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Deviations from an idealized equilibrium phase transition picture in
nuclear multifragmentation is studied in terms of the entropic index. We
investigate different heat-capacity features in the canonical quantum sta-
tistical fragmentation model generalized in the framework of non-extensive
thermostatistics, and show that in this model the negative branch of heat
capacity in quasi-peripheral Au+Au reactions is consistent with the domi-
nance of non-extensive effects in these reactions.
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1. Introduction

The nuclear multifragmentation process is studied in the energetic col-
lisions of Heavy Ions (HI). In these collisions, strongly off-equilibrium tran-
sient system is formed which equilibrates at the later stage of the reaction
due to dissipative processes. Perfectly equilibrated system, as assumed in
most theoretical descriptions of the multifragmentation decay of the hot
residue, is most probably never attained. Moreover, standard equilibrium
thermodynamics is valid only for sufficiently short-ranged interactions, what
is not the case for Coulomb field. This would not be a serious problem if
the nuclear fragmentation process does not show any sign of the critical-
ity [1,2]. Indeed, the nonextensivity of weakly off-equilibrium finite sys-
tems may qualitatively modify both the picture of the two phase coexis-
tence and signatures of the critical behavior in small systems [3]. On the
other hand, these nonextensivity corrections to Boltzmann—Gibbs Statisti-
cal Mechanics (BGSM) have no measurable effects on standard signatures
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of the equilibrium such as the particle/fragment kinetic energy spectra or
angular distributions [3]. Neither the caloric curve nor the negative heat-
capacity branch measurements [1,2], both put forward as an evidence for
the nuclear liquid-gas phase transition, can be interpreted unambiguously.
The non-extensive effects due to the Coulomb interaction/non-Markovian
memory effects or the multi-fractal phase boundary conditions [4,5], which
are crucial only in the critical region [3], not only constitute an integral part
of the physics of HI collisions but also provide an essential limitation to our
understanding of the multifragmentation process in the BGSM framework.

Non-extensive features can be studied in the molecular dynamics frame-
work. The effect of equilibration in a confining wall has been investigated re-
cently in excited Lennard—Jones systems [6]. In the system of classical spins
with infinite range interaction [7], it has been shown that before going to
the Boltzmann—Gibbs equilibrium state, the system reaches the metastable
state with non-Maxwellian velocity distribution whose lifetime increases in-
definitely with increasing number of spins. Hence, in the thermodynamical
limit the system may be indefinitely trapped in a non-Boltzmann—Gibbs
state.

Analytical studies of the non-extensive spin model with infinite-range
ferromagnetic interaction and repulsive correlations [8] showed clearly the
development of a new weak-ferromagnetic phase and an unusual first order
phase transition from paramagnetic to weak-ferromagnetic phase in which
a discontinuity of the averaged order parameter appears even for finite num-
ber of spins.

All these intriguing results obtained in schematic models, confirm that
the applicability of standard equilibrium ensembles for the description of
the dynamically induced fragmentation process in the presence of long range
interactions/correlations requires further studies.

In the case of nuclear multifragmentation, a practical and sufficiently
realistic approach to this problem would be to use those (extensive) models
which describe physics of limiting two phases outside of the critical region,
and then to develop a flexible phenomenological parametrization of non-
generic non-extensive effects in the critical region. It is the aim of this work
to illustrate this problematic in the thermodynamic canonical model which
is extended in the framework of the generalized thermostatistics [3].

2. The non-extensive canonical quantum statistical model of
nuclear multifragmentation

A starting point could be any reasonable thermodynamic fragmentation
model (for the list of examples see e.g. [9,10]). This choice offers several
advantages, such as a correct quantum statistics and a correct definition of
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both nuclear fragments and their binding energies. The Coulomb and surface
effects can be tuned by analyzing the observable quantities far outside of the
critical region and fragment excitations can be included, if necessary. Several
models of this kind had an unquestionable success in describing reaction
products and their properties from the regime of particle evaporation at low
excitation energies to the explosion at about 5-10 MeV /nucleon [9,10]|. The
new class of non-extensive thermodynamical models can be formulated in
the framework of the Tsallis Generalized Statistical Mechanics (TGSM) [4].
TGSM is based on an alternative definition for the entropy of a system whose
i-th microscopic state has probability p;

1 =% 94 p— S pd
S =k Zzpz =k Zzpl Zzpz

k>0 1
q q—l q—l ) >0, ()

where k is the conventional positive constant. The entropic index ¢ defines
statistics and the normalization condition

Zﬁz‘ =1 (2)

is used to get the second equality in (1). The limit ¢ = 1 corresponds to
the BGSM. The main difference between BGSM and TGSM is the non-
additivity of entropy in the TGSM. For two independent subsystems A, B,
i.e. such that the joint probability of A+ B is factorized into p4y+p = papB,
the global entropy

So(A+B) = 5,(4) + 5,(8) + T L3 D5D) @

is not equal to the sum of the subsystem entropies. In particular, the en-
tropy is always concave for ¢ > 0, and this is the case discussed in the present
paper. Different works have shown that the above described statistical me-
chanics retains much of the formal structure of the standard theory [11].
Many important properties have been shown to be ¢g-invariant. Among them,
we have the Legendre transformation structure of thermodynamics and the
H-theorem (macroscopic time irreversibility). Considering that the essence
of the second law of thermodynamics is the concavity (see e.g. Ref. [12]
and references quoted therein), the mentioned properties of S indicate that
there are no problems with this law in TGSM.

The entropy (1) was discussed recently in terms of the incomplete infor-
mation theory [13]. The condition (2) means that all possible physical states
are both well-known and counted. However, in complex systems we often
do not know all interactions and/or cannot find the exact Hamiltonian and,



1926 K.K. GubpiMA, M. Proszaiczak, V.D. TONEEV

therefore, exact values of physical quantities are not accessible. In other
words, part of the information is lost and the normalization (2) is violated
because the set of the countable states becomes incomplete. By chang-
ing probabilities in Eq. (2) into effective ones p; — ﬁg, one arrives again
at Tsallis definition of the entropy. The parameter ¢ = ¢ — 1 is related
in this formulation to an extra entropy due to the neglected interactions.
This is the essential reason for introducing TGSM with a phenomenolog-
ically adjusted parameter q. The situation encountered experimentally in
the nuclear multifragmentation process, where effects of thermal and chem-
ical non-equilibrium, expansion of decaying system, long-ranged Coulomb
interaction, various memory effects of system dynamical history, or effects
of complicated interphase boundary are present, can be better addressed in
the framework of generalized statistical mechanics where the entropic index
parameter allows to correct the BGSM framework for missing physically
important effects.

The TGSM is relevant if the microscopic interactions in the system are
long-ranged and/or the effective microscopic memory is long-ranged and/or
the geometry of the system is fractal [4,5,14]. In the super-additive regime
(1 — ¢ > 0), independent subsystems A and B will tend to join together
increasing in this way the entropy of the whole system. On the contrary,
in the sub-additive regime (1 — q < 0), the system increases its entropy
by fragmenting into the separate subsystems [8]. This is a natural regime
for non-extensive systems with long-ranged repulsive interactions, such as
formed in the collisions of atomic nuclei or atomic clusters. These ideas
agree with the results of Landsberg et al. [15] who studied fragmentation
process in connection with the thermodynamics of black holes.

Our further considerations are based on the canonical multifragmenta-
tion model [16] which is a generalization of phenomenologically successful
statistical multifragmentation model of Bondorf et al. [10]. The canonical
ensemble method in TGSM was introduced in [17]. In this case, the entropy
Sy is extremized with the conditions (2) and

ZP;}&?Z = Uq )
i=1

where €; is the energy of the 7-th microscopic state and Uy is the generalized
average energy. The main ingredient of the non-extensive canonical quantum
statistical model of nuclear multifragmentation [3] is the expression for the
fragment partition function

we(a, z) = Z [1+Q1ﬂ&?ﬁ(a,z)]71/q1 , (4)

p
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where a and z are the fragment mass number and the fragment charge
number, respectively. The fragment partition probability equals

5 (a,2) = Jwgla, 2)] ™ [L+q Beyla, )] (5)

where &5 (a,z) = p?/2M +U (a,z) and B = 1/T. In the limit ¢; — 0, Eq. (5)
recovers the familiar expression py(a, z) = exp (—=f €5 (a, 2))/wi(a, z). The
internal energy U, which includes the fragment binding energy and the frag-
ment excitation energy, the temperature-dependent surface energy, and the
Coulomb interaction between fragments in the Wigner—Seitz approximation,
is parameterized as in [10]. In the dilute gas approximation [18], the parti-
tion function of a whole system can be written as

Nﬁ(aaz)

oz = 3 TG0 o

’ﬁ,GHA,Z a,z

where the sum runs over the ensemble II 7 of different partitions of A
and Z of the decaying system {n} = {N;(1,0), Ny (1,1),...,Nu(A4,Z)} and
Nj(a,z) is the number of fragments (a,z) in the partition {n}. In this
approximation, the recurrence relation technique [16,19] can be applied pro-
viding exact expression for Q,(A, Z) [3].

Given the partition function, the mean value of any quantity is [4]

(O =>_ Opiy - (7)

In order to ensure the proper normalization of g-averages (7), it is better to
work with the generalized averages [17]

(8)

These normalized mean values exhibit all convenient properties of the orig-
inal mean values. Moreover, the TGSM can be reformulated in terms of
ordinary linear mean values calculated for the renormalized entropic index
¢* =14 (¢ —1)/q. In particular, the total average energy and pressure of
the system become

€ = ) (N(a,2))qaz {e(a,2))g- (9)

a,z

Pq = Z(N(aaz»q*AZ <p(a,z))q*, (10)

a,z
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where (g(a, 2))q and (p(a, 2)),4 are given by

| Gl B (1)
10 [1—=wla,z)] ¢
a2 = G (e ) 12)

and the average multiplicity of (a, z)-fragments in the fragmentation of sys-
tem (A, Z) is

QA —a,Z —2)

(N(a,2Dgaz = wnla, ) =g (13)
The heat capacity at a constant volume (= 9&,/T |v,) is
Oy = ﬁQ{;Z(A(GZ;a'Z'))q* (e(a,2))q (a2
+ ;w@,z»qmz [(e*(@, )¢ = (ela, 202 ]}, (19)

o ! ! !

(Alaz;a'2))g = (N(a,2)N(a,2))gaz = (N(a,2))gaz (N(a',2))gaz, (15)

QA—a—a,Z—2-2)
Qq(A, Z)
QA —a,Z —z)
Qq(A, Z)
The heat capacity at a constant pressure Cp (= (&, + P,Vy)/0T |p,) can

be calculated using the relation Cp — Cy = TVy ki (9P, /IT |v,)?, where
kr stands for the isothermal compressibility (= —(1/V§)0V;/0Py |1)

! !
= wq(aaz)wq(a x4 )

+6, .10, 1wq(a,z)

aa zZ
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and

!

Ty = ﬁQIZZ az;d’?))g (p(a.2))g (a2}

1 (9{p(a,z))e
+ Z *AZBQ < <p(aT)>q Vf)] . (18)

One should stress that all these thermodynamical quantities are calculated
ezactly, without using the Monte Carlo technique.

3. Discussion of the results

The upper part in Fig. 1 shows the temperature dependence of the pres-
sure for various entropic indices ¢ in systems with Ay = 100,200 and 300
nucleons and Zy = 0.4Aq protons. All numerical results shown in this work
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Fig. 1. The dependence of the pressure (upper part) and the inverse isothermal com-
pressibility (lower part) on the temperature T plotted for system of different sizes
and different entropic indices ¢: 1.0 (solid line), 1.0005 (dashed line), 1.001 (dotted
line). The freeze-out volume V; corresponds to py = Ag/Vy=po/4. The calculated
values of 1/kr are multiplied by factors 10 and 3 for Ao =100 and 200, respectively.
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have been obtained for the density py = Ag/Vy = po/4. In the bottom part,
the temperature dependence of the inverse thermal compressibility 1/k7 is
shown. Zero of 1/kp (0P,/0Vy |7= 0) corresponds to the pole of Cp and
defines the boundary of the two phase coexistence region. Negative heat ca-
pacity C'p within the canonical ensemble provide a signal of the first-order
phase transition. This is a counterpart of negative micro-canonical heat
capacity in a certain energy range [20]. For ¢ > 1, there exists a region
of temperatures where 1/k7 is negative and, hence, Cp becomes negative
between the poles. In the BGSM limit, 1/k7 has zeros for Ay = 100,200,
whereas in heavier systems these zeros appear only in the subadditive regime
g > 1, i.e. in the typical situation of fragmentating residue with long-ranged
interactions |8, 15]

An essential part of the pressure and, hence, of 1/k7 is the Coulomb
term. The inverse compressibility 1/x7 never vanishes when the Coulomb
term is neglected [16]. Since the Coulomb contribution to the pressure and
the inverse thermal compressibility decreases in the Wigner—Seitz approxi-

mation roughly as A, 1 3, this particular signature may not be seen in heavy
systems in the BGSM limit. Existing data do not allow yet to pin down
the Ag-dependence of the criticality signatures. Nevertheless, Fig. 1 demon-
strates how fragile is the Boltzmann—Gibbs equilibrium critical behavior in
finite systems. Small increase of ¢ above the BGSM limit leads to an up-
wards shift of the critical temperature T, which, for the same value of g, is
higher in heavier systems. All these important changes take place in a nar-
row range of temperatures around 7T, beyond which the fragmenting system
closely follows the BGSM limit.

Fig. 2 present the heat capacities C'yy and Cp as a function of the ex-
citation energy E* = &£,(T,Vy) — &(T = 0,Vp), where V; is the freeze-out
volume, V) = Ag/po and pg is the equilibrium density at T = 0. Cy is
a smooth positive function of the excitation energy for all values of q. The
peak of Cy(E*), whose position is associated with the critical temperature
T., becomes more pronounced for higher ¢. Fig. 3 compares the heat capac-
ity Cp versus E* /A for systems of different sizes Ag = 200 and Ay = 300.
These results can be compared with those for system Ay = 100 shown in
the bottom of Fig. 2. In the BGSM limit, the negative branch of Cp is seen
only for Ay < 200. With increasing Ay, its position moves towards lower
excitation energies.

It should be noted that the critical density p. in the non-extensive frag-
mentation model [3] is relatively high. The global critical point (p¢, Tc, Pe)
for Ay = 100 corresponds to p./pg = 0.547,0.783 and 0.925 for ¢ = 1, 1.0005
and g = 1.001, respectively. This tendency is a direct consequence of sub-
additivity of the entropy which increases the instability of the system and
extends the domain of multifragmentation instability towards higher den-
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Fig.2. The specific heat at a constant volume Cy (upper part) and at a constant
pressure C'p (lower part) are plotted versus the excitation energy per nucleon for
various entropic indices ¢ in the system with 4y = 100 and Zy = 40. The freeze-out
volume Vj corresponds to py = Ao/ Vs = po/4.

sities. Omne should be aware that for densities higher than ~ po/2, the
Wigner—Seitz approximation becomes less accurate and there is a need for
devising a better approximation [10,21]. In any case, all results shown in
Figs. 1-3 are obtained in the safe region of low densities. For Ay = 200,
the global critical point exists only for ¢ = 1 whose value of p./py = 0.904
is close to that obtained in statistical multifragmentation model using the
recurrence relation technique [22].

The description of nuclear matter in terms of the Van der Waals fluid [22]
(see also [23]) yields much lower critical densities (p. = 0.3pg). In this
model, the boundary of the coexistence region on the diagrame P(p,T)
has a bell-like shape and the line p = Vp; crosses it in a single point.
Consequently, the negative branch of heat capacity is not seen. In the non-
extensive fragmentation model [3], the boundary of the coexistence region
is skew with the top tilted towards higher p what allows for two crossings
with the line p = p; and leads to the negative branch of Cp.
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Fig. 3. The specific heat at a constant pressure Cp is plotted versus the excitation
energy per nucleon for various entropic indices ¢ in the systems with Aq = 200,
Zy = 80 (upper part) and Ag = 300, Zy = 120 (lower part). The freeze-out volume
Vy corresponds to py = Ao /Vy = po/4.

4. Conclusions

The phase transition in the statistical nuclear multifragmentation models
tends to disappear in heavy systems due to the weakening of the Coulomb
contribution. This effect can be compensated by the non-extensive fea-
tures of entropy due to either long-range correlations/memory effects or the
fractality of the liquid-gas interphase, which both tend to strengthen signa-
tures of the first order phase transition. The application of non-extensive
canonical statistical fragmentation model [3] for the understanding of ex-
perimental caloric curve [1] and negative heat capacity [24] in the critical
region, consistently indicates deviation from the BGSM picture of the phase
transition and ¢ 2 1.0005. This tiny variation of ¢, which cannot be de-
tected either in the particle/fragment kinetic energy distributions or in the
angular distributions, have strong measurable effects on the event-by-event
energy fluctuations of particles/fragments in the region of phase coexistence.
Hence, the mass-dependence of the criticality signatures is determined by
a subtle conspiration between the Coulomb contribution to the pressure and
the non-extensive features of the entropy.
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For ¢ > 1, the negative branch of Cp is seen both in light and heavy
systems. The range of excitation energies corresponding to Cp < 0 increases
with increasing Ag. However, in heavy systems the negative branch of Cp
appears uniquely for ¢ > 1. Both extension and localization of the negative
branch of C'p in quasi-peripheral Au+Au collisions at 35A.MeV [24], closely
resemble results of non-extensive fragmentation model for ¢ ~ 1.0005 and
Ap = 200 (see Fig. 3). The position of singularity of Cp at higher excitation
energies increases sensitively both with the entropic index ¢ and with the
source size. Hence, a successful description of this data for a maximal size
of quasi-projectile source(Agy < 200) [24], allows to find a lowest limit on the
value of the entropic index and, hence, on the deviation from the BGSM
limit, within the framework of the statistical multifragmentation model.

There are many sources of non-extensivity in mesoscopic systems. Some
of them, e.g. the formation of liquid-gas (fractal) interphase [25], have been
pointed out in the microcanonical studies [25,26]. Most of these effects are
non-generic what provides a principal obstacle in the meaningful character-
ization of nuclear multifragmentation data in the critical region using an
ideal picture of BGSM. In the framework of the non-extensive multifrag-
mentation model [3], the entropic index g ~ 1.0005 seems to be consistent
with both the caloric curve [1] and the negative heat capacity [24] data, in
spite of completely different kinematical conditions in these measurements.
Surprisingly, the excitation energy of higher singularity of Cp seems to be
the same, both in quasi-peripheral Au+Au collisions at 354 MeV [24] and in
central Xe+Sn collisions at 324 MeV [27] and agrees with ¢ ~ 1.0005. These
results show a large utility of such simple and flexible non-extensive statisti-
cal multifragmentation models to correlate different experimental data not
only far outside of the critical zone, but also in the critical region itself.

The work was supported by the IN2P3-JINR agreement no. 00-49.
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