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A simple method of the description of optical pulses of finite dimensions
and finite duration time is presented. The pulses are given by superposi-
tions of the known analytical as well as numerical solutions of the Maxwell
equations. The examples show optical properties of scattering in detail. In
the general case the wide pulses split in the scattering processes. The de-
scription of these phenomena requires a full wave approach. The pulses (or
their fragments) that do not split but move smoothly through the optical
system (or its fragment) may be described with the help of the geometrical
optics theory.

PACS numbers: 42.25.—p, 42.25.Bs, 42.15., 42.15.Dp

1. Introduction

Two theories known as geometrical optics and wave optics describe the
propagation of light and other optical effects.

The geometrical optics is older, its beginning can be traced in the An-
tique times, [1]. With simple laws of light rays propagation: rectilinear in
uniform medias, reflection on and refraction laws at interfaces between two
medias etc., principles and performance of many optical instruments, e.g.
magnifying lenses, telescopes, microscopes, optical projectors etc., can be
explained and their construction and performance improved.

Beginning from the XVI century new effects, unexplained in the frame of
geometrical optics, were recognized. The first observation was the noticing of
multiple fringes at the shadow boundary when small objects are illuminated.
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Numerous effects of this type, associated nowadays with the diffraction and
interference phenomena, initiated, established and supported the wave pic-
ture of light.

Parallel discoveries of various electric and magnetic phenomena and de-
velopments in their quantitative descriptions have accumulated in the for-
mulation of a set of equations by Maxwell. Recognizing the electromagnetic
nature of light it was realized that Maxwell’s equations are the most basic
description of all wave properties of light.

The last century discovered a new corpuscular or quantum aspect of
light. Pieces of light “photons” exhibit both geometric optics rectilinear
propagation and interference effects characteristic for the wave phenomena.

Therefore, it is a natural question to ask about the relations between
those two concepts of light. Furthermore, these relations must admit the
description of quantum properties of the light.

It has been pointed out by Sommerfeld [2,3] and described in [4,5] that
starting from the Maxwell equations one can reach asymptotically the geo-
metric optics equations in the limit A — 0.

This approach is based on the concept of an eikonal which can be at-
tributed to the surfaces of a constant phase of the wave. The set of Maxwell
equations for the electromagnetic fields are thus replaced by a set of cou-
pled equations for the corresponding phases and amplitudes of the field.
These equations are nonlinear and therefore very difficult to solve. So only
perturbative methods of their solution are available. The lowest order of
the perturbation theory recovers the same equations as are specified by the
geometrical optics.

It is worth pointing out that, the theory operating with the phases discov-
ered many points and manifolds of phases singularities. In fact, the concept
of the phase singularities appeared to be very general and fruitful. Tt united
many aspects of light propagation [6]. Our discussion attempting to link
the geometrical and wave optics is based on the original field equations i.e.
Maxwell’s equations. Considering only linear medias the solution of many
source and boundary field problems can be simplified significantly due to
validity of the superposition principle.

Basic elements of the wave theory are monochromatic plane waves. Each
wave is specified by the frequency, direction of propagation k and polariza-
tion.

The wave vector k can be naturally associated with the direction of the
geometric optic ray. However, the ray position has no analogical counterpart
in the individual plane waves.

The waves as well as the rays interacting with various media perturba-
tions like boundaries, dielectric insertions (passive and active optical ele-
ments) are scattered and are transformed into more complicated waves and
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rays. Figure 1 gives an example of the scattering by a dielectric cylinder,
with a radial dependence of the dielectric constant ¢ = ¢(r) , according
to the geometric and wave optics. As one can see the pictures look very
different and one cannot hope that considering the limit A — 0 will make
them similar.
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Fig.1. Optical ray and optical wave scattering by a nonuniform dielectric
cylinder,a = 20,e¢ = 3.

To establish closer analogies between the geometrical and wave optics as
well as to find a sufficient criterion for their equivalence we have to consider
not only the plane monochromatic waves but also wave beams having finite
transverse cross sections and finite duration times.

2. Radiation wave packets and their scattering

2.1. Stationary wave packets — wave beams

Starting from an elementary solution of scattered wave problem corre-
sponding to a given incident plane wave specified by k (having the wave
frequency w = k = |k|) and a given scatterer represented by the dielectric
constant distribution ¢ = &(r) one can construct the solution correspond-
ing to various wavepackets performing linear operations only. To simplify
our discussion let us consider a perturbing dielectric to have a cylindrical
symmetry, i.e. € has only a radial dependence, with the incident waves
coming perpendicularly to the cylinder and uniform along its length (the
cylinder axis is placed at the origin of a coordinate system and taken as
the z-axis). These assumptions reduce the scattering problem to a scalar
one and the field is completely specified by the E, component. Assuming
furthermore that the dielectric is confined in the cylinder of the radius a,
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the solutions of the scattering problem can be represented in the form of a
partial wave expansion

ET(k )_ ik-r+ i mq&{anEg,lfl 'r)a r<a, (1)
2 1) =€ nzfooe cnHY(kr), r>a,
where H! are the Hankel functions of the first kind and order n and E;?fl
represent the internal fields. In the case of the uniform dielectric, considered
in detail in [7,8], the internal fields may be explicitly written in the terms of
the Bessel functions J,, in the general case can be determined numerically.
The expansion coefficients {ay, c,} can be determined from the required
field continuity conditions. Knowing these coefficients for the incident wave
propagating along the z-axis one can get them for the incident wave propa-
gating at the angle a with respect to the z-axis.

{ag, ) = {ap, cyle™™.

The superpositions of these scattered waves incoming within selected angular
sectors lead to beams of finite cross section. The minimum width of such
beams, their waist, occur at the center of the coordinate system.

By introducing the additional phase shifts to the coefficients {ay,,c,}

8?{ _ efik(oz)-RO’
0

the waist of the incident beam can be placed at the point Ry.

The above procedure leads to the stationary monochromatic beams which
can be compared with the analogical light rays or paths occurring in the ge-
ometrical optics.

Ebeam(p(a)aRO ; w,r) = Zp(a) Slaio E;F(k(a)ar) : (2)

@

The variables proceeding the semicolon “;” indicate their functional de-
pendence in the solution.

Knowing the fields in a given configuration of sources and dielectrics
(scatterers) one can introduce wave light rays defined as a set of the lines
tangent to the time-averaged value of the Poynting vector field, [7].

Figure 2 presents the case with very close similarities between the corre-
sponding pictures obtained according to the geometrical and wave optics.

To achieve such strong correspondence between the wave and geometric
optics it is very important to take into account the full electromagnetic field.
This field is expressed as the superposition of the incident wave and scat-
tered wave propagating outwards the scatterer. Restricting the estimation
of scattering to the scattered part of the wave leads to incorrect scattering
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Fig.3. Incident Gaussian beam { I }, scattered part of the scattering wave { S }
and total scattering wave { T }, a =20,w = 1,60 = 3,y0 = —10,w =3 .

picture as is shown in figure 3. The scattered part of the wave accompanying
the scattering of a narrow beam is composed of two parts, one being bent
and one propagating outward the scatterer parallel to the incident beam.
This picture is in disagreement with the classical ray behaviour. However,
the scattered part of the wave itself has no physical meaning. It is only
a subsidiary function which, when, added to the incident wave determines
the true electromagnetic field satisfying the proper boundary conditions. As
these figures show the total fields representing the narrow beam scattering is
in a complete agreement with that provided by the classical ray trajectories.
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To illustrate similarities and differences between the wave and geomet-
rical optics in more detail we shall consider optical pulses of finite duration
time.

2.2. Pulses of wave beams

Finite duration time pulses can be described by superpositions of finite
width beams of different frequencies w.

Eputse(9(w), (), Ro 5 7,1) = Y ™ g(w) Bpeam (p(0), Ro;w, ) (3)

The pulse shape and duration depends functionally on a spectral ampli-
tude function g(w). In the examples we are presenting the g functions have
a Gaussian form

o) o exp (L2l )

where wy is the central wave frequency and Aw denotes the spectral width
of the pulse associated with its duration time.

3. Examples

The presented examples illustrate the time evolution of radiation wave
packets during the scattering. The graphs are selected from the correspond-
ing films presenting this evolution in an animated form. The examples as-
sume scattering perturbers of the form

()= { e S o

and the radial part of the E' have to be found numerically.

Figure 4 illustrates the scattering of a centrally incoming incident pulse
of the width w = 20 , comparable with the perturber range a = 20. As we
can see the incident radiation pulse induces a cylindrical wave propagating
outward the scatterer. The outward wave gradually takes a form of separated
multiple mini beams that arriving at a distant screen could be recognized as
distinct peaks.

It is important to point out that in the forward direction the outward
scattered wave constantly interferes with the incident wave, therefore, these
two waves are not being distinguishable. Undergoing transient modifications
the forward beam reaches eventually the shape similar to that of the incident
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Fig.4. Time evolution of the light pulse scattering, a = 20,69 = 5,w = 20,w =
1, Aw = 0.04.

pulse. It is clear that its total energy has been reduced and can be recovered
in the scattered pulses. This is a kind of the optical theorem valid for the
finite width pulses.

Figure 5 shows scattering of a narrow beam by a larger cylinder. The
beam is displaced down the center of the cylinder while its waist is kept at
the central plane zg = 0. As we can see these conditions do not cause any
splitting of the incident pulse. Although the pulse is spreading, which is
caused by a natural transverse spreading of focused pulses in a free propa-
gation and an additional spreading due to the scattering, it propagates as
one whole object. One may expect that if the scatterer were larger the beam
spreading would be less significant and the pulse would behave as the one
described by the geometrical optics.

The next Figure 6 shows the scattering of a similar pulse, the same im-
pact parameter but the waist has been shifted to o = —250. This scattering
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Fig.5. Time evolution of a light narrow pulse scattering. The pulse is focused at
the g = 0 plane, a = 50,0 = 3,w = 3,yo = —20,w = 1, Aw = 0.04.

looks different. The pulse being a narrow one at xg upon reaching the scat-
terer has been spread and passing it was converted to many small pulses.
Obviously the description of this process requires a full wave optics analysis.
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Fig.6. Time evolution of a light pulse scattering. The pulse is focused at the
xo = —250 plane, a = 50,69 = 3,w = 3,90 = —20.,w = 1, Aw = 0.04.

4. Conclusions

These few examples show that conditions for the validity of the geometric
optics approximation is more subtle than the often cited requirement A — 0.
This condition can only be treated as a necessary one. In order to find
sufficient conditions it is necessary to investigate other light parameters, in
particular light beam parameters, in connection with a thorough treatment
of the light scattering process.
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The examples of the wave scattering show that when the pulses evolve
as individual items the description of their evolution can be simplified using
geometric optics approach. When the incident pulses split in the scattering
process into smaller ones then the analysis has to be based on the wave
optics theory.

Very often the fragments of pulses evolution requiring wave optic analysis
can be reduced to isolated spots. Away from these spots the geometrical
optics provide an adequate description. The best example is the reflection of
a light pulse by a flat surface between two dielectrics. Although simple rules
of the geometric optics, are sufficient to make drawings of the transmitted
(refracted) and reflected pulses one should use the wave theory to determine
the amounts of reflected and transmitted light.
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