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GRAPHICAL EXAMPLES OF GEOMETRICALAND WAVE OPTICS�Wªadysªaw �akowizInstitute of Physis, Polish Aademy of SienesLotników 32/46, 02-668 Warsaw, Polande-mail: zakow�ifpan.edu.pl(Reeived June 13, 2002)A simple method of the desription of optial pulses of �nite dimensionsand �nite duration time is presented. The pulses are given by superposi-tions of the known analytial as well as numerial solutions of the Maxwellequations. The examples show optial properties of sattering in detail. Inthe general ase the wide pulses split in the sattering proesses. The de-sription of these phenomena requires a full wave approah. The pulses (ortheir fragments) that do not split but move smoothly through the optialsystem (or its fragment) may be desribed with the help of the geometrialoptis theory.PACS numbers: 42.25.�p, 42.25.Bs, 42.15.�i, 42.15.Dp1. IntrodutionTwo theories known as geometrial optis and wave optis desribe thepropagation of light and other optial e�ets.The geometrial optis is older, its beginning an be traed in the An-tique times, [1℄. With simple laws of light rays propagation: retilinear inuniform medias, re�etion on and refration laws at interfaes between twomedias et., priniples and performane of many optial instruments, e.g.magnifying lenses, telesopes, mirosopes, optial projetors et., an beexplained and their onstrution and performane improved.Beginning from the XVI entury new e�ets, unexplained in the frame ofgeometrial optis, were reognized. The �rst observation was the notiing ofmultiple fringes at the shadow boundary when small objets are illuminated.� Presented at the Photons, Atoms and All That, PAAT 2002 Conferene, CraowPoland, May 31�June 1, 2002. (2059)



2060 W. �akowizNumerous e�ets of this type, assoiated nowadays with the di�ration andinterferene phenomena, initiated, established and supported the wave pi-ture of light.Parallel disoveries of various eletri and magneti phenomena and de-velopments in their quantitative desriptions have aumulated in the for-mulation of a set of equations by Maxwell. Reognizing the eletromagnetinature of light it was realized that Maxwell's equations are the most basidesription of all wave properties of light.The last entury disovered a new orpusular or quantum aspet oflight. Piees of light �photons� exhibit both geometri optis retilinearpropagation and interferene e�ets harateristi for the wave phenomena.Therefore, it is a natural question to ask about the relations betweenthose two onepts of light. Furthermore, these relations must admit thedesription of quantum properties of the light.It has been pointed out by Sommerfeld [2,3℄ and desribed in [4,5℄ thatstarting from the Maxwell equations one an reah asymptotially the geo-metri optis equations in the limit �! 0.This approah is based on the onept of an eikonal whih an be at-tributed to the surfaes of a onstant phase of the wave. The set of Maxwellequations for the eletromagneti �elds are thus replaed by a set of ou-pled equations for the orresponding phases and amplitudes of the �eld.These equations are nonlinear and therefore very di�ult to solve. So onlyperturbative methods of their solution are available. The lowest order ofthe perturbation theory reovers the same equations as are spei�ed by thegeometrial optis.It is worth pointing out that, the theory operating with the phases disov-ered many points and manifolds of phases singularities. In fat, the oneptof the phase singularities appeared to be very general and fruitful. It unitedmany aspets of light propagation [6℄. Our disussion attempting to linkthe geometrial and wave optis is based on the original �eld equations i.e.Maxwell's equations. Considering only linear medias the solution of manysoure and boundary �eld problems an be simpli�ed signi�antly due tovalidity of the superposition priniple.Basi elements of the wave theory are monohromati plane waves. Eahwave is spei�ed by the frequeny, diretion of propagation k and polariza-tion.The wave vetor k an be naturally assoiated with the diretion of thegeometri opti ray. However, the ray position has no analogial ounterpartin the individual plane waves.The waves as well as the rays interating with various media perturba-tions like boundaries, dieletri insertions (passive and ative optial ele-ments) are sattered and are transformed into more ompliated waves and



Graphial Examples of Geometrial and Wave Optis 2061rays. Figure 1 gives an example of the sattering by a dieletri ylinder,with a radial dependene of the dieletri onstant " = "(r) , aordingto the geometri and wave optis. As one an see the pitures look verydi�erent and one annot hope that onsidering the limit � ! 0 will makethem similar.
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Fig. 1. Optial ray and optial wave sattering by a nonuniform dieletriylinder; a = 20; "0 = 3.To establish loser analogies between the geometrial and wave optis aswell as to �nd a su�ient riterion for their equivalene we have to onsidernot only the plane monohromati waves but also wave beams having �nitetransverse ross setions and �nite duration times.2. Radiation wave pakets and their sattering2.1. Stationary wave pakets � wave beamsStarting from an elementary solution of sattered wave problem orre-sponding to a given inident plane wave spei�ed by k (having the wavefrequeny ! = k = jkj) and a given satterer represented by the dieletrionstant distribution " = "(r) one an onstrut the solution orrespond-ing to various wavepakets performing linear operations only. To simplifyour disussion let us onsider a perturbing dieletri to have a ylindrialsymmetry, i.e. " has only a radial dependene, with the inident wavesoming perpendiularly to the ylinder and uniform along its length (theylinder axis is plaed at the origin of a oordinate system and taken asthe z-axis). These assumptions redue the sattering problem to a salarone and the �eld is ompletely spei�ed by the Ez omponent. Assumingfurthermore that the dieletri is on�ned in the ylinder of the radius a,



2062 W. �akowizthe solutions of the sattering problem an be represented in the form of apartial wave expansionETz (k; r) = eik�r + 1Xn=�1 ein�� anEintz;n(r); r < a,nH1n(kr); r > a , (1)where H1n are the Hankel funtions of the �rst kind and order n and Eintz;nrepresent the internal �elds. In the ase of the uniform dieletri, onsideredin detail in [7,8℄, the internal �elds may be expliitly written in the terms ofthe Bessel funtions Jn, in the general ase an be determined numerially.The expansion oe�ients fan; ng an be determined from the required�eld ontinuity onditions. Knowing these oe�ients for the inident wavepropagating along the x-axis one an get them for the inident wave propa-gating at the angle � with respet to the x-axis.fa�n; �ng = fa0n; 0nge�in�:The superpositions of these sattered waves inoming within seleted angularsetors lead to beams of �nite ross setion. The minimum width of suhbeams, their waist, our at the enter of the oordinate system.By introduing the additional phase shifts to the oe�ients fan; ngS�R0 = e�ik(�)�R0 ;the waist of the inident beam an be plaed at the point R0.The above proedure leads to the stationary monohromati beams whihan be ompared with the analogial light rays or paths ourring in the ge-ometrial optis.Ebeam(p(�);R0 ; !; r) =X� p(�) S�R0 ETz (k(�); r) : (2)The variables proeeding the semiolon �;� indiate their funtional de-pendene in the solution.Knowing the �elds in a given on�guration of soures and dieletris(satterers) one an introdue wave light rays de�ned as a set of the linestangent to the time-averaged value of the Poynting vetor �eld, [7℄.Figure 2 presents the ase with very lose similarities between the orre-sponding pitures obtained aording to the geometrial and wave optis.To ahieve suh strong orrespondene between the wave and geometrioptis it is very important to take into aount the full eletromagneti �eld.This �eld is expressed as the superposition of the inident wave and sat-tered wave propagating outwards the satterer. Restriting the estimationof sattering to the sattered part of the wave leads to inorret sattering
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Fig. 2. Bundles of sattering rays in wave and geometrial optis.
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Fig. 3
Fig. 3. Inident Gaussian beam { I }, sattered part of the sattering wave { S }and total sattering wave { T }, a = 20; ! = 1; "0 = 3; y0 = �10; w = 3 .piture as is shown in �gure 3. The sattered part of the wave aompanyingthe sattering of a narrow beam is omposed of two parts, one being bentand one propagating outward the satterer parallel to the inident beam.This piture is in disagreement with the lassial ray behaviour. However,the sattered part of the wave itself has no physial meaning. It is onlya subsidiary funtion whih, when, added to the inident wave determinesthe true eletromagneti �eld satisfying the proper boundary onditions. Asthese �gures show the total �elds representing the narrow beam sattering isin a omplete agreement with that provided by the lassial ray trajetories.



2064 W. �akowizTo illustrate similarities and di�erenes between the wave and geomet-rial optis in more detail we shall onsider optial pulses of �nite durationtime. 2.2. Pulses of wave beamsFinite duration time pulses an be desribed by superpositions of �nitewidth beams of di�erent frequenies !.Epulse(g(!); p(�);R0 ; r; t) =X! ei!tg(!)Ebeam(p(�);R0;!; r) (3)The pulse shape and duration depends funtionally on a spetral ampli-tude funtion g(!). In the examples we are presenting the g funtions havea Gaussian form g(!) / exp��(! � !0)2�!2 �; (4)where !0 is the entral wave frequeny and �! denotes the spetral widthof the pulse assoiated with its duration time.3. ExamplesThe presented examples illustrate the time evolution of radiation wavepakets during the sattering. The graphs are seleted from the orrespond-ing �lms presenting this evolution in an animated form. The examples as-sume sattering perturbers of the form"(r) = � "0(r=a� 1)2 + 1; r < a;1; r > a: (5)and the radial part of the Eint have to be found numerially.Figure 4 illustrates the sattering of a entrally inoming inident pulseof the width w = 20 , omparable with the perturber range a = 20. As wean see the inident radiation pulse indues a ylindrial wave propagatingoutward the satterer. The outward wave gradually takes a form of separatedmultiple mini beams that arriving at a distant sreen ould be reognized asdistint peaks.It is important to point out that in the forward diretion the outwardsattered wave onstantly interferes with the inident wave, therefore, thesetwo waves are not being distinguishable. Undergoing transient modi�ationsthe forward beam reahes eventually the shape similar to that of the inident
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Fig. 4
Fig. 4. Time evolution of the light pulse sattering, a = 20; "0 = 5; w = 20; ! =1;�! = 0:04:pulse. It is lear that its total energy has been redued and an be reoveredin the sattered pulses. This is a kind of the optial theorem valid for the�nite width pulses.Figure 5 shows sattering of a narrow beam by a larger ylinder. Thebeam is displaed down the enter of the ylinder while its waist is kept atthe entral plane x0 = 0. As we an see these onditions do not ause anysplitting of the inident pulse. Although the pulse is spreading, whih isaused by a natural transverse spreading of foused pulses in a free propa-gation and an additional spreading due to the sattering, it propagates asone whole objet. One may expet that if the satterer were larger the beamspreading would be less signi�ant and the pulse would behave as the onedesribed by the geometrial optis.The next Figure 6 shows the sattering of a similar pulse, the same im-pat parameter but the waist has been shifted to x0 = �250. This sattering
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Fig. 5
Fig. 5. Time evolution of a light narrow pulse sattering. The pulse is foused atthe x0 = 0 plane, a = 50; "0 = 3; w = 3; y0 = �20; ! = 1;�! = 0:04.looks di�erent. The pulse being a narrow one at x0 upon reahing the sat-terer has been spread and passing it was onverted to many small pulses.Obviously the desription of this proess requires a full wave optis analysis.
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Fig. 6
Fig. 6. Time evolution of a light pulse sattering. The pulse is foused at thex0 = �250 plane, a = 50; "0 = 3; w = 3; y0 = �20:; ! = 1;�! = 0:04.4. ConlusionsThese few examples show that onditions for the validity of the geometrioptis approximation is more subtle than the often ited requirement �! 0.This ondition an only be treated as a neessary one. In order to �ndsu�ient onditions it is neessary to investigate other light parameters, inpartiular light beam parameters, in onnetion with a thorough treatmentof the light sattering proess.



2068 W. �akowizThe examples of the wave sattering show that when the pulses evolveas individual items the desription of their evolution an be simpli�ed usinggeometri optis approah. When the inident pulses split in the satteringproess into smaller ones then the analysis has to be based on the waveoptis theory.Very often the fragments of pulses evolution requiring wave opti analysisan be redued to isolated spots. Away from these spots the geometrialoptis provide an adequate desription. The best example is the re�etion ofa light pulse by a �at surfae between two dieletris. Although simple rulesof the geometri optis, are su�ient to make drawings of the transmitted(refrated) and re�eted pulses one should use the wave theory to determinethe amounts of re�eted and transmitted light.REFERENCES[1℄ E. Heht, Optis, Third Edition, Addison-Wesley, Amsterdam 1998.[2℄ A. Sommerfeld, I. Runge Ann. Phys. 35, 277 (1911).[3℄ A. Sommerfeld, Optis, Aademi Press, New York 1954.[4℄ M. Born, E. Wolf, Priniples of Optis, Cambridge University Press, Cam-bridge 1998.[5℄ L. Landau, E. Lifshitz, The Classial Theory of Fields, (Polish Translation,PWN, Warsaw 1958).[6℄ J.F. Nye, Natural Fousing and Fine Struture of Light, Institute of PhysisPublishing, Bristol 1999.[7℄ W. �akowiz, Phys. Rev. E64, 066610 (2002).[8℄ W. �akowiz, Ata Phys. Pol. A101, 369 (2002).


