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PROPERTIES OF EIGENFUNCTIONS INTHE QUANTUM CANTORI REGIME�Nazar Savytskyy, Szymon Bau
h, Aleksander Bª�dowskiOleh Hul, and Leszek SirkoInstitute of Physi
s, Polish A
ademy of S
ien
esLotników 32/46, 02-668 Warszawa, Poland(Re
eived June 3, 2002)We study experimentally and numeri
ally properties of quarter-stadiumbilliard's eigenfun
tions in the regime of quantum 
antori. A quarter-stadium billiard was simulated experimentally by a thin quarter-stadiummi
rowave 
avity. Experimental eigenfun
tions in the 
antori regimeN = 7�63 of the quarter-stadium mi
rowave billiard with the parame-ter " = 0:1 were re
onstru
ted using a �eld perturbation te
hnique anda 
ir
ular wave expansion method. The eigenfun
tions N = 76�499 lyingin the 
antori regime of the quarter-stadium billiard with " = 0:05 wereinvestigated numeri
ally.PACS numbers: 05.45.MtIt is well known that 
lassi
al 
haos maybe 
on�ned to the 
ertain re-gions of phase spa
e. The Kolmogorov�Arnold�Moser (KAM) theorem [1℄allows us to understand that KAM tori 
an a
t as impenetrable barriers tothe probability �ow. However, with in
reasing nonlinearity of the systemthe KAM tori break up into 
antori [2,3℄ and be
ome partially penetrable tothe 
haoti
 orbits. In the seminal paper by Geisel et al. [4℄ it was shown thatin quantum me
hani
s 
lassi
al 
antori appear to a
t as dynami
al barriersthat 
an entirely inhibit the di�usive growth. Theoreti
al analysis of 
lassi
aland quantum properties of stadium billiards has led to identi�
ation of fourdi�erent lo
alized regimes, namely, perturbative, 
antori, dynami
al and er-godi
 [5, 6, 8℄. The perturbative regime, dynami
al lo
alization regime andthe ergodi
 regime exist also in rough billiards and were subje
t of intensivetheoreti
al [9�11℄ and experimental [12, 13℄ work. Casati and Prosen [6, 7℄have shown that for the quarter-stadium billiards in the quantum 
antori� Presented at the Photons, Atoms and All That, PAAT 2002 Conferen
e, Cra
owPoland, May 31�June 1, 2002. (2123)



2124 N. Savytskyy et al.regime ( 116"�2 < N < 116"�3) the res
aled lo
alization length of the eigen-fun
tions is 
onstant. This theoreti
al �nding has been re
ently 
on�rmedexperimentally and numeri
ally in [14℄. In this paper we fo
us our attentionon experimental and numeri
al studies of properties of eigenfun
tions of aquarter-stadium billiard in the regime of quantum 
antori.Experimentally, eigenfun
tions (ele
tri
 �eld) were evaluated for the thin(height h = 8 mm) mi
rowave 
avity with the shape presented in Fig. 1. Themi
rowave 
avity simulates the quarter-stadium billiard with the parameter" = a=R = 0:1 due to the equivalen
e between the S
hrödinger equationand the Helmholtz equation for two-dimensional systems. This equivalen
eremains valid for frequen
ies less than the 
ut-o� frequen
y �
 = 
=2h '18:7 GHz, where 
 is the speed of light.
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Fig. 1. The quarter-stadium billiard with radius R and straight segment a. In theexperiment the quarter-stadium mi
rowave billiard with R = 20 
m and a = 2 
m(" = a=R = 0:1) was used. Squared eigenfun
tions j	N (R
; �)j2 were evaluated ona quarter-
ir
le of �xed radius R
 = 19 
m. Billiard's boundary � is marked withthe bold line.The eigenfun
tions 	N (r; �) (ele
tri
 �eld distribution EN (r; �) inside the
avity, N is the level number) were determined from the form of EN (R
; �)evaluated on a quarter-
ir
le of �xed radius R
 (see Fig. 1) [14℄. The pertur-bation te
hnique developed in [15℄ and used su

essfully in [15�18℄ was im-plemented in measurements of EN (R
; �)2. In this method a small perturberis introdu
ed inside the 
avity to alter its resonant frequen
y a

ording to� � �N = �N (aB2N � bE2N ) ; (1)where �N is the N th resonant frequen
y of the unperturbed 
avity, a andb are geometri
al fa
tors. Equation (1) shows that the formula 
an not beused to evaluate E2N until the term 
ontaining magneti
 �eld BN vanishes.To minimize the in�uen
e of BN on the frequen
y shift � � �N a diele
tri




Properties of Eigenfun
tions in the Quantum Cantori Regime 2125perturber [19℄ 
ontaining a small pie
e of a metalli
 pin was used. The per-turber was a diele
tri
 sphere of 3.0 mm in diameter. A small pie
e of ametalli
 pin was introdu
ed inside the perturber in order to move it with amagnet pla
ed on the top of the 
avity. The size of the pin ( 2.0 mm in lengthand 0.40 mm in diameter) was 
hosen to be the smallest possible that stillallowed the perturber to follow smoothly the magnet during its movement.Relatively weak intera
tion between the magnet and the perturber mini-mized the fri
tion between the sphere and the wall and improved a

ura
yof the perturber positioning inside the 
avity. Additionally, for the samepurpose, the inner part of the 
avity's top wall was lubri
ated. No positivefrequen
y shifts ex
eeding the un
ertainty of frequen
y shift measurements(20 kHz) were observed with this perturber. The regime of quantum 
antorifor the experimental quarter-stadium billiard (" = 0:1) should be observedfor N = 7�63. Using a �eld perturbation te
hnique we measured squaredeigenfun
tions j	N (R
; �)j2 for 41 modes out of 57 within the spe
i�ed re-gion. The range of 
orresponding eigenfrequen
ies was from �7 = 3:04 GHzto �63 = 7:59 GHz. The measurements were performed at 2 mm steps alonga quarter-
ir
le with �xed radius R
 = 19 
m. This step was small enoughto reveal in details the spa
e stru
ture of low-lying levels. In Fig. 2 we showthe examples of the squared eigenfun
tion j	N (R
; �)j2 evaluated for lev-els 12 and 36. The perturbation method used in our measurements allowsus to extra
t information about the eigenfun
tion amplitude j	N (R
; �)j atany given point of the 
avity but it doesn't allow to determine the sign of	N (R
; �) [20℄. Numeri
al 
al
ulations performed for the quarter-stadiumbilliards (e.g., [21℄) suggest the following sign-assignment strategy: We beginwith the identi�
ation of all 
lose to zero minima of j	N (R
; �)j. Then thesign �plus� maybe arbitrarily assigned to the region between the �rst and these
ond minimum, �minus� to the region between the se
ond minimum andthe third one, the next �plus� to the next region between 
onse
utive minimaand so on. In this way we 
onstru
t our �trial eigenfun
tion� 	N (R
; �). Ifthe assignment of the signs is 
orre
t we should re
onstru
t the eigenfun
tion	N (r; �) inside the billiard with the boundary 
ondition 	N (r� ; �� ) = 0.As it was proposed in [6℄ eigenfun
tions of a quarter-stadium billiardmay be expanded in terms of 
ir
ular waves (here only odd-odd states inexpansion are 
onsidered)	N (r; �) = MXs=1 asCsJ2s(kNr) sin(2s�) ; (2)where Cs = (�4 R rmax0 jJ2s(kNr)j2rdr)�1=2 and kN = 2��N=
. In Eq. (2)the number of basis fun
tions is limited to M = kNrmax=2 = lmaxN =2, withrmax = R + a. lmaxN = kNrmax is a semi
lassi
al estimate for the maximum
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θFig. 2. Squared eigenfun
tions j	N (R
; �)j2 (in arbitrary units) measured on aquarter-
ir
le with radius R
 = 19 
m with the level numbers: (a) N = 12 (�12 '3:59 GHz), (b) N = 36 (�36 ' 5:85 GHz).possible angular momentum for a given kN . Cir
ular waves with angularmomentum 2s > 2M 
orrespond to evanes
ent waves and 
an be negle
ted.Coe�
ients as may be extra
ted from the �trial eigenfun
tion� 	N (R
; �)via as = [�4CsJ2s(kNR
)℄�1 �=2Z0 	N(R
; �) sin(2s�)d� : (3)Sin
e our �trial eigenfun
tion� 	N (R
; �) is only de�ned on a quarter-
ir
le of �xed radius R
 and is not normalized we imposed normalization ofthe 
oe�
ients as: PMs=1 jasj2 = 1. Now, the 
oe�
ients as and Eq. (2) 
anbe used to re
onstru
t the eigenfun
tion 	N (r; �) of the billiard. Figs. 3 and4 show re
onstru
ted eigenfun
tion 	36(r; �) of the billiard for two di�erent
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Fig. 3. Panel (a): �Trial eigenfun
tion� 	36(R
; �) obtained from the measuredj	36(R
; �)j2 using a sign assignment strategy: (+;�;+;�; � � �). Panel (b): Eigen-fun
tion of the experimental billiard 	36(r; �) re
onstru
ted from the �trial eigen-fun
tion� 	36(R
; �). The amplitudes have been 
onverted into a grey s
ale withwhite 
orresponding to large positive and bla
k 
orresponding to large negative val-ues, respe
tively. Billiard's boundary � is marked with the bold line. Let us notethat the eigenfun
tion 	36(r; �) has proper boundary 
ondition: 	36(r� ; �� ) ' 0(see text).sign assignments in the �trial eigenfun
tion� 	36(R
; �). Due to experimen-tal un
ertainties and the �nite step size in the measurements of j	N (R
; �)j2the eigenfun
tions 	N (r; �) are not exa
tly zero at the boundary � . Asthe quantitative measure of the sign assignment quality we 
hose the in-tegral 
 R� j	N (r; �)j2dl 
al
ulated along the billiard's boundary � , where
 = �R=2 + a is length of � . For the two 
ases in Fig. 3 and Fig. 4 we gotthe values of 0:04 and 0:94, respe
tively, that 
learly show that the re
on-stru
tion of the eigenfun
tion 	36(r; �) was done properly only in the �rst
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Fig. 4. Panel (a): Another �trial eigenfun
tion� 	36(R
; �) obtained from the mea-sured j	36(R
; �)j2. Panel (b): Eigenfun
tion	36(r; �) re
onstru
ted from the �trialeigenfun
tion� 	36(R
; �) does not ful�ll the boundary 
ondition: 	36(r� ; �� ) ' 0and was reje
ted. The amplitudes have been 
onverted into a grey s
ale with white
orresponding to large positive and bla
k 
orresponding to large negative values,respe
tively. Billiard's boundary � is marked with the bold line.
ase (Fig. 3). Using the method of the �trial eigenfun
tion� we were able tore
onstru
t 41 experimental eigenfun
tions of the quarter-stadium billiardwith the level number N between 7 and 63. The remaining 16 eigefun
tionsfrom the quantum 
antori region N = 7�63 were not re
onstru
ted due tothe problems with the measurements of j	N (R
; �)j2 along a quarter-
ir
le
oin
iding with one of the nodal lines of 	N (r; �).
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tions in the Quantum Cantori Regime 2129The lo
alization length ` of the experimental eigenfun
tions 	N (r; �) wasestimated using the 
on
ept of the Shannon width [6, 22℄:` = � exp(�Xs jasj2 ln jasj2) ; (4)where the numeri
al 
onstant � = 2:46. In [14℄ the lo
alization length ` was
al
ulated using the de�nition: ` = 2:76 min f#A;Ps2A jasj2 � 0:99g. Itis so 
alled the 99% probability lo
alization length whi
h is de�ned as theminimal number of the 
ir
ular eigenfun
tions that are needed to supportthe 99% probability of an eigenstate 	N (r; �). The numeri
al 
onstant � in(4) was adjusted to give the same value of the res
aled lo
alization length� = `=lmaxN in our and [6, 7℄ 
al
ulations performed for the billiard with theparameter " = 0:05.
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xFig. 5. Res
aled lo
alization length � = `=lmaxN versus the s
aling variable x ="3=2kNR in the regime of quantum 
antori. Empty 
ir
les present experimentalresults for the quarter-stadium billiard with " = 0:1. Points were obtained by aver-aging over 5 eigenstates. Full line marks the average value of experimental res
aledlo
alization length �� = 0:78� 0:03. Full squares present numeri
al results for thequarter-stadium billiard with " = 0:05. Ea
h point was obtained by averaging over25 
onse
utive eigenstates. The full line shows the average value �� = 0:47� 0:01obtained by averaging over 424 numeri
ally 
al
ulated eigenstates (N = 76� 499).Only sele
ted points are shown for 
larity.In Fig. 5 we show the res
aled lo
alization length � 
al
ulated for theexperimental eigenfun
tions 	N (r; �) lying in the quantum 
antori regionN = 7� 63 versus the s
aling variable x = "3=2kNR. Ea
h point is obtainedby averaging over 5 eigenstates. The least-squares �t to the experimental



2130 N. Savytskyy et al.data gave the line whose slope 0:01 � 0:12 agrees within the error with theexpe
ted slope of 0. The average value of the res
aled lo
alization lengthwas estimated to be �� ' 0:78 � 0:03Fig. 5 provides experimental 
on�rmation of the predi
ted existen
e ofthe quantum 
antori regime where the res
aled lo
alization length of theeigenfun
tions does not depend on average on the level number N . Ob-served �u
tuating behavior of the res
aled lo
alization length � with thelevel number N was also observed in numeri
al 
al
ulations. It is worth tomention that in agreement with [6℄ the 99% probability lo
alization length
al
ulated in [14℄ gave less �u
tuating results. Casati and Prosen [6℄ linkthis behavior with the property of the 99% probability whi
h is less sensitiveto the slowly de
aying tails of the distributions jasj2.Investigation of the quantum 
antori regime for billiards with smallerparameter " requires estimation of eigenfun
tions with mu
h higher levelnumbers e.g., 25 < N < 500 for " = 0:05. Due to experimental limitations(e.g., step of 2 mm in measurements of j	N (R
; �)j2) we 
ould not do itexperimentally. Instead we de
ided to analyze su
h a billiard numeri
ally.Eigenfun
tions of the quarter-stadium billiard (R = 20 
m, a = 1 
m, " =a=R = 0:05) were 
al
ulated using the method based on the Green fun
tionapproa
h, BIM (the boundary integral method) [11, 23℄. It was tested [11℄that BIM allows for e�e
tive 
al
ulation of relatively low eigenvalues andeigenfun
tions of quantum billiards (N < 1000) and from this point of view it
an be treated as 
omplementary to the method of Vergini and Sara
eno [24℄used in [6℄ that works very e�
iently for mu
h higher N .We show our numeri
al results in Fig. 5. For the billiard with the pa-rameter " = 0:05 the res
aled lo
alization length � also does not depend onaverage on the s
aling variable x. Ea
h point in these 
al
ulations is ob-tained by averaging over 25 
onse
utive eigenstates. Su
h a behavior of theres
aled lo
alization length � strongly supports the existen
e of the quan-tum 
antori regime in quarter-stadium billiards. The average value of theres
aled lo
alization length �� ' 0:47� 0:01 is smaller than the one obtainedfor the billiard with " = 0:1.Knowledge of the billiard's eigenfun
tions allows us to �nd the stru
-ture of the energy surfa
e in the regime of quantum 
antori. For thisreason we extra
ted eigenfun
tion amplitudes C(N)nl = hn; ljNi in the ba-sis n; l of a quarter-
ir
ular billiard with radius rmax, where n = 1; 2; 3 : : :enumerates the zeros of the Bessel fun
tions and l = 1; 2; 3 : : : is the an-gular quantum number. The squared amplitudes jC(N)nl j2 and their pro-je
tions into the energy surfa
e for the representative experimental eigen-fun
tion (N = 36, " = 0:1) and the numeri
al eigenfun
tion (N = 424," = 0:05) are shown in Fig. 6(a) and Fig. 6(b), respe
tively. In both 
asesthe eigenfun
tions are lo
alized in the n; l basis. The full lines on the pro-
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tions in the Quantum Cantori Regime 2131je
tion planes in Fig. 6 mark the energy surfa
e of a quarter-
ir
ular bil-liard H(n; l) = EN = k2N estimated from the semi
lassi
al formula [13℄:p(lmaxN )2 � l2 � l ar
tan(l�1p(lmaxN )2 � l2) + �=4 = �n. The peaks jC(N)nl j2are spread almost perfe
tly along the line marking the energy surfa
e. Itis worth to note that in the regimes of Wigner and Shnirelman ergodi
ityinvestigated in rough billiards [11, 13℄ the eigenstates are extended over thewhole energy surfa
e.
(a)

(b)

Fig. 6. Stru
ture of the energy surfa
e in the regime of quantum 
antori. Here weshow the squared amplitudes jC(N)nl j2 for the eigenfun
tions: (a) N = 36 (" = 0:1),(b) N = 424 (" = 0:05). In both 
ases the eigenfun
tions are lo
alized in the n; lbasis. Full lines show the semi
lassi
al estimation of the energy surfa
e (see thetext).An additional 
on�rmation of non-ergodi
 behavior of the measured and
al
ulated eigenfun
tions 
an be also sought in the form of the amplitudedistribution P (	) [21, 25℄. For irregular, 
haoti
 states the probability of�nding the value 	 at any point inside the billiard, without knowledge ofthe surrounding values, should be distributed as a Gaussian, P (	) � e��	2 .The amplitude distributions P (	A1=2) for the experimental eigenfun
tionN = 36 (" = 0:1) and the numeri
al one N = 424 (" = 0:05) are shown in



2132 N. Savytskyy et al.Fig. 7. They were 
onstru
ted as normalized to unity histograms with thebin equal to 0.1. Ea
h parti
ular histogram was built using approximately48000 values of an eigenfun
tion. The width of the amplitude distributionP (	) was res
aled to unity by multiplying normalized to unity eigenfun
tionby the fa
tor A1=2, where A denotes billiard's area (see formula (23) in [21℄).For all measured and 
al
ulated eigenfun
tions there is no agreement withthe standard normalized Gaussian predi
tion P0(	A1=2) = (1=p2�)e�	2A=2(results presented in Fig. 7 are no ex
eptions) that strongly suggests that
haos is suppressed in the quantum 
antori regime.
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Fig. 7. Amplitude distribution P (	A1=2) for the eigenstates: (a) N = 36 (" = 0:1)and (b) N = 424 (" = 0:05) 
onstru
ted as histograms with bin equal to 0.1. Thewidth of the distribution P (	) was res
aled to unity by multiplying normalized tounity eigenfun
tion by the fa
tor A1=2, where A denotes billiard's area. Dashed lineshows standard normalized Gaussian predi
tion P0(	A1=2) = (1=p2�)e�	2A=2.Finally we 
al
ulated the spatial 
orrelation fun
tion [21℄C(x; s) = 1hj	(x)j2i h	(x+ 12s)	�(x� 12s)i ; (5)where the lo
al average h� � �i is de�ned as follows:hj	(x)j2i = 1�n �=2Z��=2 j	(x+ s)j2dns :
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tions in the Quantum Cantori Regime 2133In the integrable 
ir
ular 
ase the spatial 
orrelation fun
tion [21℄ 
an be
al
ulated analyti
allyCl;n(r; �; s; �) = 
os hl sr sin(�� �)i 
os hsrqk2n;lr2 � l2 
os(�� �)i ; (6)where (r; �) are the 
oordinates of a point x inside the 
ir
le billiard, s is thedistan
e measured from x, and � is the angle of s relative to the positive xaxis. kn;l is the eigenvalue of the 
ir
le billiard.In the ergodi
 
ase the 
orrelation fun
tion is given byCN (x; s) = J0(kNs); (7)where kN is the wave number of the N -th eigenfun
tion of the ergodi
 bil-liard.Results of 
al
ulations of the spatial 
orrelation fun
tion C(x; s) areshown in Fig. 8 and Fig. 9.
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s [cm]Fig. 8. The spatial 
orrelation fun
tion C(x; s) 
al
ulated for the experimentaleigenfun
tion N = 36 of the stadium billiard with " = 0:1. Panel (a): Full lineshows the 
orrelation fun
tion 
al
ulated for (r; �) = (13:53 
m; 1:03) and � = 0
ompared to the predi
tion for the ergodi
 billiard (dashed line) and for the inte-grable 
ir
le billiard (the eigenfun
tion with the quantum numbers (n; l) = (6; 6))(dotted line). Panels (b) and (
): As above but for � = �=4 and � = �=2, respe
-tively.
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s [cm]Fig. 9. The spatial 
orrelation fun
tion C(x; s) 
al
ulated for the theoreti
al eigen-fun
tion N = 424 of the stadium billiard with " = 0:05. Panel (a): Full line showsthe 
orrelation fun
tion 
al
ulated for (r; �) = (13:53 
m; 1:03) and � = 0 
omparedto the predi
tion for the ergodi
 billiard (dashed line) and for the integrable 
ir
lebilliard (the eigenfun
tion with the quantum numbers (n; l) = (12; 36)) (dottedline). Panels (b) and (
): As above but for � = �=4 and � = �=2, respe
tively.The 
orrelation fun
tion C(x; s) for the experimental eigenfun
tion N =36 of the stadium billiard with " = 0:1 is presented in Fig. 8. Figs. 8(a)�(
)show the 
orrelation fun
tion 
al
ulated for (r; �) = (13:53 
m; 1:03) with� = 0, � = �=4 and � = �=2, respe
tively, in the fun
tion of s 
omparedto the predi
tion for the ergodi
 billiard (7). The lo
al average indi
atedin (5) were in pra
ti
e 
arried out over an area en
ompassing about 1.5wavelengths. Distribution of the squared amplitudes jC(N)nl j2 presented inFig. 6(a) shows that the eigenfun
tion N = 36 has mostly (n; l) = (6; 6)
hara
ter. Therefore, for the 
ompleteness of the 
omparison the 
orrelationfun
tion Cl;n(r; �; s; �) is also shown. The 
orrelation fun
tion C(x; s) pre-sented in Fig. 8 deviates from the predi
tion for the ergodi
 as well as forthe integrable billiards indi
ating that in the 
antori regime the eigenfun
-tions, although, being not 
ompletely ergodi
 are quite di�erent from theintegrable ones.
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tions in the Quantum Cantori Regime 2135The 
orrelation fun
tion C(x; s) for the theoreti
al eigenfun
tion N=424of the stadium billiard with " = 0:05 is shown in Fig. 9. The 
orrelation fun
-tion C(x; s) 
al
ulated for (r; �) = (13:53 
m; 1:03) with � = 0, � = �=4 and� = �=2, respe
tively, is 
ompared to the 
orrelation fun
tion for the ergodi
billiard (7) and to the 
orrelation fun
tion Cl;n(r; �; s; �) (n; l) = (12; 36) forthe integrable 
ir
le billiard. The quantum numbers (n; l) = (12; 36) were
hosen be
ause for them the jC(N)nl j2 distribution presented in Fig. 6(b) hasits maximum. The lo
al averages in (5) were 
al
ulated over an area en
om-passing about 2.5 wavelengths. Also in this 
ase there are dis
repan
ies be-tween the 
orrelation fun
tion C(x; s) 
al
ulated for the stadium billiard andthe 
orrelation fun
tions evaluated for the ergodi
 and integrable systems.However, the shape of C(x; s) is more similar to the shape of the 
orrelationfun
tion of the integrable system than the ergodi
 one. Su
h a behavior ofthe 
orrelation fun
tion C(x; s) 
ould be attributed to the smaller value ofthe res
aled lo
alization length � for the billiard with " = 0:05. In the limitof the integrable 
ir
le billiard, where the formula (6) is dire
tly appli
able,� ! 1=lmaxN . We would like to remark that if the lo
al average in C(x; s)is repla
ed by averaging over the whole area of a billiard C(x; s) be
omessimilar to the ergodi
 
orrelation fun
tion (7), independently whether a sys-tem is ergodi
 or integrable. It means that only the lo
al average allows todistinguish between the systems.In summary, we evaluated experimentally and numeri
ally eigenfun
-tions for quarter-stadium billiards in the regime of quantum 
antori. Usingthe de�nition of the Shannon width we 
on�rmed that in the quantum 
an-tori regime the res
aled lo
alization length of the eigenfun
tions �u
tuatesaround a value that depends on the parameter ". We demonstrated thatin the regime of quantum 
antori the eigenfun
tions are lo
alized in the n; lbasis, the amplitude distributions P (	A1=2) are di�erent from the standardnormalized Gaussian predi
tion P0(	A1=2) = (1=p2�)e�	2A=2 and the spa-tial 
orrelation fun
tions C(x; s) 
al
ulated for experimental and theoreti
aleigenfun
tions deviate from the 
orrelation fun
tions predi
ted for ergodi
and integrable systems.N.S. a
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