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PROPERTIES OF EIGENFUNCTIONS INTHE QUANTUM CANTORI REGIME�Nazar Savytskyy, Szymon Bauh, Aleksander Bª�dowskiOleh Hul, and Leszek SirkoInstitute of Physis, Polish Aademy of SienesLotników 32/46, 02-668 Warszawa, Poland(Reeived June 3, 2002)We study experimentally and numerially properties of quarter-stadiumbilliard's eigenfuntions in the regime of quantum antori. A quarter-stadium billiard was simulated experimentally by a thin quarter-stadiummirowave avity. Experimental eigenfuntions in the antori regimeN = 7�63 of the quarter-stadium mirowave billiard with the parame-ter " = 0:1 were reonstruted using a �eld perturbation tehnique anda irular wave expansion method. The eigenfuntions N = 76�499 lyingin the antori regime of the quarter-stadium billiard with " = 0:05 wereinvestigated numerially.PACS numbers: 05.45.MtIt is well known that lassial haos maybe on�ned to the ertain re-gions of phase spae. The Kolmogorov�Arnold�Moser (KAM) theorem [1℄allows us to understand that KAM tori an at as impenetrable barriers tothe probability �ow. However, with inreasing nonlinearity of the systemthe KAM tori break up into antori [2,3℄ and beome partially penetrable tothe haoti orbits. In the seminal paper by Geisel et al. [4℄ it was shown thatin quantum mehanis lassial antori appear to at as dynamial barriersthat an entirely inhibit the di�usive growth. Theoretial analysis of lassialand quantum properties of stadium billiards has led to identi�ation of fourdi�erent loalized regimes, namely, perturbative, antori, dynamial and er-godi [5, 6, 8℄. The perturbative regime, dynamial loalization regime andthe ergodi regime exist also in rough billiards and were subjet of intensivetheoretial [9�11℄ and experimental [12, 13℄ work. Casati and Prosen [6, 7℄have shown that for the quarter-stadium billiards in the quantum antori� Presented at the Photons, Atoms and All That, PAAT 2002 Conferene, CraowPoland, May 31�June 1, 2002. (2123)



2124 N. Savytskyy et al.regime ( 116"�2 < N < 116"�3) the resaled loalization length of the eigen-funtions is onstant. This theoretial �nding has been reently on�rmedexperimentally and numerially in [14℄. In this paper we fous our attentionon experimental and numerial studies of properties of eigenfuntions of aquarter-stadium billiard in the regime of quantum antori.Experimentally, eigenfuntions (eletri �eld) were evaluated for the thin(height h = 8 mm) mirowave avity with the shape presented in Fig. 1. Themirowave avity simulates the quarter-stadium billiard with the parameter" = a=R = 0:1 due to the equivalene between the Shrödinger equationand the Helmholtz equation for two-dimensional systems. This equivaleneremains valid for frequenies less than the ut-o� frequeny � = =2h '18:7 GHz, where  is the speed of light.
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Fig. 1. The quarter-stadium billiard with radius R and straight segment a. In theexperiment the quarter-stadium mirowave billiard with R = 20 m and a = 2 m(" = a=R = 0:1) was used. Squared eigenfuntions j	N (R; �)j2 were evaluated ona quarter-irle of �xed radius R = 19 m. Billiard's boundary � is marked withthe bold line.The eigenfuntions 	N (r; �) (eletri �eld distribution EN (r; �) inside theavity, N is the level number) were determined from the form of EN (R; �)evaluated on a quarter-irle of �xed radius R (see Fig. 1) [14℄. The pertur-bation tehnique developed in [15℄ and used suessfully in [15�18℄ was im-plemented in measurements of EN (R; �)2. In this method a small perturberis introdued inside the avity to alter its resonant frequeny aording to� � �N = �N (aB2N � bE2N ) ; (1)where �N is the N th resonant frequeny of the unperturbed avity, a andb are geometrial fators. Equation (1) shows that the formula an not beused to evaluate E2N until the term ontaining magneti �eld BN vanishes.To minimize the in�uene of BN on the frequeny shift � � �N a dieletri



Properties of Eigenfuntions in the Quantum Cantori Regime 2125perturber [19℄ ontaining a small piee of a metalli pin was used. The per-turber was a dieletri sphere of 3.0 mm in diameter. A small piee of ametalli pin was introdued inside the perturber in order to move it with amagnet plaed on the top of the avity. The size of the pin ( 2.0 mm in lengthand 0.40 mm in diameter) was hosen to be the smallest possible that stillallowed the perturber to follow smoothly the magnet during its movement.Relatively weak interation between the magnet and the perturber mini-mized the frition between the sphere and the wall and improved aurayof the perturber positioning inside the avity. Additionally, for the samepurpose, the inner part of the avity's top wall was lubriated. No positivefrequeny shifts exeeding the unertainty of frequeny shift measurements(20 kHz) were observed with this perturber. The regime of quantum antorifor the experimental quarter-stadium billiard (" = 0:1) should be observedfor N = 7�63. Using a �eld perturbation tehnique we measured squaredeigenfuntions j	N (R; �)j2 for 41 modes out of 57 within the spei�ed re-gion. The range of orresponding eigenfrequenies was from �7 = 3:04 GHzto �63 = 7:59 GHz. The measurements were performed at 2 mm steps alonga quarter-irle with �xed radius R = 19 m. This step was small enoughto reveal in details the spae struture of low-lying levels. In Fig. 2 we showthe examples of the squared eigenfuntion j	N (R; �)j2 evaluated for lev-els 12 and 36. The perturbation method used in our measurements allowsus to extrat information about the eigenfuntion amplitude j	N (R; �)j atany given point of the avity but it doesn't allow to determine the sign of	N (R; �) [20℄. Numerial alulations performed for the quarter-stadiumbilliards (e.g., [21℄) suggest the following sign-assignment strategy: We beginwith the identi�ation of all lose to zero minima of j	N (R; �)j. Then thesign �plus� maybe arbitrarily assigned to the region between the �rst and theseond minimum, �minus� to the region between the seond minimum andthe third one, the next �plus� to the next region between onseutive minimaand so on. In this way we onstrut our �trial eigenfuntion� 	N (R; �). Ifthe assignment of the signs is orret we should reonstrut the eigenfuntion	N (r; �) inside the billiard with the boundary ondition 	N (r� ; �� ) = 0.As it was proposed in [6℄ eigenfuntions of a quarter-stadium billiardmay be expanded in terms of irular waves (here only odd-odd states inexpansion are onsidered)	N (r; �) = MXs=1 asCsJ2s(kNr) sin(2s�) ; (2)where Cs = (�4 R rmax0 jJ2s(kNr)j2rdr)�1=2 and kN = 2��N=. In Eq. (2)the number of basis funtions is limited to M = kNrmax=2 = lmaxN =2, withrmax = R + a. lmaxN = kNrmax is a semilassial estimate for the maximum
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θFig. 2. Squared eigenfuntions j	N (R; �)j2 (in arbitrary units) measured on aquarter-irle with radius R = 19 m with the level numbers: (a) N = 12 (�12 '3:59 GHz), (b) N = 36 (�36 ' 5:85 GHz).possible angular momentum for a given kN . Cirular waves with angularmomentum 2s > 2M orrespond to evanesent waves and an be negleted.Coe�ients as may be extrated from the �trial eigenfuntion� 	N (R; �)via as = [�4CsJ2s(kNR)℄�1 �=2Z0 	N(R; �) sin(2s�)d� : (3)Sine our �trial eigenfuntion� 	N (R; �) is only de�ned on a quarter-irle of �xed radius R and is not normalized we imposed normalization ofthe oe�ients as: PMs=1 jasj2 = 1. Now, the oe�ients as and Eq. (2) anbe used to reonstrut the eigenfuntion 	N (r; �) of the billiard. Figs. 3 and4 show reonstruted eigenfuntion 	36(r; �) of the billiard for two di�erent
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Fig. 3. Panel (a): �Trial eigenfuntion� 	36(R; �) obtained from the measuredj	36(R; �)j2 using a sign assignment strategy: (+;�;+;�; � � �). Panel (b): Eigen-funtion of the experimental billiard 	36(r; �) reonstruted from the �trial eigen-funtion� 	36(R; �). The amplitudes have been onverted into a grey sale withwhite orresponding to large positive and blak orresponding to large negative val-ues, respetively. Billiard's boundary � is marked with the bold line. Let us notethat the eigenfuntion 	36(r; �) has proper boundary ondition: 	36(r� ; �� ) ' 0(see text).sign assignments in the �trial eigenfuntion� 	36(R; �). Due to experimen-tal unertainties and the �nite step size in the measurements of j	N (R; �)j2the eigenfuntions 	N (r; �) are not exatly zero at the boundary � . Asthe quantitative measure of the sign assignment quality we hose the in-tegral  R� j	N (r; �)j2dl alulated along the billiard's boundary � , where = �R=2 + a is length of � . For the two ases in Fig. 3 and Fig. 4 we gotthe values of 0:04 and 0:94, respetively, that learly show that the reon-strution of the eigenfuntion 	36(r; �) was done properly only in the �rst
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Fig. 4. Panel (a): Another �trial eigenfuntion� 	36(R; �) obtained from the mea-sured j	36(R; �)j2. Panel (b): Eigenfuntion	36(r; �) reonstruted from the �trialeigenfuntion� 	36(R; �) does not ful�ll the boundary ondition: 	36(r� ; �� ) ' 0and was rejeted. The amplitudes have been onverted into a grey sale with whiteorresponding to large positive and blak orresponding to large negative values,respetively. Billiard's boundary � is marked with the bold line.ase (Fig. 3). Using the method of the �trial eigenfuntion� we were able toreonstrut 41 experimental eigenfuntions of the quarter-stadium billiardwith the level number N between 7 and 63. The remaining 16 eigefuntionsfrom the quantum antori region N = 7�63 were not reonstruted due tothe problems with the measurements of j	N (R; �)j2 along a quarter-irleoiniding with one of the nodal lines of 	N (r; �).



Properties of Eigenfuntions in the Quantum Cantori Regime 2129The loalization length ` of the experimental eigenfuntions 	N (r; �) wasestimated using the onept of the Shannon width [6, 22℄:` = � exp(�Xs jasj2 ln jasj2) ; (4)where the numerial onstant � = 2:46. In [14℄ the loalization length ` wasalulated using the de�nition: ` = 2:76 min f#A;Ps2A jasj2 � 0:99g. Itis so alled the 99% probability loalization length whih is de�ned as theminimal number of the irular eigenfuntions that are needed to supportthe 99% probability of an eigenstate 	N (r; �). The numerial onstant � in(4) was adjusted to give the same value of the resaled loalization length� = `=lmaxN in our and [6, 7℄ alulations performed for the billiard with theparameter " = 0:05.
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xFig. 5. Resaled loalization length � = `=lmaxN versus the saling variable x ="3=2kNR in the regime of quantum antori. Empty irles present experimentalresults for the quarter-stadium billiard with " = 0:1. Points were obtained by aver-aging over 5 eigenstates. Full line marks the average value of experimental resaledloalization length �� = 0:78� 0:03. Full squares present numerial results for thequarter-stadium billiard with " = 0:05. Eah point was obtained by averaging over25 onseutive eigenstates. The full line shows the average value �� = 0:47� 0:01obtained by averaging over 424 numerially alulated eigenstates (N = 76� 499).Only seleted points are shown for larity.In Fig. 5 we show the resaled loalization length � alulated for theexperimental eigenfuntions 	N (r; �) lying in the quantum antori regionN = 7� 63 versus the saling variable x = "3=2kNR. Eah point is obtainedby averaging over 5 eigenstates. The least-squares �t to the experimental



2130 N. Savytskyy et al.data gave the line whose slope 0:01 � 0:12 agrees within the error with theexpeted slope of 0. The average value of the resaled loalization lengthwas estimated to be �� ' 0:78 � 0:03Fig. 5 provides experimental on�rmation of the predited existene ofthe quantum antori regime where the resaled loalization length of theeigenfuntions does not depend on average on the level number N . Ob-served �utuating behavior of the resaled loalization length � with thelevel number N was also observed in numerial alulations. It is worth tomention that in agreement with [6℄ the 99% probability loalization lengthalulated in [14℄ gave less �utuating results. Casati and Prosen [6℄ linkthis behavior with the property of the 99% probability whih is less sensitiveto the slowly deaying tails of the distributions jasj2.Investigation of the quantum antori regime for billiards with smallerparameter " requires estimation of eigenfuntions with muh higher levelnumbers e.g., 25 < N < 500 for " = 0:05. Due to experimental limitations(e.g., step of 2 mm in measurements of j	N (R; �)j2) we ould not do itexperimentally. Instead we deided to analyze suh a billiard numerially.Eigenfuntions of the quarter-stadium billiard (R = 20 m, a = 1 m, " =a=R = 0:05) were alulated using the method based on the Green funtionapproah, BIM (the boundary integral method) [11, 23℄. It was tested [11℄that BIM allows for e�etive alulation of relatively low eigenvalues andeigenfuntions of quantum billiards (N < 1000) and from this point of view itan be treated as omplementary to the method of Vergini and Saraeno [24℄used in [6℄ that works very e�iently for muh higher N .We show our numerial results in Fig. 5. For the billiard with the pa-rameter " = 0:05 the resaled loalization length � also does not depend onaverage on the saling variable x. Eah point in these alulations is ob-tained by averaging over 25 onseutive eigenstates. Suh a behavior of theresaled loalization length � strongly supports the existene of the quan-tum antori regime in quarter-stadium billiards. The average value of theresaled loalization length �� ' 0:47� 0:01 is smaller than the one obtainedfor the billiard with " = 0:1.Knowledge of the billiard's eigenfuntions allows us to �nd the stru-ture of the energy surfae in the regime of quantum antori. For thisreason we extrated eigenfuntion amplitudes C(N)nl = hn; ljNi in the ba-sis n; l of a quarter-irular billiard with radius rmax, where n = 1; 2; 3 : : :enumerates the zeros of the Bessel funtions and l = 1; 2; 3 : : : is the an-gular quantum number. The squared amplitudes jC(N)nl j2 and their pro-jetions into the energy surfae for the representative experimental eigen-funtion (N = 36, " = 0:1) and the numerial eigenfuntion (N = 424," = 0:05) are shown in Fig. 6(a) and Fig. 6(b), respetively. In both asesthe eigenfuntions are loalized in the n; l basis. The full lines on the pro-



Properties of Eigenfuntions in the Quantum Cantori Regime 2131jetion planes in Fig. 6 mark the energy surfae of a quarter-irular bil-liard H(n; l) = EN = k2N estimated from the semilassial formula [13℄:p(lmaxN )2 � l2 � l artan(l�1p(lmaxN )2 � l2) + �=4 = �n. The peaks jC(N)nl j2are spread almost perfetly along the line marking the energy surfae. Itis worth to note that in the regimes of Wigner and Shnirelman ergodiityinvestigated in rough billiards [11, 13℄ the eigenstates are extended over thewhole energy surfae.
(a)

(b)

Fig. 6. Struture of the energy surfae in the regime of quantum antori. Here weshow the squared amplitudes jC(N)nl j2 for the eigenfuntions: (a) N = 36 (" = 0:1),(b) N = 424 (" = 0:05). In both ases the eigenfuntions are loalized in the n; lbasis. Full lines show the semilassial estimation of the energy surfae (see thetext).An additional on�rmation of non-ergodi behavior of the measured andalulated eigenfuntions an be also sought in the form of the amplitudedistribution P (	) [21, 25℄. For irregular, haoti states the probability of�nding the value 	 at any point inside the billiard, without knowledge ofthe surrounding values, should be distributed as a Gaussian, P (	) � e��	2 .The amplitude distributions P (	A1=2) for the experimental eigenfuntionN = 36 (" = 0:1) and the numerial one N = 424 (" = 0:05) are shown in



2132 N. Savytskyy et al.Fig. 7. They were onstruted as normalized to unity histograms with thebin equal to 0.1. Eah partiular histogram was built using approximately48000 values of an eigenfuntion. The width of the amplitude distributionP (	) was resaled to unity by multiplying normalized to unity eigenfuntionby the fator A1=2, where A denotes billiard's area (see formula (23) in [21℄).For all measured and alulated eigenfuntions there is no agreement withthe standard normalized Gaussian predition P0(	A1=2) = (1=p2�)e�	2A=2(results presented in Fig. 7 are no exeptions) that strongly suggests thathaos is suppressed in the quantum antori regime.
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Properties of Eigenfuntions in the Quantum Cantori Regime 2133In the integrable irular ase the spatial orrelation funtion [21℄ an bealulated analytiallyCl;n(r; �; s; �) = os hl sr sin(�� �)i os hsrqk2n;lr2 � l2 os(�� �)i ; (6)where (r; �) are the oordinates of a point x inside the irle billiard, s is thedistane measured from x, and � is the angle of s relative to the positive xaxis. kn;l is the eigenvalue of the irle billiard.In the ergodi ase the orrelation funtion is given byCN (x; s) = J0(kNs); (7)where kN is the wave number of the N -th eigenfuntion of the ergodi bil-liard.Results of alulations of the spatial orrelation funtion C(x; s) areshown in Fig. 8 and Fig. 9.
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s [cm]Fig. 9. The spatial orrelation funtion C(x; s) alulated for the theoretial eigen-funtion N = 424 of the stadium billiard with " = 0:05. Panel (a): Full line showsthe orrelation funtion alulated for (r; �) = (13:53 m; 1:03) and � = 0 omparedto the predition for the ergodi billiard (dashed line) and for the integrable irlebilliard (the eigenfuntion with the quantum numbers (n; l) = (12; 36)) (dottedline). Panels (b) and (): As above but for � = �=4 and � = �=2, respetively.The orrelation funtion C(x; s) for the experimental eigenfuntion N =36 of the stadium billiard with " = 0:1 is presented in Fig. 8. Figs. 8(a)�()show the orrelation funtion alulated for (r; �) = (13:53 m; 1:03) with� = 0, � = �=4 and � = �=2, respetively, in the funtion of s omparedto the predition for the ergodi billiard (7). The loal average indiatedin (5) were in pratie arried out over an area enompassing about 1.5wavelengths. Distribution of the squared amplitudes jC(N)nl j2 presented inFig. 6(a) shows that the eigenfuntion N = 36 has mostly (n; l) = (6; 6)harater. Therefore, for the ompleteness of the omparison the orrelationfuntion Cl;n(r; �; s; �) is also shown. The orrelation funtion C(x; s) pre-sented in Fig. 8 deviates from the predition for the ergodi as well as forthe integrable billiards indiating that in the antori regime the eigenfun-tions, although, being not ompletely ergodi are quite di�erent from theintegrable ones.



Properties of Eigenfuntions in the Quantum Cantori Regime 2135The orrelation funtion C(x; s) for the theoretial eigenfuntion N=424of the stadium billiard with " = 0:05 is shown in Fig. 9. The orrelation fun-tion C(x; s) alulated for (r; �) = (13:53 m; 1:03) with � = 0, � = �=4 and� = �=2, respetively, is ompared to the orrelation funtion for the ergodibilliard (7) and to the orrelation funtion Cl;n(r; �; s; �) (n; l) = (12; 36) forthe integrable irle billiard. The quantum numbers (n; l) = (12; 36) werehosen beause for them the jC(N)nl j2 distribution presented in Fig. 6(b) hasits maximum. The loal averages in (5) were alulated over an area enom-passing about 2.5 wavelengths. Also in this ase there are disrepanies be-tween the orrelation funtion C(x; s) alulated for the stadium billiard andthe orrelation funtions evaluated for the ergodi and integrable systems.However, the shape of C(x; s) is more similar to the shape of the orrelationfuntion of the integrable system than the ergodi one. Suh a behavior ofthe orrelation funtion C(x; s) ould be attributed to the smaller value ofthe resaled loalization length � for the billiard with " = 0:05. In the limitof the integrable irle billiard, where the formula (6) is diretly appliable,� ! 1=lmaxN . We would like to remark that if the loal average in C(x; s)is replaed by averaging over the whole area of a billiard C(x; s) beomessimilar to the ergodi orrelation funtion (7), independently whether a sys-tem is ergodi or integrable. It means that only the loal average allows todistinguish between the systems.In summary, we evaluated experimentally and numerially eigenfun-tions for quarter-stadium billiards in the regime of quantum antori. Usingthe de�nition of the Shannon width we on�rmed that in the quantum an-tori regime the resaled loalization length of the eigenfuntions �utuatesaround a value that depends on the parameter ". We demonstrated thatin the regime of quantum antori the eigenfuntions are loalized in the n; lbasis, the amplitude distributions P (	A1=2) are di�erent from the standardnormalized Gaussian predition P0(	A1=2) = (1=p2�)e�	2A=2 and the spa-tial orrelation funtions C(x; s) alulated for experimental and theoretialeigenfuntions deviate from the orrelation funtions predited for ergodiand integrable systems.N.S. aknowledges partial support by the Polish State Committee for Si-enti� Researh (KBN) under grant no 2 P03B 085 22. S.B., O.H. and L.S.aknowledge partial support by the Polish State Committee for Sienti�Researh (KBN) under grant no 2 P03B 023 17.
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