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PHYSICS OF THE ELECTRIC CHARGE*
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The equality of electron’s and proton’s electric charges is the most im-
pressive numerical coincidence in Nature. It has no generally accepted ex-
planation. The Author presents arguments to the effect that this unusual
degeneracy is of kinematical rather than dynamical origin.

PACS numbers: 12.20.Ds

For vast majority of physicists the electric charge is simply a constant
parameter in the Schrédinger equation and no special physics is attached
to it. Such a physics, however, does exist and can be summarised in the
following three questions.

(1) Why is the electric charge quantised?

This is strange because the electric charge can be determined from the Gauss
law as an integral over an infinitely large sphere. Hence, from Heisenberg’s
uncertainty principle, electric charge is a zero-frequency phenomenon. We
know that for very low frequencies laws of quantum physics become classical,
for example the Planck distribution goes over into the Rayleigh—Jeans distri-
bution, the Compton scattering becomes the Thomson scattering, intensities
of low frequency radiation become calculable from the classical electrody-
namics etc. Thus the electric charge displays a quantal behaviour which one
would not expect on the basis of existing knowledge.

(2) Why is it quantised in a universal way?

Electron’s and proton’s electric charges are equal with the observational
accuracy 10720 [1]:

ee = (1 +£10729) e
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This is by far the most impressive numerical coincidence in Nature and
has no explanation. Just compare it with another apparently accidental
coincidence, that of inertial and gravitational masses of macroscopic bodies:

o 14+107® for Einstein
Mi =My \ 1410712 for us today /| -

This coincidence gave rise to the General Theory of Relativity, a truly novel
conception of space-time. It is evident that something very important must
lie behind an apparently accidental coincidence which holds with the absurd
accuracy 1072°, but we fail to grasp it.
(3) Why

o he

~ 137.036

During the Glorious Days of Physics (a term invented by organisers of Erice
Schools of Physics) this question was considered to be the most important
question in physics. Pauli, given a chance to ask just one question of God,
would ask (3).

This apparently has changed. Modern sentiment is aptly described by

David Gross [2]:
“Today’s physicist, given a similar opportunity to ask one question of the
Supreme Physicist, would probably not waste it on e?/fic, but would rather
ask, ‘Why are there three generations of quarks and leptons?’ or ‘Why
does the cosmological constant vanish?’ or ‘Why is space-time four dimen-
sional?’”

My own position on this problem is this: questions proposed by Gross
are undoubtedly important but our inability to answer them reveals simply
a lack of knowledge. Questions (1), (2), and (3) about the electric charge
are both important and embarrassing, our inability to answer them reveals
a lack of coherence in our present understanding of physics.

We shall never know everything but our accepted knowledge should be
coherent: that is what theoretical physics amounts to. For this reason I will
comment on important and embarrassing questions (1), (2), and (3).

Lack of coherence is best illustrated by the statement of Berestetskii,
Lifshitz, and Pitaevskii on the applicability of the classical field concept.
According to Berestetskii, Lifshitz, and Pitaevskii [3] the electromagnetic
field F),, is approximately classical if (A =1 = )

VFR + F+ F(AD? > 1,

Here At is the time interval over which the field can be averaged without
being substantially changed. For a static field this time interval is obvi-
ously infinite and, therefore, conclude Berestetskii, Lifshitz, and Pitaevskii,
a static field is always classical.
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In many cases this conclusion is evidently correct and justifies the com-
mon practice of describing the electric interaction in atoms and molecules by
means of a classical, c-number Coulomb potential with a classical, c-number
charge as a coefficient. However, taken literally it leads to an embarrassing
question: why should a classical object have a quantised scale? Bohr intro-
duced classical orbits with a quantised scale in his theory of hydrogen atom
and these orbits were universally felt intolerable. Why should we tolerate,
90 years later, exactly the same idea for the Coulomb field?

It is clear that the only way to avoid the conclusion of Berestetskii,
Lifshitz, and Pitaevskii is to find some natural limit on the time interval At.
My favourite idea is that such a limit is provided by the causal (light-cone)
structure of space-time.

Consider, for example, Brehmstrahlung generated when a charged par-
ticle is scattered at the origin of the coordinate system, its world line being

2 (s) = ut's for s <0,
Tl wts for s >0,

where u and w are two different four-velocities. Define, after Dirac, the
radiation field as the difference between the retarded field and the advanced
field. It is clear that this difference vanishes identically inside the future and
past light-cone of the origin. Hence the averaging time is naturally limited
by the opening of the light-cone:

—r<t<r, r=vai+y?+22.

The field outside the light-cone is a difference of two Coulomb fields moving
with four-velocities u and w respectively i.e., for dimensional reasons, it is
a Coulomb field multiplied by a kinematical, velocity and angle dependent
factor, which is clearly irrelevant for our analysis and which can be made
of order 1 by a suitable choice of angle and velocity. Thus the Berestetskii,
Lifshitz, and Pitaevskii inequality takes on the form

QI 1 V137
.

5 (2r)2 > 1ie. |Q] > ~ =2.93e.

4 4137
The electric charge is a classical object if it is substantially larger than 3
elementary charges. This is eminently sensible, especially if one takes into
account that this inequality was obtained from the numerical value of the
fine structure constant whose origin is unknown. We see two things: that
the fine structure constant has the right value and that my idea that the
light-cone provides the natural limit on the averaging time At may be sound.

My second example concerns the very essence of the electric charge: the
fact that, on the strength of the Gauss law, the electric charge “lives” at the
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spatial infinity. At the spatial infinity the entire eternity of time, formally
infinite, is limited by the opening of the light-cone:

—r<t<r.

The Coulomb field falls off, regardless of the shape of charge density, in
a universal, geometric way and the Berestetskii, Lifshitz, and Pitaevskii
inequality gives again

|ii2|(2r)2 > 1i.e. |Q| > 3e,

as the condition for classical behaviour of the electric charge.

Up to now I have used the apparently obvious notion of a static field in
a rather loose way. However, this notion can be made precise by means of
the notion of free mobility: a book can be shifted upon a table but a glove
cannot be shifted upon a hand because a book and a table have the property
of free mobility which a glove and a hand do not have. To grasp the idea of
free mobility mathematicians have coined the notion of the Lie derivative: a
geometric object g can be shifted along the lines of the vector field ¢ if the
Lie derivative £,g = 0. Let us apply this to the electromagnetic field which
in this context has to be described by the vector potential A,(z) because
the vector potential is the coordinate for the electromagnetic field.

We say that the field A, () is static if it can be translated without change
in a time-like direction i.e. if

df . O0A oA
£, Lo +AA8—; ~0

for ¢ generating a time-like translation, for example for €% = 1,¢0 = ¢2 =
¢ = 0. The trouble with this definition is that it is not gauge invariant:

df ., 0A o

Lol = 5 3+ Mg
0A 0 0A
_ AT Y A\ )\_)\
=< oz + oz (A)‘5 ) ¢ Oz

= EFy, + a%t (AAf’\) .

The last term spoils the gauge invariance of the Lie derivative of the poten-
tial. However, it is a gradient and we do have right to drop it, that is what
gauge invariance amounts to. Dropping it actually we arrive at the gauge
invariant notion of the Lie derivative of the potential

L£eA, =y,
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which has been actually proposed a long time ago by professor Trautman [4]
on the basis of a theory which treats the vector potential as a sort of con-
nection. However, for the gauge invariant Lie derivative the Coulomb field
is not static:

LeA, = Fy, = Fo, #0.

In this way we have arrived at a dilemma summarised at the table below.

A EN LA, =EOF
Led, = TR+ Ao ¢An =& Py

The Coulomb field is static but the | The notion of being static is gauge
very notion of being static is not | invariant but the Coulomb field is
gauge invariant. not static.

Facing a dilemma we have to make a value judgement. My own value
judgement is this: in Electrodynamics gauge invariance is more important
than anything else. For this reason I choose, following professor Trautman,
the second possibility and conclude that the Coulomb field is not static,
something is moving in the Coulomb field.

You can see the correctness of this conclusion from the following remark:
the Lagrange function of the electromagnetic field is known to be equal to

1
8w

(E2 — H2) dxdydz ,

where F is the electric field and H is the magnetic field. But the entire field
is just a collection of oscillators, which means that

1
— / E?dxdydz
8T

is the kinetic energy of the field. If this integral does not vanish then the
kinetic energy of the field does not vanish which means again that something
1s moving in the Coulomb field.
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[By the way, there are people who write about duality “symmetry” of Maxwell’s
equations and are surprised that magnetic monopoles do not exist. Those people
forget that symmetry in physics is a symmetry of Hamilton’s action, not of equa-
tions of motion. The duality transformation

E - H,
H —» —-F,

changes the sign of the Lagrange function and thus is not a symmetry at all.]
What is moving in the Coulomb field?

It is difficult to answer this question in general. However, at the spatial
infinity the answer exists and is completely unambiguous, in particular it is
gauge invariant. The moving component is identified as follows.

If the total charge does not vanish then at the spatial infinity the field
F,(x) must be homogeneous of degree —2:

F,,(\z) = A\"2F,,(z) foreach X\ >0.
Assume that
A,(Mz) =X "tA,(z) for each A > 0.

Then
v aAM
ox?

from Euler’s theorem on homogeneous functions. Therefore

= —A,

B Ay) — A, + Ay = 9 4, .

0A, BAM) 0
ozt

o b = <3$“_ oz? :axl‘(

Thus the whole content of the field is contained in the gauge invariant func-
tion z¥ A, (z). Tt is gauge invariant because when we try to perform a gauge
transformation

of (z)

ox?

the function f(x) must be homogeneous of degree zero and therefore

01(@) _,

.’L‘V—

ox?

Ay(z) = Ay(x) +

again from Euler’s theorem on homogeneous functions.
For the Coulomb field

Aozg, A=Ay =A43=0
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and
VA, (z) = QE .
r
This function is gauge invariant while the Coulomb potential from which it
was obtained is not. This gauge invariant function is the moving component
of the Coulomb field.

We see that two independent lines of inquiry indicate at the spatial in-
finity as the natural arena for the quantum theory of the electric charge: at
the spatial infinity we have a natural limitation of the averaging time At
needed to make the electric charge a quantum object and we have addition-
ally unambiguous identification of the moving component of the Coulomb
field.

Steven Weinberg [5] gives the general relation between the charge density
p and the phase S of a second quantised source of the electromagnetic field:
p is the momentum canonically conjugate with S/e. Imposing the usual
canonical commutation relation and integrating it over the entire Cauchy
surface we obtain

[Q, S(z)] = ie,
where

Q= / pdzdydz

is the total electric charge. In general this commutation relation is useless
because we have no specific information about the phase S(z). Imagine,
however, that the commutation relation [Q,S(z)] = ie continues to hold
also at the spatial infinity s.e. for

—(2*)? = —0.

It is difficult to see why this should not be the case. At the spatial infinity
all information about sources of the electromagnetic field is erased and we
are left with only one candidate for the phase S(z), namely the function
a# A, (x). I put forward the hypothesis that at the spatial infinity

S(z) = —extAy(x).

The two equations

[Q, S(x)] = ie,
S(z) = —extAy(x)

form together a closed kinematical scheme. Whether true or false, this
scheme is an example of a conceptual structure in which there is a place
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for only one constant e. (In QED one can have as many constants e as one
wishes.)

Let me elucidate the nature of the hypothesis. The angular dependence
of the phase implicit in the function z# A, () must be there, this follows from
Maxwell’s equations. The constant e must also be there for dimensional
reasons. The only choice left is a constant, dimensionless proportionality
factor. Our hypothesis consists in putting

S(z) =—1-extA,(z).

Replacing 1 by another number one obtains a different hypothesis. There
are several informal justifications of this hypothesis. Consider, for example,
the Coulomb field at rest. Its phase, according to our hypothesis, is
Q eQ
—ext A, (z) = —et> = ——%t.

ext A, () et .
This phase looks like the phase of a stationary state driven by the Coulomb
energy. Everyone would be surprised to find another numerical factor in
front of it.

Some technical details connected with the above theory can be found
in [6].
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