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We study experimentally and numerically properties of quarter-stadium
billiard’s eigenfunctions in the regime of quantum cantori. A quarter-
stadium billiard was simulated experimentally by a thin quarter-stadium
microwave cavity. Experimental eigenfunctions in the cantori regime
N = 7-63 of the quarter-stadium microwave billiard with the parame-
ter ¢ = 0.1 were reconstructed using a field perturbation technique and
a circular wave expansion method. The eigenfunctions N = 76-499 lying
in the cantori regime of the quarter-stadium billiard with ¢ = 0.05 were
investigated numerically.

PACS numbers: 05.45.Mt

It is well known that classical chaos maybe confined to the certain re-
gions of phase space. The Kolmogorov—Arnold-Moser (KAM) theorem [1]
allows us to understand that KAM tori can act as impenetrable barriers to
the probability flow. However, with increasing nonlinearity of the system
the KAM tori break up into cantori [2,3| and become partially penetrable to
the chaotic orbits. In the seminal paper by Geisel et al. [4] it was shown that
in quantum mechanics classical cantori appear to act as dynamical barriers
that can entirely inhibit the diffusive growth. Theoretical analysis of classical
and quantum properties of stadium billiards has led to identification of four
different localized regimes, namely, perturbative, cantori, dynamical and er-
godic [5,6,8]. The perturbative regime, dynamical localization regime and
the ergodic regime exist also in rough billiards and were subject of intensive
theoretical [9-11] and experimental [12,13] work. Casati and Prosen [6, 7]
have shown that for the quarter-stadium billiards in the quantum cantori
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regime (11—66*2 <N < %5*3) the rescaled localization length of the eigen-
functions is constant. This theoretical finding has been recently confirmed
experimentally and numerically in [14]. In this paper we focus our attention
on experimental and numerical studies of properties of eigenfunctions of a
quarter-stadium billiard in the regime of quantum cantori.

Experimentally, eigenfunctions (electric field) were evaluated for the thin
(height A = 8 mm) microwave cavity with the shape presented in Fig. 1. The
microwave cavity simulates the quarter-stadium billiard with the parameter
e = a/R = 0.1 due to the equivalence between the Schrédinger equation
and the Helmholtz equation for two-dimensional systems. This equivalence
remains valid for frequencies less than the cut-off frequency v, = ¢/2h ~
18.7 GHz, where c is the speed of light.

Fig.1. The quarter-stadium billiard with radius R and straight segment a. In the
experiment the quarter-stadium microwave billiard with R = 20 cm and ¢ = 2 cm
(e =a/R = 0.1) was used. Squared eigenfunctions | ¥y (R, #)|* were evaluated on
a quarter-circle of fixed radius R. = 19 cm. Billiard’s boundary I" is marked with
the bold line.

The eigenfunctions ¥y (r, ) (electric field distribution Ex(r, #) inside the
cavity, N is the level number) were determined from the form of En (R, )
evaluated on a quarter-circle of fixed radius R. (see Fig. 1) [14]. The pertur-
bation technique developed in [15] and used successfully in [15-18] was im-
plemented in measurements of Fn(Rc,6)?. In this method a small perturber
is introduced inside the cavity to alter its resonant frequency according to

v—vy =vy(aBY - bER), (1)

where vy is the N*' resonant frequency of the unperturbed cavity, a and
b are geometrical factors. Equation (1) shows that the formula can not be
used to evaluate E% until the term containing magnetic field By vanishes.
To minimize the influence of By on the frequency shift v — vy a dielectric
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perturber [19] containing a small piece of a metallic pin was used. The per-
turber was a dielectric sphere of 3.0 mm in diameter. A small piece of a
metallic pin was introduced inside the perturber in order to move it with a
magnet placed on the top of the cavity. The size of the pin ( 2.0 mm in length
and 0.40 mm in diameter) was chosen to be the smallest possible that still
allowed the perturber to follow smoothly the magnet during its movement.
Relatively weak interaction between the magnet and the perturber mini-
mized the friction between the sphere and the wall and improved accuracy
of the perturber positioning inside the cavity. Additionally, for the same
purpose, the inner part of the cavity’s top wall was lubricated. No positive
frequency shifts exceeding the uncertainty of frequency shift measurements
(20 kHz) were observed with this perturber. The regime of quantum cantori
for the experimental quarter-stadium billiard (¢ = 0.1) should be observed
for N = 7-63. Using a field perturbation technique we measured squared
eigenfunctions | ¥y (R, 0)|? for 41 modes out of 57 within the specified re-
gion. The range of corresponding eigenfrequencies was from v7 = 3.04 GHz
to vg3 = 7.59 GHz. The measurements were performed at 2 mm steps along
a quarter-circle with fixed radius R, = 19 cm. This step was small enough
to reveal in details the space structure of low-lying levels. In Fig. 2 we show
the examples of the squared eigenfunction | ¥y (R.,6)|? evaluated for lev-
els 12 and 36. The perturbation method used in our measurements allows
us to extract information about the eigenfunction amplitude | ¥x(R., 6)| at
any given point of the cavity but it doesn’t allow to determine the sign of
Un(Rc,0) [20]. Numerical calculations performed for the quarter-stadium
billiards (e.g., [21]) suggest the following sign-assignment strategy: We begin
with the identification of all close to zero minima of | ¥n(R.,0)|. Then the
sign “plus” maybe arbitrarily assigned to the region between the first and the
second minimum, “minus” to the region between the second minimum and
the third one, the next “plus” to the next region between consecutive minima
and so on. In this way we construct our “trial eigenfunction” ¥y (R.,0). If
the assignment of the signs is correct we should reconstruct the eigenfunction
Wy (r,0) inside the billiard with the boundary condition @y (rp,0r) = 0.

As it was proposed in [6] eigenfunctions of a quarter-stadium billiard
may be expanded in terms of circular waves (here only odd-odd states in
expansion are considered)

M
Un(r,0) = Z asCsJos(knT) sin(2s6) , (2)

s=1
where C; = (% Ormax|J25(kN7')|2rdr)*1/2 and ky = 2mvy/e. In Eq. (2)
the number of basis functions is limited to M = knrmax/2 = IN**/2, with
Tmax = B+ a. Iy* = knTmax 18 a semiclassical estimate for the maximum
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Fig.2. Squared eigenfunctions |¥n(Rc,6)* (in arbitrary units) measured on a

quarter-circle with radius R. = 19 cm with the level numbers: (a) N =12 (vj2 ~
3.59 GHz), (b) N =36 (v36 ~ 5.85 GHz).

possible angular momentum for a given ky. Circular waves with angular
momentum 2s > 2M correspond to evanescent waves and can be neglected.

Coefficients as may be extracted from the “trial eigenfunction” ¥y (R.,0)
via

/2
asz[%Csts(kNRC)]*1 / ¥n (R, 0) sin(2s0)d6 . (3)
0

Since our “trial eigenfunction” ¥y (R, 6) is only defined on a quarter-
circle of fixed radius R, and is not normalized we imposed normalization of
the coefficients as: 327 |as|?> = 1. Now, the coefficients a; and Eq. (2) can
be used to reconstruct the eigenfunction ¥y (r,6) of the billiard. Figs. 3 and
4 show reconstructed eigenfunction Wsg(r, ) of the billiard for two different



Properties of Figenfunctions in the Quantum Cantori Regime 2127

3
2l (@)

S YA

x o

> \/
2
0.0 05 10 1

6
>

Fig.3. Panel (a): “Trial eigenfunction” ¥sg(R., ) obtained from the measured
| W36(Re,0)|* using a sign assignment strategy: (+,—,+,—,---). Panel (b): Eigen-
function of the experimental billiard Ps6(r,6) reconstructed from the “trial eigen-
function” Ws6(R.,0). The amplitudes have been converted into a grey scale with
white corresponding to large positive and black corresponding to large negative val-
ues, respectively. Billiard’s boundary I' is marked with the bold line. Let us note
that the eigenfunction Wsg(r,6) has proper boundary condition: Wsg(rpr,0r) ~ 0
(see text).

sign assignments in the “trial eigenfunction” Wsg(Rc,0). Due to experimen-
tal uncertainties and the finite step size in the measurements of | ¥y (R, 6)|?
the eigenfunctions ¥y (r,6) are not exactly zero at the boundary I'. As
the quantitative measure of the sign assignment quality we chose the in-
tegral 7y [, | ¥n(r,0)|?dl calculated along the billiard’s boundary I', where
v =7mR/2+ a is length of I". For the two cases in Fig. 3 and Fig. 4 we got
the values of 0.04 and 0.94, respectively, that clearly show that the recon-
struction of the eigenfunction Wsg(r,#) was done properly only in the first
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Fig.4. Panel (a): Another “trial eigenfunction” ¥s6(R., ) obtained from the mea-
sured | ¥36(R.,0)|?. Panel (b): Eigenfunction Wsg(r, ) reconstructed from the “trial
eigenfunction” ¥s6(R.,d) does not fulfill the boundary condition: Wss(rp,6r) ~ 0
and was rejected. The amplitudes have been converted into a grey scale with white
corresponding to large positive and black corresponding to large negative values,
respectively. Billiard’s boundary I' is marked with the bold line.

case (Fig. 3). Using the method of the “trial eigenfunction” we were able to
reconstruct 41 experimental eigenfunctions of the quarter-stadium billiard
with the level number N between 7 and 63. The remaining 16 eigefunctions
from the quantum cantori region N = 7-63 were not reconstructed due to
the problems with the measurements of | ¥y (R.,#)|? along a quarter-circle
coinciding with one of the nodal lines of ¥y (r,0).
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The localization length £ of the experimental eigenfunctions ¥y (r, #) was
estimated using the concept of the Shannon width [6,22]:

0= Bexp(= Y las Inja[?), (4)

where the numerical constant 5 = 2.46. In [14] the localization length £ was
calculated using the definition: ¢ = 2.76 min {#A; Y, |as/* > 0.99}. It
is so called the 99% probability localization length which is defined as the
minimal number of the circular eigenfunctions that are needed to support
the 99% probability of an eigenstate ¥x(r,6). The numerical constant g in
(4) was adjusted to give the same value of the rescaled localization length
o =£/Iy* in our and [6,7] calculations performed for the billiard with the
parameter ¢ = 0.05.
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Fig.5. Rescaled localization length o = £/IN** versus the scaling variable z =
e32knR in the regime of quantum cantori. Empty circles present experimental
results for the quarter-stadium billiard with ¢ = 0.1. Points were obtained by aver-
aging over 5 eigenstates. Full line marks the average value of experimental rescaled
localization length 6 = 0.78 &+ 0.03. Full squares present numerical results for the
quarter-stadium billiard with e = 0.05. Each point was obtained by averaging over
25 consecutive eigenstates. The full line shows the average value & = 0.47 + 0.01
obtained by averaging over 424 numerically calculated eigenstates (N = 76 — 499).
Only selected points are shown for clarity.

In Fig. 5 we show the rescaled localization length o calculated for the
experimental eigenfunctions ¥y (r,0) lying in the quantum cantori region
N = 7 —63 versus the scaling variable z = ¢3/2kyR. Each point is obtained
by averaging over 5 eigenstates. The least-squares fit to the experimental
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data gave the line whose slope 0.01 £ 0.12 agrees within the error with the
expected slope of 0. The average value of the rescaled localization length
was estimated to be ¢ ~ 0.78 £ 0.03

Fig. 5 provides experimental confirmation of the predicted existence of
the quantum cantori regime where the rescaled localization length of the
eigenfunctions does not depend on average on the level number N. Ob-
served fluctuating behavior of the rescaled localization length o with the
level number N was also observed in numerical calculations. It is worth to
mention that in agreement with [6] the 99% probability localization length
calculated in [14] gave less fluctuating results. Casati and Prosen [6] link
this behavior with the property of the 99% probability which is less sensitive
to the slowly decaying tails of the distributions |as|?.

Investigation of the quantum cantori regime for billiards with smaller
parameter € requires estimation of eigenfunctions with much higher level
numbers e.g., 25 < N < 500 for ¢ = 0.05. Due to experimental limitations
(e.g., step of 2 mm in measurements of |¥y(R.,0)|?) we could not do it
experimentally. Instead we decided to analyze such a billiard numerically.
Eigenfunctions of the quarter-stadium billiard (R = 20 cm, a = 1 cm, € =
a/R = 0.05) were calculated using the method based on the Green function
approach, BIM (the boundary integral method) [11,23]. It was tested [11]
that BIM allows for effective calculation of relatively low eigenvalues and
eigenfunctions of quantum billiards (N < 1000) and from this point of view it
can be treated as complementary to the method of Vergini and Saraceno [24]
used in [6] that works very efficiently for much higher N.

We show our numerical results in Fig. 5. For the billiard with the pa-
rameter € = 0.05 the rescaled localization length ¢ also does not depend on
average on the scaling variable z. Each point in these calculations is ob-
tained by averaging over 25 consecutive eigenstates. Such a behavior of the
rescaled localization length o strongly supports the existence of the quan-
tum cantori regime in quarter-stadium billiards. The average value of the
rescaled localization length o ~ 0.47 +0.01 is smaller than the one obtained
for the billiard with € = 0.1.

Knowledge of the billiard’s eigenfunctions allows us to find the struc-
ture of the energy surface in the regime of quantum cantori. For this

reason we extracted eigenfunction amplitudes C’r(l]lv) = (n,l|N) in the ba-
sis m,l of a quarter-circular billiard with radius rmax, where n = 1,2,3...
enumerates the zeros of the Bessel functions and [ = 1,2,3... is the an-
gular quantum number. The squared amplitudes |C’7(l]lv)|2 and their pro-
jections into the energy surface for the representative experimental eigen-
function (N = 36, ¢ = 0.1) and the numerical eigenfunction (N = 424,
e = 0.05) are shown in Fig. 6(a) and Fig. 6(b), respectively. In both cases
the eigenfunctions are localized in the m,l basis. The full lines on the pro-
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jection planes in Fig. 6 mark the energy surface of a quarter-circular bil-
liard H(n,l) = Ey = k3% estimated from the semiclassical formula [13]:

(maX)2 — 12 — [ arctan(I~'\/(Im™)2 — I2) + 7/4 = n. The peaks |C\M)|2
are spread almost perfectly along the line marking the energy surface. It
is worth to note that in the regimes of Wigner and Shnirelman ergodicity
investigated in rough billiards [11,13] the eigenstates are extended over the
whole energy surface.
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Fig.6. Structure of the energy surface in the regime of quantum cantori. Here we
show the squared amplitudes |C£le) |? for the eigenfunctions: (a) N = 36 (¢ = 0.1),
(b) N =424 (¢ = 0.05). In both cases the eigenfunctions are localized in the n,!
basis. Full lines show the semiclassical estimation of the energy surface (see the
text).

An additional confirmation of non-ergodic behavior of the measured and
calculated eigenfunctions can be also sought in the form of the amplitude
distribution P(¥) [21,25]. For irregular, chaotic states the probability of
finding the value ¥ at any point inside the billiard, without knowledge of
the surrounding values, should be distributed as a Gaussian, P(¥) ~ e~ v
The amplitude distributions P(@A'/?) for the experimental eigenfunction
N =36 (¢ = 0.1) and the numerical one N = 424 (¢ = 0.05) are shown in



2132 N. SAVYTSKYY ET AL.

Fig. 7. They were constructed as normalized to unity histograms with the
bin equal to 0.1. Each particular histogram was built using approximately
48000 values of an eigenfunction. The width of the amplitude distribution
P (W) was rescaled to unity by multiplying normalized to unity eigenfunction
by the factor A'/2 where A denotes billiard’s area (see formula (23) in [21]).
For all measured and calculated eigenfunctions there is no agreement with
the standard normalized Gaussian prediction Po( ¥ A'/2) = (1/y/27)e~ 7*A/2
(results presented in Fig. 7 are no exceptions) that strongly suggests that
chaos is suppressed in the quantum cantori regime.
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Fig. 7. Amplitude distribution P(% A'/?) for the eigenstates: (a) N = 36 (¢ = 0.1)
and (b) N =424 (¢ = 0.05) constructed as histograms with bin equal to 0.1. The
width of the distribution P(¥) was rescaled to unity by multiplying normalized to
unity eigenfunction by the factor A'/2, where A denotes billiard’s area. Dashed line
shows standard normalized Gaussian prediction Py(WA'/2) = (1//27)e=7"4/2.

Finally we calculated the spatial correlation function [21]
1

C(x,s) = oo (¥ (@ + 38) V' (z — 35)), (5)
(7)) 2 2
where the local average (---) is defined as follows:
A2

(1)) = / (@ + 5)2d"s.

A
~AJ2
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In the integrable circular case the spatial correlation function [21] can be
calculated analytically

Cin(r,0;s,¢) = cos l; sin(¢ — 0)] oS [;, /k?%lr? — 12 cos(¢p — 0)} ,  (6)

where (r,0) are the coordinates of a point & inside the circle billiard, s is the
distance measured from x, and ¢ is the angle of s relative to the positive x
axis. kp; is the eigenvalue of the circle billiard.

In the ergodic case the correlation function is given by

CN(CB,S) = Jo(kNS), (7)

where kpy is the wave number of the N-th eigenfunction of the ergodic bil-
liard.

Results of calculations of the spatial correlation function C(z,s) are
shown in Fig. 8 and Fig. 9.
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Fig.8. The spatial correlation function C(x,s) calculated for the experimental
eigenfunction N = 36 of the stadium billiard with € = 0.1. Panel (a): Full line
shows the correlation function calculated for (r,6) = (13.53 cm,1.03) and ¢ =0
compared to the prediction for the ergodic billiard (dashed line) and for the inte-
grable circle billiard (the eigenfunction with the quantum numbers (n,1) = (6,6))
(dotted line). Panels (b) and (c): As above but for ¢ = 7/4 and ¢ = /2, respec-
tively.



2134 N. SAVYTSKYY ET AL.

(a)

(b)

Spatial correlation function

-1.0

s[cm]

Fig.9. The spatial correlation function C'(z, s) calculated for the theoretical eigen-
function N = 424 of the stadium billiard with ¢ = 0.05. Panel (a): Full line shows
the correlation function calculated for (r,0) = (13.53 cm, 1.03) and ¢ = 0 compared
to the prediction for the ergodic billiard (dashed line) and for the integrable circle
billiard (the eigenfunction with the quantum numbers (n,l) = (12,36)) (dotted
line). Panels (b) and (c): As above but for ¢ = w/4 and ¢ = /2, respectively.

The correlation function C(x, s) for the experimental eigenfunction N =
36 of the stadium billiard with e = 0.1 is presented in Fig. 8. Figs. 8(a)—(c)
show the correlation function calculated for (r,0) = (13.53 cm, 1.03) with
¢ =0, ¢ =mn/4 and ¢ = 7/2, respectively, in the function of s compared
to the prediction for the ergodic billiard (7). The local average indicated
in (5) were in practice carried out over an area encompassing about 1.5
wavelengths. Distribution of the squared amplitudes |C’7(1]lv)|2 presented in
Fig. 6(a) shows that the eigenfunction N = 36 has mostly (n,l) = (6,6)
character. Therefore, for the completeness of the comparison the correlation
function Cjp(r,6;s,¢) is also shown. The correlation function C(zx,s) pre-
sented in Fig. 8 deviates from the prediction for the ergodic as well as for
the integrable billiards indicating that in the cantori regime the eigenfunc-
tions, although, being not completely ergodic are quite different from the
integrable ones.
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The correlation function C'(z, s) for the theoretical eigenfunction N =424
of the stadium billiard with € = 0.05 is shown in Fig. 9. The correlation func-
tion C'(x, 8) calculated for (r,0) = (13.53 cm, 1.03) with ¢ =0, ¢ = 7/4 and
¢ = m/2, respectively, is compared to the correlation function for the ergodic
billiard (7) and to the correlation function Cj,(r,6;s, ¢) (n,l) = (12,36) for
the integrable circle billiard. The quantum numbers (n,l) = (12,36) were
chosen because for them the |C7(1]lv)|2 distribution presented in Fig. 6(b) has
its maximum. The local averages in (5) were calculated over an area encom-
passing about 2.5 wavelengths. Also in this case there are discrepancies be-
tween the correlation function C'(x, s) calculated for the stadium billiard and
the correlation functions evaluated for the ergodic and integrable systems.
However, the shape of C'(x, s) is more similar to the shape of the correlation
function of the integrable system than the ergodic one. Such a behavior of
the correlation function C(«, s) could be attributed to the smaller value of
the rescaled localization length ¢ for the billiard with e = 0.05. In the limit
of the integrable circle billiard, where the formula (6) is directly applicable,
o — 1/I%*. We would like to remark that if the local average in C(z, s)
is replaced by averaging over the whole area of a billiard C'(x, s) becomes
similar to the ergodic correlation function (7), independently whether a sys-
tem is ergodic or integrable. It means that only the local average allows to
distinguish between the systems.

In summary, we evaluated experimentally and numerically eigenfunc-
tions for quarter-stadium billiards in the regime of quantum cantori. Using
the definition of the Shannon width we confirmed that in the quantum can-
tori regime the rescaled localization length of the eigenfunctions fluctuates
around a value that depends on the parameter e. We demonstrated that
in the regime of quantum cantori the eigenfunctions are localized in the n,!
basis, the amplitude distributions P( 7 AY 2) are different from the standard
normalized Gaussian prediction Py(# AY/2) = (1/v/27)e~ v?A/2 and the spa-
tial correlation functions C'(z, s) calculated for experimental and theoretical
eigenfunctions deviate from the correlation functions predicted for ergodic
and integrable systems.
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