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QUANTUM ENTANGLEMENT AND SECRECY�Artur Ekert, Daniel K.L. Oi, Carolina Moura AlvesCentre for Quantum Computation, Clarendon Laboratory, Oxford UniversityParks Road, Oxford, OX1 3PU, U.K.L.C. KwekDepartment of Natural Sienes, National Institute of EduationNanyang Tehnologial University1 Nanyang Walk, Singapore 637616, Republi of Singaporeand Dagomir KaszlikowskiDepartment of Physis, Faulty of Siene, National University of SingaporeLower Kent Ridge, Singapore 119260, Republi of Singapore(Reeived June 10, 2002)We desribe how quantum entanglement an be used in seure ommu-niation.PACS numbers: 03.67.Dd, 03.67.Hk1. Is there a perfet ipher?Despite a long and olourful history, ryptography beame part of math-ematis and information theory only last entury, in the late 1940s, mainly asthe result of the work of Claude Shannon of Bell Laboratories in New Jersey.Shannon showed that truly unbreakable iphers do exist and, in fat, theyhad been known for over 30 years [1℄. The one time pad, devised around1918 by an Amerian Telephone and Telegraph engineer Gilbert Vernam,is one of the simplest and most seure enryption shemes. The message,also known as the plaintext, is onverted into a sequene of numbers using apublily known digital alphabet (e.g. ASCII ode) and then ombined withanother sequene of random numbers alled a key to produe a ryptogram.Both sender and reeiver must have two exat opies of the key beforehand;� Presented at the Photons, Atoms and All That, PAAT 2002 Conferene, CraowPoland, May 31�June 1, 2002. (2069)



2070 A. Ekert et al.the sender needs the key to enrypt the plaintext, the reeiver needs theexat opy of the key to reover the plaintext from the ryptogram. Forexample, if we hoose a simple digital alphabet in whih we use only apitalletters and some puntuation marks suh asA B C D E ... ... X Y Z ? , .00 01 02 03 04 ... ... 23 24 25 26 27 28 29then we an illustrate the one-time-pad by the following simple example (werefer to the dietary requirements of 007):S H A K E N N O T S T I R R E D18 07 00 10 04 13 26 13 14 19 26 18 19 08 17 17 04 0315 04 28 13 14 06 21 11 23 18 09 11 14 01 19 05 22 0703 11 28 23 18 19 17 24 07 07 05 29 03 09 06 22 26 10In order to obtain the ryptogram C (sequene of digits in the bottomrow), we add the plaintext numbers P (the top row of digits) to the keynumbers K (the middle row of digits), whih are randomly seleted frombetween 0 and 29, and take the remainder after division of the sum by30, that is, we perform addition modulo 30. For example, the �rst letterof the message �S� beomes a number �18� in the plaintext, then we add18 + 15 = 33; 33 = 1� 30 + 3, therefore we get 03 in the ryptogram. Theenryption and deryption an be written as P + K (mod 30) = C andC �K (mod 30) = P , respetively. The randomness of the key wipes outvarious frequeny patterns in the ryptogam that are used by ode-breakersto rak iphers. Without the key the ryptogram looks like a randomsequene of numbers.The modern version �one-time pad� is based on binary representationof messages and keys. That is, the message is usually onverted into asequene of 0's and 1's and the key is another sequene of 0's and 1's of thesame length. Eah bit of the message is then ombined with the respetivebit of the key by addition in base 2 (logial XOR). As long as the key is trulyrandom, has the same length as the message, and is never reused, then theone-time pad is perfetly seure. So, if we have a truly unbreakable system,what is wrong with lassial ryptography?There is a snag, however. All one-time pads su�er from a serious pratialdrawbak, known as the key distribution problem. Potential users have toagree seretly, and in advane, on the key � a long, random sequene of 0'sand 1's. One they have done this, they an use the key for eniphering anddeiphering and the resulting ryptograms an be transmitted publily suhas by radio or in newspaper without ompromising the seurity of messages.But the key itself must be established between the sender and the reeiver bymeans of a very seure hannel � for example, a very seure telephone line, aprivate meeting or hand-delivery by a trusted ourier. Suh a seure hannel



Quantum Entanglement and Serey 2071is usually available only at ertain times and under ertain irumstanes. Sousers far apart, in order to guarantee perfet seurity of subsequent rypto-ommuniation, have to arry around with them an enormous amount ofseret and meaningless as suh information (ryptographi keys), equal involume to all the messages they might later wish to send.Cryptologists and mathematiians tried very hard to eliminate the prob-lem. The 1970s, for example, brought a lever mathematial disovery in theshape of �publi key� systems. The two main publi key ryptography teh-niques in use today are the Di�e�Hellman key exhange protool [2℄ and theRSA enryption system (named after the three inventors, Ron Rivest, AdiShamir, and Leonard Adleman) [3℄. They were disovered in the aademiommunity in 1976 and 1978, respetively. However, it was widely rumouredthat these tehniques were known to the British government agenies priorto these dates, although this was not o�ially on�rmed until reently. Infat, the tehniques were �rst disovered at the British Government Com-muniation Headquarters in the early 1970s by James Ellis, who alled them�Non-Seret Enryption�. In 1973, building on Ellis' idea, C. Coks designedwhat we now all RSA, and in 1974 M. Williamson proposed what is essen-tially known today as the Di�e�Hellman key exhange protool.In the publi-key systems users do not need to agree on a seret keybefore they send the message. They work on the priniple of a safe with twokeys, one publi key to lok it, and another private one to open it. Everyonehas a key to lok the safe but only one person has a key that will open itagain, so anyone an put a message in the safe but only one person an takeit out. The systems avoid the key distribution problem but unfortunatelytheir seurity depends on unproven mathematial assumptions. For example,RSA � probably the most popular publi key ryptosystem � derives itsseurity from the di�ulty of fatoring large numbers. This means thatif and when mathematiians or omputer sientists ome up with fast andlever proedures for fatoring, the whole privay and disretion of publi-key ryptosystems ould vanish overnight.Indeed, more reent work in quantum omputation shows that quantumomputers an, at least in priniple, fator muh faster than lassial om-puters [4℄! Thus, in one sense, publi key ryptosystems are already inseure:any RSA-enrypted message that is reorded today will beome readable mo-ments after the �rst quantum omputer is swithed on, and therefore RSAannot be used for seurely transmitting any information that will still needto be seret on that happy day. Admittedly, that day is probably deadesaway, but an anyone prove, or give any reliable assurane, that it is? Con-�dene in the slowness of tehnologial progress is all that the seurity ofthe RSA system now rests on.



2072 A. Ekert et al.Mathematis apart, one an approah the problem from a di�erent an-gle. Physiists view the key distribution as a physial proess assoiated withsending information from one plae to another and eavesdropping as mea-surements performed on arriers of information. Until now, suh eavesdrop-ping has depended on the eavesdropper having the best possible tehnology.Suppose an eavesdropper is tapping a telephone line. Any measurement onthe signal in the line may disturb it and so leave traes. Legitimate usersan try to guard against this by making their own measurements on the lineto detet the e�et of tapping. However, the tappers will esape detetionprovided the disturbanes they ause are smaller than the disturbanes thatthe users an detet. So given the right equipment, eavesdropping an goundeteted. Even if legitimate users do detet an eavesdropper, what dothey onlude if one day they �nd no traes of intereption? Has the eaves-dropping stopped? Or has the eavesdropper aquired better tehnology?The way round this problem may lie in quantum physis, whih brings usto an entirely new way of solving the key distribution problem.2. Quantum key distributionQuantum entanglement was singled out by Erwin Shrödinger as themost remarkable feature of quantum theory [5℄. At the time in 1935, it wasnot lear whether entanglement would be of any pratial use but it alreadyplayed a key role in philosophial debates about the meaning of quantummehanis. Over �fty year later quantum entanglement was reognized asa useful physial resoure whih an be used, among many other things, tosolve the key distribution problem.The quantum key distribution whih we are going to disuss here isbased on distribution of entangled partiles [6℄. It had been disovered in-dependently from the key distribution based on partial indistinguishibilityof non-orthogonal state vetors, pioneered by Stephen Wiesner [8℄, and sub-sequently developed into a full �edged key distribution sheme by CharlesBennett and Gilles Brassard [9℄. In fat, it was disovered almost by hane,as a by-produt of late night readings about the EPR programme by one ofthe authors.The key distribution is performed via a quantum hannel whih onsistsof a soure that emits pairs of spin 12 partiles in the singlet state1p2 (j "#i � j #"i) : (1)The partiles �y apart along the y-axis towards the two legitimate users ofthe hannel, Alie and Bob, who, after the partiles have separated, performmeasurements and register spin omponents along one of three diretions,



Quantum Entanglement and Serey 2073given by unit vetors ~ai and~bj (i; j = 1; 2; 3), respetively, for Alie and Bob.For simpliity, both ~ai and ~bj vetors lie in the x�z plane, perpendiular tothe trajetory of the partiles, and are haraterized by azimuthal angles:�a1 = 0; �a2 = 14�; �a3 = 12� and �b1 = 14�; �b2 = 12�; �b3 = 34�. Supersripts�a� and �b� refer to Alie's and Bob's analysers, respetively, and the angleis measured from the vertial z-axis. The users hoose the orientation ofthe analysers randomly and independently for eah pair of the inomingpartiles. Eah measurement, in 12~ units, an yield two results, +1 (spinup or bit value 0 ) and �1 (spin down or bit value 1), and an potentiallyreveal one bit of information. Alie and Bob keep separate reords whihlist, for eah pair of inoming partiles, the orientation of the loal analyserand the registered bit value.The quantityE(~ai;~bj) = P++(~ai;~bj) + P��(~ai;~bj)� P+�(~ai;~bj)� P�+(~ai;~bj) (2)is the orrelation oe�ient of the measurements performed by Alie along~ai and by Bob along ~bj. Here, P��(~ai;~bj) denotes the probability that result�1 has been obtained along ~ai and �1 along ~bj . Aording to the quantumrules E(~ai;~bj) = h~ai � ~� 
 bj � ~�i = �~ai �~bj; (3)where ~� represents the three Pauli matries �x; �y; �z , and the averagingis performed for the singlet state. For the two pairs of analysers of the sameorientation (~a2, ~b1 and ~a3;~b2), quantum mehanis predits total antiorre-lation of the results obtained by Alie and Bob: E(~a2;~b1) = E(~a3;~b2) = �1.For the purpose of what follows, it is instrutive to derive Eq. (3) bywriting the singlet state as the density operator in the �a 
 �b basis (a; b =x; y; z), j	�i h	� j = 14(11� �x 
 �x � �y 
 �y � �z 
 �z) (4)and then evaluate Tr [(~ai � ~� 
 bj � ~�) j	�i h	� j℄ (5)using, for example, the identity(~a � ~�)(~b � ~�) = ~a �~b 11+ i (~a�~b) � ~�; (6)together with �2x;y;z = 1, and Tr �x;y;z = 0.Let us now de�ne the quantity S omposed of the orrelation oe�ientsfor whih Alie and Bob used analysers of di�erent orientationS = E(~a1;~b1)�E(~a1;~b3) +E(~a3;~b1) +E(~a3;~b3): (7)



2074 A. Ekert et al.This is the same S as in the generalised Bell theorem proposed by Clauser,Horne, Shimony, and Holt [7℄ (CHSH). For the singlet state, quantum me-hanis requires S = �2p2 ; (8)and all loal theories whih attribute elements of reality to measured prop-erties satisfy the CHSH inequalityjSj � 2 : (9)Let us try to use this inequality as a riterion for seure key distribution.After the transmission has taken plae, Alie and Bob an announe inpubli the orientations of the analysers they have hosen for eah partiularmeasurement (N.B. results of the measurements remain seeret) and dividethe measurements into two separate groups: a �rst group for whih they useddi�erent orientations of the analysers, and a seond group for whih theyused the same orientation of the analysers. They disard all measurements inwhih either or both of them failed to register a partile at all. Subsequently,Alie and Bob an reveal publily the results they obtained but within the�rst group of measurements only. This allows them to establish the value ofS, whih if the partiles were not diretly or indiretly �disturbed� shouldreprodue the result of Eq. (8). This assures the legitimate users that theresults they obtained within the seond seond group of measurements areantiorrelated and an be onverted into a seret string of bits the key.An eavesdropper, Eve, annot eliit any information from the partileswhile in transit from the soure to the legitimate users, simply beause thereis no information enoded there! The information �omes into being� onlyafter the legitimate users perform measurements and ommuniate in publiafterwards. Eve may try to substitute her own prepared data for Alie andBob to misguide them, but as she does not know whih orientation of theanalysers will be hosen for a given pair of partiles there is no good strategyto esape being deteted. In this ase her intervention will be equivalent tointroduing elements of physial reality to the spin omponents and willlower S below its `quantum' value. Indeed, suppose that Eve prepares eahpartile in eah pair separately so that eah individual partile in the pairhas a well de�ned spin in some diretion. These diretions may vary frompair to pair so we an say that she prepares with probability p(~na; ~nb) Alie'spartile in state j~nai and Bob's partile in state j~nbi, where ~na and ~nb aretwo unit vetors desribing the spin orientations. The density operator foreah pair is � = Z p(~na; ~nb) j ~nai h~na j 
 j~nbi h~nb j d~nad~nb: (10)



Quantum Entanglement and Serey 2075Eq. (7) with appropriately modi�ed orrelation oe�ients readsS = Z p(~na; ~nb)d~nad~nb[(~a1 � ~na)(~b1 � ~nb)� (~a1 � ~na)(~b3 � ~nb)+(~a3 � ~na)(~b1 � ~nb) + (~a3 � ~na)(~b3 � ~nb)℄ ; (11)and leads to S = Z p(~na; ~nb)d~nad~nb[p2~na � ~nb℄ (12)whih implies �p2 � S � p2; (13)for any state preparation desribed by the probability distribution p(~na; ~nb).This is the ase where Eve, who has total ontrol over the state of individ-ual partiles, will always have the edge and Alie and Bob should abandonestablishing the key; they will learn about it by estimating jSj whih in thisase will always be smaller than p2. However, this is a negative statement -it does not tell us for whih values of S Alie and Bob an establish a seretkey. Let us investigate if there is any ryptographi meaning to the CHSHthreshold, jSj = 2. 3. Eavesdropping revisitedThe eavesdropping analysis presented above is merely a sketh. ClearlyEve an prepare more ompliated states. The question is � what kind ofstates Eve should prepare and what kind of proedures she should implementin order to maximise her hanes of guessing the key bits orretly andto minimise the disturbane. Of ourse, Eve is bound to introdue somedisturbane if she eavesdrops. Her only hane of avoiding detetion is tohide behind what, to Alie and Bob, may look like environmental noise inthe hannel. Let us assume that the noise is symmetrial in the x�z plane,i.e. we require that E(~a;~b) = h~a � ~� 
 b � ~�i = �� ~a �~b; (14)for any two unit vetors ~a and ~b in the x�z plane and for some �xed 0 �� � 1. The noise might show asymmetry if the y omponents of ~a and ~bwere taken into aount, however, Alie and Bob have to follow a presribedprotool, and this one exludes measurements with non-zero y omponents of~a and~b. Of ourse, Alie and Bob may onsider inluding suh measurementsbut this would be a new protool with a new eavesdropping method.



2076 A. Ekert et al.Eq. (14) demands that the redued density operator of the two partilesA and B is of the form� = Aj	�i h	� j+Bj�+i h�+ j+ C 1411 ; (15)where A + B + C = 1 (N.B. this is not a onvex sum, negative values ofA;B, and C are allowed). This form follows from the fat that both 11 andthe two statesj	�i h	� j = 14(11� �x 
 �x � �y 
 �y � �z 
 �z) ; (16)j�+i h�+ j = 14(11+ �x 
 �x � �y 
 �y + �z 
 �z) (17)are invariant under rotations in the x�z plane. For state � we obtainh~a � ~� 
~b � ~�i = Tr � (~a � ~� 
 b � ~�) = � (A�B) ~a �~b : (18)Eve an prepare the state � by preparing the two partiles, and an anillaE in an entangled statepF 1p2 (j 01ijE01i+ j 10ijE10i) +pD 1p2 (j 00ijE00i+ j 11ijE11i) ; (19)where we swithed to more onvenient notation: j 0i for spin up j "i and j 1ifor spin down j #i along any diretion in the x�z plane. Indeed, traing overthe anilla we obtain � as in Eq. (15) provided that F = 1=2(1 + A � B),D = 1=2(1 � A + B), and that normalised, but not neessarily mutuallyorthogonal, states of the anilla jEiji satisfyhE01 jE10 i = AF = os� ; hE00 jE11 i = BD = os �; (20)for some � and � (this onvenient parametrisation is taken from [10℄).All the remaining inner produts are zero, i.e. states fjE01i; jE10ig andfjE00i; jE11ig belong to orthogonal subspaes.The vetors jEiji hange when we move from one basis to another inthe x�z plane but their inner produts hEij jEnm i remain invariant underall rotations in that plane.Now the eavesdropping proeeds as follows. Eve prepares the state (19),sends the partiles A and B to Alie and Bob, respetively, and keeps E.She then waits for publi ommuniation between Alie and Bob. When theorientations of the analysers are revealed Eve follows the algorithm:



Quantum Entanglement and Serey 2077� If the orientations are di�erent ignore the anilla.� If the orientations are the same identify the state of the anilla.The seond point is not trivial, however, Eve knows the orientation ofthe two analysers and therefore she knows that her anilla is in one of thefour states jE00i; jE01i; jE10i; or jE11i. She also knows (e.g. from [11℄) theoptimal measurement that an distinguish between two given non-orthogonalstates jEiji and jEmni with the minimal probability of error, whih is12 �1�q1� jhEij jEmn ij2� : (21)Eve an �rst hek whether the state of the anilla is in the subspae spannedby fjE01i; jE10ig (probability F ) or in the orthogonal subspae spannedby fjE00i; jE11ig (probability D). This an be done without any errors.Then she an apply the optimal measurement to distinguish either betweenjE01i; jE10i or between jE00i; jE11i. This proedure gives her the bit valuesregistered by Alie and Bob with the error rateQE = F 12 (1� sin�) +D 12 (1� sin�) : (22)Fixing the disturbane of the orrelations� = A�B = F os��D os � (23)Eve an minimise her error rate QE by hoosing os� = � os�, whihgives, QE = 12(1 � sin�) ; � = os� : (24)The error rate in the generated key isQAB = 12(1� os�) ; (25)and it mathes Eve's error QE = QAB , for os� = sin� = 1=p2, i.e. interms of the CHSH inequality exatly forjSj = 2 : (26)Thus the CHSH threshold orresponds to the rossing point of the twoerror rates. This point is of some signi�ane in ryptanalysis. It is, roughlyspeaking, the maximal error rate at whih Alie and Bob an establish aseure key using some presribed error orreting odes and without anyfurther ommuniation in publi (see, for example, [12℄). Thus the positivestatement is: Alie and Bob an establish a seret key whenever jSj > 2.



2078 A. Ekert et al.4. Quantum Privay Ampli�ationIn fat Alie and Bob an establish a seret key even for some valuesof S whih are smaller than 2. For this, Alie and Bob may use Quan-tum Privay Ampli�ation (QPA) [13℄. The essential element of the QPAproedure is `entanglement puri�ation' [14℄. Without going into tehnialdetails one an desribe the QPA as an iterative quantum algorithm whih,if performed with perfet auray, starting with a olletion of EPR-pairsin mixed states, would disard some of them and leave the remaining onesin states onverging to the pure singlet state. This means that jSj for theremaining pairs will onverge to 2p2. Sine the remaining pairs are max-imally entangled with eah other, they annot be entangled with anythingelse, espeially states in Eve's possession. The QPA proedure an be per-formed by Alie and Bob at distant loations by a sequene of loal unitaryoperations and measurements whih are agreed upon by ommuniation overa publi hannel.It has been shown that any entangled states of two qubits an be puri-�ed [15℄. Taking the density operator (15) and inserting the optimal oe�-ients, A, B, and C (whih at a given disturbane � = os� minimize theerror rate QE) we obtain�(�) = 12 os�(1+os�)j	�i h	� j � 12 os�(1� os�)j�+i h�+ j+sin2 �11:(27)This gives jS(�)j = os�2p2. Now, using the partial transposition test[16, 17℄ we an hek that �(�) is entangled when os� > p2 � 1. Thisimplies that if Alie and Bob are prepared to use the QPA then they anestablish a seret key for values jSj > 2(2 � p2). (N.B. this does notontradit Eq.(13) where we did not require the rotational symmetry in thex�z plane, suh a requirement would give S = 0.)We should add here that, unfortunately, the QPA is rather ine�ient -many pairs of partiles are disarded in the proess. One should also mentionhere that there are lassial tehniques, suh as �advantage distillation�,whih an supplement quantum key distributions and guarantee its sereyfor some jSj < 2 (see for example [19℄), however, these tehniques are equallyine�ient. Thus the CHSH inequality may remain as a lean riterion foran e�ient and seure quantum key distribution, at least for all pratialpurposes. 5. Conluding remarksThis brief overview has only srathed the surfae of the many ativitiesthat are presently being pursued under the heading of quantum ryptog-raphy. For example, one may now venture into more ompliated seurity
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