 0. The latter is impossible beause then Q(1) = �3=4 is a globalminimum ontraditing the fat that Q inreases. Thus, W (1) = �1.Step 3 (i) (Behaviour of a-orbits for small a). Resaling w(x) = W (x)=awe get(x2 � 1)w00 + 3w(1 � a2w2) = 0; w(1) = 0; w0(1) = 1: (22)As a! 0, the solutions of this equation tend uniformly on ompat intervalsto the solution of the limiting equation(x2 � 1)w00 + 3w = 0 (23)with the same initial ondition. This equation an be solved expliitly butfor the purpose of the argument it su�es to notie that its solution, all itwL(x), is osillating at in�nity. Sine W (x; a) � awL(x) up to an arbitrarilylarge x if a is su�iently small, it follows that the number of zeros of thesolution W (x; a) tends to in�nity as a! 0.(ii) (Behaviour of a-orbits for large a.) We resale the variables, settingy = a(x� 1), �w(y) = W (x) to get�y(y + 2a) �w00 + 3 �w(1� �w2) = 0; �w(0) = 0; �w0(0) = 1: (24)As a ! 1, the solutions of this equation tend uniformly on ompat in-tervals to the solution �w(y) = y of the limiting equation �w00 = 0. Thus,W (x; a) � a(x � 1) for large a and therefore the a-orbit rosses W = 1 fora �nite x.Step 4 (Shooting argument). We de�ne the setA0 = fa jW (x; a) stritly inreases up to some x0 where W (x0; a) = 1g:(25)We know from Step 3 that the set A0 is nonempty (beause the a-orbits withlarge a belong to it) and bounded below (beause the a-orbits with small ado not belong to it). Thus a0 = inf A0 exists. The solution W (x; a0) annotross the line W = 1 at a �nite x beause the same would be true for nearbysolutions, violating the de�nition of a0. Thus, 0 � W (x; a0) < 1 for all xand hene, by Step 2, limx!1W (x; a0) = 1. This ompletes the proof ofexistene of the nodeless self-similar solution W0(x) def= W (x; a0).



Formation of Singularities in Yang�Mills Equations 1901Next, let us onsider the solution with a = a0�" for small " > 0. By thede�nition of a0 there must be a point x0 where this solution attains a positiveloal maximum W (x0) < 1 and sine no minima are possible for 0 < W < 1,it follows that there must be a point x1 > x0 where W (x1; b) = 0. We shallshow that Q(x1; a) > 0 provided that " is su�iently small. As arguedabove this would imply that the solution W (x; a) leaves the strip jW j < 1via W = �1. From (21) we haveQ(x1)�Q(x0) = x1Zx0 xW 02dx = � W (x0)Z0 xW 0dW: (26)In order to estimate the last integral note that for x > x0Q(x)�Q(x0) = 12(x2 � 1)W 02 � 34(1�W 2)2 + 34(1�W 2(x0))2 > 0; (27)so xjW 0j > q32p(1�W 2)2 � (1�W 2(x0))2 . Substituting this into (26)one getsQ(x1) > �34 �1�W 2(x0)�2 +r32 W (x0)Z0 p(1�W 2)2 � (1�W 2(x0))2 dW:(28)The right hand side of this inequality is equal to p2=3 for W (x0) = 1so, by ontinuity, it remains stritly positive for W (x0) near 1. By taking asu�iently small " we an haveW (x0) arbitrarily lose to 1, hene Q(x1) > 0whih proves that a-orbits with a = a0�" have exatly one zero. This meansthat the set A1 = fa jW (x; a) inreases up to some x0 where it attains apositive loal maximum W (x0) < 1 and then dereases monotonially upto some x1 where W (x1) = �1g is nonempty. Let a1 = inf A1. By Step 3,a1 exists and is stritly positive. Using the same argument as above weonlude that the a1-orbit must stay in the region jW j < 1 for all x, henelimx!1W (x; a1) = �1. This ompletes the proof of existene of the self-similar solution W1(x) def= W (x; a1) with exatly one zero.The subsequent onneting orbits are obtained by indution. We on-lude that there exists a ountable family of self-similar solutions Wn(x)indexed by the integer n = 0; 1; : : : n whih ounts the number of zeros forx > 1.Remark. Sine the sequene fang is dereasing and bounded below by zero,it has a nonnegative limit limn!1 an = a� � 0. If a� > 0, then the a�-orbitannot leave the region jW j < 1 for a �nite x (beause the set of suh orbits



1902 P. Bizo«is learly open) hene it must be a onneting orbit with some �nite numberof zeros. But this ontradits the fat that the number of zeros of an-orbitsinreases with n. Hene, a� = 0. This implies that for any �nite x, Wn(x)goes to zero when n!1.We remark that the existene of the solution W0 was �rst shown byCazenave, Shatah, and Tahvildar-Zadeh [3℄ via a variational method.The shooting tehnique is not only a powerful analytial tool; it is also ane�ient numerial method of solving two-point boundary value problems.The numerial results produed by this method are shown in Table I and�gure 1. TABLE IThe shooting parameters of solutions Wn for n � 5.n 0 1 2 3 4 5an 1.25 0.4813158 0.1864517 0.0722966 0.02803703 0.01087315
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Fig. 1. The �rst four self-similar solutions Wn(x).Surprisingly, it turned out that a0 = 5=4 (with very good auray).This was a hint that the solution W0 has a simple losed form. Indeed,playing with the power series expansion (14) we found thatW0(x) = x2 � 1x2 + 35 : (29)



Formation of Singularities in Yang�Mills Equations 1903Below we show an amusing alulation by Maple whih helped us in�nding this formula.> restart;> with(DEtools):> with(numapprox):> ode:=(x�2-1)*diff(w(x),x$ 2)+3*w(x)*(1-w(x)�2)=0;ode := (x2 � 1) � �2�x2 w(x)�+ 3w(x) (1 � w(x)2) = 0> i:=w(1)=0,D(w)(1)=5/4;i := w(1) = 0; D(w)(1) = 54> sol:=dsolve({ode,i},w(x));sol :=> sol_formal:=rhs(dsolve({ode,i},w(x),type=series));sol_formal :=54 (x�1)� 1516 (x�1)2+2564 (x�1)3+ 25256 (x�1)4� 3751024 (x�1)5+O((x�1)6)> pade_sol:=pade(sol_formal,x=1,[2,2℄);pade_sol := 58 (x� 1)2 + 54 x� 54�14 + 54 x+ 58 (x� 1)2> sol:=simplify(pade_sol);sol := 5 x2 � 13 + 5x2> subs(w(x)=sol,ode);(x2 � 1)� �2�x2 �5 x2 � 13 + 5x2��+ 15 (x2 � 1)�1� 25 (x2 � 1)2(3 + 5x2)2�3 + 5x2 = 0> simplify(%); 0 = 0 :



1904 P. Bizo«So far our analysis of self-similar solutions was restrited to the interiorof the past light one of the singularity. To show that the solutions Wnrepresent genuine naked singularities, we need to extend them to the futurelight one, that is to x = �1. Fortunately, suh an extension reates noproblem beause an a-orbit shot bakwards from x = 1 annot go singularbefore reahing x = �1. This follows immediately from (12) by observingthat, in the interval �1 < x < 1,W (x) is onave down (resp. up) forW > 1(resp. W < �1), hene W (x) remains bounded as x! �1+. Moreover, thefuntion Q(x) is negative and dereasing near x = �1, thus limx!�1+ Q(x)exists whih implies in turn that  = limx!�1+ W (x) exists. Having that,the standard asymptoti analysis gives the following leading order behaviourfor x! �1+ W (x) � + 32(1� 2)(x+ 1) ln(x+ 1) : (30)The singular logarithmi term in (30) an be eliminated by �ne-tuning theshooting parameter a, however this is not expeted to happen for the solu-tions Wn(x) beause in their onstrution the freedom of adjusting a wasalready used to tune away the singular behaviour for x > 1. We onludethat the self-similar solutions Wn are C0 at the future light one and areanalyti everywhere below it. The only (somewhat surprising) exeption isthe solution W0 whih is analyti in the entire spaetime.4. Linear stability of self-similar solutionsIn this setion we study the linear stability of self-similar solutions Wn.This analysis is essential in determining the role of self-similar solutions indynamis. We restrit attention to the interior of the past light one of thepoint (T; 0) and de�ne the new time oordinate s = � lnp(T � t)2 � r2.Note that s ! 1 when t ! T , and the lines of onstant s are orthogonalto the rays of onstant x. In terms of s and x, equation (5) beomes (forD = 5) � e2sx2 � 1(e�2sws)s + (x2 � 1)wxx + 3w(1 � w2) = 0 : (31)Of ourse, this equation redues to (12) if w does not depend on s. In orderto determine the stability of self-similar solutions Wn we seek solutions of(31) in the form w(s; x) = Wn(x) + v(s; x). Negleting the O(v2) terms weobtain the linear evolution equation for the perturbation v(s; x)� e2sx2 � 1(e�2svs)s + (x2 � 1)vxx + 3(1� 3W 2n)v = 0 : (32)



Formation of Singularities in Yang�Mills Equations 1905Substituting v(s; x) = e(�+1)spx2 � 1 u(x) into (32) we get the eigenvalueproblem in the standard Sturm�Liouville form� ddx �(x2 � 1)dudx�� 3(1� 3W 2n)u = �x2 � 1u ; (33)where � = ��2. Using the variable � = 12 ln(x�1x+1) ranging from zero toin�nity we transform (33) into the radial Shrödinger equation�d2ud�2 + Vnu = �u ; Vn = �3(1� 3W 2n)sinh2� : (34)The potential Vn(�) has a typial �quantum mehanial� shape (see �gure 2)with the asymptotisVn(�) � � 6=�2 for �! 0 ;�12 exp(�2�) for �!1 : (35)Note that the potential an be expressed in the form Vn(�) = l(l + 1)=�2 +V regn (�) with l = 2, where the regular part V regn (�) is everywhere negativeand V regn (0)! �1 as n!1.
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Fig. 2. The potential for the perturbations around the self-similar solution W1.The single bound state with energy � = �16 is indiated.Both endpoints � = 0 and � = 1 are of the limit-point type, that is,exatly one solution near eah point is square-integrable (admissible). Near� = 0 the admissible solutions behave as u(�) � �3. For � ! 1 and � < 0the admissible solutions behave as u(�) � e��� (reall that � = p��). All� � 0 belong to the ontinuous spetrum.



1906 P. Bizo«Let unk (resp. �nk) denote the kth eigenfuntion (resp. eigenvalue) aboutthe solution Wn. The numerially generated spetra are shown in Table II.TABLE IIThe eigenvalues of the perturbations about the �rst �ve solutions Wn obtained nu-merially. The pseudo-eigenvalue � = 0 is also inluded. The last row orrespond-ing to n = 1 was obtained by solving numerially the transendental equation(43). n �n0 �n1 �n2 �n3 �n40 01 0 42 0 4 27.4073 0 4 27.379 182.494 0 4 27.374 182.18 1214.5. . . . . . . . . . . . . . . . . .1 0 4 27.37319 182.1202 1210.917We point out that although � = 0 is not a genuine eigenvalue, it is dis-tinguished from the stritly positive part of the ontinuous spetrum bythe fat that the orresponding non-square-integrable pseudo-eigenfuntion,alled the zero mode, is subdominant at in�nity. The existene of the zeromode is due to the time translation symmetry, or in other words, the freedomof shifting the blowup time T in (8). To see this, onsider the self-similarsolution with a shifted blowup time Wn((T 0 � t)=r), where T 0 = T + ".In terms of the original similarity variables s = � lnp(T � t)2 � r2 andx = (T � t)=r, we haveWn�T 0 � tr � = Wn(x+"espx2 � 1) = Wn(x)+"espx2 � 1 W 0n(x)+O("2) ;(36)hene the perturbation generated by shifting the blowup time orrespondsto � = 0 and has the formun0 =px2 � 1 W 0n(x) = sinh2� W 0n(�): (37)An alternative way of deriving this result is to take (sinh2� W 0)0 + 3W (1�W 2) = 0, whih is (12) reexpressed in terms of �, di�erentiate it and omparewith (34).Sine by onstrution the solution Wn(�) has n extrema, it follows from(37) that the zero mode un0 (�) has n nodes. This implies, by the standardresult from Sturm�Liouville theory, that the potential Vn has exatly n neg-ative eigenvalues, in agreement with the numerial results shown in Table II.



Formation of Singularities in Yang�Mills Equations 1907We onlude that the self-similar solution Wn has exatly n unstable modes(apart from the unphysial zero mode). In partiular, the fundamental so-lution W0 is linearly stable, whih makes it a andidate for the attrator.The rest of this setion is a digression onerning a striking regularitywhih an aute reader might have already notied in Table II. Namely, thethird olumn of Table II indiates that for eah n > 0 the �rst eigenvaluebelow the ontinuous spetrum �n1 = �(�n1 )2 is equal to �16 (with thenumerial auray of ten deimal plaes)! This puzzling numerial fat isalling for an explanation. Clearly, it has something to do with the partiularform of the nonlinearity sine, for instane, the analogous problem for self-similar wave maps from 3 + 1 dimensional Minkowski spaetime into the 3-sphere does not have this property [4℄. We suspet that the problem has somehidden symmetry, yet we annot exlude a possibility that the numeris ismisleading and the eigenvalues �n1 are not preisely equal but their splittingis beyond the numerial resolution. Some insight into this puzzle an begained by analysing the limiting ase n ! 1. Reall that Wn(�) tends tozero for any � > 0 as n ! 1, hene the sequene of potentials Vn has thefollowing nonuniform limitlimn!1Vn(�) = V1(�) = � 3sinh2�: (38)For the limiting potential V1 the Shrödinger equation (34) an be solvedexatly. The solution that is admissible at in�nity (whih as before is thelimit-point) is given by the assoiated Legendre funtion of the �rst kindu(�) = P�� (oth �); � = �12 + ip112 : (39)Here � is one of the roots of �(� + 1) = �3; the seond root gives thesame solution beause P��1=2+i�(x) with real � is real and P��1=2+i�(x) =P��1=2�i�(x).As �! 0, the solution (39) behaves asu(�) / � 12 sin p112 ln�+ Æ(�)! ; (40)so it is always admissible, independently of �. This means that � = 0 isthe limit-irle point and, therefore, in order to have a well-de�ned self-adjoint problem we need to impose an additional boundary ondition. Inthe language of spetral theory suh a ondition is alled a self-adjoint ex-tension. The ontinuous part of the spetrum is the same for all self-adjointextensions but the eigenvalues do depend on the hoie. In our ase the



1908 P. Bizo«self-adjoint extension amounts to �xing Æ(�) � the phase of osillations ofthe eigenfuntions for �! 0. The natural hoie is to require that the eigen-funtions osillate with the same phase as the zero mode, that is Æ(�) = Æ(0),or equivalently lim�!0nP 0� (oth �)u0(�)� P 0� 0(oth �)u(�)o = 0: (41)Note that under this ondition the following diagram ommutesVn f�nkgV1 f�1k g
-? pppppppppp?-Substituting (39) into (41) and using the asymptoti expansion (for real �)P��1=2+i�(oth �) � 2i�� (i�)p2� � (1=2 + i� � �) �1=2+i� + .. for �! 0; (42)we obtain the quantisation ondition for the eigenvaluesarg(�  12 � ip112 ! �  12 + ip112 + �k!) = k�; k 2N : (43)This transendental equation has in�nitely many roots whih for k � 2an be obtained only numerially (see the last row in Table II). However,for k = 1 the exat solution is �1 = 4 beause (aidentally?) � (1=2 +ip11=2 + 4) = �45 � (1=2 + ip11=2), as an be readily veri�ed using fourtimes the identity � (z+1) = z� (z). Thus, we showed that the least negativeeigenvalue of the limiting potential is equal to �16. Although this analysisdoes not resolve the original puzzle why all �n1 are equal to 4, it shows atleast that 4 is the aumulation point of this sequene.The asymptoti distribution of eigenvalues for k ! 1 an be derivedfrom (43) by using the formula for the asymptoti behaviour of the gammafuntion for large z� (� + z) � p2� e(�+z�1=2) ln z�z for jzj ! 1; (44)whih yieldsarg(�  12 + ip112 + �!) � p112 ln� for �!1: (45)



Formation of Singularities in Yang�Mills Equations 1909Applying this to (43) one gets�k+1�k � e 2�p11 for k !1 : (46)This formula was useful is providing an initial guess in the numerial root�nding proedure for equation (43) for large k.5. Singularities in D = 5Having learned about self-similar solutions, we are now prepared to un-derstand the results of numerial studies, �rst reported in [7℄, of the Cauhyproblem for the YM equation in �ve spae dimensionswtt = wrr + 2rwr + 3r2w(1 � w2) : (47)The main goal of these studies was to determine the asymptotis of blowup.Our numerial simulations were based on �nite di�erene methods ombinedwith adaptive mesh re�nement. The latter were instrumental in resolving thestruture of singularities developing on vanishingly small sales. We stressthat a priori analytial insight into the problem, in partiular the knowledgeof self-similar solutions was very helpful in interpreting the numerial results.We solved equation (47) for a variety of initial onditions interpolatingbetween small and large data. A typial example of suh initial data is aGaussian (ingoing or time-symmetri) of the formw(0; r) = 1�Ar2 exp ���(r �R)2� ; (48)with adjustable amplitude A and �xed parameters � and R. The globalbehaviour of solutions is qualitatively the same for all families of initialdata and depends ritially on the amplitude A (or any other parameterwhih ontrols the �strength� of initial data). For small amplitudes thesolutions disperse, that is the energy is radiated away to in�nity and in anyompat region the solution approahes the vauum solution w = 1. Thisis in agreement with general theorems on global existene for small initialdata [2℄. Heuristially, this follows from the fat the for a small amplitudethe nonlinearity is dominated by the dispersive e�et of the linear waveoperator. For large amplitudes we observe the development of two learlyseparated regions: an outer region where the evolution is very slow and arapidly evolving inner region where the solution attains a kink-like shapewhih shrinks in a self-similar manner to zero size in a �nite time T . Thekink is, of ourse, nothing else but the self-similar solution W0( rT�t )1 (see�gure 3). We summarise these �ndings in the following onjeture:1 Throughout this setion we use the similarity variable � = rT�t (rather than x) andabuse the notation by writing Wn(�) to denote ~Wn(�) =Wn(x).



1910 P. Bizo«Conjeture 1 (On blowup in D = 5). Solutions of equation (47) orre-sponding to su�iently large initial data do blowup in �nite time in the sensethat wrr(t; 0) diverges as t % T for some T > 0. The universal asymptotipro�le of blowup is given by the stable self-similar solution:limt%T w(t; (T � t)r) = W0(r) : (49)
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Formation of Singularities in Yang�Mills Equations 1911We think that the basi mehanism whih is responsible for the observedasymptoti self-similarity of blowup an be viewed as the onvergene to thelowest �energy� on�guration. To see this, let us rewrite (47) in terms of thesimilarity variable � and the slow time � = � ln(T � t) to getw��+w�+2�w�� =(1� �2)�w��+2�w��+ 3�2w(1 � w2) : (50)In this way the problem of blowup was onverted into the problem of asymp-toti behaviour of solutions for � ! 1. The natural �energy� funtionalassoiated with this problem isK(w) = 1Z0 ��2w2� + 32 (1� w2)21� �2 � d� : (51)K(w) has a minimum at the self-similar solution W0 and saddle points withn unstable diretions at solutions Wn with n > 0. Sine the wave equation(50) ontains a damping term re�eting an outward �ux of energy throughthe past light one of the singularity, we suspet (but annot prove) thatK(w) dereases with time. If so, it is natural to expet that solutions willtend asymptotially to the minimum of K(w).We already know that solutions with small data disperse and solutionswith large data blow up. The question is what happens in between. Usingbisetion, we found that along eah interpolating family of initial data thereis a threshold value of the parameter, say the amplitude A�, below whih thesolutions disperse and above whih a singularity is formed. The evolutionof initial data near the threshold was found to go through a transient phasewhih is universal, i.e. the same for all families. This intermediate attratorwas identi�ed as the self-similar solution W1. Having gone through thistransient phase, at the end the solutions leave the intermediate attratortowards dispersal or blowup. This behaviour is shown in �gure 4 for thetime-symmetri initial data of the form (48).The universality of the dynamis at the threshold of singularity forma-tion an be understood heuristially as follows2. As we showed above, theself-similar solution W1 has exatly one unstable mode � in other words thestable manifold of this solution has odimension one and therefore generione-parameter families of initial data do interset it. The points of inter-setion orrespond to ritial initial data that onverge asymptotially toW1. The marginally ritial data, by ontinuity, initially remain lose to the2 This heuristi piture of the dynamis near the threshold, borrowed from dynamialsystems theory, has been �rst given in the ontext of Einstein's equation � seeSetion 6 and [12℄.
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1914 P. Bizo«the other hand, if the density of matter is su�iently large, some frationof the initial mass will form a blak hole. Critial gravitational ollapse o-urs when the attrating and repulsive fores governing the dynamis of thisproess are almost in balane, or in other words, the initial on�guration isnear the threshold of blak hole formation. The systemati studies of riti-al gravitational ollapse were launhed in the early nineties by the seminalpaper by Choptuik [11℄ in whih he investigated numerially the ollapse ofa self-gravitating massless salar �eld.Evolving initial data �ne-tuned to the border between no-blak-hole andblak-hole spaetimes, Choptuik found the following unforseen phenomenanear the threshold:(i) universality: all initial data whih are near the blak hole threshold gothrough a universal transient period in their evolution during whihthey approah a ertain intermediate attrator, before eventually dis-persing or forming a blak hole. This universal intermediate attratoris usually referred to as the ritial solution.(ii) disrete self-similarity: the ritial solution is disretely self-similar,that is it is invariant under dilations by a ertain �xed fator alledthe ehoing period.(iii) blak-hole mass saling: for initial data that do form blak holes, themasses of blak holes satisfy the power law Mbh � " , where " is thedistane to the threshold and  is a universal (i.e., the same for allinitial data) ritial exponent. Thus, by �ne tuning to the thresholdone an make an arbitrarily tiny blak hole. Put di�erently, there isno mass gap at the transition between blak-hole and no-blak-holespaetimes.What Choptuik found for the salar �eld, has been later observed inmany other models of gravitational ollapse, although the symmetry of theritial solution itself was found to depend on the model: in some ases theritial solution is self-similar (ontinuously or disretely), while in otherases the ritial solution is stati (or periodi). In the latter ase blak holeformation turns on with �nite mass. These two kinds of ritial behaviourare referred to as the type II or type I ritiality, respetively, to emphasisethe formal analogy with seond and �rst order phase transitions in statistialphysis. We refer the interested reader to [12℄ for an exellent review of thegrowing literature on ritial gravitational ollapse.The present understanding of ritial behaviour in gravitational ollapseis based on the same phase spae piture as in �gure 5, that is, it is assoiatedwith the existene of a ritial solution with exatly one unstable mode. Thispiture leads to some quantitative preditions. In partiular, in the ase of



Formation of Singularities in Yang�Mills Equations 1915type II ritial ollapse, an elementary dimensional analysis shows that theritial exponent  in the power law Mbh � " is a reiproal of the unstableeigenvalue of the ritial solution.By now, the similarities between type II ritial gravitational ollapseand the dynamis at the threshold of singularity formation in the 5 + 1 YMequations should be evident. This analogy, together with similar results forwave maps in 3+1 dimensions [5,13℄, shows that the basi properties of rit-ial ollapse, suh as universality, saling, and self-similarity, �rst observedfor Einstein's equations, atually have nothing to do with gravity and seemto be robust properties of superritial nonlinear wave equations. The ob-vious advantage of toy models, suh as the one presented in this paper, istheir simpliity whih allowed to get a muh better analyti grip on ritialphenomena than in the ase of Einstein's equations; in partiular, it waspossible to prove existene of the ritial solution. The only harateristiproperty of type II ritial ollapse whih so far has not found in simplermodels (besides, of ourse, the absene of blak holes whih are replaed bysingularities) is disrete self-similarity of the ritial solution. It would bevery interesting to design a toy model whih exhibits disrete self-similarityat the threshold for singularity formation beause this ould give us insightinto the origin of this mysterious symmetry.7. Singularities in D = 4In this setion we onsider the Cauhy problem for the YM equation infour spae dimensionswtt = wrr + 1rwr + 2r2w(1� w2): (54)We begin by realling some fats onerning equation (54) whih are beimportant in understanding the dynamis of singularity formation. First,we note that, in ontrast to D = 5, there are no smooth self-similar solutionin D = 4. This follows from the fat that in D dimensions the loal solutionsof equation (10) near the past light one behave as (1� �2)D�32 , hene theyare not smooth if D is even (in partiular, they are not di�erentiable inD = 4). Although suh singular self-similar solutions do exist, they annotdevelop from smooth initial data and therefore they are not expeted topartiipate in the dynamis.Seond, D = 4 is the ritial dimension in the sense that the energy (7)does not hange under saling. This means that, even though the model issale invariant, a nontrivial �nite energy stati solution may exist3. In fat,3 Another way of seeing this is to notie that only in D = 4 the YM oupling onstante2 provides the sale of energy.



1916 P. Bizo«suh a stati solution is well knownWS(r) = 1� r21 + r2 : (55)This is the instanton in the four-dimensional Eulidean YM theory. Ofourse, by re�etion symmetry, �WS(r) is also the solution. Sine the modelis sale invariant, the solution WS(r) generates an orbit of stati solutionsW �S (r) =WS(r=�), where 0 < � <1.To analyse the linear stability of the instanton, we insert w(t; r) =WS(r) + eiktv(r) into (54) and linearise. In this way we get the eigenvalueproblem (the radial Shrödinger equation)�� d2dr2 � 1r ddr + V (r)� v = k2v; V (r) = �2(1� 3W 2S )r2 : (56)This problem has a zero eigenvalue k2 = 0 whih follows from sale invari-ane. The orresponding eigenfuntion (so alled zero mode) is determinedby the perturbation generated by salingv0(r) = � dd�W �S (r)����=1 = rW 0S(r) = 4r2(1 + r2)2 : (57)Sine the zero mode v0(r) has no nodes, it follows by the standard resultfrom Sturm�Liouville theory that there are no negative eigenvalues, andeo ipso no unstable modes around WS(r). Thus, the instanton is marginallystable. Note that the zero eigenvalue lies at the bottom of the ontinuousspetrum k2 � 0, hene there is no spetral gap in the problem.After these preliminaries, we return to the disussion of the Cauhyproblem for equation (54). For small energies the solutions disperse, inagreement with general theorems. For large energies, at �rst sight the globalbehaviour seems similar to the D = 5 ase � as before, near the entre thesolution attains the form of a kink whih shrinks to zero size. However, thissimilarity is super�ial beause now the kink is not a self-similar solution(as no suh solution exists). It turns out (see �gure 6) that the kink has theform of the sale-evolving instantonw(t; r) �WS� r�(t)� ; (58)where a saling fator �(t) is a positive funtion whih tends to zero ast! T . We summarise these �ndings in the following onjeture:



Formation of Singularities in Yang�Mills Equations 1917Conjeture 2 (On blowup in D = 4). Solutions of equation (54) withsu�iently large energy do blow up in �nite time in the sense that wrr(t; 0)diverges as t % T for some T > 0. The universal asymptoti pro�le ofblowup is given by the instanton. More preisely, there exists a positivefuntion �(t)& 0 for t% T suh thatlimt%T u(t; �(t)r) = WS(r) : (59)
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1918 P. Bizo«The key question whih is left open in this onjeture is: what determinesthe evolution of the saling fator �(t); in partiular, what is the asymptotibehaviour of �(t) for t! T ? Numerial evidene shown in �gure 7 suggeststhat the rate of blowup goes asymptotially to zero, that is ( _= d=dt)limt!T �(t)T � t = � limt!T _� = 0 ; (60)but it seems very hard to determine an exat asymptotis of �(t) from purenumeris4.
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Formation of Singularities in Yang�Mills Equations 1919require that Pv = 0, where P is the projetion on M. Plugging (61) into(54) we get (0 = d=d�)�2�v � 2� _�� _v0 + Lv +N(v) = ����W 0S � _�2(�2W 00S + 2�W 0S); (62)where L is the linear perturbation operator about the instantonL = � �2��2 � 1� ��� � 2(1 � 3W 2S )�2 ; (63)and N(v) = 6WS�2 v2 + 2�2 v3: (64)It is lear from (62) that v = O( _�2), hene for v to deay to zero as t! T ,the rate of blowup must go to zero as well. We stress this point to empha-sise that the linear evolution of �(t), predited for example by the geodesiapproximation, is inonsistent with Conjeture 2. Next, by projeting equa-tion (62) on M and in the orthogonal diretion, we get a oupled systemonsisting of a nonhomogeneous wave equation for v and an ordinary dif-ferential equation for �. Solving the �rst equation for v and plugging theresult into the seond equation, we obtain in the lowest order the followingmodulation equation ��� = 34 _�4: (65)From this we get the leading order asymptotis for t! T�(t) �r23 T � tp� ln(T � t) : (66)As shown in �gure 7 this result is in rough agreement with numeris. Thereare many possible soures of the apparent disrepany. On the numerialside there are disretisation errors, an error in estimating the blowup time,or errors in omputing � from the data. On the analytial side, there mightbe orretions to (66) oming from the bounded region expansion and, moreimportantly, from the far �eld behaviour5. Finally, and in our opinion mostlikely reason of disrepany is that the solution shown in �gure 7 has notyet reahed the truly asymptoti regime and onsequently the higher orderorretions to formula (66) are still signi�ant.5 The derivation of (65) is not quite straightforward beause of the presene of infrareddivergenies whih need to be regularised.



1920 P. Bizo«The issue of blowup rate is losely related to the problem of energy on-entration in the singularity. To explain this, we de�ne the kineti and thepotential energies at time t < T inside the past light one of the singularityEK(t) = 6�2 T�tZ0 w2t rdr; EP(t) = 6�2 T�tZ0 �w2r + (1� w2)2r2 � rdr: (67)Substituting (58) into (67) we obtainEK(t) = 6�2_�2 T�t�(t)Z0 W 0S2rdr; EP(t) = 6�2 T�t�(t)Z0 �W 0S2 + (1�W 2S )2r2 � rdr:(68)Assuming (60), this implies thatlimt!T EK(t) = 0; limt!T EP(t) = 16�2: (69)Thus, the energy equal to the energy of the instanton gets onentrated inthe singularity. This means that in the proess of blowup the exess energymust be radiated away from the inner region as the solution onverges tothe instanton.It is worth pointing out that the onentration of energy is a nees-sary ondition for blowup in the ritial dimension. To see this, supposethat the solution blows up at time T and assume for ontradition thatlimt!T E(t) = 0. Then, by hoosing a su�iently small " > 0 we an haveE(T � ") arbitrarily small. This implies, by ausality and global existenefor small energy data, that the solution exists globally in time, ontraditingthe assumption. For radial equations of the typewtt = wrr + 1rwr + f(w)r2 ; (70)a stronger result was proved by Struwe [16℄ who basially showed that if thesolution of (70) blows up, then it must do so in the manner desribed inConjeture 2. In this sense formation of singularities is intimately tied withthe existene of a stati solution.Finally, we address brie�y the issue of the threshold of singularity forma-tion. Using the tehnique desribed in Setion 5, along eah interpolatingfamily of initial data we an determine the ritial point separating blowupfrom dispersal. However, in ontrast to the D = 5 ase, we see no evidenefor the existene of an intermediate attrator in the evolution of nearly rit-ial data. This fat, together with a similar result for 2 + 1 dimensional



Formation of Singularities in Yang�Mills Equations 1921wave maps [6℄ suggests that in the ritial dimension the transition betweenblowup and dispersal is not governed by any ritial solution. We suspetthat the evolution of preisely ritial initial data still has the form (58)but the dynamis of the saling fator is di�erent than in (66). This be-lief is based on the fat that in the evolution of marginally ritial initialdata we an learly distinguish a transient phase during whih �(t) dropsvery quikly and then, either reahes a minimum and starts growing (in thease of dispersal), or keeps dereasing with the �normal� rate (in the ase ofblowup). 8. ConlusionsThere are two main lessons that we wanted to onvey in this survey.The �rst lesson is that there are striking analogies between major evolu-tion equations. In partiular, the mehanism of blowup to a large extentis determined by the ritiality lass of the model. These analogies an beused to get insight into hard problems (suh as singularity formation forEinstein's equations) by studying toy models whih belong to the same rit-iality lass. This approah is in the spirit of general philosophy expressedby David Hilbert in his famous leture delivered before the InternationalCongress of Mathematiians at Paris in 1900 [17℄: �In dealing with math-ematial problems, speialisation plays, as I believe, a still more importantpart than generalisation. Perhaps in most ases where we seek in vain theanswer to a question, the ause of the failure lies in the fat that problemssimpler and easier than the one in hand have been either not at all or inom-pletely solved. All depends, then, on �nding out these easier problems, andon solving them by means of devies as perfet as possible and of oneptsapable of generalisation.�The seond lesson is onerned with the interplay between numerialand analytial tehniques. Aurate and reliable numerial simulation ofsingular behaviour is di�ult and hard to assess. In order to keep trakof a singularity developing on exeedingly small spatio-temporal sales, oneneeds sophistiated tehniques suh as adaptive mesh re�nement. For thesetehniques the onvergene and error analysis are laking so extreme areis needed to make sure that the omputed singularities are not numerialartifats. For this reason, in order to feel on�dent about numeris it isimportant to have some analytial information, like existene of self-similarsolutions. Without a theory, simulations alone do not provide ample ev-idene for the existene of a singularity. We believe that the interationbetween numerial and analytial tehniques, illustrated here by the studiesof blowup, will beome more and more important in future as we begin toattak more di�ult problems.
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