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FRINGE CONTRAST IN MACH�ZEHNDERATOM INTERFEROMETERS�R. Delhuille, A. Miffre, B. Viaris de Lesegno, M. Bü
hnerC. Rizzo, G. Tréne
 and J. ViguéLaboratoire Collisions Agrégats Réa
tivité-IRSAMCUniversité Paul Sabatier and CNRS UMR 5589118 Route de Narbonne; 31062 Toulouse Cedex, Fran
ee-mail: ja
ques.vigue�irsam
.ups-tlse.fr(Re
eived June 6, 2002)In the present paper, we analyze several fa
tors whi
h limit the fringe
ontrast in atom interferometers of the Ma
h�Zehnder type. We 
onsideronly the 
ase of interferometers operating with thermal atoms, as thereare very spe
i�
 problems in this 
ase. All the e�e
ts 
onsidered here arealready known to redu
e the fringe 
ontrast but the quantitative analysiswas not 
omplete. In parti
ular, vibrations play a very important role:a stati
 des
ription of the grating motions is not su�
ient and dynami
ale�e
ts must be taken into a

ount. Su
h a des
ription has been alreadymade by S
hmiedmayer et al. in their 
ontribution to the book �AtomInterferometry� (1997). We re
all this des
ription and we dis
uss furthersome results of this 
al
ulation.PACS numbers: 03.75.Dg, 32.80.Lg, 39.20.+q1. Introdu
tionAtom interferometry has developed very rapidly sin
e 1991 and an ex-
ellent overview of this �eld and of its appli
ations 
an be found in the book�Atom Interferometry� [1℄. With thermal atoms, the interferometers areusually of the Ma
h�Zehnder or of the Ramsey�Bordé types. In the presentpaper, we dis
uss the fringe 
ontrast C (also 
alled visibility and de�ned byC = [Imax � Imin℄=[Imax + Imin℄) and we 
onsider only the parti
ular 
ase ofMa
h�Zehnder interferometers using an elasti
 di�ra
tion pro
ess and ther-mal atoms. Several su
h interferometers have been built and operated:� Presented at the Photons, Atoms and All That, PAAT 2002 Conferen
e, Cra
owPoland, May 31�June 1, 2002. (2157)



2158 R. Delhuille et al.� in 1991, an interferometer was built by Prit
hard and 
o-workers usingsodium atom and di�ra
tion on material gratings [2℄; the 
ontrastinitial value was 13% value and it has been improved up to 49% [3℄;� in 1995, Zeilinger and 
o-workers [4℄ operated an interferometer, usingmetastable argon and laser di�ra
tion in the Raman�Nath regime,with a 10% 
ontrast;� also in 1995, Lee and 
o-workers [5℄ built an interferometer, usingmetastable neon and laser di�ra
tion in the Bragg regime, with a 62%
ontrast;� in 2001, Toennies and 
o-workers [6℄ have operated an interferometerwith material gratings, using ground state helium atom, with a 71 %
ontrast;� also in 2001, our group [7℄ has built an interferometer, using lithiumatom and laser di�ra
tion in the Bragg regime, with a 74% 
ontrast.The quest for improving the 
ontrast and rea
hing a value 
lose to itstheoreti
al maximum C = 1 is now more than 10 years long and we thinkthat elu
idating the fa
tors whi
h limit the 
ontrast is a very interesting taskfor the following reasons. One important use of an interferometer is to makephase measurements and, in this 
ase, assuming a Poisson statisti
s for thenoise, as it is usually the 
ase, the measurement a

ura
y in
reases with the�gure of merit given by IC2 where I is the output �ux. An interferome-ter 
an also be used in a di�erent way, as in the 
ase of the measurementof the index of refra
tion of gases for atomi
 waves [3, 8, 9℄. In this 
ase,the 
ontrast de
reases when one of the two interfering beams is attenuatedas a result of the existen
e of an imaginary part of the index of refra
-tion. The relation between the 
ontrast and the imaginary part of the indexis simple to analyze only if the initial value of the 
ontrast is well under-stood. Finally, several authors [10�12℄ have developed 
al
ulations of thequantum de
oheren
e of the atomi
 wave during its propagation throughan atomi
 interferometer. This de
oheren
e may have various fundamentalorigins (gravitational waves, spa
e-time foam, et
.) and the main experi-mental 
onsequen
e is the redu
tion of the fringe 
ontrast. If this e�e
t isnot vanishingly small, its observation will be very di�
ult as the sour
e ofde
oheren
e 
annot be swit
hed on and o�. Obviously, su
h observation willbe feasible only if an ex
ellent understanding of all the other fa
tors limitingthe 
ontrast is available.In the present paper, we will 
onsider separately two important fa
-tors whi
h limit the fringe 
ontrast. Some aspe
ts of this question havealready been dis
ussed: previous works by Tur
hette et al. [13℄ and by our
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h�Zehnder Atom Interferometers 2159group [14℄ were made to evaluate the fringe 
ontrast in Ma
h�Zehnder inter-ferometers in the presen
e of alignment defe
ts. Here, we will assume thatthese alignment defe
ts are negligible and we 
onsider other e�e
ts indu
-ing a 
ontrast redu
tion. Starting from a simpli�ed 
al
ulation of the wavepropagation (Se
tion 2), we evaluate the 
ontrast loss due to imperfe
t sep-aration of the exit beams (Se
tion 3), the general e�e
ts of phase averaging(Se
tion 4), the role of interferometer vibrations (Se
tion 5). The e�e
tsof vibrations were already dis
ussed in a review paper written by S
hmied-mayer et al. [3℄ and our goal here is to 
omplete some aspe
ts of their dis-
ussion. 2. Simple 
al
ulation of the fringe 
ontrastWe 
onsider a Ma
h�Zehnder atom interferometer s
hemati
ally repre-sented in �gure 1 and we will use a simpli�ed des
ription in whi
h ea
h beamis des
ribed by a plane wave. Obviously, the plane waves must be trun
atedin the transverse dire
tion (dire
tion x in �gure 1), so that the various beamsdo not overlap everywhere. The paper by Tur
hette et al. [13℄ and our pre-vious paper [14℄ used a detailed 
al
ulation of the wave propagation in su
hinterferometer: this rather 
omplex analysis, involving Fresnel di�ra
tion, isne
essary to dis
uss several alignment defe
ts. For instan
e, when the dis-tan
es L12 and L23 between 
onse
utive gratings are slightly di�erent, thewaves whi
h interfere on the dete
tor present similar di�ra
tion patternsslightly displa
ed in the x dire
tion and, obviously, a 
omplete 
al
ulation

Fig. 1. S
hemati
 drawing of a three grating Ma
h�Zehnder atom interferometer,in the Bragg di�ra
tion geometry. The atomi
 beam is 
ollimated by two slits andis di�ra
ted by the three gratings. The main exit beams, labeled 1 and 2, 
arry
omplementary signals. The notations for the distan
es are de�ned and the x, y,z axes are represented.



2160 R. Delhuille et al.involving di�ra
tion theory is ne
essary to get the spatial dependen
e of therelative phase of these two waves. In the present dis
ussion, we 
onsider thatthis type of alignment defe
ts are fully negligible and we fo
us our attentionon simpler but pra
ti
ally important e�e
ts. A s
hemati
 drawing of therays inside the interferometer appears in �gure 1. The in
ident atomi
 waveof ve
tor k is written as 	 = exp(ikr) : (1)The beam produ
ed by di�ra
tion of order pj by grating Gj is des
ribed bya plane wave 	 = exp(ikr)�j(pj) exp (ipjkGj (r � rj)) : (2)This equation is exa
t in the 
ase of Bragg di�ra
tion geometry [15�17℄.It is a �rst order approximation in power of kGj=k when the waveve
tors kand kGj are almost perpendi
ular. In this equation, �j(pj) is the di�ra
tionamplitude of order pj by grating Gj . The waveve
tor kGj of grating j is inthe plane of the grating, perpendi
ular to the grating lines and of moduluskGj = 2�=a, where a is the grating period, the same for the three gratings.In the 
ase of di�ra
tion by a laser of wavelength �, aj = �=2. Finally, rj isa 
oordinate whi
h measures the position of a referen
e point in grating Gj .The dependen
e of the phase of the di�ra
ted beam with the position ofthe grating in its plane is not pointed out in most textbooks on di�ra
tionbut it has very important 
onsequen
es. Be
ause the grating is a periodi
stru
ture, this phase fa
tor must be periodi
 fun
tion of rj , with a periodequal to the grating period. We 
an then 
al
ulate the two waves exitingfrom the interferometer by the exit labeled 1 in �gure 1. The wave followingthe upper path (
orresponding to the di�ra
tion orders p, �p and 0 bygrating G1, G2 and G3, respe
tively) is given by	u = �1(p)�2(�p)�3(0)� exp [i (k + pkG1 � pkG2) r℄ exp [ip (kG2r2 � kG1r1)℄ (3)and the wave following the lower path (
orresponding to the di�ra
tion or-ders 0, p and �p by grating G1, G2 and G3, respe
tively) is given by	l = �1(0)�2(p)�3(�p)� exp [i (k + pkG2 � pkG3) r℄ exp [ip (kG3r3 � kG2r2)℄ : (4)These two waves interfere on the dete
tor and the resulting intensity isgiven by I1 = Z d2r���	u + 	l���2 ; (5)
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h�Zehnder Atom Interferometers 2161where the integral is 
arried over the dete
tor surfa
e. Fringes will appearover the dete
tor area if the 
onditionkG1 + kG3 = 2kG2 (6)is not ful�lled. In the experiments, this 
ondition is veri�ed thanks to a �netuning of the orientation of one grating in its plane. As any small deviationindu
es a large 
ontrast loss, we assume that this 
ondition is well ful�lled.Then, the integration appearing in equation (5) be
omes trivial, as j	u + 	ljis independent of r. We 
an thus write for the two waves in a simpli�edform, 	u = au exp (i'u) and 	l = al exp (i'l), assuming the amplitudes auand al as real and positive. In the phases 'u and 'l, we may distinguishthree 
ontributions� the phases of the produ
ts of di�ra
tion amplitudes �j(pj). Thesephases are not negligible and they may present some dispersion, result-ing from the dispersion of some parameters (for instan
e, the velo
ityof the atomi
 wave). The analysis of these phases requires a 
ompletemodeling of the di�ra
tion pro
ess. For material gratings, one musttake into a

ount atom-grating van der Waals intera
tion [14, 18℄ andfor laser di�ra
tion, one must 
al
ulate the propagation inside the laserstanding waves [19℄. This analysis is beyond the s
ope of the presentpaper;� the phases asso
iated to the grating positions 
ome from the argumentsof the last exponential in equations (3) and (4). The dependen
e ofthese phases with the grating positions are used to sweep the inter-feren
e pattern and to measure the fringe 
ontrast. But these phasesare also sensitive to the vibrations of the interferometer and this e�e
tmay redu
e the fringe 
ontrast, as dis
ussed below in part V;� another e�e
t has been forgotten up to now, be
ause we have impli
-itly assumed that the atomi
 waves propagate in free spa
e. Insidethe interferometer, the two atomi
 paths are separated in spa
e andtherefore submitted to slightly di�erent environments, the dominante�e
t being due to the gradient of the magneti
 �eld. The propagationphases for the two paths are slightly di�erent and the phase di�eren
eis usually a fun
tion of the atom internal sublevels. This last e�e
t,whi
h has been dis
ussed by Giltner in his thesis [20℄ and in the reviewpaper written by S
hmiedmayer et al. [8℄, will not be studied in thepresent paper.The intensity I1 of the beam labeled 1 in �gure 1 is given byI1 = a2u + a2l + 2aual 
os('u � 'l) = I1mean [1 + C 
os('u � 'l)℄ ; (7)



2162 R. Delhuille et al.where the fringe 
ontrast C is given byC = 2auala2u + a2l = 2p�1 + � : (8)Here � is the ratio of the intensities 
arried by the two interfering beams,� = a2u=a2l . The 
ontrast as a fun
tion of � is plotted in �gure 2. Be
ausethe 
ontrast C is a symmetri
 fun
tion of au and al, the 
ontrast has thesame value when the value of � is repla
ed by its inverse. Any amplitudemismat
h redu
es the 
ontrast, but this e�e
t is surprisingly slow. For �
lose to 1, � = 1 + ", then C ' 1 � ("2=8). Even if the intensities di�er byfa
tor 4 (� = 0:25 or 4), the 
ontrast remains large, C = 0:8.
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ontrast C for a two beam interferen
e as a fun
tion of the intensityratio �. Near � = 1, the 
ontrast goes through a very �at maximum Cmax = 1.Be
ause the Ma
h�Zehnder interferometer is highly symmetri
, if the�rst and third gratings have the same di�ra
tion e�
ien
y, no amplitudemismat
h is theoreti
ally expe
ted for the beams interfering at exit 1. Inan experiment, a small amplitude mismat
h will usually result from someminor defe
ts of the interferometer but the present result proves that a smallmismat
h does not indu
e a noti
eable 
ontrast loss.3. Contrast loss due to imperfe
t separation of exit beamsThis e�e
t is typi
al of atom interferometers using thermal atoms andelasti
 di�ra
tion. Be
ause of the use of elasti
 di�ra
tion, exit beams aredistinguished only by their position in spa
e. Moreover, be
ause of the verysmall values of the di�ra
tion angle whi
h is a dire
t 
onsequen
e of the very



Fringe Contrast in Ma
h�Zehnder Atom Interferometers 2163small value of the de Broglie wavelength of thermal atoms, it is di�
ult toprevent any stray beam from rea
hing the dete
tor. This e�e
t may redu
e
onsiderably the fringe 
ontrast.As dis
ussed in our previous work [14℄, this e�e
t is stronger with phasegratings than with amplitude gratings. With amplitude gratings, a large
ontrast 
an be obtained even if the dete
tor is lo
ated just behind the thirdgrating G3. This result has been explained by the Moiré �ltering by thethird grating of the atomi
 standing wave produ
ed in its plane by the two-beam interferen
e [8℄ and this remark 
an be used to make a quantitative
al
ulation of the 
ontrast when the dete
tor is in the plane of the grating G3.With phase gratings, the total intensity of the various beams exiting fromgrating G3 is obviously independent of its position and the 
ontrast vanishesif the dete
tor is in the G3 plane. The interferen
e signals 
arried by the exitbeams labeled 1 and 2 are 
omplementary and to observe fringes with a good
ontrast, one must put the dete
tor in a region where these two beams donot overlap. Assuming that the dominant 
ontribution to the stray intensityis due to the beam labeled 2 in �gure 1, we 
an write the total dete
tedintensity due to stray beams in a form very similar to equation (7), but withan opposite 
ontrastIstray = Ismean [1� Cs 
os('u � 'l)℄ : (9)The total signal is the sum of I1 and Istray and the asso
iated 
ontrast Ctotis smaller than CCtot = C I1meanI1mean + Ismean � Cs IsmeanI1mean + Ismean : (10)A small admixture of stray beams may strongly redu
e the 
ontrast and,as expe
ted, this e�e
t is larger if the stray signal 
omes from a 
omple-mentary beam with a large 
ontrast Cs. For example, with an intensity ratioIsmean=I1mean = 0:1, the 
ontrast is multiplied by 0:91 if the 
ontrast 
arriedby the stray beam vanishes (Cs = 0) and by 0:82 if the 
ontrast of the straybeam is equal to the 
ontrast of the main beam (i.e. Cs = C). The optimiza-tion of the total 
ontrast Ctot requires the best possible reje
tion of the straybeams and this optimization indu
es a large intensity loss. However, the bestphase sensitivity, 
orresponding to the largest value the produ
t ItotC2tot, isobtained with very di�erent 
onditions: su
h an optimization has been re-alized by Prit
hard and 
o-workers when they used their interferometer asa gyrometer [21℄.We have made a 
al
ulation of the role of stray beams in our Braggdi�ra
tion interferometer, assuming that the di�ra
tion gratings are equiv-alent to 50% beam splitters and 100% re�e
tive mirrors. In this 
ase, the



2164 R. Delhuille et al.interferometer produ
es only the two exit beams, labeled 1 and 2 on �gure1, and no other stray beams. Both beams 
arry the same total intensitywith opposite 
ontrast equal to 100%. Negle
ting 
ompletely di�ra
tion bythe 
ollimating slits, we des
ribe these two exit beams as in Ramsey's book�Mole
ular Beams� [22℄, with a trapezoidal intensity pro�le depending onthe widths and separation of the slits and of the distan
e. Assuming thatthe dete
tor slit is 
entered on the axis of the exit beam 1, we have 
al
ulatedthe 
ontrast as a fun
tion of the distan
e of the dete
tor slit to the thirdgrating G3, for various 
hoi
es of the slit widths. These results are 
om-pared in �gure 3 to the results of the full 
al
ulation involving di�ra
tion,developed in our previous work [14℄. The agreement is good, the largestdi�eren
es being of the order of a few %, and this simple 
al
ulation maybe useful for optimizing the design of an interferometer.
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Fig. 3. Fringe 
ontrast C in a Bragg atom interferometer as represented in �gure1: the 
ontrast is plotted as a fun
tion of the distan
e L34 from third gratingto the slit SD de�ning the e�e
tive dete
tor width. Three 
ases are 
onsidered
orresponding to three 
hoi
es of the slits widths (given in the following order:
ollimating slits S0 and S1, dete
tor slit SD). The symbols represent the results ofthe simple 
al
ulation negle
ting di�ra
tion while the 
urves represent the resultsof the 
omplete 
al
ulation.4. Contrast redu
tion due to phase averagingAn important e�e
t explaining 
ontrast redu
tion is the existen
e ofsome phase averaging. A phase averaging may be due either to temporalaveraging (this will be illustrated in the next se
tion by the vibrations ofthe interferometer) or to an internal state averaging (for instan
e, due to
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h�Zehnder Atom Interferometers 2165the e�e
t of a stray magneti
 �eld) or �nally to wavefront distortions, 
orre-sponding to a spatial dependen
e of the propagation phases (the analogouse�e
t is well known in opti
s and here it may take its origin in the di�ra
tionphases due to the gratings). If the phase di�eren
e Æ = 'u�'l appearing inequation (7) is randomly distributed around a mean value Æmean, the aver-aging e�e
t indu
es a 
ontrast loss. We assume that the phase distributionis Gaussian with a varian
e �P (Æ)dÆ = 1�p2� exp ��(Æ � Æmean)22�2 � dÆ : (11)Then, after averaging the intensity given by equation (7) over this phasedistribution, we get�I1 = I1mean �1 + C 
os(Æmean) exp���22 �� : (12)The resulting 
ontrast �C is related to the 
ontrast C given by equation (8)�C = C exp���22 � : (13)This equation will be applied to evaluate the e�e
t of the vibrations of thegrating positions.5. E�e
ts of vibrations on the fringe 
ontrastWhen the manus
ript of this paper was almost 
ompleted, we foundthat the equations written below appear already in the review paper byS
hmiedmayer et al. [3℄. We have de
ided to keep a brief derivation hereand to insist on a few remarks whi
h may be useful.5.1. A naive viewWe use equation (7) involving the phases 'u and 'l, 
onsidering only thepart of these phases whi
h depends on the grating positions (see equations(3) and (4)). This part of the phase di�eren
e is given by'u � 'l = pkG (2x2 � x1 � x3) (14)the waveve
tors of the three gratings being exa
tly parallel to the x-axis.We will 
all bending of the interferometer bar the quantity b = 2x2�x1�x3.It seems reasonable to 
onsider that, as a result of vibrations, the bending b



2166 R. Delhuille et al.is randomly distributed around its mean value with a varian
e �b (and duringthe experiments, the mean value of b is swept to re
ord fringes). The phasedi�eren
e ('u � 'l) is also randomly distributed, with a varian
e �� = pkG�b : (15)Therefore, the 
ontrast depends on the di�ra
tion order p in the followingmanner C�nal = C0 exp ��
p2� ; (16)where the fa
tor 
 is given by 
 = k2G�2b=2 : (17)This simple 
al
ulation gives a pra
ti
ally important result, the 
ontrastis a Gaussian fun
tion of the di�ra
tion order p. However, this simple 
al-
ulation does not expli
itly 
onsider the motions of the three gratings. Asatom interferometers are very sensitive to inertial e�e
ts, i.e. to rotations(through Sagna
 e�e
t) and to a

elerations [3, 23℄, a 
omplete 
al
ulationshould also 
onsider these e�e
ts.5.2. The role of inertial e�e
tsEquations (7) and (14) are valid provided that, in the phase, we takefor the origins of the grating j their values at the times tj , at whi
h theatomi
 wavepa
ket goes through the 
orresponding grating j. We then getthe response of the interferometer to one atomi
 wavepa
ketI1 = I1meanh1 + C 
os�pkG (2x2(t2)� x1(t1)� x3(t3))�i : (18)A real experimental signal is obtained by averaging over many wavepa
kets
olle
ted during a time period whi
h is usually long with respe
t to the
hara
teristi
 vibrational periods. To give a simpler form to equation (18),we expand the quantity (2x2(t2)� x1(t1)� x3(t3)) in powers of the timedi�eren
e T = t2 � t1 = t3 � t2 = L12=v up to the term in T 2. In theequation de�ning T , L12 = L23 is the distan
e between 
onse
utive gratings(see �gure 1) and v is the atom velo
ity. We �rst express x1(t1) and x3(t3)as a fun
tion of their value at time t2x1(t1) = x1(t2)� v1xT + a1xT 22 ; (19)x3(t3) = x3(t2) + v3xT + a3xT 22 : (20)



Fringe Contrast in Ma
h�Zehnder Atom Interferometers 2167The velo
ities vjx and the a

elerations ajx are measured by referen
e toa Galilean frame and, although they are �u
tuating fun
tions of time, weassume that they 
an be 
onsidered as 
onstant over the time interval T .We thus get[2x2(t2)� x1(t1)� x3(t3)℄ = [2x2(t2)� x1(t2)� x3(t2)℄� [v3x � v1x℄T � [a1x + a3x℄T 22 : (21)In this equation, we re
ognize three 
ontributions:� the �rst term is the instantaneous bending of the interferometer barb(t2) = 2x2(t2) � x1(t2) � x3(t2), evaluated at time t2, i.e. at the
enter of the time interval spent by the atomi
 wavepa
ket in theinterferometer;� the se
ond term 
orresponds to the usual Sagna
 e�e
t. The velo
itydi�eren
e (v3x � v1x) is equal to (v3x � v1x) = 2
yL12, where 
y isthe y-
omponent of the angular velo
ity of the interferometer bar.Following equation (18), the asso
iated phase term is��Sagna
 = 2pkG
yTL12 : (22)It is very easy to write this result in the 
lassi
 form of the Sagna
phase shift ��Sagna
 = 2mA
y=~ where A is the area en
losed by thetwo atomi
 paths in the interferometer, A = pkGL212=k ;� the third term des
ribes the sensitivity to a

eleration and is 
lassi
too. A small di�eren
e with the usual form of this term 
omes fromthe fa
t that we have 
onsidered di�erent a

elerations for the twoextreme gratings. The phase shift is equal to��a

: = 12pkG (a1x + a3x) T 2 = pkGaxmeanT 2 ; (23)where axmean is the mean value of the a

eleration of grating G1and G3.We 
an 
al
ulate the 
ontrast redu
tion if we assume that ea
h of thethree quantities b(t2), 
y and axmean are independently distributed witha Gaussian probability distribution, with the asso
iated varian
e �b, �
y and�ax. For the angular velo
ity and for the a

eleration, the mean values arenot equal to zero as a result of Earth motion with respe
t to a Galilean frame.If the atomi
 wave is not mono
hromati
 (i.e. if the velo
ity distribution is



2168 R. Delhuille et al.not very narrow), these nonzero values introdu
e a further redu
tion of the
ontrast be
ause these phases depend on the atom velo
ity. This e�e
t,whi
h has been observed by Kasevi
h and 
o-workers [24, 25℄ in the 
ase ofthe Sagna
 phase, is small and will be negle
ted here. The 
ontrast is stillgiven by equation (16) with a generalized value of the 
oe�
ient 

 = k2G2 ��2b + (2�
yL12T )2 + ��axT 2�2� = k2G2 �2e� : (24)5.3. Experimental test of this 
ontrast lossUp to now, only one Ma
h�Zehnder interferometer was run with di�er-ent di�ra
tion orders. This was done by Giltner, M
Gowan and Lee [5℄,who measured the following fringe 
ontrasts 62% for order p = 1, 22% fororder p = 2 and 7% for order p = 3. In a separate study [20℄, they applieda magneti
 �eld gradient and they observed the 
ontrast redu
tion due tothe dependen
e of the propagation phases with the magneti
 quantum num-ber M . From this study, it appears that, in the absen
e of an appliedgradient, the 
ontrast loss due to the gradient of the stray magneti
 �eldis fully negligible. Therefore, we may think that equations (16) and (24)explain the variation of the 
ontrast with the order p. Figure 4 presents a �tof equation (16) to this data. The �t is very good and this su

ess supportsthe idea that the dependen
e of fringe 
ontrast with the di�ra
tion order aredue to vibrations. The values of the �tted parameters are interesting too:
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1,0 Fringe contrast C

Diffraction order pFig. 4. Fringe 
ontrast C measured by Giltner, M
Gowan and Lee ( [5℄) as a fun
tionof the di�ra
tion order p. The 
urve is the best �t following equation (16).
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h�Zehnder Atom Interferometers 2169� the �tted value of C0 is equal to 86 � 6%: this ex
ellent value of the
ontrast would have been rea
hed in the absen
e of vibrations;� the value of 
 is equal to 
 = 0:325�0:037 
orresponding to a value of�e� � 41 nm (in this experiment, the wavelength of the laser standingwaves is�L=640nm, 
orresponding to gratingwaveve
tors kG =4�=�L).In this apparatus, as done previously by the group of Prit
hard [2℄,an opti
al Ma
h�Zehnder interferometer linked to the gratings of theatom interferometer is used to measure the instantaneous value of thebending b (in this 
ase, the gratings being laser standing waves, thepositions are those of the mirrors). This measurement has been usedto redu
e the vibration noise on the bending b, by a
ting on one ofthe mirror x-position with a piezoele
tri
 a
tuator, thanks to a servo-loop. From the residual error signal of the servo-loop, S.A. Lee and
o-workers [5℄ have estimated that they �were able to hold the relativepositions of the three mirrors within 20 nm�. It is di�
ult to 
onvertthis information in the varian
e of a Gaussian distribution, but it islikely that the varian
e �b is substantially smaller than 41 nm. Thisresult suggests that the two other terms 
ontribute very substantiallyto �e� .A �nal 
omment 
on
erns equation (21). The interferen
e phase appearsto be sensitive to the velo
ities and a

elerations of the two extreme gratingsG1 and G3, but not to the same quantities for the 
entral grating G2. Thissurprising result is related to the fa
t that this grating plays a similar role forboth atomi
 paths and this double role indu
es a 
an
ellation e�e
t. There-fore, provided that the approximations made in this derivation are good,a very interesting 
onsequen
e is that, to redu
e the bending vibrations, oneshould a
t on the 
entral grating G2 and not on the extreme gratings G1and G3. This a
tion will redu
e the value of �b without in
reasing the twoother terms appearing in equation (24), whi
h will remain una�e
ted.6. Con
lusionWe have given a simple dis
ussion of several important e�e
ts whi
h re-du
e the fringe 
ontrast in Ma
h�Zehnder atom interferometers, using elasti
atom di�ra
tion. We think that an ex
ellent fringe 
ontrast is useful for a
-
urate measurements and also for more fundamental studies of de
oheren
epro
esses and that the present analysis will be useful for further improve-ments of atom interferometers.



2170 R. Delhuille et al.The �rst e�e
t dis
ussed is the overlap of exit beams and this e�e
t hasbeen illustrated by a 
al
ulation of the 
ontrast as a for various 
ollimatingslits: we have shown that a simple 
al
ulation negle
ting 
ompletely di�ra
-tion by the slits is su�
ient to predi
t a

urately the 
ontrast when the
omplementary exits of the interferometer are not fully separated.The se
ond e�e
t dis
ussed here is the role of vibrations of the grat-ing positions. Sin
e the development of three grating interferometers withneutrons, it is 
lear that an ex
ellent stability of the relative positions ofthe three gratings is ne
essary. As done before by S
hmiedmayer et al. [3℄,we have 
ompleted this dis
ussion by taking into a

ount the fa
t that theatom wavepa
kets sample the positions of the three gratings at di�erenttimes, thus showing that the atom interferometers are sensitive not only tothe instantaneous bending of the interferometer bar but also to its rotationand its a

eleration, measured at the position of the two extreme gratings.The predi
ted dependen
e of the fringe 
ontrast with the order of di�ra
-tion explains very well the values measured by Lee and 
o-workers: this resultsuggests that, in the absen
e of vibrations, the 
ontrast would have been ex-
ellent in this apparatus and also that, in the observed 
ontrast redu
tion,the rotation and a

eleration terms were probably important.We thank C. Champenois for her 
ontribution to an early phase of thiswork and Région Midi Pyrénées for �nan
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