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We describe how quantum entanglement can be used in secure commu-
nication.
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1. Is there a perfect cipher?

Despite a long and colourful history, cryptography became part of math-
ematics and information theory only last century, in the late 1940s, mainly as
the result of the work of Claude Shannon of Bell Laboratories in New Jersey.
Shannon showed that truly unbreakable ciphers do exist and, in fact, they
had been known for over 30 years [1|. The one time pad, devised around
1918 by an American Telephone and Telegraph engineer Gilbert Vernam,
is one of the simplest and most secure encryption schemes. The message,
also known as the plaintext, is converted into a sequence of numbers using a
publicly known digital alphabet (e.g. ASCII code) and then combined with
another sequence of random numbers called a key to produce a cryptogram.
Both sender and receiver must have two exact copies of the key beforehand;
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the sender needs the key to encrypt the plaintext, the receiver needs the
exact copy of the key to recover the plaintext from the cryptogram. For
example, if we choose a simple digital alphabet in which we use only capital
letters and some punctuation marks such as

A B C D E .. .. X Y Z 7.
00 01 02 03 04 .. .. 23 24 25 26 27 28 29

then we can illustrate the one-time-pad by the following simple example (we
refer to the dietary requirements of 007):

S H A K E N N (e} T S T I R R E D

18 07 00 10 04 13 26 13 14 19 26 18 19 08 17 17 04 03

15 04 28 13 14 06 21 11 23 18 09 11 14 01 19 05 22 07
03 11 28 23 18 19 17 24 07 07 05 29 03 09 06 22 26 10

In order to obtain the cryptogram C' (sequence of digits in the bottom
row), we add the plaintext numbers P (the top row of digits) to the key
numbers K (the middle row of digits), which are randomly selected from
between 0 and 29, and take the remainder after division of the sum by
30, that is, we perform addition modulo 30. For example, the first letter
of the message “S” becomes a number “18” in the plaintext, then we add
18 + 15 =33; 33 =1 x 30 + 3, therefore we get 03 in the cryptogram. The
encryption and decryption can be written as P + K (mod 30) = C and
C — K (mod 30) = P, respectively. The randomness of the key wipes out
various frequency patterns in the cryptogam that are used by code-breakers
to crack ciphers. Without the key the cryptogram looks like a random
sequence of numbers.

The modern version “one-time pad” is based on binary representation
of messages and keys. That is, the message is usually converted into a
sequence of 0’s and 1’s and the key is another sequence of 0’s and 1’s of the
same length. Each bit of the message is then combined with the respective
bit of the key by addition in base 2 (logical XOR). As long as the key is truly
random, has the same length as the message, and is never reused, then the
one-time pad is perfectly secure. So, if we have a truly unbreakable system,
what is wrong with classical cryptography?

There is a snag, however. All one-time pads suffer from a serious practical
drawback, known as the key distribution problem. Potential users have to
agree secretly, and in advance, on the key — a long, random sequence of 0’s
and 1’s. Once they have done this, they can use the key for enciphering and
deciphering and the resulting cryptograms can be transmitted publicly such
as by radio or in newspaper without compromising the security of messages.
But the key itself must be established between the sender and the receiver by
means of a very secure channel — for example, a very secure telephone line, a
private meeting or hand-delivery by a trusted courier. Such a secure channel
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is usually available only at certain times and under certain circumstances. So
users far apart, in order to guarantee perfect security of subsequent crypto-
communication, have to carry around with them an enormous amount of
secret and meaningless as such information (cryptographic keys), equal in
volume to all the messages they might later wish to send.

Cryptologists and mathematicians tried very hard to eliminate the prob-
lem. The 1970s, for example, brought a clever mathematical discovery in the
shape of “public key” systems. The two main public key cryptography tech-
niques in use today are the Diffie-Hellman key exchange protocol [2] and the
RSA encryption system (named after the three inventors, Ron Rivest, Adi
Shamir, and Leonard Adleman) [3]. They were discovered in the academic
community in 1976 and 1978, respectively. However, it was widely rumoured
that these techniques were known to the British government agencies prior
to these dates, although this was not officially confirmed until recently. In
fact, the techniques were first discovered at the British Government Com-
munication Headquarters in the early 1970s by James Ellis, who called them
“Non-Secret Encryption”. In 1973, building on Ellis’ idea, C. Cocks designed
what we now call RSA, and in 1974 M. Williamson proposed what is essen-
tially known today as the Diffie-Hellman key exchange protocol.

In the public-key systems users do not need to agree on a secret key
before they send the message. They work on the principle of a safe with two
keys, one public key to lock it, and another private one to open it. Everyone
has a key to lock the safe but only one person has a key that will open it
again, so anyone can put a message in the safe but only one person can take
it out. The systems avoid the key distribution problem but unfortunately
their security depends on unproven mathematical assumptions. For example,
RSA — probably the most popular public key cryptosystem — derives its
security from the difficulty of factoring large numbers. This means that
if and when mathematicians or computer scientists come up with fast and
clever procedures for factoring, the whole privacy and discretion of public-
key cryptosystems could vanish overnight.

Indeed, more recent work in quantum computation shows that quantum
computers can, at least in principle, factor much faster than classical com-
puters [4]! Thus, in one sense, public key cryptosystems are already insecure:
any RSA-encrypted message that is recorded today will become readable mo-
ments after the first quantum computer is switched on, and therefore RSA
cannot be used for securely transmitting any information that will still need
to be secret on that happy day. Admittedly, that day is probably decades
away, but can anyone prove, or give any reliable assurance, that it is? Con-
fidence in the slowness of technological progress is all that the security of
the RSA system now rests on.
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Mathematics apart, one can approach the problem from a different an-
gle. Physicists view the key distribution as a physical process associated with
sending information from one place to another and eavesdropping as mea-
surements performed on carriers of information. Until now, such eavesdrop-
ping has depended on the eavesdropper having the best possible technology.
Suppose an eavesdropper is tapping a telephone line. Any measurement on
the signal in the line may disturb it and so leave traces. Legitimate users
can try to guard against this by making their own measurements on the line
to detect the effect of tapping. However, the tappers will escape detection
provided the disturbances they cause are smaller than the disturbances that
the users can detect. So given the right equipment, eavesdropping can go
undetected. Even if legitimate users do detect an eavesdropper, what do
they conclude if one day they find no traces of interception? Has the eaves-
dropping stopped? Or has the eavesdropper acquired better technology?
The way round this problem may lie in quantum physics, which brings us
to an entirely new way of solving the key distribution problem.

2. Quantum key distribution

Quantum entanglement was singled out by Erwin Schrédinger as the
most remarkable feature of quantum theory [5]. At the time in 1935, it was
not clear whether entanglement would be of any practical use but it already
played a key role in philosophical debates about the meaning of quantum
mechanics. Over fifty year later quantum entanglement was recognized as
a useful physical resource which can be used, among many other things, to
solve the key distribution problem.

The quantum key distribution which we are going to discuss here is
based on distribution of entangled particles [6]. It had been discovered in-
dependently from the key distribution based on partial indistinguishibility
of non-orthogonal state vectors, pioneered by Stephen Wiesner [8], and sub-
sequently developed into a full fledged key distribution scheme by Charles
Bennett and Gilles Brassard [9]. In fact, it was discovered almost by chance,
as a by-product of late night readings about the EPR programme by one of
the authors.

The key distribution is performed via a quantum channel which consists
of a source that emits pairs of spin % particles in the singlet state

L
V2

The particles fly apart along the y-axis towards the two legitimate users of
the channel, Alice and Bob, who, after the particles have separated, perform
measurements and register spin components along one of three directions,

(L Th =131) - (1)
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given by unit vectors @; and 5j (1,7 = 1,2,3), respectively, for Alice and Bob.

For simplicity, both @; and 5j vectors lie in the z—z plane, perpendicular to
the trajectory of the particles and are characterized by azimuthal angles:
¢ = 0,95 = ,q53 = 27r and ¢} = ,ngQ = 1 T, ¢} = Zﬂ' Superscripts
“a” and “b” refer to Alice’s and Bob’s analysers respectlvely, and the angle
is measured from the vertical z-axis. The users choose the orientation of
the analysers randomly and independently for each pair of the incoming
particles. Each measurement, in %h units, can yield two results, +1 (spin
up or bit value 0 ) and —1 (spin down or bit value 1), and can potentially
reveal one bit of information. Alice and Bob keep separate records which
list, for each pair of incoming particles, the orientation of the local analyser
and the registered bit value.
The quantity

( Zagj) ++(&:Zag])+P (&:Zagj)_P+—(alag])_P—+(&:Zabj) (2)

is the correlation coefficient of the measurements performed by Alice along
@; and by Bob along Ej_ Here, P14 (a;, gj) denotes the probability that result
41 has been obtained along @; and +1 along 5j. According to the quantum
rules . .

E(d;,b;) = (d; - G ®bj - 3) = —a; - by, (3)
where & represents the three Pauli matrices o, o0y, 0, , and the averaging
is performed for the singlet state. For the two pairs of analysers of the same
orientation (ds, b, and das, 52), quantum mechanics predicts total anticorre-
lation of the results obtained by Alice and Bob: E(ds, b1) = E(ds, by) = —1.

For the purpose of what follows, it is instructive to derive Eq. (3) by
writing the singlet state as the density operator in the o, ® o basis (a,b =

x’ y’ Z))
1
|W,)<!Z7,|:Z(]l—am®am—oy®ay—az®oz) (4)
and then evaluate

Tr (@ -6 ®bj - 5) |0-) (| (5)

using, for example, the identity
(@-)(b-5) =

together with o2 ye = L and Trogy , = 0.
Let us now define the quantity S composed of the correlation coefficients
for which Alice and Bob used analysers of different orientation

G“l

+i (@ xb)-3, (6)

S = E(dy,b) — E(ay, bs) + E(a@s, by) + E(ds, bs). (7)
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This is the same S as in the generalised Bell theorem proposed by Clauser,
Horne, Shimony, and Holt [7] (CHSH). For the singlet state, quantum me-
chanics requires

S =—-2V2, (8)

and all local theories which attribute elements of reality to measured prop-
erties satisfy the CHSH inequality

|S] < 2. 9)

Let us try to use this inequality as a criterion for secure key distribution.
After the transmission has taken place, Alice and Bob can announce in
public the orientations of the analysers they have chosen for each particular
measurement (N.B. results of the measurements remain seceret) and divide
the measurements into two separate groups: a first group for which they used
different orientations of the analysers, and a second group for which they
used the same orientation of the analysers. They discard all measurements in
which either or both of them failed to register a particle at all. Subsequently,
Alice and Bob can reveal publicly the results they obtained but within the
first group of measurements only. This allows them to establish the value of
S, which if the particles were not directly or indirectly “disturbed” should
reproduce the result of Eq. (8). This assures the legitimate users that the
results they obtained within the second second group of measurements are
anticorrelated and can be converted into a secret string of bits the key.

An eavesdropper, Eve, cannot elicit any information from the particles
while in transit from the source to the legitimate users, simply because there
is no information encoded there! The information “comes into being” only
after the legitimate users perform measurements and communicate in public
afterwards. Eve may try to substitute her own prepared data for Alice and
Bob to misguide them, but as she does not know which orientation of the
analysers will be chosen for a given pair of particles there is no good strategy
to escape being detected. In this case her intervention will be equivalent to
introducing elements of physical reality to the spin components and will
lower S below its ‘quantum’ value. Indeed, suppose that Eve prepares each
particle in each pair separately so that each individual particle in the pair
has a well defined spin in some direction. These directions may vary from
pair to pair so we can say that she prepares with probability p(7i,, 7ip) Alice’s
particle in state |7,) and Bob’s particle in state |7}), where 7, and 7, are
two unit vectors describing the spin orientations. The density operator for
each pair is

p= / P(Tias 1) | ia) (Tia | ® | 7is) {7y | diiadli. (10)
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Eq. (7) with appropriately modified correlation coefficients reads

S = / p(7ia, 7iy)ditadity|(@y - 7ia) (by - 7iy) — (@1 - 7ia) (D - 1)
+(as - 71q) (b - 71y) + (@3 - 78a) (bs - 7W)] (11)

and leads to
S = / (R, 7iy)dit o dity [V 2, - ) (12)

which implies

—V2 <8 <V2, (13)

for any state preparation described by the probability distribution p(7,, 7ip).

This is the case where Eve, who has total control over the state of individ-
ual particles, will always have the edge and Alice and Bob should abandon
establishing the key; they will learn about it by estimating |.S| which in this
case will always be smaller than v/2. However, this is a negative statement -
it does not tell us for which values of S Alice and Bob can establish a secret
key. Let us investigate if there is any cryptographic meaning to the CHSH
threshold, |S| = 2.

3. Eavesdropping revisited

The eavesdropping analysis presented above is merely a sketch. Clearly
Eve can prepare more complicated states. The question is — what kind of
states Eve should prepare and what kind of procedures she should implement
in order to maximise her chances of guessing the key bits correctly and
to minimise the disturbance. Of course, Eve is bound to introduce some
disturbance if she eavesdrops. Her only chance of avoiding detection is to
hide behind what, to Alice and Bob, may look like environmental noise in
the channel. Let us assume that the noise is symmetrical in the z—z plane,
i.e. we require that

=,

E(@,b)={(Gd-d®b-&)=—-na-b, (14)

for any two unit vectors & and b in the z—z plane and for some fixed 0 <
n < 1. The noise might show asymmetry if the y components of a and b
were taken into account, however, Alice and Bob have to follow a prescribed
protocol, and this one excludes measurements with non-zero y components of
@and b. Of course, Alice and Bob may consider including such measurements
but this would be a new protocol with a new eavesdropping method.
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Eq. (14) demands that the reduced density operator of the two particles
A and B is of the form

1
p=AlW_) (T |+ B|8y) (@] +C 1, (15)

where A+ B+ C =1 (N.B. this is not a convex sum, negative values of
A, B, and C are allowed). This form follows from the fact that both 1 and
the two states

1

(PP | = ;(1-02 80z — 0y @0y — 0. ®02), (16)

1
[2:){2+| = ;(1+0, @0, —0y®0y +0:@0) (17)
are invariant under rotations in the z—z plane. For state p we obtain
(@-3@b-3)=Trp(@-3®b-8)=—(A—B)d-b. (18)

Eve can prepare the state p by preparing the two particles, and an ancilla
F in an entangled state

VF % (|01)| Eo1) + | 10)| E1g)) + VD % (100)| Eoo) + | 11)] Er1)) , (19)

where we switched to more convenient notation: |0) for spin up | 1) and | 1)
for spin down | ]) along any direction in the z—z plane. Indeed, tracing over
the ancilla we obtain p as in Eq. (15) provided that F = 1/2(1 + A — B),
D = 1/2(1 — A+ B), and that normalised, but not necessarily mutually
orthogonal, states of the ancilla | E;;) satisfy

A
(Eo1|Fio) =—==cosa, (Fopl|Fin)=

I = cos 3, (20)

Ol &

for some a and /S (this convenient parametrisation is taken from [10]).
All the remaining inner products are zero, i.e. states {| Egp1),| F10)} and
{| Evo), | F11)} belong to orthogonal subspaces.

The vectors | E;;) change when we move from one basis to another in
the z—z plane but their inner products ( E;j | By ) remain invariant under
all rotations in that plane.

Now the eavesdropping proceeds as follows. Eve prepares the state (19),
sends the particles A and B to Alice and Bob, respectively, and keeps FE.
She then waits for public communication between Alice and Bob. When the
orientations of the analysers are revealed Eve follows the algorithm:
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e If the orientations are different ignore the ancilla.
e If the orientations are the same identify the state of the ancilla.

The second point is not trivial, however, Eve knows the orientation of
the two analysers and therefore she knows that her ancilla is in one of the
four states | Eoo), | Eo1), | E10), or | E11). She also knows (e.g. from [11]) the
optimal measurement that can distinguish between two given non-orthogonal
states | F;;) and | Ep,;,) with the minimal probability of error, which is

%(1—\/1—|<Eij|Emn>|2>' (21)

Eve can first check whether the state of the ancilla is in the subspace spanned
by {| Eo1),| E10)} (probability F') or in the orthogonal subspace spanned
by {| Eoo),| E11)} (probability D). This can be done without any errors.
Then she can apply the optimal measurement to distinguish either between
| Eo1),| E10) or between | Ego), | E11). This procedure gives her the bit values
registered by Alice and Bob with the error rate

1 1
QE:Fi(l—sina)—i—DE(l—sinB). (22)
Fixing the disturbance of the correlations
n=A—B=Fcosa— Dcosf (23)
Eve can minimise her error rate Qg by choosing cosa = — cosf, which
gives,
1
QE:§(1—sinoz), 7 = cos . (24)
The error rate in the generated key is
1
Qap = 5(1 —cosa), (25)

and it matches Eve’s error Qr = Qap, for cosa = sina = 1/4/2, i.e. in
terms of the CHSH inequality exactly for

15| = 2. (26)

Thus the CHSH threshold corresponds to the crossing point of the two
error rates. This point is of some significance in cryptanalysis. It is, roughly
speaking, the maximal error rate at which Alice and Bob can establish a
secure key using some prescribed error correcting codes and without any
further communication in public (see, for example, [12]). Thus the positive
statement is: Alice and Bob can establish a secret key whenever |S| > 2.
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4. Quantum Privacy Amplification

In fact Alice and Bob can establish a secret key even for some values
of S which are smaller than 2. For this, Alice and Bob may use Quan-
tum Privacy Amplification (QPA) [13]. The essential element of the QPA
procedure is ‘entanglement purification’ [14]. Without going into technical
details one can describe the QPA as an iterative quantum algorithm which,
if performed with perfect accuracy, starting with a collection of EPR-pairs
in mixed states, would discard some of them and leave the remaining ones
in states converging to the pure singlet state. This means that |S| for the
remaining pairs will converge to 2v/2. Since the remaining pairs are max-
imally entangled with each other, they cannot be entangled with anything
else, especially states in Eve’s possession. The QPA procedure can be per-
formed by Alice and Bob at distant locations by a sequence of local unitary
operations and measurements which are agreed upon by communication over
a public channel.

It has been shown that any entangled states of two qubits can be puri-
fied [15]. Taking the density operator (15) and inserting the optimal coeffi-
cients, A, B, and C' (which at a given disturbance n = cos @ minimize the
error rate Q) we obtain

pla) = % cosa(l+cosa)|W_) (W_|— % cos a(l —cosa)| D) (P, | +sin® ad.

(27)
This gives |S(a)| = cosa2v/2. Now, using the partial transposition test
[16,17] we can check that p(c) is entangled when cosa > /2 — 1. This
implies that if Alice and Bob are prepared to use the QPA then they can
establish a secret key for values |S| > 2(2 — v/2). (N.B. this does not
contradict Eq.(13) where we did not require the rotational symmetry in the
xz—z plane, such a requirement would give S = 0.)

We should add here that, unfortunately, the QPA is rather inefficient -
many pairs of particles are discarded in the process. One should also mention
here that there are classical techniques, such as “advantage distillation”,
which can supplement quantum key distributions and guarantee its secrecy
for some |S| < 2 (see for example [19]), however, these techniques are equally
inefficient. Thus the CHSH inequality may remain as a clean criterion for
an efficient and secure quantum key distribution, at least for all practical
purposes.

5. Concluding remarks

This brief overview has only scratched the surface of the many activities
that are presently being pursued under the heading of quantum cryptog-
raphy. For example, one may now venture into more complicated security
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analysis involving methods in which Eve, instead of pair by pair prepara-
tions, prepares several pairs of particles in one go, entangles them with more
complicated ancilla, and sends them to Alice and Bob. This kind of meth-
ods do not lead to significantly different security limits on error rates but
are nonetheless interesting from the theoretical point of view. One can also
discuss alternative key distribution protocols, or other cryptographic tasks.
However, let me stop here hoping that even the simplest outline of quantum
key distribution has enough interesting physics to keep you entertained for
a while.
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