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MANIFOLDS OF EQUAL ENTANGLEMENT FORCOMPOSITE QUANTUM SYSTEMS�Magdalena M. Sinoª�ka, Karol �yzkowskiy and Marek Ku±Center for Theoretial Physis, Polish Aademy of SienesAl. Lotników 32/44, 02-668 Warszawa, Poland(Reeived June 6, 2002)Quantum entanglement remains invariant with respet to unitary trans-formations performed loally in eah subsystem. Loal orbits of a state ofan N �N bi-partite quantum system are analyzed. For a pure state theirdimensions depend on the degeneray of the vetor of oe�ients arisingby the Shmidt deomposition. For instane, the generi orbit of a purestate has 2N2 �N � 1 dimensions, the set of separable states is 4(N � 1)dimensional, while the manifold of maximally entangled states has N2 � 1dimensions.PACS numbers: 03.65.Ud, 03.67.�a1. IntrodutionThe existene of entangled states, i.e., roughly speaking, the states ofa omposite system whih exhibit quantum orrelations among the subsys-tems, appeared reently to be extremely important in rapidly developing�eld of quantum ommuniation. It is due to non-lassial properties of en-tangled states that various shemes of quantum omputing, quantum ryp-tography and quantum teleportation an be thought of being pratiallyrealizable.A pure state j i in the Hilbert spae H = HA
HB of a omposite quan-tum system onsisting of two subsystems A and B with Hilbert spaes HAand HB is separable, if it an be ast to the produt form j i = j Ai
j Bi,where j Ai and j Bi are some states of the subsystems. States whih are notseparable are alled entangled. The situation is more ompliated in the aseof a mixed state (a density matrix �) [1℄. It is separable if it is expressibleas a onvex sum of produt states: � =Pi pi�(A)i 
 �(B)i , pi > 0, Pi pi = 1,� Presented at the Photons, Atoms and All That, PAAT 2002 Conferene, CraowPoland, May 31�June 1, 2002.y Also at the Institute of Physis, Jagellonian University, Reymonta 4, 30-059 Kraków,Poland. (2081)



2082 M. Sinoª�ka, K. �yzkowski, M. Ku±where �(A)i and �(B)i are, in general mixed, states of the subsystems. Amixed state is alled entangled if it is not separable. In what follows weonsider only systems with �nite-dimensional Hilbert spaes whih seem tobe more important in proposed appliations of quantum information theory,the in�nite-dimensional ase needs some re�nement of the above de�nitionof separability.It is relatively easy to hek whether a given pure state is separable orentangled (e.g. by investigating its Shmidt oe�ients � see below). Thesituation ompliates for mixed states � we do not know how to hekunambiguously separability of a given mixed states if the dimensionality ofthe Hilbert spaes of subsystems exeeds 3 [2℄.As a problem omplementary to determining the separability propertiesof a given state one an pose the question of the relation between the setof the separable (entangled) states to the set of all states of the ompositesystem. This an be understood as the question of a relative measure of theset of entangled states(i.e. �how probable is that a given state is entangled?�)� the problem posed and partially solved in [3,4℄, or about the geometrialand topologial properties of this set. In this paper we onentrate on thelatter problem in the following setting. Sine we are interested in quan-tum orrelations between two subsystems we should take into onsiderationonly these properties whih do not hange under various quantum mehan-ial operations performed loally in eah subsystem. Thus two states whihare interonvertible one to another via loal unitary transformations (i.e.purely quantum mehanial operations without deoherene) are equivalentfrom the point of their entanglement properties. This an lead to onstru-tion of appropriate measures of entanglement haraterizing the lasses ofequivalent states. Our approah is in a sense omplementary to the task ofidentifying the set of all invariants with respet to the loal unitary trans-formations [5�11℄.In this work we pose and solve the question of the dimensionality andtopology of manifolds of states equivalent to a given one via loal unitarytransformations.This issue is diretly related with an important problem ofquantum engineering: what other state may be obtained from a given mixedstate by means of loal unitary operations?The present paper may be regarded as an extension of [12℄ (see also[13�15℄), in whih these questions were disussed for the simplest system oftwo qubits. In the ase of pure states we �nd the expliit results for anyN �N omposite system by identifying expliitly the topology of the orbitsas well as in a purely algebrai, algorithmi manner. The seond approahwhih does not depend on the Shmidt deomposition (see below) is, inpriniple, appliable also to mixed states, this is illustrated by onsideringthe generalized Werner states [1℄.



Manifolds of Equal Entanglement for Composite Quantum Systems 20832. Pure entangled states2.1. Shmidt deompositionConsider a pure state j i of a omposite Hilbert spae H = HA
HB ofsize N2. Introduing an orthonormal basis fjnigNn=1 in eah subsystem, wemay represent the state asj i = NXn=1 NXm=1Cmnjni 
 jmi : (1)The omplex matrix of oe�ients C of size N needs not to be Hermitiannor normal. Its singular values (i.e. the square roots of eigenvalues �k of thepositive matrix CyC) determine the Shmidt deomposition [16�18℄j i = NXk=1p�kjk0i 
 jk00i ; (2)where the basis inH is transformed by a loal unitary transformationW
V .Thus jk0i = W jki, and jk00i = V jki, where W and V are the matries ofeigenvetors of CyC and CCy, respetively. In the generi ase of a non-degenerate vetor �, the Shmidt deomposition is unique up to two unitarydiagonal matries, up to whih the matries of eigenvetors W and V aredetermined. The normalization ondition h j i = 1 enfores PNk=1 �k = 1.Thus the vetor � = (�1; :::; �N ) lives in the (N � 1) dimensional simplexSN . The Shmidt oe�ients �k do not depend on the initial basis jni
jmi,in whih the analyzed state j i is represented.2.2. Pure state entanglementThe Shmidt oe�ient of a pure state j i are equal to the eigenvalues ofthe redued density operator, obtained by partial traing, �A = trB(j ih j).A pure state is alled separable, if it an be represented in the produt formj i = j Ai 
 j Bi, where j Ai 2 HA and j Bi 2 HB. This ours if andonly if there exists only one non-zero Shmidt oe�ient, �1 = 1, i.e. theredued state �A is pure. In the opposite ase state j i is alled entangled.A pure state is alled maximally entangled if all its Shmidt oe�ients areequal, �1 = �k = 1=N . Note that the Shmidt oe�ients are invariant withrespet to any loal operations UL = UA 
 UB , and thus they may serve asingredients of any measure of entanglement.



2084 M. Sinoª�ka, K. �yzkowski, M. Ku±2.3. Loal orbitsWe are going to study the orbits of a given pure state j i with respetto the loal transformations UL. Two states belonging to the same orbit arealled interonvertible, sine they may be reversibly transformed by loaltransformations one into another [19℄. Let us order its Shmidt oe�ients� = (0 � �1 � �2 � : : : � �N ). In order to desribe the harater of thedegeneray we rename them into� = (0; : : : ; 0; �1; : : : ; �1; �2; : : : ; �2; : : : ; �K ; : : : ; �K) ;where eah value �n ours mn times and m0 is the number of vanishingShmidt oe�ients. Obviously m0 +PKn=1mn = N , and m0 might beequal to zero. The main result of our paper is ontained in the following:Proposition. The loal orbit generated from j i has the struture of thefollowing quotient spae O = U(N)� U(N)G(m0;m1; : : : ;mK) ; (3)where G(m0;m1; : : : ;mK) is the subgroup of the diret produt U(N)�U(N)onsisting of the pairs of unitary matries (U; V ) of the formU = 2664 u0 u1 . . . uK 3775 ; V = ei� 2664 v0 u�1 . . . u�K 3775 ; (4)where u0 and v0 arbitrary matries from U(m0), and u1; : : : ; uK denote ar-bitrary matries from, respetively, U(m1); : : : ; U(mK). The overall phasefator ei� aounts for the irrelevant phase of the state j i, ie. we identifystates di�ering by a phase fator. The dimension of the orbit (3) readsdim(O) = 2N2 � 2m20 � KXn=1m2n � 1 : (5)Indeed, let us observe that the ation of the tensor produtU 
 V 2 U(N)
 U(N) on the state (1),U 
 V j i = Xm;nCmnU jmi 
 V jni = Xm;n;k;lCmnUkmjki 
 Vlnjli (6)= Xk;l (UCV T )kljki 
 jli ; (7)



Manifolds of Equal Entanglement for Composite Quantum Systems 2085redues to the diret produt ation on the oe�ient matrix CU(N)� U(N) 3 (U; V ) : C 7! (U; V )(C) := UCV T : (8)Let now the ation of ( ~U; ~V ) redues C to its diagonal Shmidt form~UC ~V T = diag(0; : : : ; 0; �1; : : : ; �2; : : : ; �K ; : : : ; �K) : (9)Then ~UC ~V T = U ~UC ~V TV T i� U and V are given by (4). Now the formula(3) follows in an obvious manner, one we realize that in fat we shoulddisregard any unimportant overall phase of (1) (or in other words we shouldidentify the oe�ient matries C and C 0 = ei�C, i.e. work in an appropriateprojetive spae). The dimension formula (5) follows from a simple alula-tions involving the dimensionalities of the unitary groups, while the last termequal to unity stems from the projetivisation proedure. An alternative,algebrai proof of this result is proved in Setion 3.In fat the orbit has a struture of a Cartesian produt:O = U(N)U(m0)� U(m1)� : : :� U(mK) � U(N)U(m0)� U(1) ; (10)where the �rst fator represents global orbits in the set of density matriesof size N with the same spetrum [20, 21℄. In the language of �ber bundlessuh orbits form the base, while the �bers onsists of all N �N pure states,whih are related by partial traing to a given density matrix of size N . Weshall provide a omplete proof of this fat elsewhere [22℄.In the generi ase of all oe�ients di�erent (and non zero), i.e. K = Nthe manifold is thus identi�ed asOg = U(N)[U(1)℄N � U(N)U(1) ; (11)with the dimension dim(Og) = 2N2 �N � 1 : (12)The set of all orbits enumerated above produes the omplex projetivespae C PN2�1 � the (2N2 � 2) dimensional manifold of pure states ofthe N �N system. However, the set onstruted of the generi orbits (12)generated by eah point of the interior of the Weyl hamber, is of full measurein the spae of pure states. In this way we demonstrated a foliation ofC PN2�1. This foliation is singular, sine there exist also (measure zero)leaves of various dimensions and topology, as listed in Table I for N = 2; 3and 4.



2086 M. Sinoª�ka, K. �yzkowski, M. Ku± TABLE ITopologial struture of loal orbits of the N � N pure states generated by oneWeyl hamber of the simplex of the Shmidt oe�ients, Ds is the dimension ofthe subspae, while Do represents the dimension of the orbit, (Æ) denotes separablestates, while (?) denotes maximally entangled states.N Shmidtoe�ientsDs Part of theasymmetri Topologial Struture Dosimplex base �bre(a; b) 1 line U(2)[U(1)℄2 � U(2)U(1) = S2 � RP 3 52 (1; 0) 0 left edge ( Æ ) U(2)[U(1)℄2 � U(2)U(1)�U(1)= CP 1 � CP 1 4( 12 ; 12 ) 0 right edge ( ? ) U(2)U(2) � U(2)U(1) = SU(2)Z2 = RP 3 3(a; b; ) 2 interior oftriangle U(3)[U(1)℄3 � U(3)U(1) 14(a; b; 0) 1 base U(3)[U(1)℄3 � U(2)U(1)�U(1) 133 (a; b; b) 1 2 upper sides U(3)U(1)�U(2) � U(3)U(1) 12( 12 ; 12 ; 0) 0 right orner U(3)U(2)�U(1) � U(3)U(1)�U(1) 11(1; 0; 0) 0 left orner ( Æ ) U(3)U(1)�U(2) � U(3)U(2)�U(1)= CP 2 � CP 2 8( 13 ; 13 ; 13 ) 0 upper orner ( ? ) U(3)U(3) � U(3)U(1) = SU(3)Z3 8(a; b; ; d) 3 interior oftetrahedron U(4)[U(1)℄4 � U(4)U(1) 27(a; b; ; 0) 2 base fae U(4)[U(1)℄4 � U(4)[U(1)℄2 26(a; a; b; ) 2 three upper faes U(4)U(2)�[U(1)℄2� U(4)U(1) 25(a; a; b; 0) 1 2 edges ofthe base U(4)U(2)�[U(1)℄2� U(4)U(1)�U(1) 244 (a; a; b; b) 1 edge U(4)[U(2)℄2 � U(4)U(1) 23(a; a; a; b) 1 2 edges U(4)U(3)�U(1) � U(4)U(1) 21(a; b; 0; 0) 1 lower edgeof the base U(4)[U(1)℄2�U(2)� U(4)U(2)�U(1) 21( 13 ; 13 ; 13 ; 0) 0 bak orner U(4)U(3)�U(1) � U(4)U(1)�U(1) 20( 12 ; 12 ; 0; 0) 0 right orner U(4)[U(2)℄2 � U(4)U(2)�U(1) 19( 14 ; 14 ; 14 ; 14 ) 0 upper orner ( ? ) U(4)U(4) � U(4)U(1) = SU(4)Z4 15(1; 0; 0; 0) 0 left orner ( Æ ) U(4)U(1)�U(3) � U(4)U(3)�U(1)= CP 3 � CP 3 12



Manifolds of Equal Entanglement for Composite Quantum Systems 20872.4. Speial ases: separable and maximally entangled statesFor separable states there exists only one non zero oe�ient, �1 = 1, som0 = N � 1. Thus (3) givesOsep = U(N)U(1) � U(N � 1) � U(N)U(1)� U(N � 1) = C PN�1 � CPN�1 ; (13)with the dimension dim(Osep) = 4(N � 1). The maximally entangled statesare haraterized by �1 = �N = 1=N , henem1 = N andm0 = 0. Therefore,Omax = U(N)U(1) = SU(N)ZN ; (14)with the dimension dim(Omax) = N2 � 1. Note that this spae is not iso-morphi with SU(N) beause U(N) is not a diret produt of U(1) andSU(N) [23℄. Sine SU(N) � U(1) = U(N) � ZN , where ZN is the disretepermutation group of N elements, the orbit of the maximally entangledstates an be written as Omax = SU(N)=ZN . This struture follows alsofrom the fat that the entire orbit may be written as Omax = (U 
 I)j	i,where j	i is an arbitrary maximally entangled state, and U is an arbitraryunitary matrix determined up to an overall phase [24℄.2.5. Speial ases: N = 2; 3 and 4The set of all possible Shmidt vetors � form the N�1 dimensional sim-plex SN . Its orners represent N mutually orthogonal separable states, whileits enter denotes the maximally entangled state j �i = (PNk=1 jkki)=pN .Any permutation of the Shmidt oe�ients may be obtained by a loaltransformation of the pure state. Therefore it is su�ient to onsider theorbits generated by Shmidt vetors belonging to a ertain asymmetri part~SN of the simplex, so alled Weyl hamber. Any ordering of the Shmidtoe�ients orresponds to hoosing one hamber out of N !, in whih thesimplex SN an be deomposed.The Shmidt simplex and exemplary Weyl hamber for N = 2; 3 and 4are presented in Fig. 1. (Note that the simplex of diagonal density matriesof size N , obtained from N �N pure states by partial traing, has the samegeometry.) The numbers by eah part of the boundary of ~SN denote thedimensions of the loal orbits, whih are listed in Table I. In the simplestase N = 2 the simplex redues to the interval [0; 1℄, while its asymmetripart ~S2 equals [0; 1=2℄. The edge 0 generates the four dimensional orbit ofseparable states, C P 1 � C P 1 , and the point 1=2 leads to the 3�D manifoldof maximally entangled states Omax = SU(2)=Z2 � SO(3) � RP 3 . Thisstruture was pointed out by Vollbreht and Werner [24℄, and the above



2088 M. Sinoª�ka, K. �yzkowski, M. Ku±singular foliation of CP 3 was disussed in [12�15℄. In the ase of any pointinside the simplex (13) gives the following topology of the generi 2�2 loalorbit Og = U(2)U(1)2 � U(2)U(1) = S2 � RP 3 ; (15)in agreement with reent results of Mosseri and Dandolo� [15℄.

Fig. 1. Simplex of Shmidt oe�ients SN for pure states of N � N system withN = 2; 3, and 4; (the same piture may also represent the set of the spetra ofdensity matries of size N obtained from pure states by partial traing). Righthand side shows an asymmetri part of SN � the Weyl hamber ~SN , while thenumbers denote the dimensionality of loal orbits generated by eah point.



Manifolds of Equal Entanglement for Composite Quantum Systems 20893. Algebrai determination of orbit dimension3.1. General ase: N �N mixed statesThe reasoning presented in the previous setion hinges on the Shmidtdeomposition of the density matrix for a pure state. As suh it annotbe extended to mixed states. For this reason we present an alternativemethod introdued in [12℄, whih an be, in priniple, applied also in thelatter situation. It is based on purely algebrai reasoning, and, as suh, givesonly loal information, i.e. only about the dimensions of the manifolds ofinteronvertible states and not about their topology.Although the group of loal unitary transformations is L = U(N) 
U(N), it is obvious that sine its elements at on an arbitrary densitymatrix � 2 C N 
 C N by onjugations, � 7! U�U y, we an take in fatL = SU(N)
SU(N) instead. Let R2(N2�1) 3 s 7! U(s) 2 SU(N)
SU(N)be some parameterization of the group L suh that U(0) = I (i.e. s =(s1; s2; : : : ; s2N2�2) are the oordinates in SU(N) with the origin at the unitmatrix). The tangent spae to the loal orbit through � (i.e. to the spae ofthe states interonvertible with �) at this point is spanned by the vetors:�k := ��skU(s)�U y(s) js=0 : (16)The dimension of the tangent spae, hene of the manifold itself, equals thenumber of linearly independent vetors �k.From the unitarity of U(s) it follows:�k = �� �U�sk�s=0 ; �� = [lk; �℄ = �yk : (17)The number of independent �k equals the rank of the 2(N2�1)�2(N2�1)Gram matrix (the unimportant fator of 1=4 is introdued for further on-veniene) Gmn := 14Tr�m�n ; (18)whih, upon using (17), an be ast into:Gmn = 12Tr (lm�ln�)� 14Tr ��2 flnlm + lmlng� : (19)Choosing the standard parameterization of SU(N) in the viinity of theidentity we obtainlk := � �U�sk�s=0 = 8<: iek 
 I; k = 1; : : : ; N2 � 1iI 
 ek; k = N2; : : : ; 2N2 � 2 ; (20)



2090 M. Sinoª�ka, K. �yzkowski, M. Ku±where ek = �eyk are generators of the Lie algebra su(N). They obey theommutation relations [ej ; ek℄ = jklel ; (21)where jkl denote the struture onstants and we use the summation on-vention. We normalize ek to ful�llTr ejek = �2Æjk : (22)An arbitrary Hermitian matrix � ating in C N 
 C N an be deomposedwith the help of SU(N) generators� := 1N2 I + iak(ek 
 I) + ibl(I 
 el) + Cmn(em 
 en) : (23)From (17), (20), (21), (22), and (23) the Gram matrix (18) is alulated asG = 24 A BBT D 35 ; (24)where the (N2 � 1)� (N2 � 1) matries A;B, and D readAmn = mjknlk(Najal + 2CjrClr)=2 ;Bmn = mjknlrCklCjr ;Dmn = mjknlk(Nbjbl + 2CrjCrl)=2 : (25)3.2. Speial ase: N �N pure statesUsing the above outlined proedure we an reover the results for purestates obtained in Setion 1. For a pure state � = j i h j Eq. (19) reduesto Gmn = h j lm j i h j ln j i � 12 h j lmln + lnlm j i h j i : (26)We hoose the following expliit form of the generators ek expressed in thestandard basis fj1i ; j2i ; : : : ; jNig of C Nek = �is 2k(k + 1) k jk + 1i hk + 1j� kXl=1 jli hlj!; k = 1; 2; : : : ; N�1 ; (27)e(1)mn = i(jni hmj+ jmi hnj); 1 � m < n � N ; (28)e(2)mn = jni hmj � jmi hnj ; 1 � m < n � N : (29)We reorder the non-diagonal generators e(1)mn and e(2)mn by hanging two indiesfmng into a single one k aording to k = N�1+(m�1)N�m(m+1)=2+n



Manifolds of Equal Entanglement for Composite Quantum Systems 2091in the ase of e(1)mn and k = N � 1 +N(N � 1)=2 �m(m + 1)=2 + n in thease of e(2)mn, so that fekg, k = 1; 2; : : : ; N2� 1 is the desired omplete set ofgenerators.It proves to be more onvenient to use not lk themselves, but the followinglinear ombinations of them:Lk := i(ek 
 I + I 
 ek)=2; 1 � k � N2 � 1 ; (30)Lk := i(ek 
 I � I 
 ek)=2; N2 � k � 2N2 � 2 ; (31)what amounts to a mere hange of basis in the Lie algebra and, obviously,does not in�uene the rank of G.After rather straightforward but lengthy alulation we �nd G in theform (24) with B = 0 and blo-diagonal matries A and DA = 24 A(1) 00 A(2) 35 ; D = 24 D(1) 00 D(2) 35 : (32)The bloks A(2) and D(2) are diagonal (N2 �N)� (N2 �N) matries withthe diagonal entriesA(2)kk = (p�m +p�n)20� NXj=1 �j1A ; 1 � k � (N2 �N)=2; (33)A(2)kk = (p�m �p�n)20� NXj=1 �j1A ; (N2 �N)=2 < k � N2 �N; (34)D(2)kk = (p�m �p�n)20� NXj=1 �j1A ; 1 � k � (N2 �N)=2; (35)D(2)kk = (p�m +p�n)20� NXj=1 �j1A ; (N2 �N)=2 < k � N2 �N: (36)In eah of the above formulas (m;n) is the unique pair of numbers suhthat 0 < m < n � N and ful�lling (m � 1)N �m(m + 1)=2 + n = k for1 � k � (N2 �N)=2 or (m� 1)N �m(m+ 1)=2 + n = k � (N2 �N)=2 for(N2�N)=2 < k � N2�N . Moreover, we �nd that of two (N �1)� (N�1)matries A(1) and D(1) the latter equals zero, while the former readsA(1)mn = (Pmk=1 �k �m�m+1)�(PNk=1 �k)� (Pnk=1 �k � n�n+1)�pm(m+ 1)n(n+ 1) ; (37)



2092 M. Sinoª�ka, K. �yzkowski, M. Ku±A(1)mn = A(1)nm m < n; (38)A(1)nn = �Pnk=1 �k + n2�n+1� �PNk=1 �k�� (Pnk=1 �k � n�n+1)2n(n+ 1) : (39)In this way we found that the entire matrix G has at least N � 1 vanishingeigenvalues (due to D(1) = 0), N2 �N doubly degenerate eigenvalues (�i ��j)2 (the eigenvalues of A(2) and D(2)) and the N � 1 eigenvalues of A(1).Although, at �rst sight, A(1) looks quite ompliated, it is relativelyeasy to alulate the traes of its powers Tr(A(1))k, k = 1; 2; : : : ; N � 1 and,onsequently, its harateristi polynomialP (�) := det(A(1) � �) = NXk=1 (�1)k+1 kpk�N�k : (40)Here p1 = �1, p2 = �2, and pk = �k �PNj=1 �j�k�2 where �k are the oe�-ients of Q (�) := NYi=1 (�� �i) = NXk=1 (�1)k �k�N�k; (41)i.e. the elementary symmetri polynomials in �1; �2; : : : ; �N of the order k.Observe that due to the normalization PNk=1 �k = 1 we an substitute �kfor pk in (40) and, onsequently,P (�) = NXk=1 (�1)k+1 kpk�N�k = �Q0 (�)�NQ (�) ; (42)where Q0 (�) := dQ (�)=d�. It follows immediately that the multipliity ofthe root � = 0 in P equals the multipliity of � = 0 in Q (i.e. the number ofShmidt oe�ients equal to 0). Indeed, if Q(�) = �kQ1(�) and Q1(0) 6= 0then Q0(�) = k�k�1Q1(�)+�kQ01(�) and P (�) = �k [(k�N)Q1(�)+�Q01(�)℄= �kP1(�), where P1(0) = (k �N)Q1(0) 6= 0 sine k � N .Now we are ready to alulate the rank of G. There are1. N � 1 vanishing eigenvalues of D(1),2. m0 vanishing eigenvalues of A(1),3. for eah mn-degenerate Shmidt oe�ient mn(mn � 1) vanishingeigenvalues of A(2) of the form (34) and of the form (35) of D(2),4. 2m0(m0 � 1) vanishing eigenvalues of A(2) and D(2) of the forms(33)�(36).



Manifolds of Equal Entanglement for Composite Quantum Systems 2093hene the o-rank (the number of zero eigenvalues of G) equals (N � 1) +m0 +PKn=1(m2n �mn) + 2(m20 �m0) = 2m20+PKn=1m2n-1, where we usedm0+PKn=1mn=N . Consequently, taking into aount that G is an 2(N2�1)�2(N2 � 1) matrix, its rank equal to the dimension of the orbit is givenby (5).As mentioned at the beginning of the setion, the above analysis anbe, in priniple, extended to mixed states. To show this let us onsider(admittedly rather trivial) example of the generalized Werner states� = 1� �N I + �j ih j ; (43)where the pure state j i is haraterized by the Shmidt numbers (0 � �1 ��2 � : : : � �N ). It is obvious that the �k of Eq. (17) are, up to the salingfator � the same as for the pure state j i. Consequently, the dimension ofthe orbit through � is determined by the Shmidt oe�ients of j i exatlyin the same way as previously.4. Coe�ients of the harateristi polynomialsas entanglement measuresThere exist several non equivalent ways to quantify quantum entangle-ment [25�27℄. Following Vedral and Plenio [28℄ we assume that any entan-glement measure(i) equals to zero for any separable state,(ii) is invariant with respet to loal unitary operations,(iii) annot inrease under operations involving loal measurements andlassial ommuniation.For pure states, � = j ih j, these requirements are ful�lled by the Shan-non entropy of the Shmidt vetor, (in other words von Neumann entropyof the partially redued density matrix), E1(j i) = �PNk=1 �k ln�k, simplyalled entropy of entanglement, as well as the generalized Renyi entropies,E�(j i) = ln(PNk=1 ��k )=(1 � �) [29, 30℄.Consider now the oe�ients �k of the harateristi polynomial (40)of the nontrivial blok A(1) of the Gram matrix (26) for a pure state of aN �N bipartite system. As derived above they are given by the elementarysymmetri polynomials in �1; �2; : : : ; �N of the order k�1 = NXk=1 �k = 1 ;



2094 M. Sinoª�ka, K. �yzkowski, M. Ku±�2 = NXk=1 NXl=k+1�k�l;�3 = NXk=1 NXl=k+1 NXm=l+1�k�l�m;::: :::�N = NYk=1�k : (44)Due to the de�nition of the Gram matrix the oe�ients �k, k = 2; : : : ; Nare invariant with respet to loal unitary transformations and are equal tozero if and only if the state is separable.As shown reently by Nielsen [31℄ any pure state j i may be transformedloally into a given state j�i, if and only if the orresponding vetors of theShmidt oe�ients satisfy the following majorization relation ~� � ~��.Any entanglement measure annot inrease under suh an operation. Thisondition is ful�lled by the oe�ients �k, sine the elementary symmetripolynomials are known to be Shur�onave funtions [32℄, for whih ~� �~� indues �(~�) � �(~�). Thus the quantities (44) posses the property ofentanglement monotones, and their set onsisting of N � 1 independentelements, f�2; : : : �Ng, provides the omplete haraterization of the purestates entanglement [29℄. Beside the simplest ase of N = 2, (for whih allmeasures of the entanglement generate the same order in the set of purestates [30℄), the oe�ients �k are not funtions of the Renyi entropies andindue di�erent orders in the set of pure entangled states.It might be interesting to analyze how the traes of the Gram matrix,tk := tr(Gk), hange during non-unitary loal transformations. Our numer-ial experiments performed for mixed states of 2� 2 system suggest that alltraes tk, k = 1; : : : ; 6 do not inrease under loal bistohasti transforma-tions , � 7! �0 =Pi piUAi 
 UBi �UAyi 
 UByi , with Pi pi = 1. The questionwhether this property holds also for systems of higher dimensions remainsopen.It is a pleasure to thank I. Bengtsson, D.C. Brody, P. Heinzner,A. Hukelberry, J. Kijowski and J. Rembieli«ski for fruitful disussions andR. Mosseri for helpful orrespondene. The work was supported by the Pol-ish State Committee for Sienti� Researh (KBN) through the researhGrant No 2 P03B 072 19.
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