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In the present paper, we analyze several factors which limit the fringe
contrast in atom interferometers of the Mach—Zehnder type. We consider
only the case of interferometers operating with thermal atoms, as there
are very specific problems in this case. All the effects considered here are
already known to reduce the fringe contrast but the quantitative analysis
was not complete. In particular, vibrations play a very important role:
a static description of the grating motions is not sufficient and dynamical
effects must be taken into account. Such a description has been already
made by Schmiedmayer et al. in their contribution to the book “Atom
Interferometry” (1997). We recall this description and we discuss further
some results of this calculation.

PACS numbers: 03.75.Dg, 32.80.Lg, 39.20.4+q

1. Introduction

Atom interferometry has developed very rapidly since 1991 and an ex-
cellent overview of this field and of its applications can be found in the book
“Atom Interferometry” [1]. With thermal atoms, the interferometers are
usually of the Mach—Zehnder or of the Ramsey—Bordé types. In the present
paper, we discuss the fringe contrast C (also called visibility and defined by
C = [Imax — Imin]/[Imax + Imin]) and we consider only the particular case of
Mach—Zehnder interferometers using an elastic diffraction process and ther-
mal atoms. Several such interferometers have been built and operated:
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e in 1991, an interferometer was built by Pritchard and co-workers using
sodium atom and diffraction on material gratings [2]; the contrast
initial value was 13% value and it has been improved up to 49% [3];

e in 1995, Zeilinger and co-workers [4] operated an interferometer, using
metastable argon and laser diffraction in the Raman—Nath regime,
with a 10% contrast;

e also in 1995, Lee and co-workers [5] built an interferometer, using
metastable neon and laser diffraction in the Bragg regime, with a 62%
contrast;

e in 2001, Toennies and co-workers [6] have operated an interferometer
with material gratings, using ground state helium atom, with a 71 %
contrast;

e also in 2001, our group [7] has built an interferometer, using lithium
atom and laser diffraction in the Bragg regime, with a 74% contrast.

The quest for improving the contrast and reaching a value close to its
theoretical maximum C = 1 is now more than 10 years long and we think
that elucidating the factors which limit the contrast is a very interesting task
for the following reasons. One important use of an interferometer is to make
phase measurements and, in this case, assuming a Poisson statistics for the
noise, as it is usually the case, the measurement accuracy increases with the
figure of merit given by IC? where I is the output flux. An interferome-
ter can also be used in a different way, as in the case of the measurement
of the index of refraction of gases for atomic waves [3,8,9]. In this case,
the contrast decreases when one of the two interfering beams is attenuated
as a result of the existence of an imaginary part of the index of refrac-
tion. The relation between the contrast and the imaginary part of the index
is simple to analyze only if the initial value of the contrast is well under-
stood. Finally, several authors [10-12| have developed calculations of the
quantum decoherence of the atomic wave during its propagation through
an atomic interferometer. This decoherence may have various fundamental
origins (gravitational waves, space-time foam, etc.) and the main experi-
mental consequence is the reduction of the fringe contrast. If this effect is
not vanishingly small, its observation will be very difficult as the source of
decoherence cannot be switched on and off. Obviously, such observation will
be feasible only if an excellent understanding of all the other factors limiting
the contrast is available.

In the present paper, we will consider separately two important fac-
tors which limit the fringe contrast. Some aspects of this question have
already been discussed: previous works by Turchette et al. [13] and by our
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group [14] were made to evaluate the fringe contrast in Mach—Zehnder inter-
ferometers in the presence of alignment defects. Here, we will assume that
these alignment defects are negligible and we consider other effects induc-
ing a contrast reduction. Starting from a simplified calculation of the wave
propagation (Section 2), we evaluate the contrast loss due to imperfect sep-
aration of the exit beams (Section 3), the general effects of phase averaging
(Section 4), the role of interferometer vibrations (Section 5). The effects
of vibrations were already discussed in a review paper written by Schmied-
mayer et al. [3] and our goal here is to complete some aspects of their dis-
cussion.

2. Simple calculation of the fringe contrast

We consider a Mach—Zehnder atom interferometer schematically repre-
sented in figure 1 and we will use a simplified description in which each beam
is described by a plane wave. Obviously, the plane waves must be truncated
in the transverse direction (direction z in figure 1), so that the various beams
do not overlap everywhere. The paper by Turchette et al. [13] and our pre-
vious paper [14] used a detailed calculation of the wave propagation in such
interferometer: this rather complex analysis, involving Fresnel diffraction, is
necessary to discuss several alignment defects. For instance, when the dis-
tances Lo and Loz between consecutive gratings are slightly different, the
waves which interfere on the detector present similar diffraction patterns
slightly displaced in the = direction and, obviously, a complete calculation
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Fig. 1. Schematic drawing of a three grating Mach—Zehnder atom interferometer,
in the Bragg diffraction geometry. The atomic beam is collimated by two slits and
is diffracted by the three gratings. The main exit beams, labeled 1 and 2, carry
complementary signals. The notations for the distances are defined and the z, vy,
z axes are represented.
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involving diffraction theory is necessary to get the spatial dependence of the
relative phase of these two waves. In the present discussion, we consider that
this type of alignment defects are fully negligible and we focus our attention
on simpler but practically important effects. A schematic drawing of the
rays inside the interferometer appears in figure 1. The incident atomic wave
of vector k is written as

¥ = exp(ikr). (1)

The beam produced by diffraction of order p; by grating G'; is described by
a plane wave

¥ = exp(ikr)a;(p;) exp (ipjkaj (r —rj)) . (2)

This equation is exact in the case of Bragg diffraction geometry [15-17].
It is a first order approximation in power of kg;/k when the wavevectors k
and kg, are almost perpendicular. In this equation, «;(p;) is the diffraction
amplitude of order p; by grating G;. The wavevector k¢, of grating j is in
the plane of the grating, perpendicular to the grating lines and of modulus
kgj = 2m/a, where a is the grating period, the same for the three gratings.
In the case of diffraction by a laser of wavelength A, a; = A/2. Finally, r; is
a coordinate which measures the position of a reference point in grating G;.
The dependence of the phase of the diffracted beam with the position of
the grating in its plane is not pointed out in most textbooks on diffraction
but it has very important consequences. Because the grating is a periodic
structure, this phase factor must be periodic function of r;, with a period
equal to the grating period. We can then calculate the two waves exiting
from the interferometer by the exit labeled 1 in figure 1. The wave following
the upper path (corresponding to the diffraction orders p, —p and 0 by
grating G, Gy and G3, respectively) is given by

¥y = ai(p)az(—p)as(0)
x exp [i (k + pkg1 — pkga) r] exp [ip (kgara — kgim1)] (3)

and the wave following the lower path (corresponding to the diffraction or-
ders 0, p and —p by grating G, G2 and G3, respectively) is given by

% = a1(0)az(p)as(—p)
x exp [i (k + pkga — pkas) r]exp [ip (kgsrs — kgara)] . (4)
These two waves interfere on the detector and the resulting intensity is

given by
) 2
I = /d T ‘

Wu + Wl 3 (5)
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where the integral is carried over the detector surface. Fringes will appear
over the detector area if the condition

ka1 +kas = 2kao (6)

is not fulfilled. In the experiments, this condition is verified thanks to a fine
tuning of the orientation of one grating in its plane. As any small deviation
induces a large contrast loss, we assume that this condition is well fulfilled.
Then, the integration appearing in equation (5) becomes trivial, as |&, + %]
is independent of ». We can thus write for the two waves in a simplified
form, ¥, = ayexp (ipy) and ¥ = ajexp (iy)), assuming the amplitudes ay
and a; as real and positive. In the phases ¢, and ¢, we may distinguish
three contributions

e the phases of the products of diffraction amplitudes «;(p;). These
phases are not negligible and they may present some dispersion, result-
ing from the dispersion of some parameters (for instance, the velocity
of the atomic wave). The analysis of these phases requires a complete
modeling of the diffraction process. For material gratings, one must
take into account atom-grating van der Waals interaction [14,18] and
for laser diffraction, one must calculate the propagation inside the laser
standing waves [19]. This analysis is beyond the scope of the present

paper;

e the phases associated to the grating positions come from the arguments
of the last exponential in equations (3) and (4). The dependence of
these phases with the grating positions are used to sweep the inter-
ference pattern and to measure the fringe contrast. But these phases
are also sensitive to the vibrations of the interferometer and this effect
may reduce the fringe contrast, as discussed below in part V;

e another effect has been forgotten up to now, because we have implic-
itly assumed that the atomic waves propagate in free space. Inside
the interferometer, the two atomic paths are separated in space and
therefore submitted to slightly different environments, the dominant
effect being due to the gradient of the magnetic field. The propagation
phases for the two paths are slightly different and the phase difference
is usually a function of the atom internal sublevels. This last effect,
which has been discussed by Giltner in his thesis [20] and in the review
paper written by Schmiedmayer et al. [8], will not be studied in the
present paper.

The intensity I; of the beam labeled 1 in figure 1 is given by
I = (Zﬁ + a12 + 2aya1 COS(SDH - SDI) = I mean [1 + CCOS(QDH - 301)] ) (7)
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where the fringe contrast C is given by

. 2ayar 2\/p
Cai4al 1+p

(8)

Here p is the ratio of the intensities carried by the two interfering beams,
p = a%/a?. The contrast as a function of p is plotted in figure 2. Because
the contrast C is a symmetric function of ay and qj, the contrast has the
same value when the value of p is replaced by its inverse. Any amplitude
mismatch reduces the contrast, but this effect is surprisingly slow. For p
close to 1, p =1+ ¢, then C ~ 1 — (¢2/8). Even if the intensities differ by
factor 4 (p = 0.25 or 4), the contrast remains large, C = 0.8.
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Fig. 2. Fringe contrast C for a two beam interference as a function of the intensity
ratio p. Near p = 1, the contrast goes through a very flat maximum Cpax = 1.

Because the Mach—Zehnder interferometer is highly symmetric, if the
first and third gratings have the same diffraction efficiency, no amplitude
mismatch is theoretically expected for the beams interfering at exit 1. In
an experiment, a small amplitude mismatch will usually result from some
minor defects of the interferometer but the present result proves that a small
mismatch does not induce a noticeable contrast loss.

3. Contrast loss due to imperfect separation of exit beams

This effect is typical of atom interferometers using thermal atoms and
elastic diffraction. Because of the use of elastic diffraction, exit beams are
distinguished only by their position in space. Moreover, because of the very
small values of the diffraction angle which is a direct consequence of the very
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small value of the de Broglie wavelength of thermal atoms, it is difficult to
prevent any stray beam from reaching the detector. This effect may reduce
considerably the fringe contrast.

As discussed in our previous work [14], this effect is stronger with phase
gratings than with amplitude gratings. With amplitude gratings, a large
contrast can be obtained even if the detector is located just behind the third
grating G3. This result has been explained by the Moiré filtering by the
third grating of the atomic standing wave produced in its plane by the two-
beam interference [8] and this remark can be used to make a quantitative
calculation of the contrast when the detector is in the plane of the grating Gis.
With phase gratings, the total intensity of the various beams exiting from
grating (i3 is obviously independent of its position and the contrast vanishes
if the detector is in the G3 plane. The interference signals carried by the exit
beams labeled 1 and 2 are complementary and to observe fringes with a good
contrast, one must put the detector in a region where these two beams do
not overlap. Assuming that the dominant contribution to the stray intensity
is due to the beam labeled 2 in figure 1, we can write the total detected
intensity due to stray beams in a form very similar to equation (7), but with
an opposite contrast

Istray = Ismean [1 —Cs COS(‘PU - 301)] : (9)

The total signal is the sum of Iy and Iy and the associated contrast Ciot
is smaller than C

I I
Ctot -C 1 mean _C s mean ) (10)

s
Il mean T Is mean Il mean T Is mean

A small admixture of stray beams may strongly reduce the contrast and,
as expected, this effect is larger if the stray signal comes from a comple-
mentary beam with a large contrast Cs. For example, with an intensity ratio
Ismean/ 1 mean = 0.1, the contrast is multiplied by 0.91 if the contrast carried
by the stray beam vanishes (Cg5 = 0) and by 0.82 if the contrast of the stray
beam is equal to the contrast of the main beam (i.e. Cs = C). The optimiza-
tion of the total contrast Cio requires the best possible rejection of the stray
beams and this optimization induces a large intensity loss. However, the best
phase sensitivity, corresponding to the largest value the product IiotC2,, is
obtained with very different conditions: such an optimization has been re-
alized by Pritchard and co-workers when they used their interferometer as
a gyrometer [21].

We have made a calculation of the role of stray beams in our Bragg
diffraction interferometer, assuming that the diffraction gratings are equiv-
alent to 50% beam splitters and 100% reflective mirrors. In this case, the
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interferometer produces only the two exit beams, labeled 1 and 2 on figure
1, and no other stray beams. Both beams carry the same total intensity
with opposite contrast equal to 100%. Neglecting completely diffraction by
the collimating slits, we describe these two exit beams as in Ramsey’s book
“Molecular Beams’ [22], with a trapezoidal intensity profile depending on
the widths and separation of the slits and of the distance. Assuming that
the detector slit is centered on the axis of the exit beam 1, we have calculated
the contrast as a function of the distance of the detector slit to the third
grating Gjs, for various choices of the slit widths. These results are com-
pared in figure 3 to the results of the full calculation involving diffraction,
developed in our previous work [14]. The agreement is good, the largest
differences being of the order of a few %, and this simple calculation may
be useful for optimizing the design of an interferometer.
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Fig.3. Fringe contrast C in a Bragg atom interferometer as represented in figure
1: the contrast is plotted as a function of the distance Ls4 from third grating
to the slit Sp defining the effective detector width. Three cases are considered
corresponding to three choices of the slits widths (given in the following order:
collimating slits Sp and Sy, detector slit Sp). The symbols represent the results of
the simple calculation neglecting diffraction while the curves represent the results
of the complete calculation.

4. Contrast reduction due to phase averaging

An important effect explaining contrast reduction is the existence of
some phase averaging. A phase averaging may be due either to temporal
averaging (this will be illustrated in the next section by the vibrations of
the interferometer) or to an internal state averaging (for instance, due to
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the effect of a stray magnetic field) or finally to wavefront distortions, corre-
sponding to a spatial dependence of the propagation phases (the analogous
effect is well known in optics and here it may take its origin in the diffraction
phases due to the gratings). If the phase difference § = ¢, — ¢ appearing in
equation (7) is randomly distributed around a mean value dpean, the aver-
aging effect induces a contrast loss. We assume that the phase distribution
is Gaussian with a variance o

ds . (11)

oV 2w

Then, after averaging the intensity given by equation (7) over this phase
distribution, we get

g

2
I = I mean [1 + C co8(0mean) €xP <—7)] . (12)

The resulting contrast C is related to the contrast C given by equation (8)

g

C=_Cexp <—;) . (13)

This equation will be applied to evaluate the effect of the vibrations of the
grating positions.

5. Effects of vibrations on the fringe contrast

When the manuscript of this paper was almost completed, we found
that the equations written below appear already in the review paper by
Schmiedmayer et al. [3]. We have decided to keep a brief derivation here
and to insist on a few remarks which may be useful.

5.1. A naive view

We use equation (7) involving the phases ¢y, and ¢, considering only the
part of these phases which depends on the grating positions (see equations
(3) and (4)). This part of the phase difference is given by

ou — 1 = pka (229 — 1 — z3) (14)

the wavevectors of the three gratings being exactly parallel to the z-axis.
We will call bending of the interferometer bar the quantity b = 229 —z1 —x3.
It seems reasonable to consider that, as a result of vibrations, the bending b
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is randomly distributed around its mean value with a variance op, (and during
the experiments, the mean value of b is swept to record fringes). The phase
difference (¢y — ¢1) is also randomly distributed, with a variance o

o = pkgoy . (15)

Therefore, the contrast depends on the diffraction order p in the following
manner

Coinal = Coexp (—yp?) , (16)

where the factor v is given by
v = k&0 /2. (17)

This simple calculation gives a practically important result, the contrast
is a Gaussian function of the diffraction order p. However, this simple cal-
culation does not explicitly consider the motions of the three gratings. As
atom interferometers are very sensitive to inertial effects, i.e. to rotations
(through Sagnac effect) and to accelerations [3,23], a complete calculation
should also consider these effects.

5.2. The role of inertial effects

Equations (7) and (14) are valid provided that, in the phase, we take
for the origins of the grating j their values at the times ¢;, at which the
atomic wavepacket goes through the corresponding grating j. We then get
the response of the interferometer to one atomic wavepacket

I = Iimean [1 4+ C eos (phe (22a(t2) — a1(t1) = w3(t3)) )] - (19)

A real experimental signal is obtained by averaging over many wavepackets
collected during a time period which is usually long with respect to the
characteristic vibrational periods. To give a simpler form to equation (18),
we expand the quantity (2z2(t2) — z1(t1) — x3(t3)) in powers of the time
difference T = ty — t; = t3 — to = Lia/v up to the term in T2. In the
equation defining T', L1s = Log is the distance between consecutive gratings
(see figure 1) and v is the atom velocity. We first express z;(¢1) and z3(t3)
as a function of their value at time ¢

a1, T2

Il(tl) = Il(tg) - UlzT + 112 y (19)
a31T2

z3(t3) = x3(t2) + v3 T + . (20)

2
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The velocities vj; and the accelerations aj; are measured by reference to
a Galilean frame and, although they are fluctuating functions of time, we
assume that they can be considered as constant over the time interval T'.
We thus get

[2z2(t2) — @1(t1) — z3(t3)] = [272(t2) — 21(t2) — 23(t2)]

[alx + GSm] T?

: (21)

- [U3x - Ulm] T -

In this equation, we recognize three contributions:

e the first term is the instantaneous bending of the interferometer bar
b(ta) = 2x9(t2) — z1(t2) — x3(t2), evaluated at time to, i.e. at the
center of the time interval spent by the atomic wavepacket in the
interferometer;

e the second term corresponds to the usual Sagnac effect. The velocity
difference (vs; — vi1y) is equal to (v3y — viy) = 262y L12, where 2, is
the y-component of the angular velocity of the interferometer bar.
Following equation (18), the associated phase term is

A(pSagnac = 2pkg.QyTL12 . (22)

It is very easy to write this result in the classic form of the Sagnac
phase shift A®gagnac = 2mASL2, /h where A is the area enclosed by the
two atomic paths in the interferometer, A = pkgL3,/k ;

e the third term describes the sensitivity to acceleration and is classic
too. A small difference with the usual form of this term comes from
the fact that we have considered different accelerations for the two
extreme gratings. The phase shift is equal to

1
ADyee. = Eka (alm + a3m) T? = pkaax rneanT2 ) (23)

where dymean 1S the mean value of the acceleration of grating Gy
and G3.

We can calculate the contrast reduction if we assume that each of the
three quantities b(t2), 2y and axmean are independently distributed with
a Gaussian probability distribution, with the associated variance oy, 0y and
0ax- For the angular velocity and for the acceleration, the mean values are
not equal to zero as a result of Earth motion with respect to a Galilean frame.
If the atomic wave is not monochromatic (i.e. if the velocity distribution is
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not very narrow), these nonzero values introduce a further reduction of the
contrast because these phases depend on the atom velocity. This effect,
which has been observed by Kasevich and co-workers [24,25] in the case of
the Sagnac phase, is small and will be neglected here. The contrast is still
given by equation (16) with a generalized value of the coefficient v

k% 1 2 2)2 k&
v = 7 (Ub —+ (QO'QyL12T) + (UazT ) ) = TUeff : (24)

5.3. Experimental test of this contrast loss

Up to now, only one Mach—Zehnder interferometer was run with differ-
ent diffraction orders. This was done by Giltner, McGowan and Lee [5],
who measured the following fringe contrasts 62% for order p = 1, 22% for
order p = 2 and 7% for order p = 3. In a separate study [20], they applied
a magnetic field gradient and they observed the contrast reduction due to
the dependence of the propagation phases with the magnetic quantum num-
ber M. From this study, it appears that, in the absence of an applied
gradient, the contrast loss due to the gradient of the stray magnetic field
is fully negligible. Therefore, we may think that equations (16) and (24)
explain the variation of the contrast with the order p. Figure 4 presents a fit
of equation (16) to this data. The fit is very good and this success supports
the idea that the dependence of fringe contrast with the diffraction order are
due to vibrations. The values of the fitted parameters are interesting too:

10 Fringe contrast C
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0,7—-
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0,3—-
0,2—-

0,14

0,0 - T T T T T
0 1 2 3
Diffraction order p

Fig. 4. Fringe contrast C measured by Giltner, McGowan and Lee ( [5]) as a function
of the diffraction order p. The curve is the best fit following equation (16).
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e the fitted value of Cy is equal to 86 &= 6%: this excellent value of the
contrast would have been reached in the absence of vibrations;

e the value of 7y is equal to v = 0.325+0.037 corresponding to a value of
Oeff 41 nm (in this experiment, the wavelength of the laser standing
waves is A, =640 nm, corresponding to grating wavevectors kg =4m /Ar).
In this apparatus, as done previously by the group of Pritchard [2],
an optical Mach—Zehnder interferometer linked to the gratings of the
atom interferometer is used to measure the instantaneous value of the
bending b (in this case, the gratings being laser standing waves, the
positions are those of the mirrors). This measurement has been used
to reduce the vibration noise on the bending b, by acting on one of
the mirror z-position with a piezoelectric actuator, thanks to a servo-
loop. From the residual error signal of the servo-loop, S.A. Lee and
co-workers [5] have estimated that they “were able to hold the relative
positions of the three mirrors within 20nm?”. It is difficult to convert
this information in the variance of a Gaussian distribution, but it is
likely that the variance oy is substantially smaller than 41 nm. This
result suggests that the two other terms contribute very substantially
tO Oeff-

A final comment concerns equation (21). The interference phase appears
to be sensitive to the velocities and accelerations of the two extreme gratings
G and (73, but not to the same quantities for the central grating G. This
surprising result is related to the fact that this grating plays a similar role for
both atomic paths and this double role induces a cancellation effect. There-
fore, provided that the approximations made in this derivation are good,
a very interesting consequence is that, to reduce the bending vibrations, one
should act on the central grating G2 and not on the extreme gratings G
and Gj3. This action will reduce the value of g, without increasing the two
other terms appearing in equation (24), which will remain unaffected.

6. Conclusion

We have given a simple discussion of several important effects which re-
duce the fringe contrast in Mach—Zehnder atom interferometers, using elastic
atom diffraction. We think that an excellent fringe contrast is useful for ac-
curate measurements and also for more fundamental studies of decoherence
processes and that the present analysis will be useful for further improve-
ments of atom interferometers.
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The first effect discussed is the overlap of exit beams and this effect has
been illustrated by a calculation of the contrast as a for various collimating
slits: we have shown that a simple calculation neglecting completely diffrac-
tion by the slits is sufficient to predict accurately the contrast when the
complementary exits of the interferometer are not fully separated.

The second effect discussed here is the role of vibrations of the grat-
ing positions. Since the development of three grating interferometers with
neutrons, it is clear that an excellent stability of the relative positions of
the three gratings is necessary. As done before by Schmiedmayer et al. [3],
we have completed this discussion by taking into account the fact that the
atom wavepackets sample the positions of the three gratings at different
times, thus showing that the atom interferometers are sensitive not only to
the instantaneous bending of the interferometer bar but also to its rotation
and its acceleration, measured at the position of the two extreme gratings.

The predicted dependence of the fringe contrast with the order of diffrac-
tion explains very well the values measured by Lee and co-workers: this result
suggests that, in the absence of vibrations, the contrast would have been ex-
cellent in this apparatus and also that, in the observed contrast reduction,
the rotation and acceleration terms were probably important.

We thank C. Champenois for her contribution to an early phase of this
work and Région Midi Pyrénées for financial support.
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