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GRAPHICAL EXAMPLES OF GEOMETRICALAND WAVE OPTICS�Wªadysªaw �akowi
zInstitute of Physi
s, Polish A
ademy of S
ien
esLotników 32/46, 02-668 Warsaw, Polande-mail: zakow�ifpan.edu.pl(Re
eived June 13, 2002)A simple method of the des
ription of opti
al pulses of �nite dimensionsand �nite duration time is presented. The pulses are given by superposi-tions of the known analyti
al as well as numeri
al solutions of the Maxwellequations. The examples show opti
al properties of s
attering in detail. Inthe general 
ase the wide pulses split in the s
attering pro
esses. The de-s
ription of these phenomena requires a full wave approa
h. The pulses (ortheir fragments) that do not split but move smoothly through the opti
alsystem (or its fragment) may be des
ribed with the help of the geometri
alopti
s theory.PACS numbers: 42.25.�p, 42.25.Bs, 42.15.�i, 42.15.Dp1. Introdu
tionTwo theories known as geometri
al opti
s and wave opti
s des
ribe thepropagation of light and other opti
al e�e
ts.The geometri
al opti
s is older, its beginning 
an be tra
ed in the An-tique times, [1℄. With simple laws of light rays propagation: re
tilinear inuniform medias, re�e
tion on and refra
tion laws at interfa
es between twomedias et
., prin
iples and performan
e of many opti
al instruments, e.g.magnifying lenses, teles
opes, mi
ros
opes, opti
al proje
tors et
., 
an beexplained and their 
onstru
tion and performan
e improved.Beginning from the XVI 
entury new e�e
ts, unexplained in the frame ofgeometri
al opti
s, were re
ognized. The �rst observation was the noti
ing ofmultiple fringes at the shadow boundary when small obje
ts are illuminated.� Presented at the Photons, Atoms and All That, PAAT 2002 Conferen
e, Cra
owPoland, May 31�June 1, 2002. (2059)
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zNumerous e�e
ts of this type, asso
iated nowadays with the di�ra
tion andinterferen
e phenomena, initiated, established and supported the wave pi
-ture of light.Parallel dis
overies of various ele
tri
 and magneti
 phenomena and de-velopments in their quantitative des
riptions have a

umulated in the for-mulation of a set of equations by Maxwell. Re
ognizing the ele
tromagneti
nature of light it was realized that Maxwell's equations are the most basi
des
ription of all wave properties of light.The last 
entury dis
overed a new 
orpus
ular or quantum aspe
t oflight. Pie
es of light �photons� exhibit both geometri
 opti
s re
tilinearpropagation and interferen
e e�e
ts 
hara
teristi
 for the wave phenomena.Therefore, it is a natural question to ask about the relations betweenthose two 
on
epts of light. Furthermore, these relations must admit thedes
ription of quantum properties of the light.It has been pointed out by Sommerfeld [2,3℄ and des
ribed in [4,5℄ thatstarting from the Maxwell equations one 
an rea
h asymptoti
ally the geo-metri
 opti
s equations in the limit �! 0.This approa
h is based on the 
on
ept of an eikonal whi
h 
an be at-tributed to the surfa
es of a 
onstant phase of the wave. The set of Maxwellequations for the ele
tromagneti
 �elds are thus repla
ed by a set of 
ou-pled equations for the 
orresponding phases and amplitudes of the �eld.These equations are nonlinear and therefore very di�
ult to solve. So onlyperturbative methods of their solution are available. The lowest order ofthe perturbation theory re
overs the same equations as are spe
i�ed by thegeometri
al opti
s.It is worth pointing out that, the theory operating with the phases dis
ov-ered many points and manifolds of phases singularities. In fa
t, the 
on
eptof the phase singularities appeared to be very general and fruitful. It unitedmany aspe
ts of light propagation [6℄. Our dis
ussion attempting to linkthe geometri
al and wave opti
s is based on the original �eld equations i.e.Maxwell's equations. Considering only linear medias the solution of manysour
e and boundary �eld problems 
an be simpli�ed signi�
antly due tovalidity of the superposition prin
iple.Basi
 elements of the wave theory are mono
hromati
 plane waves. Ea
hwave is spe
i�ed by the frequen
y, dire
tion of propagation k and polariza-tion.The wave ve
tor k 
an be naturally asso
iated with the dire
tion of thegeometri
 opti
 ray. However, the ray position has no analogi
al 
ounterpartin the individual plane waves.The waves as well as the rays intera
ting with various media perturba-tions like boundaries, diele
tri
 insertions (passive and a
tive opti
al ele-ments) are s
attered and are transformed into more 
ompli
ated waves and



Graphi
al Examples of Geometri
al and Wave Opti
s 2061rays. Figure 1 gives an example of the s
attering by a diele
tri
 
ylinder,with a radial dependen
e of the diele
tri
 
onstant " = "(r) , a

ordingto the geometri
 and wave opti
s. As one 
an see the pi
tures look verydi�erent and one 
annot hope that 
onsidering the limit � ! 0 will makethem similar.
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Fig. 1. Opti
al ray and opti
al wave s
attering by a nonuniform diele
tri

ylinder; a = 20; "0 = 3.To establish 
loser analogies between the geometri
al and wave opti
s aswell as to �nd a su�
ient 
riterion for their equivalen
e we have to 
onsidernot only the plane mono
hromati
 waves but also wave beams having �nitetransverse 
ross se
tions and �nite duration times.2. Radiation wave pa
kets and their s
attering2.1. Stationary wave pa
kets � wave beamsStarting from an elementary solution of s
attered wave problem 
orre-sponding to a given in
ident plane wave spe
i�ed by k (having the wavefrequen
y ! = k = jkj) and a given s
atterer represented by the diele
tri

onstant distribution " = "(r) one 
an 
onstru
t the solution 
orrespond-ing to various wavepa
kets performing linear operations only. To simplifyour dis
ussion let us 
onsider a perturbing diele
tri
 to have a 
ylindri
alsymmetry, i.e. " has only a radial dependen
e, with the in
ident waves
oming perpendi
ularly to the 
ylinder and uniform along its length (the
ylinder axis is pla
ed at the origin of a 
oordinate system and taken asthe z-axis). These assumptions redu
e the s
attering problem to a s
alarone and the �eld is 
ompletely spe
i�ed by the Ez 
omponent. Assumingfurthermore that the diele
tri
 is 
on�ned in the 
ylinder of the radius a,



2062 W. �akowi
zthe solutions of the s
attering problem 
an be represented in the form of apartial wave expansionETz (k; r) = eik�r + 1Xn=�1 ein�� anEintz;n(r); r < a,
nH1n(kr); r > a , (1)where H1n are the Hankel fun
tions of the �rst kind and order n and Eintz;nrepresent the internal �elds. In the 
ase of the uniform diele
tri
, 
onsideredin detail in [7,8℄, the internal �elds may be expli
itly written in the terms ofthe Bessel fun
tions Jn, in the general 
ase 
an be determined numeri
ally.The expansion 
oe�
ients fan; 
ng 
an be determined from the required�eld 
ontinuity 
onditions. Knowing these 
oe�
ients for the in
ident wavepropagating along the x-axis one 
an get them for the in
ident wave propa-gating at the angle � with respe
t to the x-axis.fa�n; 
�ng = fa0n; 
0nge�in�:The superpositions of these s
attered waves in
oming within sele
ted angularse
tors lead to beams of �nite 
ross se
tion. The minimum width of su
hbeams, their waist, o

ur at the 
enter of the 
oordinate system.By introdu
ing the additional phase shifts to the 
oe�
ients fan; 
ngS�R0 = e�ik(�)�R0 ;the waist of the in
ident beam 
an be pla
ed at the point R0.The above pro
edure leads to the stationary mono
hromati
 beams whi
h
an be 
ompared with the analogi
al light rays or paths o

urring in the ge-ometri
al opti
s.Ebeam(p(�);R0 ; !; r) =X� p(�) S�R0 ETz (k(�); r) : (2)The variables pro
eeding the semi
olon �;� indi
ate their fun
tional de-penden
e in the solution.Knowing the �elds in a given 
on�guration of sour
es and diele
tri
s(s
atterers) one 
an introdu
e wave light rays de�ned as a set of the linestangent to the time-averaged value of the Poynting ve
tor �eld, [7℄.Figure 2 presents the 
ase with very 
lose similarities between the 
orre-sponding pi
tures obtained a

ording to the geometri
al and wave opti
s.To a
hieve su
h strong 
orresponden
e between the wave and geometri
opti
s it is very important to take into a

ount the full ele
tromagneti
 �eld.This �eld is expressed as the superposition of the in
ident wave and s
at-tered wave propagating outwards the s
atterer. Restri
ting the estimationof s
attering to the s
attered part of the wave leads to in
orre
t s
attering
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Fig. 2. Bundles of s
attering rays in wave and geometri
al opti
s.
-50 0 50 100x

-50

0

50

100
y

I

-50 0 50 100x

-50

0

50

100
y

S

-50 0 50 100x

-50

0

50

100
y

T

Fig. 3
Fig. 3. In
ident Gaussian beam { I }, s
attered part of the s
attering wave { S }and total s
attering wave { T }, a = 20; ! = 1; "0 = 3; y0 = �10; w = 3 .pi
ture as is shown in �gure 3. The s
attered part of the wave a

ompanyingthe s
attering of a narrow beam is 
omposed of two parts, one being bentand one propagating outward the s
atterer parallel to the in
ident beam.This pi
ture is in disagreement with the 
lassi
al ray behaviour. However,the s
attered part of the wave itself has no physi
al meaning. It is onlya subsidiary fun
tion whi
h, when, added to the in
ident wave determinesthe true ele
tromagneti
 �eld satisfying the proper boundary 
onditions. Asthese �gures show the total �elds representing the narrow beam s
attering isin a 
omplete agreement with that provided by the 
lassi
al ray traje
tories.



2064 W. �akowi
zTo illustrate similarities and di�eren
es between the wave and geomet-ri
al opti
s in more detail we shall 
onsider opti
al pulses of �nite durationtime. 2.2. Pulses of wave beamsFinite duration time pulses 
an be des
ribed by superpositions of �nitewidth beams of di�erent frequen
ies !.Epulse(g(!); p(�);R0 ; r; t) =X! ei!tg(!)Ebeam(p(�);R0;!; r) (3)The pulse shape and duration depends fun
tionally on a spe
tral ampli-tude fun
tion g(!). In the examples we are presenting the g fun
tions havea Gaussian form g(!) / exp��(! � !0)2�!2 �; (4)where !0 is the 
entral wave frequen
y and �! denotes the spe
tral widthof the pulse asso
iated with its duration time.3. ExamplesThe presented examples illustrate the time evolution of radiation wavepa
kets during the s
attering. The graphs are sele
ted from the 
orrespond-ing �lms presenting this evolution in an animated form. The examples as-sume s
attering perturbers of the form"(r) = � "0(r=a� 1)2 + 1; r < a;1; r > a: (5)and the radial part of the Eint have to be found numeri
ally.Figure 4 illustrates the s
attering of a 
entrally in
oming in
ident pulseof the width w = 20 , 
omparable with the perturber range a = 20. As we
an see the in
ident radiation pulse indu
es a 
ylindri
al wave propagatingoutward the s
atterer. The outward wave gradually takes a form of separatedmultiple mini beams that arriving at a distant s
reen 
ould be re
ognized asdistin
t peaks.It is important to point out that in the forward dire
tion the outwards
attered wave 
onstantly interferes with the in
ident wave, therefore, thesetwo waves are not being distinguishable. Undergoing transient modi�
ationsthe forward beam rea
hes eventually the shape similar to that of the in
ident
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Fig. 4. Time evolution of the light pulse s
attering, a = 20; "0 = 5; w = 20; ! =1;�! = 0:04:pulse. It is 
lear that its total energy has been redu
ed and 
an be re
overedin the s
attered pulses. This is a kind of the opti
al theorem valid for the�nite width pulses.Figure 5 shows s
attering of a narrow beam by a larger 
ylinder. Thebeam is displa
ed down the 
enter of the 
ylinder while its waist is kept atthe 
entral plane x0 = 0. As we 
an see these 
onditions do not 
ause anysplitting of the in
ident pulse. Although the pulse is spreading, whi
h is
aused by a natural transverse spreading of fo
used pulses in a free propa-gation and an additional spreading due to the s
attering, it propagates asone whole obje
t. One may expe
t that if the s
atterer were larger the beamspreading would be less signi�
ant and the pulse would behave as the onedes
ribed by the geometri
al opti
s.The next Figure 6 shows the s
attering of a similar pulse, the same im-pa
t parameter but the waist has been shifted to x0 = �250. This s
attering
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Fig. 5. Time evolution of a light narrow pulse s
attering. The pulse is fo
used atthe x0 = 0 plane, a = 50; "0 = 3; w = 3; y0 = �20; ! = 1;�! = 0:04.looks di�erent. The pulse being a narrow one at x0 upon rea
hing the s
at-terer has been spread and passing it was 
onverted to many small pulses.Obviously the des
ription of this pro
ess requires a full wave opti
s analysis.
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Fig. 6. Time evolution of a light pulse s
attering. The pulse is fo
used at thex0 = �250 plane, a = 50; "0 = 3; w = 3; y0 = �20:; ! = 1;�! = 0:04.4. Con
lusionsThese few examples show that 
onditions for the validity of the geometri
opti
s approximation is more subtle than the often 
ited requirement �! 0.This 
ondition 
an only be treated as a ne
essary one. In order to �ndsu�
ient 
onditions it is ne
essary to investigate other light parameters, inparti
ular light beam parameters, in 
onne
tion with a thorough treatmentof the light s
attering pro
ess.
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zThe examples of the wave s
attering show that when the pulses evolveas individual items the des
ription of their evolution 
an be simpli�ed usinggeometri
 opti
s approa
h. When the in
ident pulses split in the s
atteringpro
ess into smaller ones then the analysis has to be based on the waveopti
s theory.Very often the fragments of pulses evolution requiring wave opti
 analysis
an be redu
ed to isolated spots. Away from these spots the geometri
alopti
s provide an adequate des
ription. The best example is the re�e
tion ofa light pulse by a �at surfa
e between two diele
tri
s. Although simple rulesof the geometri
 opti
s, are su�
ient to make drawings of the transmitted(refra
ted) and re�e
ted pulses one should use the wave theory to determinethe amounts of re�e
ted and transmitted light.REFERENCES[1℄ E. He
ht, Opti
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z, Phys. Rev. E64, 066610 (2002).[8℄ W. �akowi
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