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MANIPULATING THE SHAPE OF ELECTRONICNON-DISPERSIVE WAVE-PACKETSIN THE HYDROGEN ATOM: NUMERICAL TESTSIN REALISTIC EXPERIMENTAL CONDITIONS�Dominique DelandeLaboratoire Kastler Brossel, Université Pierre et Marie CurieCase 74, 4 plae Jussieu, 75252 Paris, FraneKrzysztof Saha and Jakub ZakrzewskiM. Smoluhowski Institute of Physis, Jagellonian UniversityReymonta 4, 30-059 Kraków, Poland(Reeived June 6, 2002)We show that ombination of a linearly polarized resonant mirowave�eld and a parallel stati eletri �eld may be used to reate a non-dispersiveeletroni wavepaket in Rydberg atoms. The stati eletri �eld allows formanipulation of the shape of the elliptial trajetory the wavepaket ispropagating on. Exat quantum numerial alulations for realisti experi-mental parameters show that the wavepaket evolving on a linear orbit anbe very easily prepared in a laboratory either by a diret optial exitationor by preparing an atom in an extremal Stark state and then slowly swith-ing on the mirowave �eld. The latter sheme seems to be very resistantto experimental imperfetions. One the wavepaket on the linear orbit isexited, the stati �eld may be used to manipulate the shape of the orbit.PACS numbers: 05.45.+b, 32.80.Rm, 42.50.Hz1. IntrodutionAtomi wavepakets form a bridge whih allows to understand the mu-tual relations between the lassial and the quantum world [1�3℄. Typially(i.e. with the notable exeption of the harmoni osillator) any initially lo-alized wavepaket (whih mimis a lassial partile) will have its enterof mass follow a lassial trajetory at short time, but will progressivelyspread in time. Reent years have brought several attempts to overome thespreading.� Presented at the Photons, Atoms and All That, PAAT 2002 Conferene, CraowPoland, May 31�June 1, 2002. (2097)



2098 D. Delande, K. Saha, J. ZakrzewskiThe wavepaket spreading is lassial in harater and is due to thenonlinearity of the Hamiltonian, or saying it di�erently, to the fat thattrajetories with di�erent energies evolve with di�erent frequenies [3℄. Tooverome the lassial spreading of a bunh of partiles, the phenomenon ofnonlinear resonane an be used (e.g. while guiding partiles in aelerators).The idea is very simple: a lassial nonlinear system periodially driven byan external perturbation displays resonanes when the period of the externaldriving mathes the period of the unperturbed motion. In a region of phasespae alled nonlinear resonane island, the internal motion of the systembeomes loked on the external drive. This motion in the resonane islandis similar to pendulum osillations. The orresponding quantum desriptionwas �rst given by Berman and Zaslavsky [4℄ and later readdressed by Henkeland Holthaus [5, 6℄, who also gave the semilassial interpretation. For re-alisti systems, �rst studies involved the hydrogen atom driven by either alinearly [7, 8℄ or irularly [9�11℄ polarized mirowave �eld. In the lattersituation, a partiularly simple piture may be obtained sine, in the framerotating with the mirowave eletri �eld, the Hamiltonian beomes timeindependent and the enter of the pendulum island beomes a �xed pointof the dynamis. This allows for an approximate desription of the statesloalized near the stable �xed point using Gaussian wavepakets, termedthen Trojan states [9℄.Several properties of nondispersive wavepakets have been analyzed re-ently. The mixed semilassial/quantum desription is partiularly on-venient. Beause of the time periodiity of the driving, the Floquet the-orem [12℄ an be used: it ensures the existene of a basis of states (theeigenstates of the Floquet Hamiltonian) whih evolve periodially in time,and that any solution of the time-dependent Shrödinger equation an beexpanded in a simple linear ombination of these quasienergy eigenstates. Ifa single quasienergy eigenstate is initially loalized, it will preserve this lo-alization during the temporal evolution or, more preisely, reover it everyperiod of the drive [10℄, and thus overome the long-time spreading. Fromsemilassis, suh states an be onstruted as loalized inside the nonlinearisland and thus onstitute nondispersive wavepakets loked on the externaldriving. Beause they are built from two robust strutures (the lassial reso-nane island and the basis given by the Floquet theorem), the nondispersivewavepakets are robust versus any small perturbation not taken into a-ount in the preeding approah. For example, for mirowave driven atoms,the nondispersive wavepaket states are resistant to any geometrial imper-fetion in the �eld diretion, amplitude or polarization, and proteted fromdiret fast ionization by the resonane island (they an, however, ionize aftertunneling outside the island and their lifetimes exhibit interesting �utua-tions [11,13℄). Their deay due to spontaneous emission of photons has alsobeen analyzed [14�16℄.



Manipulating the Shape of Eletroni Non-Dispersive Wave-Pakets: : : 2099These wavepaket states have most probably already been prepared inexperiments studying the mirowave indued ionization of hydrogen atom.Indeed, atoms were found to be relatively stable against ionization for mi-rowave frequeny lose to Kepler frequeny [17�20℄. However, those experi-ments were addressing di�erent issues and, most probably, populated severalFloquet states at one. For an unambiguous identi�ation of nondispersivewavepakets, speial preparation (as well as detetion) shemes have to beenvisioned. In fat, for wavepakets driven by a irularly polarized mi-rowave �eld, suh a sheme has been proposed quite early [10℄. It requiresthe preparation of an atom in an initial Rydberg irular state, followedby a slow turn on of the irularly polarized mirowave. This sheme hasbeen simulated numerially for realisti parameters [21℄ but, up till now, noexperimental test has been made.It would be desirable to simplify the proposed sheme, espeially to avoidthe initial preparation of a irular state, whih is possible but not trivial.By ontrast, it is muh simpler to exite a Rydberg state where the eletronprobability near the nuleus is important: a diret optial exitation fromthe ground state or a low exited state is simple and onvenient. Moreover,beause of the monohromati harater of the laser soures, it is rathersimple to exite seletively the desired Rydberg state and not its neighbors.Thus, the simplest idea is to hange the lassial eletron trajetory (onwhih the nondispersive wavepaket is built) to an elongated Kepler orbithitting the nuleus. Suh a nondispersive wavepaket an be easily ahievedusing a resonant mirowave �eld linearly polarized along the degenerate Ke-pler orbit. There is, however, a undesirable side e�et: the motion along thepolarization axis is transversally unstable, that is any deviation from stritalignment of the eletron along the mirowave �eld will be exponentiallyampli�ed with time. This problem may be overome by addition of a statieletri �eld, parallel to the polarization axis as shown by us using a semi-lassial approah [24℄. The resulting situation is very attrative from theexperimental point of view. In [24℄, we proposed two possible experimentalshemes: either the diret optial exitation of the �linear� nondispersivewavepakets in the presene of both the linearly polarized mirowave �eldand the stabilizing stati �eld (sheme I) or the exitation of a onvenientStark state (in the presene of the stati �eld only) followed by an adiabatiturn on of the mirowave �eld (sheme II). Sheme I is simpler, but mightbe less onvenient in a real experiment beause it requires that the laserbeam is sent inside the mirowave avity, whih may be di�ult. Sheme IIrequires some ontrol on how the mirowave �eld is turned on. One the�linear� nondispersive wavepaket is exited by either of the two shemes, asubsequent derease of the stati �eld an lead to an �elliptial� nondisper-sive wavepaket, i.e. loalized on an elliptial Kepler trajetory of arbitrary



2100 D. Delande, K. Saha, J. Zakrzewskieentriity and, in the limit of vanishing stati �eld to a �irular� nondis-persive wavepaket. The aim of this paper is to explore the feasibility ofsuh shemes in a real experiment. We will use realisti parameters andthe ombination of a semilassial approah (in order to get the orders ofmagnitudes and a physial piture of what is going on) and of full quantumnumerial simulations (whih provide aurate numbers). Suh an analysisreveals also possible experimental di�ulties overlooked in the semilassialdisussion.A very similar experiment has been performed by Bromage and Stroud[22℄ who, starting from an extremal Stark state of the sodium atom, exiteda wavepaket by applying a short eletromagneti half-yle pulse whihloalized an eletron on a highly eentri orbit. After exitation, there wasno mehanism to prevent the wavepaket from spreading. Nevertheless, theauthors observed a few nie osillations in the ionization signal re�eting thelassial motion of the eletron. Thus, it seems that only one step further isneeded to obtain a nondispersive wavepaket in the laboratory. Namely theshort pulse exitation should be replaed by a slow turn on of the mirowave�eld whose presene afterwards assures the nonspreading harater of thereated wavepaket.2. The quasi-energy spetrum at �xed stati and mirowave�elds: onfrontation of semilassial and quantum resultsWe onsider a hydrogen atom exposed to both a stati eletri �eldand a linearly polarized mirowave �eld parallel to the stati �eld. TheHamiltonian of the system reads (in atomi units, with the �elds along thez axis): H = p22 � 1r + Fz os(!t) + Fsz; (1)where F and ! stand for the amplitude and frequeny of the mirowave�eld, respetively, while Fs is the amplitude of the stati �eld. The systemis invariant under rotation around the z axis, and the angular momentumprojetion on this axis is onsequently onserved. In the following, we willassume for simpliity Lz = 0: Similar onlusions an be reahed for lowvalues of Lz:The Hamiltonian (1) is time-periodi; the Floquet theorem [12℄ impliesthat any solution of the Shrödinger equation an be written as a linear om-bination of the Floquet eigenstates. Those are time-periodi (with period2�=!) eigenfuntions j��(t)i of the so-alled Floquet Hamiltonian operatorHj��(t)i = �H � i ��t� j��(t)i = "� j��(t)i; (2)



Manipulating the Shape of Eletroni Non-Dispersive Wave-Pakets: : : 2101where "� are the quasienergies of the system. Thus the preparation of anatom in a single Floquet state ensures that the eletroni density evolvesperiodially in time. However, not every eigenstate j��(t)i orresponds to awell loalized eletron propagating on a lassial trajetory. To �nd whihFloquet states are the nondispersive wavepakets, we need a semilassialapproah. In order to study the lassial dynamis of suh a time-dependentsystem, we need to de�ne the extended phase spae [23℄ where one dealswith the additional momentum Pt onjugate to the t (time) variable. Thetemporal evolution is desribed by the Hamiltonian funtion H = H + Pt;whih is the lassial analog of the quantum Floquet operator de�ned inEq. (2).Consider a hydrogen atom illuminated by a mirowave �eld of frequeny:! = 1n30 : (3)n0 is the e�etive prinipal quantum number whih is resonant with theexternal driving, that is suh that the unperturbed Kepler motion has thefrequeny !K = ! (in the lassial language) or suh that the mirowaveperturbation is almost resonant with the transitions to the n00 = n0 � 1neighboring states (in the quantum language).At large mirowave �eld, the lassial phase spae struture may be ex-tremely ompliated with interleaved regions of haoti and regular motion.At relatively small mirowave �eld � the situation we are interested in �the resonane between the driving frequeny and the frequeny of the un-perturbed motion leads to a strong perturbation of the system and to thereation of a stable island in phase spae entered on a periodi orbit atexatly the frequeny !. There, the e�et of non resonant terms (whih areresponsible for the onset of haos at strong �eld) an be safely negleted.In this so-alled seular approximation it is assumed that the motion in theresonane island is muh slower than the Kepler motion itself. The Hamilto-nian an be rewritten in the unperturbed ation-angle oordinates (I; �; L;  )whih desribe the lassial Kepler motion. The total ation I is the las-sial equivalent of the prinipal quantum number (so that the Hamiltonianof the unperturbed hydrogen atom is �1=2I2:) The onjugate angle � de-sribes the motion along the lassial Kepler orbit (it evolves periodially ata onstant angular veloity !K). The other pair of ation-angle oordinates(L; ) desribes the parameters of the lassial Kepler ellipse, i.e. the totalangular momentum L related to the eentriity bye =r1� L2I2 ; (4)



2102 D. Delande, K. Saha, J. Zakrzewskiand the onjugate angle  between the major axis of the lassial Keplerellipse and the �eld axis. A onvenient approah is to swith to the rotatingframe de�ned by: �̂ = � � !t ; (5)P̂t = Pt + !I ; (6)beause �̂ appears as a slowly varying variable. The seular approximationis to neglet all terms in the Hamiltonian whih osillate at the mirowavefrequeny or its harmonis. The e�etive Hamiltonian funtion desribingthe motion in the stable resonant island (for details see [3,24,25℄) thus reads:Hse = P̂t � 12I2 � !I � 3eFsI22 os + FI2(�J 01(e) os os �̂ + p1� e2J1(e)e sin sin �̂) ; (7)where J1 and J 01 denote the Bessel funtion and its derivative, respetively.Having the e�etive Hamiltonian, the last stage is to quantize the system.The radial motion, i.e. in the (I; �̂) spae, e�etively deouples from the slowangular motion in the (L; ) spae. In e�et, one an quantize the systemin the spirit of the Born�Oppenheimer approximation, i.e. �rst quantize theradial motion keeping the seular motion frozen [25, 27℄, using the resultsto onstrut an e�etive potential for the motion in the (L; ) spae. Inthe limiting ase when the motion in the (I; �̂) spae is harmoni suh aproedure was followed in [24℄. This is, however, not suitable for very lowmirowave �elds. We give in the Appendix the derivation and results in thegeneral ase. It should also be noted that, beause the Coulomb potentialis an homogeneous funtion (of degree �1) of the position while both thestati and the mirowave �eld interation Hamiltonians are homogeneousfuntions of degree 1, there exists a lassial saling invariane law whihallows to express the lassial dynamis with the saled quantities:F0 = Fn40; (8)Fs;0 = Fsn40; (9)L0 = Ln0 : (10)We have hosen to perform all numerial alulations (semilassial andquantum) for n0 = 60: This value orresponds to the prinipal quantumnumber of Rydberg states prepared in a typial experiment. The orrespond-ing resonant mirowave frequeny is 1=(60)3 in atomi units, i.e. 30.48 GHz.



Manipulating the Shape of Eletroni Non-Dispersive Wave-Pakets: : : 2103This is in the mirowave regime where e�ient high-quality soures are avail-able. The eletri �eld amplitude suh that F0 = 0:01 (a typial value to beused in an experiment, see below) is 0:01=(60)4 in atomi units, i.e. 4 V/m.Produing a stati or mirowave �eld with suh an amplitude is not a prob-lem in a real experiment.In Fig. 1, we show the quasienergy levels of the 60 states belonging tothe resonant n = 60 manifold as a funtion of the saled stati �eld Fs;0;for a �xed saled mirowave amplitude F0 = 0:015: For this alulation, weused the semilassial approah desribed in the Appendix. It is essentiallyidential to Fig. 2 of [24℄, for slightly di�erent �eld values, but the gen-eral Mathieu quantization (desribed in the Appendix) was used instead ofthe harmoni approximation used in [24℄. The purely quantum quasienergyspetrum � obtained from numerial diagonalization of the Floquet Hamil-tonian � is also shown in Fig. 1. It is remarkably similar to the semilassialspetrum for the n = 60 manifold. However, the total quantum spetrum isvery ongested, with plenty of other manifolds superimposed. These mani-folds orrespond to lower or higher prinipal quantum numbers shifted (inenergy) by an integer multiple of the mirowave frequeny !: It happensthat, by hane, some of these manifolds overlap with the n = 60 manifold.The most striking result is that these manifolds overlap but (almost) do notinterat! Indeed, a areful inspetion shows that there are no level rossingsbut rather very small avoided rossings (invisible at the sale of the �g-ure). This is easily understood from the (semi)lassial dynamis. Indeed,the nonlinear resonane island isolates the non-dispersive wavepakets fromother states loalized outside the island. In quantum mehanis, they areoupled only by tunneling, a typially very weak proess responsible for thetiny avoided rossings.The usefulness of the semilassial approah must be emphasized. With-out the guideline it provides it would be impossible to reognize the n = 60manifold and identify the non-dispersive wavepakets in the mess of lowerpanel in Fig. 1. A further test of the auray of the semilassial approx-imation is provided by a diret omparison of the numerial predition forthe quasienergy levels with the exat quantum levels. The di�erene is plot-ted in Fig. 2 for the upper state of the n = 60 manifold, as a funtion ofthe saled stati �eld. The energy di�erene is plotted in units of the meanlevel spaing, whih is here of the order of 2=n40 [10℄. For all �eld values,it is smaller than 10% of the mean level spaing and it evolves essentiallysmoothly with the �eld. This implies that the semilassial approximationathes most of the physis of the system. It also means that it an be usedto easily �nd a state of interest among all energy levels obtained from anumerial diagonalization. More importantly, for n0 = 60; the energy dif-ferene between the semilassial and quantum results is about 10�8 atomi
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Fig. 1. Quasienergy levels of the hydrogen atom exposed to parallel stati andmirowave �elds as a funtion of the saled stati �eld Fs;0 for n0 = 60 (mirowavefrequeny 30.48 GHz) and �xed saled mirowave �eld amplitude F0 = 0:015 (i.e.6V/m). The upper panel shows the levels of the n = 60 manifold alulated usinga semilassial approah. The highest level of the manifold is the non-dispersiveeletroni wavepaket. For Fs;0 = 0; it propagates along a irular trajetory. Atinreasing Fs;0; it smoothly turns into an elliptial non-dispersive wavepaket �that is a wavepaket propagating along an elliptial trajetory � and �nally toa linear wavepaket propagating along the �eld axis. The lower panel shows thequasienergy levels obtained from an exat numerial diagonalization of the FloquetHamiltonian. The levels belonging to the n = 60 manifold almost oinide withthe semilassial predition.



Manipulating the Shape of Eletroni Non-Dispersive Wave-Pakets: : : 2105units, orresponding to a frequeny di�erene of 60 MHz. In a real experi-ment, the semilassial predition will thus give a very useful indiation forexiting the right spetral line.
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Fig. 2. Di�erene between the semilassial predition and quantum results for theenergy of the non-dispersive wavepaket of the hydrogen atom in the presene ofparallel mirowave and stati eletri �eld, as a funtion of the saled stati �eldamplitude Fs;0. The parameters are those of �gure 1, that is n0 = 60; F0 = 0:015.The energy di�erene � is plotted in units of the mean level spaing of the FloquetHamiltonian, estimated to be equal to 2=n40: � is muh smaller than one, whihproves the high-quality of the semilassial approximation.In zero stati �eld one an see the manifold of states reated in the pres-ene of the mirowave �eld only, with low-energy states assoiated with theweakest interation with the mirowave and onsequently to the worst loal-ization along the Kepler orbit (the latter being orbits mainly perpendiularto the �eld diretion). In the middle of the manifold, one an see a loalminimum spaing assoiated with the hyperboli point at (L = 0;  = 0),i.e. the degenerate linear Kepler orbit along the mirowave �eld axis. Asmentioned above, this motion is transversally unstable. The orrespondingFloquet eigenstates are thus well loalized longitudinally (they form niewavepakets propagating bak and forth) but poorly loalized angularly.At the top of the manifold there are states with maximum longitudinal lo-alization and trajetories lose to irular. Note, however, that these areLz = 0 states and that the irular trajetory is in the plane ontaining thequantization axis, so that the total wavefuntion is loalized on a spherein the three-dimensional spae, in sharp ontrast with the so-alled �iru-lar� states (for pure hydrogen) whih are loalized on a irle perpendiularto the quantization axis or their ombinations building Trojan-like [9, 10℄wavepakets for irularly polarized mirowave.



2106 D. Delande, K. Saha, J. ZakrzewskiOf speial interest is the upper state of the manifold as it has maxi-mum loalization in the resonane island, but also maximum loalization onthe lassial irular trajetory in the (�; z) plane. Its temporal evolutionover one period of the mirowave �eld is shown in Fig. 3. The plot is ob-tained from an exat numerial diagonalization of the Floquet Hamiltonian,following the tehniques desribed in [26℄. One learly sees the nondisper-sive wavepaket harater of this state, whih is loalized both in the � andz diretions at all times, even extremely long (its evolution is periodi byonstrution). As expeted, the wavepaket propagates along the irulartrajetory with radius given by the Bohr orbit for n0 = 60, that is roughly3600 atomi units. In the plot, the wavepaket appears with two ompo-
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Fig. 3. The wavepaket (the highest single Floquet state of the n = 60 manifoldin Fig. 1) obtained from diagonalization of the Floquet Hamiltonian for saledmirowave �eld amplitude F0 = 0:015 and no stati �eld Fs;0 = 0:0 and di�erentphases of the mirowave �eld (top-left ' = 0, top-right ' = �=4, bottom-left' = �=2 and bottom-right ' = �). The wavepaket is a torus pulsating on asphere between the north and the south poles � the �gure shows a ut along anarbitrary plane ontaining the z axis multiplied by � to simulate the density inylindrial oordinates. The � on the horizontal axis is either x or y or any otherdiretion in the xy plane. The sales are in atomi units.
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Fig. 4. The wavepaket (the highest single Floquet state of the n = 60 mani-fold in Fig. 1) obtained from diagonalization of the Floquet Hamiltonian for saledmirowave �eld amplitude F0 = 0:015 and saled stati �eld Fs;0 = 0:00255 and dif-ferent phases of the mirowave �eld (top-left ' = 0, top-right ' = �=4, middle-left' = �=2, middle-right ' = 5�=8 bottom-left ' = 3�=4 and bottom-right ' = �).For this stati �eld value, the nearby avoided rossing leads to a ontamination ofthe wavepaket by another state. The wavepaket traes an elliptial trajetory.The sales are in atomi units.nents symmetri with respet to the z axis. Atually, the �gure is a ut ofthe three-dimensional eletroni density by a plane ontaining the �eld axis(multiplied by � to simulate the probability density in ylindrial oordi-
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Fig. 5. The wavepaket (the highest single Floquet state of the n = 60 manifoldin Fig. 1) obtained from diagonalization of the Floquet Hamiltonian for saledmirowave �eld amplitude F0 = 0:015 and saled stati �eld Fs;0 = 0:003 anddi�erent phases of the mirowave �eld (top-left ' = 0, top-right ' = �=4, middle-left ' = �=2, middle-right ' = 5�=8 bottom-left ' = 3�=4 and bottom-right' = �). The wavepaket follows a linear trajetory along the �eld axis. The salesare in atomi units.nates) and � due to the azimuthal symmetry � must appear symmetri.In the three-dimensional world, the wavepaket rather appears as a ringpropagating bak and forth between the north and south poles of a sphere.The fringes visible at t = 0 and t = �=! are due to interferenes betweeningoing and outgoing parts of the wavepaket.



Manipulating the Shape of Eletroni Non-Dispersive Wave-Pakets: : : 2109When the stati �eld is turned on, the manifold expands. One learlysees inside the manifold the loal shrinking of the mean level spaing or-responding to the hyperboli �xed points of the transverse dynamis in the(L; ) plane. The upper state of the manifold is assoiated with the ellip-ti (stable) �xed point with maximum e�etive energy in the (L; ) plane,whih is loated at  = � (major axis of the Kepler orbit along the �eld) withtotal angular momentum L dereasing with inreasing stati �eld. Hene,this state is predited to be a nondispersive wavepaket with optimum lon-gitudinal loalization; it evolves from a �irular� wavepaket at Fs = 0to a �linear� wavepaket above Fs ' 0:2F passing through intermediate�elliptial wavepaket�. This is fully on�rmed by the exat numerial di-agonalization of the Floquet Hamiltonian at various stati �eld strengths.We show in �gures 4 and 5 snapshots of the eletroni densities, whihlearly show the evolution on the lassial trajetory as well as the exellentlongitudinal loalization of the non-dispersive wavepakets. Note, however,at Fs;0 = 0:00255; a small ontamination of the wavepaket by a neighboringstate (the �eld value is intentionally hosen in the viinity of a very smallavoided rossing) visible by a small ring of eletroni density at 8000 Bohrradii.Around Fs;0 = 0:0028 the wavepaket turns into the �linear� wavepaket.This transition (atually an inverse pithfork bifuration where the lineartrajetory turns from unstable to stable while the elliptial trajetory oa-leses with the linear one and disappears) is visible in both the semilassialand the quantum energy spetra as a loal minimum in the energy levelspaing. Above this bifuration, the mirowave �eld appears essentially asa perturbation of the stati �eld, and the whole manifold is approximatelyomposed of equally spaed levels, like a usual Stark manifold of the hydro-gen atom.In Fig. 6, we show another level dynamis, now at �xed saled stati�eld Fs;0 = 0:003 and inreasing saled mirowave �eld. For larity, only thesemilassial spetrum is shown, the exat quantum result being almost in-distinguishable. At zero mirowave �eld strength, we have a pure Stark man-ifold; at inreasing mirowave �eld one �rst sees a quadrati (in F0) inreaseof the quasienergies, in aordane with the weak-�eld limit disussed in theAppendix followed by a linear regime (the strong-�eld regime disussed inthe Appendix). The most important information is that all levels are prati-ally parallel in the full range, meaning that one passes very smoothly from astationary state (at F0 = 0) to a well loalized non-dispersive wavepaket atF0 = 0:015: This smoothness is another illustration of the robustness of thenon-dispersive wavepakets. Note that, for the highest state of the manifold,there is no angular evolution of the eletroni density when the mirowave�eld is turned on. Already at F0 = 0 the extreme blue shifted Stark state
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Fig. 6. Quasienergy levels of the hydrogen atom exposed to parallel stati andmirowave �elds. They are here plotted for n0 = 60 � i.e. mirowave frequeny30.48 GHz � stati �eld strength Fs;0 = Fn40 = 0:003 (i.e. 1.2V/m), as a funtionof the saled mirowave �eld amplitude F0: The levels of the n = 60 manifoldare alulated using the semilassial approximation desribed in the Appendix.The highest level of the manifold is the non-dispersive eletroni wavepaket. ForF0 = 0; it is the extreme blue shifted Stark state loalized along the �eld axis. Asthe mirowave �eld is inreased, the eletroni density progressively onentratesand builds a non-dispersive wavepaket evolving periodially along a linear Keplertrajetory.is well loalized along the �eld axis. By inreasing the mirowave �eld, onegains progressive longitudinal loalization along the orbit as the resonaneisland in the (I; �) plane grows.3. Quantum dynamis with slowly hanging amplitudesof stati and mirowave �eldsFrom the preeding setion, it is lear that the exat quantum level dy-namis is extremely lose to the semilassial predition as well as being verysmooth with tiny avoided rossings only. This implies that the idea of ma-nipulating the non-dispersive wavepakets by slowly hanging the mirowaveor stati �eld amplitudes is a realisti one.Let us onsider the sheme II introdued above. The �rst step is thediret optial exitation of a extreme blue shifted Stark state in the abseneof mirowave �eld. In the plot of Fig. 6 this is the highest state of themanifold. As its wavefuntion is elongated along the �eld axis and has asigni�ant value lose to the nuleus, optial exitation from a low lyingstate is possible with high e�ieny. Inreasing the mirowave �eld value



Manipulating the Shape of Eletroni Non-Dispersive Wave-Pakets: : : 2111is tantamount to adiabatially following the highest state of the manifoldfrom the left to the right of Fig. 6. As the level dynamis is extremelysmooth, a very e�ient adiabati transfer is likely to be possible. In orderto test this hypothesis, we performed a numerial resolution of the time-dependent Shrödinger equation in the presene of a stati time-independent�eld (F0;s = 0:003) and a mirowave �eld with slowly inreasing amplitude.We hose the following shape for the mirowave �eld turn-on:F0(t) = Fmax0 sin2 �t2T1 (11)with Fmax0 = 0:015 and T1 = 600 mirowave periods. The hoie of thepreise value of the swithing time T1 is by no means ritial.Snapshots of the eletroni density for various values of the mirowave�eld (at the same phase ' = �=2 of the mirowave �eld) are shown inFig. 7. They show the progressive loalization of the wavepaket along thelassial linear trajetory. The eletroni density of the Floquet state atthe same �eld value is visually not distinguishable from the one resultingfrom numerial resolution of the time-dependent Shrödinger equation. Forexample, the eletroni density at t = T1; thus F0 = 0:015; shown in thebottom-right snapshot in Fig. 7 is almost idential to the one of the Floquetstate in Fig. 5. We alulated the square overlap with the Floquet state asthe mirowave �eld inreases and found it to be always of the order of 0.99or more.The hoie of the swithing time and the mirowave turn-on funtion(11) is not ruial, but several pitfalls should be avoided:� If the swithing time is too short, the adiabati evolution may breakdown resulting in the �nal state being ontaminated by neighboringstates of the same manifold. This would destroy exat periodiity ofthe wavepaket and weakly a�et its transverse loalization perpen-diular to the �eld.� In partiular, one should be areful at the very beginning of the pulsebeause the wavefuntion hanges quite rapidly, as manifested by thetransition from a quadrati to a linear dependene of the energy lev-els with F0: From that point of view, it is a good idea to make themirowave amplitude initially inrease like t2; not like t.� The swithing time should not be too long either, beause the smallavoided rossings with states belonging to other manifolds should berossed diabatially. This is not a very severe onstraint, beause theavoided rossings are atually small, but swithing times should notbe longer than few thousand mirowave periods.
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Fig. 7. Preparation of a non-dispersive wavepaket of the hydrogen atom in parallelstati and mirowave �elds. The plots show the eletroni density obtained froma numerial resolution of the time-dependent Shrödinger equation at inreasingmirowave �eld strengths. Top left � the initial state (highest blue shifted stateof the n0 = 60 manifold); top right F0 = 0:000367, middle left F0 = 0:0031 �already some radial loalization beomes visible; middle right F0 = 0:01, bottomleft F0 = 0:0135 (these two ones show optimal robust loalization) and bottomright F0 = 0:015. The last plot shows a slight tilt indiating the viinity of theseparatrix where the linear trajetory beomes unstable.



Manipulating the Shape of Eletroni Non-Dispersive Wave-Pakets: : : 2113� The non-dispersive wavepakets (as well as other Floquet states) arenot exatly bound states, but slowly ionize. For the �eld strengths usedhere, the ionization rate is rather small, but inreases in the viinity ofthe avoided rossings (see [13℄). Less than 1% of the eletroni densityis lost by ionization. However, this proess is due to tunneling andonsequently inreases very rapidly with the �eld strength. It maybeome important at higher �eld values.In pratie, our numerial alulations on�rm that the exitation of thelinear non-dispersive wavepaket with sheme II an be done with almost100% e�ieny in a real experiment.
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Fig. 8. Diret optial exitation of the non-dispersive wavepaket, from the groundstate of the atom. The arrow indiates the quasi-energy of the non-dispersivewavepaket propagating along the �eld axis. The square dipole of the transitionhas a rather large value, whih proves the feasibility of diret optial exitation.Alternatively, sheme I an be used for a diret optial exitation of thelinear non-dispersive wavepaket, by shining a laser with proper frequenyon an atom in its ground state, in the presene of the stati and mirowave�elds. For example, Fig. 8 shows the exitation probability (or rather thesquare dipole matrix element) of the various Floquet states for n0 = 60,F0 = 0:02 and Fs;0 = 0:006. The linear non-dispersive wavepaket is markedwith an arrow. It obviously has a signi�ant exitation probability and wethus believe that the exitation sheme I an also be used. However, atother �eld values (suh as F0 = 0:015 and Fs;0 = 0:003), it may happen thatseveral energy levels with signi�antly higher exitation probabilities existat neighboring energies and may hide the state of interest. Also, beause the



2114 D. Delande, K. Saha, J. Zakrzewskimirowave �eld onsiderably inreases the e�etive density of states whihan be optially exited, sheme I requires a better resolution for seletiveexitation. This resolution is in the 10�100 MHz range for n0 = 60:
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Fig. 9. By slowly dereasing the (saled) stati �eld amplitude, as shown in this�gure, the irular non-dispersive wavepaket an be prepared with an e�ienygreater than 80%. The initial derease must be slow enough to pass the bifurationat Fs;0 = 0:0028 adiabatially. One the bifuration is passed, the derease an bemade faster.One the non-dispersive wavepaket on a linear trajetory is reated, thesame mixed diabati/adiabati transfer an be used in order to transform alinear wavepaket into an elliptial or a irular non-dispersive wavepaket.The idea is to evolve from the right side to the left side of Fig. 1 by slowlyswithing o� the stati �eld while staying in the highest quasienergy level ofthe n = 60 manifold. The situation here is, however, a bit more ompliatedbeause of the lassial pithfork bifuration ourring near Fs;0 = 0:0028and the orresponding shrinking of level spaing in the quasienergy spe-trum. In order to maintain an adiabati evolution � whih is essentialto transfer angular momentum to the wavepaket � the �eld must evolverather slowly in this region. A rough estimate of the maximum veloity, atwhih the stati �eld an be dereased, an be obtained from the minimumsize of the level spaing and the use of the Landau-Zener formula. It turnsout that this ould lead to too long swithing time and loss of signal eitherby transfer to other states at some avoided rossing or by ionization. Asolution is to derease the stati �eld slowly when rossing the bifurationand faster after. For example, we used a pieewise linear funtion as shownin Fig. 9: slow derease from Fs;0 = 0:003 to 0.0024 in 2400 mirowave y-les followed by derease to zero in 600 periods. Snapshots of the eletronidensity at mirowave phase ' = �=2 and dereasing stati �eld are shown



Manipulating the Shape of Eletroni Non-Dispersive Wave-Pakets: : : 2115in Fig. 10. Again, they are almost idential to the eletroni densities of thehighest Floquet eigenstate, proving that the transfer is very e�ient. Espe-ially, note that at Fs;0 = 0:00255; the time-dependent state does not presentthe extra eletroni density at large distane whih is visible in the Floqueteigenstate, Fig. 4, whih proves that the small avoided rossing with anotherstate is rossed su�iently fast (diabatially) to avoid ontamination.
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Fig. 10. Manipulating the wavepaket by ontrolling the lassial trajetory onwhih it is loalized. Starting from the wavepaket depited in the last frame of�gure 7, the stati �eld is turned o� as desribed in the text. The plots showthe eletroni density obtained from a numerial resolution of the time-dependentShrödinger equation. Top left Fs;0 = 0:0027, top right Fs;0 = 0:00255 (thewavepaket follows an elliptial trajetory), bottom left Fs;0 = 0:00144 (ellipti-al trajetory with low eentriity) and bottom right Fs;0 = 0 � the irulartrajetory.Finally, when the stati �eld is ompletely swithed o�, the square over-lap with the desired Floquet state � a irular non-dispersive wavepaket� is slightly larger than 0.80. It proves that the sheme II whih we proposeis e�ient although it involves several steps.



2116 D. Delande, K. Saha, J. Zakrzewski4. ConlusionsBy numerial resolution of the time-dependent Shrödinger equation un-der realisti onditions and an analysis based on both semilassial and exatnumerial diagonalization of the Hamiltonian, we have shown how to preparee�iently non-dispersive eletroni wavepakets in the hydrogen atom whihpropagate either on a linear straight trajetory along the mirowave �eld oron an elliptial trajetory of arbitrary eentriity (the irular trajetorybeing the �nal state).Although we onentrated on spei� values of the �eld frequeny andamplitude, the sheme is rather general and ould be used for di�erent pa-rameters, with the following observations:� For too low �eld amplitudes, the resonane island is so small that nowell loalized state atually exists. The rule of the thumb is that onlyq values, see Eq. (A.7), larger than unity should be used.� For too large �eld values, the states are well loalized, but ionize ratherfast. Saled mirowave �eld amplitudes exeeding 0.04 are dangerous.� Even if ionization remains small, it may happen for too large �eldvalues that the n0 hydrogeni manifold is so large that it overlaps withneighboring n0 � 1 manifolds in the Floquet spetrum. This reateslarge avoided rossings whih makes the adiabati transfer impossible.� For n0 = 60; the mirowave frequeny is 30 GHz and the total swith-ing time if of the order of 120 ns. Suh swithing times should befeasible in a real experiment. Going to lower n0 values would lead tohigher frequeny (and onsequently more expensive mirowave equip-ment) and shorter swithing times. Going down to n0 = 30 is thusrather a bad idea.Exited wavepakets may be deteted by employing short half-ylepulses that lead to onsiderable ionization of the atom [22℄. The ioniza-tion signal depends on the position of the enter of the paket with respetto the nuleus at the moment when the pulse is applied (basially the ioniza-tion probability is larger the loser the enter is situated with respet to thenuleus [22℄). For a disussion of harateristi properties whih would al-low for an unambiguous haraterization of the non-dispersive wavepakets,see [3℄.



Manipulating the Shape of Eletroni Non-Dispersive Wave-Pakets: : : 2117Support of the Polish State Committee for Sienti� Researh (KBN)under projet 5P03B08821 (KS and JZ) is aknowledged. The additionalsupport of the bilateral Polonium and PICS programs is appreiated. Lab-oratoire Kastler Brossel de l'Université Pierre et Marie Curie et de l'EoleNormale Supérieure is UMR 8552 du CNRS. We thank IDRIS for providingus with CPU time on a NEC SX5 omputer.AppendixIn this Appendix, we explain the semilassial quantization proedurethat allows us to obtain aurate preditions for the quasienergy levels andstrutures of the orresponding eigenstates of the atom in the presene ofstati and mirowave external �elds.We begin with the e�etive Hamiltonian, Eq. (7). In the (I; �̂) spae,this Hamiltonian desribes the motion in the viinity of the �xed point atI = n0. Expanding the Hamiltonian in powers of ~I = I � n0 around the�xed point yieldsHse � P̂t� 32n20 � 3~I22n40 � 3Fsn202 s1� L2n20 os +F� (L; ) os[�̂��(L; )℄ :(A.1)The expliit expressions for � and � are as follows� (L; ) =qX21 os2  + Y 21 sin2  ; (A.2)tan �(L; ) = Y1X1 tan ; (A.3)where X1(n0; L) = J 01(e)n20 (A.4)Y1(n0; L) = Ln0eJ1(e)n20 (A.5)with e =p1� L2=n20 being the eentriity of the lassial elliptial traje-tory. X1 and Y1 are nothing but the osillatory atomi dipoles in resonanewith the external drive, along the major and minor axes of the lassialKepler ellipse, respetively.As there is no expliit time dependene in Eq. (A.1), the quantizationof P̂t is trivial [25, 27℄. Taking into aount that Floquet eigenstates haveto be periodi in time, this yields P̂t = k! (where k is an integer number)whih ensures the periodiity of the quasienergy spetrum with a period !.



2118 D. Delande, K. Saha, J. ZakrzewskiThe radial motion, i.e. in the (~I; �̂) spae, e�etively deouples from theslow angular motion in the (L; ) spae [24℄. In e�et, one an quantizethe system in the spirit of the Born�Oppenheimer approximation, i.e. �rstquantize the radial motion keeping the seular motion frozen [25, 27℄ andthen swith to the quantization of the slow (L; ) motion. The radial motionreveals a pendulum-like dynamis whose quantum eigenvalues are given bythe solutions of the Mathieu equation [28℄. As we are looking for solutionswith maximum loalization inside the resonane island, we will onsider onlythe ground state solution of the pendulum (exited states of the pendulumdesribe the adjaent hydrogeni manifolds, see [27℄). We obtain:He� = � 32n20 � 38n40 a0(q)� 3Fsn202 s1� L2n20 os + k! ; (A.6)where q = 4n40F3 � (L; ) (A.7)is a dimensionless parameter. a0(q) is the Mathieu parameter orrespondingto the ground state of the pendulum [28℄. The last stage is to quantize theseular motion whih an be done diretly using the WKB rule [24, 27℄12� I Ld = p+ �4 ; (A.8)where p is an integer number and � stands for the Maslov index.Without the stati eletri �eld, i.e. for Fs = 0, it is more onvenientto quantize the seular motion �rst (obtaining quantized values of � ) andthen swith to quantization in the (~I; �̂) spae. This is allowed beause theentire dependene of the Hamiltonian on L and  is inluded in � (L; ) [27℄.In the presene of the stati eletri �eld, suh a simpli�ation is no longerpossible and one has to use the whole Hamiltonian (A.6) to perform thesemilassial quantization in the (L; ) spae.Although, for omparison of the semilassial quasienergies with thequantum numerial values, we arry out alulations using the full Hamilto-nian (A.6), it is instrutive to perform further approximations and disussweak and strong �elds limit separately. For very small F and moderate n0,i.e. for q � 1, the Mathieu parameter an be approximated [28℄ bya0(q) � �q22 : (A.9)This is the regime orresponding to a very weak trapping pendulum poten-tial, where the radial motion in the (~I; �̂) spae is basially the free motion



Manipulating the Shape of Eletroni Non-Dispersive Wave-Pakets: : : 2119slightly perturbed (at seond order in F ) by the potential. However, evenfor negligible external �elds, the harater of the seular motion is hangedompletely. That is, for F = 0 and Fs = 0; both L and  are onservedquantities (i.e. the shape and the orientation of the eletroni ellipse remainunhanged) while for F 6= 0 or Fs 6= 0; the motion in the (L; ) phase spaemay reveal both librations (around a �xed point) and rotations as shownin Fig. 11. Contours in Fig. 11 orrespond atually to the semilassiallyquantized states aording to the WKB presription, Eq. (A.8), for n0 = 60.For �xed Fs and with dereasing F , the �xed point on the  = � axis movesfrom L0 = L=n0 = 1 to L0 = L=n0 = 0, see Fig. 11. This orresponds toan ellipse oriented along the �eld axis whose shape hanges from a irleto a trajetory degenerated into a line. The eigenstate of the system withthe ontour situated in the viinity of this �xed point possesses probabil-ity density loalized around an ellipse whose eentriity depends on F=Fsratio. However, there is no loalization of an eletron on suh an elliptialtrajetory beause the pendulum island in the (~I; �̂) spae is too small tohold a semilassial state � the density probability is equally distributedalong the ellipse with a weak (periodi) time dependene.
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