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MANIFOLDS OF EQUAL ENTANGLEMENT FORCOMPOSITE QUANTUM SYSTEMS�Magdalena M. Sinoª�
ka, Karol �y
zkowskiy and Marek Ku±Center for Theoreti
al Physi
s, Polish A
ademy of S
ien
esAl. Lotników 32/44, 02-668 Warszawa, Poland(Re
eived June 6, 2002)Quantum entanglement remains invariant with respe
t to unitary trans-formations performed lo
ally in ea
h subsystem. Lo
al orbits of a state ofan N �N bi-partite quantum system are analyzed. For a pure state theirdimensions depend on the degenera
y of the ve
tor of 
oe�
ients arisingby the S
hmidt de
omposition. For instan
e, the generi
 orbit of a purestate has 2N2 �N � 1 dimensions, the set of separable states is 4(N � 1)dimensional, while the manifold of maximally entangled states has N2 � 1dimensions.PACS numbers: 03.65.Ud, 03.67.�a1. Introdu
tionThe existen
e of entangled states, i.e., roughly speaking, the states ofa 
omposite system whi
h exhibit quantum 
orrelations among the subsys-tems, appeared re
ently to be extremely important in rapidly developing�eld of quantum 
ommuni
ation. It is due to non-
lassi
al properties of en-tangled states that various s
hemes of quantum 
omputing, quantum 
ryp-tography and quantum teleportation 
an be thought of being pra
ti
allyrealizable.A pure state j i in the Hilbert spa
e H = HA
HB of a 
omposite quan-tum system 
onsisting of two subsystems A and B with Hilbert spa
es HAand HB is separable, if it 
an be 
ast to the produ
t form j i = j Ai
j Bi,where j Ai and j Bi are some states of the subsystems. States whi
h are notseparable are 
alled entangled. The situation is more 
ompli
ated in the 
aseof a mixed state (a density matrix �) [1℄. It is separable if it is expressibleas a 
onvex sum of produ
t states: � =Pi pi�(A)i 
 �(B)i , pi > 0, Pi pi = 1,� Presented at the Photons, Atoms and All That, PAAT 2002 Conferen
e, Cra
owPoland, May 31�June 1, 2002.y Also at the Institute of Physi
s, Jagellonian University, Reymonta 4, 30-059 Kraków,Poland. (2081)
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ka, K. �y
zkowski, M. Ku±where �(A)i and �(B)i are, in general mixed, states of the subsystems. Amixed state is 
alled entangled if it is not separable. In what follows we
onsider only systems with �nite-dimensional Hilbert spa
es whi
h seem tobe more important in proposed appli
ations of quantum information theory,the in�nite-dimensional 
ase needs some re�nement of the above de�nitionof separability.It is relatively easy to 
he
k whether a given pure state is separable orentangled (e.g. by investigating its S
hmidt 
oe�
ients � see below). Thesituation 
ompli
ates for mixed states � we do not know how to 
he
kunambiguously separability of a given mixed states if the dimensionality ofthe Hilbert spa
es of subsystems ex
eeds 3 [2℄.As a problem 
omplementary to determining the separability propertiesof a given state one 
an pose the question of the relation between the setof the separable (entangled) states to the set of all states of the 
ompositesystem. This 
an be understood as the question of a relative measure of theset of entangled states(i.e. �how probable is that a given state is entangled?�)� the problem posed and partially solved in [3,4℄, or about the geometri
aland topologi
al properties of this set. In this paper we 
on
entrate on thelatter problem in the following setting. Sin
e we are interested in quan-tum 
orrelations between two subsystems we should take into 
onsiderationonly these properties whi
h do not 
hange under various quantum me
han-i
al operations performed lo
ally in ea
h subsystem. Thus two states whi
hare inter
onvertible one to another via lo
al unitary transformations (i.e.purely quantum me
hani
al operations without de
oheren
e) are equivalentfrom the point of their entanglement properties. This 
an lead to 
onstru
-tion of appropriate measures of entanglement 
hara
terizing the 
lasses ofequivalent states. Our approa
h is in a sense 
omplementary to the task ofidentifying the set of all invariants with respe
t to the lo
al unitary trans-formations [5�11℄.In this work we pose and solve the question of the dimensionality andtopology of manifolds of states equivalent to a given one via lo
al unitarytransformations.This issue is dire
tly related with an important problem ofquantum engineering: what other state may be obtained from a given mixedstate by means of lo
al unitary operations?The present paper may be regarded as an extension of [12℄ (see also[13�15℄), in whi
h these questions were dis
ussed for the simplest system oftwo qubits. In the 
ase of pure states we �nd the expli
it results for anyN �N 
omposite system by identifying expli
itly the topology of the orbitsas well as in a purely algebrai
, algorithmi
 manner. The se
ond approa
hwhi
h does not depend on the S
hmidt de
omposition (see below) is, inprin
iple, appli
able also to mixed states, this is illustrated by 
onsideringthe generalized Werner states [1℄.
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hmidt de
ompositionConsider a pure state j i of a 
omposite Hilbert spa
e H = HA
HB ofsize N2. Introdu
ing an orthonormal basis fjnigNn=1 in ea
h subsystem, wemay represent the state asj i = NXn=1 NXm=1Cmnjni 
 jmi : (1)The 
omplex matrix of 
oe�
ients C of size N needs not to be Hermitiannor normal. Its singular values (i.e. the square roots of eigenvalues �k of thepositive matrix CyC) determine the S
hmidt de
omposition [16�18℄j i = NXk=1p�kjk0i 
 jk00i ; (2)where the basis inH is transformed by a lo
al unitary transformationW
V .Thus jk0i = W jki, and jk00i = V jki, where W and V are the matri
es ofeigenve
tors of CyC and CCy, respe
tively. In the generi
 
ase of a non-degenerate ve
tor �, the S
hmidt de
omposition is unique up to two unitarydiagonal matri
es, up to whi
h the matri
es of eigenve
tors W and V aredetermined. The normalization 
ondition h j i = 1 enfor
es PNk=1 �k = 1.Thus the ve
tor � = (�1; :::; �N ) lives in the (N � 1) dimensional simplexSN . The S
hmidt 
oe�
ients �k do not depend on the initial basis jni
jmi,in whi
h the analyzed state j i is represented.2.2. Pure state entanglementThe S
hmidt 
oe�
ient of a pure state j i are equal to the eigenvalues ofthe redu
ed density operator, obtained by partial tra
ing, �A = trB(j ih j).A pure state is 
alled separable, if it 
an be represented in the produ
t formj i = j Ai 
 j Bi, where j Ai 2 HA and j Bi 2 HB. This o

urs if andonly if there exists only one non-zero S
hmidt 
oe�
ient, �1 = 1, i.e. theredu
ed state �A is pure. In the opposite 
ase state j i is 
alled entangled.A pure state is 
alled maximally entangled if all its S
hmidt 
oe�
ients areequal, �1 = �k = 1=N . Note that the S
hmidt 
oe�
ients are invariant withrespe
t to any lo
al operations UL = UA 
 UB , and thus they may serve asingredients of any measure of entanglement.
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zkowski, M. Ku±2.3. Lo
al orbitsWe are going to study the orbits of a given pure state j i with respe
tto the lo
al transformations UL. Two states belonging to the same orbit are
alled inter
onvertible, sin
e they may be reversibly transformed by lo
altransformations one into another [19℄. Let us order its S
hmidt 
oe�
ients� = (0 � �1 � �2 � : : : � �N ). In order to des
ribe the 
hara
ter of thedegenera
y we rename them into� = (0; : : : ; 0; �1; : : : ; �1; �2; : : : ; �2; : : : ; �K ; : : : ; �K) ;where ea
h value �n o

urs mn times and m0 is the number of vanishingS
hmidt 
oe�
ients. Obviously m0 +PKn=1mn = N , and m0 might beequal to zero. The main result of our paper is 
ontained in the following:Proposition. The lo
al orbit generated from j i has the stru
ture of thefollowing quotient spa
e O = U(N)� U(N)G(m0;m1; : : : ;mK) ; (3)where G(m0;m1; : : : ;mK) is the subgroup of the dire
t produ
t U(N)�U(N)
onsisting of the pairs of unitary matri
es (U; V ) of the formU = 2664 u0 u1 . . . uK 3775 ; V = ei� 2664 v0 u�1 . . . u�K 3775 ; (4)where u0 and v0 arbitrary matri
es from U(m0), and u1; : : : ; uK denote ar-bitrary matri
es from, respe
tively, U(m1); : : : ; U(mK). The overall phasefa
tor ei� a

ounts for the irrelevant phase of the state j i, ie. we identifystates di�ering by a phase fa
tor. The dimension of the orbit (3) readsdim(O) = 2N2 � 2m20 � KXn=1m2n � 1 : (5)Indeed, let us observe that the a
tion of the tensor produ
tU 
 V 2 U(N)
 U(N) on the state (1),U 
 V j i = Xm;nCmnU jmi 
 V jni = Xm;n;k;lCmnUkmjki 
 Vlnjli (6)= Xk;l (UCV T )kljki 
 jli ; (7)
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es to the dire
t produ
t a
tion on the 
oe�
ient matrix CU(N)� U(N) 3 (U; V ) : C 7! (U; V )(C) := UCV T : (8)Let now the a
tion of ( ~U; ~V ) redu
es C to its diagonal S
hmidt form~UC ~V T = diag(0; : : : ; 0; �1; : : : ; �2; : : : ; �K ; : : : ; �K) : (9)Then ~UC ~V T = U ~UC ~V TV T i� U and V are given by (4). Now the formula(3) follows in an obvious manner, on
e we realize that in fa
t we shoulddisregard any unimportant overall phase of (1) (or in other words we shouldidentify the 
oe�
ient matri
es C and C 0 = ei�C, i.e. work in an appropriateproje
tive spa
e). The dimension formula (5) follows from a simple 
al
ula-tions involving the dimensionalities of the unitary groups, while the last termequal to unity stems from the proje
tivisation pro
edure. An alternative,algebrai
 proof of this result is proved in Se
tion 3.In fa
t the orbit has a stru
ture of a Cartesian produ
t:O = U(N)U(m0)� U(m1)� : : :� U(mK) � U(N)U(m0)� U(1) ; (10)where the �rst fa
tor represents global orbits in the set of density matri
esof size N with the same spe
trum [20, 21℄. In the language of �ber bundlessu
h orbits form the base, while the �bers 
onsists of all N �N pure states,whi
h are related by partial tra
ing to a given density matrix of size N . Weshall provide a 
omplete proof of this fa
t elsewhere [22℄.In the generi
 
ase of all 
oe�
ients di�erent (and non zero), i.e. K = Nthe manifold is thus identi�ed asOg = U(N)[U(1)℄N � U(N)U(1) ; (11)with the dimension dim(Og) = 2N2 �N � 1 : (12)The set of all orbits enumerated above produ
es the 
omplex proje
tivespa
e C PN2�1 � the (2N2 � 2) dimensional manifold of pure states ofthe N �N system. However, the set 
onstru
ted of the generi
 orbits (12)generated by ea
h point of the interior of the Weyl 
hamber, is of full measurein the spa
e of pure states. In this way we demonstrated a foliation ofC PN2�1. This foliation is singular, sin
e there exist also (measure zero)leaves of various dimensions and topology, as listed in Table I for N = 2; 3and 4.
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zkowski, M. Ku± TABLE ITopologi
al stru
ture of lo
al orbits of the N � N pure states generated by oneWeyl 
hamber of the simplex of the S
hmidt 
oe�
ients, Ds is the dimension ofthe subspa
e, while Do represents the dimension of the orbit, (Æ) denotes separablestates, while (?) denotes maximally entangled states.N S
hmidt
oe�
ientsDs Part of theasymmetri
 Topologi
al Stru
ture Dosimplex base �bre(a; b) 1 line U(2)[U(1)℄2 � U(2)U(1) = S2 � RP 3 52 (1; 0) 0 left edge ( Æ ) U(2)[U(1)℄2 � U(2)U(1)�U(1)= CP 1 � CP 1 4( 12 ; 12 ) 0 right edge ( ? ) U(2)U(2) � U(2)U(1) = SU(2)Z2 = RP 3 3(a; b; 
) 2 interior oftriangle U(3)[U(1)℄3 � U(3)U(1) 14(a; b; 0) 1 base U(3)[U(1)℄3 � U(2)U(1)�U(1) 133 (a; b; b) 1 2 upper sides U(3)U(1)�U(2) � U(3)U(1) 12( 12 ; 12 ; 0) 0 right 
orner U(3)U(2)�U(1) � U(3)U(1)�U(1) 11(1; 0; 0) 0 left 
orner ( Æ ) U(3)U(1)�U(2) � U(3)U(2)�U(1)= CP 2 � CP 2 8( 13 ; 13 ; 13 ) 0 upper 
orner ( ? ) U(3)U(3) � U(3)U(1) = SU(3)Z3 8(a; b; 
; d) 3 interior oftetrahedron U(4)[U(1)℄4 � U(4)U(1) 27(a; b; 
; 0) 2 base fa
e U(4)[U(1)℄4 � U(4)[U(1)℄2 26(a; a; b; 
) 2 three upper fa
es U(4)U(2)�[U(1)℄2� U(4)U(1) 25(a; a; b; 0) 1 2 edges ofthe base U(4)U(2)�[U(1)℄2� U(4)U(1)�U(1) 244 (a; a; b; b) 1 edge U(4)[U(2)℄2 � U(4)U(1) 23(a; a; a; b) 1 2 edges U(4)U(3)�U(1) � U(4)U(1) 21(a; b; 0; 0) 1 lower edgeof the base U(4)[U(1)℄2�U(2)� U(4)U(2)�U(1) 21( 13 ; 13 ; 13 ; 0) 0 ba
k 
orner U(4)U(3)�U(1) � U(4)U(1)�U(1) 20( 12 ; 12 ; 0; 0) 0 right 
orner U(4)[U(2)℄2 � U(4)U(2)�U(1) 19( 14 ; 14 ; 14 ; 14 ) 0 upper 
orner ( ? ) U(4)U(4) � U(4)U(1) = SU(4)Z4 15(1; 0; 0; 0) 0 left 
orner ( Æ ) U(4)U(1)�U(3) � U(4)U(3)�U(1)= CP 3 � CP 3 12
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ial 
ases: separable and maximally entangled statesFor separable states there exists only one non zero 
oe�
ient, �1 = 1, som0 = N � 1. Thus (3) givesOsep = U(N)U(1) � U(N � 1) � U(N)U(1)� U(N � 1) = C PN�1 � CPN�1 ; (13)with the dimension dim(Osep) = 4(N � 1). The maximally entangled statesare 
hara
terized by �1 = �N = 1=N , hen
em1 = N andm0 = 0. Therefore,Omax = U(N)U(1) = SU(N)ZN ; (14)with the dimension dim(Omax) = N2 � 1. Note that this spa
e is not iso-morphi
 with SU(N) be
ause U(N) is not a dire
t produ
t of U(1) andSU(N) [23℄. Sin
e SU(N) � U(1) = U(N) � ZN , where ZN is the dis
retepermutation group of N elements, the orbit of the maximally entangledstates 
an be written as Omax = SU(N)=ZN . This stru
ture follows alsofrom the fa
t that the entire orbit may be written as Omax = (U 
 I)j	i,where j	i is an arbitrary maximally entangled state, and U is an arbitraryunitary matrix determined up to an overall phase [24℄.2.5. Spe
ial 
ases: N = 2; 3 and 4The set of all possible S
hmidt ve
tors � form the N�1 dimensional sim-plex SN . Its 
orners represent N mutually orthogonal separable states, whileits 
enter denotes the maximally entangled state j �i = (PNk=1 jkki)=pN .Any permutation of the S
hmidt 
oe�
ients may be obtained by a lo
altransformation of the pure state. Therefore it is su�
ient to 
onsider theorbits generated by S
hmidt ve
tors belonging to a 
ertain asymmetri
 part~SN of the simplex, so 
alled Weyl 
hamber. Any ordering of the S
hmidt
oe�
ients 
orresponds to 
hoosing one 
hamber out of N !, in whi
h thesimplex SN 
an be de
omposed.The S
hmidt simplex and exemplary Weyl 
hamber for N = 2; 3 and 4are presented in Fig. 1. (Note that the simplex of diagonal density matri
esof size N , obtained from N �N pure states by partial tra
ing, has the samegeometry.) The numbers by ea
h part of the boundary of ~SN denote thedimensions of the lo
al orbits, whi
h are listed in Table I. In the simplest
ase N = 2 the simplex redu
es to the interval [0; 1℄, while its asymmetri
part ~S2 equals [0; 1=2℄. The edge 0 generates the four dimensional orbit ofseparable states, C P 1 � C P 1 , and the point 1=2 leads to the 3�D manifoldof maximally entangled states Omax = SU(2)=Z2 � SO(3) � RP 3 . Thisstru
ture was pointed out by Vollbre
ht and Werner [24℄, and the above
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zkowski, M. Ku±singular foliation of CP 3 was dis
ussed in [12�15℄. In the 
ase of any pointinside the simplex (13) gives the following topology of the generi
 2�2 lo
alorbit Og = U(2)U(1)2 � U(2)U(1) = S2 � RP 3 ; (15)in agreement with re
ent results of Mosseri and Dandolo� [15℄.

Fig. 1. Simplex of S
hmidt 
oe�
ients SN for pure states of N � N system withN = 2; 3, and 4; (the same pi
ture may also represent the set of the spe
tra ofdensity matri
es of size N obtained from pure states by partial tra
ing). Righthand side shows an asymmetri
 part of SN � the Weyl 
hamber ~SN , while thenumbers denote the dimensionality of lo
al orbits generated by ea
h point.
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 determination of orbit dimension3.1. General 
ase: N �N mixed statesThe reasoning presented in the previous se
tion hinges on the S
hmidtde
omposition of the density matrix for a pure state. As su
h it 
annotbe extended to mixed states. For this reason we present an alternativemethod introdu
ed in [12℄, whi
h 
an be, in prin
iple, applied also in thelatter situation. It is based on purely algebrai
 reasoning, and, as su
h, givesonly lo
al information, i.e. only about the dimensions of the manifolds ofinter
onvertible states and not about their topology.Although the group of lo
al unitary transformations is L = U(N) 
U(N), it is obvious that sin
e its elements a
t on an arbitrary densitymatrix � 2 C N 
 C N by 
onjugations, � 7! U�U y, we 
an take in fa
tL = SU(N)
SU(N) instead. Let R2(N2�1) 3 s 7! U(s) 2 SU(N)
SU(N)be some parameterization of the group L su
h that U(0) = I (i.e. s =(s1; s2; : : : ; s2N2�2) are the 
oordinates in SU(N) with the origin at the unitmatrix). The tangent spa
e to the lo
al orbit through � (i.e. to the spa
e ofthe states inter
onvertible with �) at this point is spanned by the ve
tors:�k := ��skU(s)�U y(s) js=0 : (16)The dimension of the tangent spa
e, hen
e of the manifold itself, equals thenumber of linearly independent ve
tors �k.From the unitarity of U(s) it follows:�k = �� �U�sk�s=0 ; �� = [lk; �℄ = �yk : (17)The number of independent �k equals the rank of the 2(N2�1)�2(N2�1)Gram matrix (the unimportant fa
tor of 1=4 is introdu
ed for further 
on-venien
e) Gmn := 14Tr�m�n ; (18)whi
h, upon using (17), 
an be 
ast into:Gmn = 12Tr (lm�ln�)� 14Tr ��2 flnlm + lmlng� : (19)Choosing the standard parameterization of SU(N) in the vi
inity of theidentity we obtainlk := � �U�sk�s=0 = 8<: iek 
 I; k = 1; : : : ; N2 � 1iI 
 ek; k = N2; : : : ; 2N2 � 2 ; (20)
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zkowski, M. Ku±where ek = �eyk are generators of the Lie algebra su(N). They obey the
ommutation relations [ej ; ek℄ = 
jklel ; (21)where 
jkl denote the stru
ture 
onstants and we use the summation 
on-vention. We normalize ek to ful�llTr ejek = �2Æjk : (22)An arbitrary Hermitian matrix � a
ting in C N 
 C N 
an be de
omposedwith the help of SU(N) generators� := 1N2 I + iak(ek 
 I) + ibl(I 
 el) + Cmn(em 
 en) : (23)From (17), (20), (21), (22), and (23) the Gram matrix (18) is 
al
ulated asG = 24 A BBT D 35 ; (24)where the (N2 � 1)� (N2 � 1) matri
es A;B, and D readAmn = 
mjk
nlk(Najal + 2CjrClr)=2 ;Bmn = 
mjk
nlrCklCjr ;Dmn = 
mjk
nlk(Nbjbl + 2CrjCrl)=2 : (25)3.2. Spe
ial 
ase: N �N pure statesUsing the above outlined pro
edure we 
an re
over the results for purestates obtained in Se
tion 1. For a pure state � = j i h j Eq. (19) redu
esto Gmn = h j lm j i h j ln j i � 12 h j lmln + lnlm j i h j i : (26)We 
hoose the following expli
it form of the generators ek expressed in thestandard basis fj1i ; j2i ; : : : ; jNig of C Nek = �is 2k(k + 1) k jk + 1i hk + 1j� kXl=1 jli hlj!; k = 1; 2; : : : ; N�1 ; (27)e(1)mn = i(jni hmj+ jmi hnj); 1 � m < n � N ; (28)e(2)mn = jni hmj � jmi hnj ; 1 � m < n � N : (29)We reorder the non-diagonal generators e(1)mn and e(2)mn by 
hanging two indi
esfmng into a single one k a

ording to k = N�1+(m�1)N�m(m+1)=2+n
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ase of e(1)mn and k = N � 1 +N(N � 1)=2 �m(m + 1)=2 + n in the
ase of e(2)mn, so that fekg, k = 1; 2; : : : ; N2� 1 is the desired 
omplete set ofgenerators.It proves to be more 
onvenient to use not lk themselves, but the followinglinear 
ombinations of them:Lk := i(ek 
 I + I 
 ek)=2; 1 � k � N2 � 1 ; (30)Lk := i(ek 
 I � I 
 ek)=2; N2 � k � 2N2 � 2 ; (31)what amounts to a mere 
hange of basis in the Lie algebra and, obviously,does not in�uen
e the rank of G.After rather straightforward but lengthy 
al
ulation we �nd G in theform (24) with B = 0 and blo
-diagonal matri
es A and DA = 24 A(1) 00 A(2) 35 ; D = 24 D(1) 00 D(2) 35 : (32)The blo
ks A(2) and D(2) are diagonal (N2 �N)� (N2 �N) matri
es withthe diagonal entriesA(2)kk = (p�m +p�n)20� NXj=1 �j1A ; 1 � k � (N2 �N)=2; (33)A(2)kk = (p�m �p�n)20� NXj=1 �j1A ; (N2 �N)=2 < k � N2 �N; (34)D(2)kk = (p�m �p�n)20� NXj=1 �j1A ; 1 � k � (N2 �N)=2; (35)D(2)kk = (p�m +p�n)20� NXj=1 �j1A ; (N2 �N)=2 < k � N2 �N: (36)In ea
h of the above formulas (m;n) is the unique pair of numbers su
hthat 0 < m < n � N and ful�lling (m � 1)N �m(m + 1)=2 + n = k for1 � k � (N2 �N)=2 or (m� 1)N �m(m+ 1)=2 + n = k � (N2 �N)=2 for(N2�N)=2 < k � N2�N . Moreover, we �nd that of two (N �1)� (N�1)matri
es A(1) and D(1) the latter equals zero, while the former readsA(1)mn = (Pmk=1 �k �m�m+1)�(PNk=1 �k)� (Pnk=1 �k � n�n+1)�pm(m+ 1)n(n+ 1) ; (37)
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zkowski, M. Ku±A(1)mn = A(1)nm m < n; (38)A(1)nn = �Pnk=1 �k + n2�n+1� �PNk=1 �k�� (Pnk=1 �k � n�n+1)2n(n+ 1) : (39)In this way we found that the entire matrix G has at least N � 1 vanishingeigenvalues (due to D(1) = 0), N2 �N doubly degenerate eigenvalues (�i ��j)2 (the eigenvalues of A(2) and D(2)) and the N � 1 eigenvalues of A(1).Although, at �rst sight, A(1) looks quite 
ompli
ated, it is relativelyeasy to 
al
ulate the tra
es of its powers Tr(A(1))k, k = 1; 2; : : : ; N � 1 and,
onsequently, its 
hara
teristi
 polynomialP (�) := det(A(1) � �) = NXk=1 (�1)k+1 kpk�N�k : (40)Here p1 = �1, p2 = �2, and pk = �k �PNj=1 �j�k�2 where �k are the 
oe�-
ients of Q (�) := NYi=1 (�� �i) = NXk=1 (�1)k �k�N�k; (41)i.e. the elementary symmetri
 polynomials in �1; �2; : : : ; �N of the order k.Observe that due to the normalization PNk=1 �k = 1 we 
an substitute �kfor pk in (40) and, 
onsequently,P (�) = NXk=1 (�1)k+1 kpk�N�k = �Q0 (�)�NQ (�) ; (42)where Q0 (�) := dQ (�)=d�. It follows immediately that the multipli
ity ofthe root � = 0 in P equals the multipli
ity of � = 0 in Q (i.e. the number ofS
hmidt 
oe�
ients equal to 0). Indeed, if Q(�) = �kQ1(�) and Q1(0) 6= 0then Q0(�) = k�k�1Q1(�)+�kQ01(�) and P (�) = �k [(k�N)Q1(�)+�Q01(�)℄= �kP1(�), where P1(0) = (k �N)Q1(0) 6= 0 sin
e k � N .Now we are ready to 
al
ulate the rank of G. There are1. N � 1 vanishing eigenvalues of D(1),2. m0 vanishing eigenvalues of A(1),3. for ea
h mn-degenerate S
hmidt 
oe�
ient mn(mn � 1) vanishingeigenvalues of A(2) of the form (34) and of the form (35) of D(2),4. 2m0(m0 � 1) vanishing eigenvalues of A(2) and D(2) of the forms(33)�(36).
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e the 
o-rank (the number of zero eigenvalues of G) equals (N � 1) +m0 +PKn=1(m2n �mn) + 2(m20 �m0) = 2m20+PKn=1m2n-1, where we usedm0+PKn=1mn=N . Consequently, taking into a

ount that G is an 2(N2�1)�2(N2 � 1) matrix, its rank equal to the dimension of the orbit is givenby (5).As mentioned at the beginning of the se
tion, the above analysis 
anbe, in prin
iple, extended to mixed states. To show this let us 
onsider(admittedly rather trivial) example of the generalized Werner states� = 1� �N I + �j ih j ; (43)where the pure state j i is 
hara
terized by the S
hmidt numbers (0 � �1 ��2 � : : : � �N ). It is obvious that the �k of Eq. (17) are, up to the s
alingfa
tor � the same as for the pure state j i. Consequently, the dimension ofthe orbit through � is determined by the S
hmidt 
oe�
ients of j i exa
tlyin the same way as previously.4. Coe�
ients of the 
hara
teristi
 polynomialsas entanglement measuresThere exist several non equivalent ways to quantify quantum entangle-ment [25�27℄. Following Vedral and Plenio [28℄ we assume that any entan-glement measure(i) equals to zero for any separable state,(ii) is invariant with respe
t to lo
al unitary operations,(iii) 
annot in
rease under operations involving lo
al measurements and
lassi
al 
ommuni
ation.For pure states, � = j ih j, these requirements are ful�lled by the Shan-non entropy of the S
hmidt ve
tor, (in other words von Neumann entropyof the partially redu
ed density matrix), E1(j i) = �PNk=1 �k ln�k, simply
alled entropy of entanglement, as well as the generalized Renyi entropies,E�(j i) = ln(PNk=1 ��k )=(1 � �) [29, 30℄.Consider now the 
oe�
ients �k of the 
hara
teristi
 polynomial (40)of the nontrivial blo
k A(1) of the Gram matrix (26) for a pure state of aN �N bipartite system. As derived above they are given by the elementarysymmetri
 polynomials in �1; �2; : : : ; �N of the order k�1 = NXk=1 �k = 1 ;
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ka, K. �y
zkowski, M. Ku±�2 = NXk=1 NXl=k+1�k�l;�3 = NXk=1 NXl=k+1 NXm=l+1�k�l�m;::: :::�N = NYk=1�k : (44)Due to the de�nition of the Gram matrix the 
oe�
ients �k, k = 2; : : : ; Nare invariant with respe
t to lo
al unitary transformations and are equal tozero if and only if the state is separable.As shown re
ently by Nielsen [31℄ any pure state j i may be transformedlo
ally into a given state j�i, if and only if the 
orresponding ve
tors of theS
hmidt 
oe�
ients satisfy the following majorization relation ~� � ~��.Any entanglement measure 
annot in
rease under su
h an operation. This
ondition is ful�lled by the 
oe�
ients �k, sin
e the elementary symmetri
polynomials are known to be S
hur�
on
ave fun
tions [32℄, for whi
h ~� �~� indu
es �(~�) � �(~�). Thus the quantities (44) posses the property ofentanglement monotones, and their set 
onsisting of N � 1 independentelements, f�2; : : : �Ng, provides the 
omplete 
hara
terization of the purestates entanglement [29℄. Beside the simplest 
ase of N = 2, (for whi
h allmeasures of the entanglement generate the same order in the set of purestates [30℄), the 
oe�
ients �k are not fun
tions of the Renyi entropies andindu
e di�erent orders in the set of pure entangled states.It might be interesting to analyze how the tra
es of the Gram matrix,tk := tr(Gk), 
hange during non-unitary lo
al transformations. Our numer-i
al experiments performed for mixed states of 2� 2 system suggest that alltra
es tk, k = 1; : : : ; 6 do not in
rease under lo
al bisto
hasti
 transforma-tions , � 7! �0 =Pi piUAi 
 UBi �UAyi 
 UByi , with Pi pi = 1. The questionwhether this property holds also for systems of higher dimensions remainsopen.It is a pleasure to thank I. Bengtsson, D.C. Brody, P. Heinzner,A. Hu
kelberry, J. Kijowski and J. Rembieli«ski for fruitful dis
ussions andR. Mosseri for helpful 
orresponden
e. The work was supported by the Pol-ish State Committee for S
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 Resear
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Manifolds of Equal Entanglement for Composite Quantum Systems 2095REFERENCES[1℄ R.F. Werner, Phys. Rev. A40, 4277 (1989).[2℄ M. Lewenstein, D. Bruÿ, J.I. Cira
, B. Kraus, M. Ku±, A. Sanpera, R. Tarra
h,J. Samsonowi
z, J. Mod. Opt. 47, 2481 (2000).[3℄ K. �y
zkowski, P. Horode
ki, A. Sanpera, M. Lewenstein, Phys. Rev. A58,883 (1998).[4℄ K. �y
zkowski, Phys. Rev. A60, 3496 (1999).[5℄ N. Linden, S. Popes
u, A. Sudbery, Phys. Rev. Lett. 83, 243 (1999).[6℄ M. Grassl, M. Rötteler, T. Beth, Phys. Rev. A58, 1833 (1998).[7℄ B.-G. Englert, N. Metwally, J. Mod. Opt. 47, 2221 (2000).[8℄ H.A. Carteret, A. Sudbery, J. Phys. A33, 4981 (2000).[9℄ Y. Makhlin, quant-ph/0002045.[10℄ S.J. Lomona
o, quant-ph/0101120.[11℄ S. Albeverio, S-M. Fei, J. Opt. B: Quantum Semi
lass. Opt. 3, 223 (2001).[12℄ M. Ku±, K. �y
zkowski, Phys. Rev. A63, 032307 (2001).[13℄ D.C. Brody, L. Hughston, J. Geom. Phys. 38, 19 (2001).[14℄ I. Bengtsson, J. Brännlund, K. �y
zkowski, quant-ph/0108064 andInt. J. Mod. Phys. (2002), in press.[15℄ R. Mosseri, R. Dandolo�, J. Phys. A34, 10243 (2001).[16℄ E. S
hmidt, Math. Ann. 63, 433 (1906).[17℄ A. Peres, Quantum Theory: Con
epts and Methods, Kluver, Dordre
ht 1993.[18℄ A. Ekert, P.L. Knight, Am. J. Phys. 63, 415 (1995).[19℄ D. Jonathan, M.B. Plenio, Phys. Rev. Lett. 83, 3566 (1999).[20℄ M. Adelman, J.V. Corbett, C.A. Hurst, Found. Phys. 23, 211 (1993).[21℄ K. �y
zkowski, W. Sªom
zy«ski, J. Phys. A34, 6689 (2001).[22℄ M. Ku± et al., to be published.[23℄ L. Mi
hel, Rev. Mod. Phys. 52, 617 (1980).[24℄ K.G.H. Vollbre
ht, R.F. Werner, J. Math. Phys. 41, 6772 (2000).[25℄ M. Horode
ki, P. Horode
ki, R. Horode
ki, Phys. Rev. Lett. 84, 2014 (2000).[26℄ S. Virmani, M.B. Plenio, Phys. Lett. A268, 31 (2000).[27℄ M.J. Donald, M. Horode
ki, O. Rudolph, quant-ph/0105017, a

epted byJ. Math. Phys.[28℄ V. Vedral, M.B. Plenio, Phys. Rev. A57, 1619 (1998).[29℄ G. Vidal, J. Mod. Opt. 47, 355 (2000).[30℄ K. �y
zkowski, I. Bengtsson, Ann. Phys. (N.Y.) 295 115 (2002).[31℄ M.A. Nielsen, Phys. Rev. Lett. 83, 436 (1999).[32℄ A.W. Marshall, I. Olkin, Inequalities: Theory of Majorization and its Appli-
ations, A
ademi
 Press, New York 1979.


