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We examine localized kinetic terms for gauge fields which can propagate
into compact extra dimensions. We find that such terms are generated by
radiative corrections in both theories with matter fields confined to branes
and in theories imposing orbifold boundary conditions on bulk matter.
In both cases, the radiative corrections are logarithmically divergent, in-
dicating that from an effective field theory point of view they cannot be
predicted in terms of other parameters, and should be treated as inde-
pendent leading order parameters of the theory. Specializing to the five
dimensional case, we show that these terms may result in gross distortions
of the Kaluza—Klein gauge field masses, wave functions, and couplings to
brane and bulk matter. The resulting phenomenological implications are
discussed.

PACS numbers: 04.50.+h, 11.25.Mj, 11.25.5q
1. Introduction

Particle physics currently finds itself in the perplexing situation in which
most experimental results conform to the expectations of the Standard
Model (SM), but leave many theoretical questions unanswered. For ex-
ample, the mechanism of electroweak symmetry breaking is currently un-
verified, and the mystery as to why the weak scale is so much smaller than
the Planck scale remains unanswered. The spectrum of quark masses and
mixings has been experimentally determined, and progress is being made
on the corresponding quantities for the leptons, but no clues as to why the
pattern observed shows large hierarchies in masses and mixings have been
established.
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Extra compact dimensions allow for novel solutions to these (and other)
mysteries. By diluting gravity in a (relatively) large volume which gauge
fields and matter cannot enter, one can lower the fundamental Planck scale
to just above the weak scale, ameliorating the hierarchy problem [1]. There
also exist compelling reasons to consider gauge fields which may propagate
into extra dimensions. Having the gauge fields in the bulk may allow one
to address questions as to why low-scale gravitational effects do not cause
unacceptably fast proton decay [2], pursue a geometric origin for the ob-
served spectrum of fermion masses [2-4|, naturally break the electroweak
symmetry through strong dynamics [5-7|, identify the Higgs as an extra-
dimensional component of the gauge field thus protecting its mass from
large corrections [8], achieve gauge coupling unification at high scales [9,10],
provide a viable dark matter candidate [11], and can provide interesting al-
ternatives to GUT symmetry-breaking and associated problems such as the
Higgs doublet-triplet splitting problem [12-14]. Provided the compactifica-
tion scale, related to the size of the extra dimension by M, = 1/27R, is not
much larger than 1 TeV, interesting collider signatures involving production
of Kaluza-Klein (KK) modes of the gauge fields through the scattering of
either brane-localized matter [15-17] or bulk matter [18-21] fields may be
obtained.

Models with gauge fields in more than four dimensions are not renormal-
izable in the classic sense, and must be regarded as effective theories which
break down at some scale A. In fact, because of the rapid classical evolution
of the coupling constant in more than four dimensions, the gauge coupling
becomes strong at energy scales on the order of ten times the compactifi-
cation scale, and thus the scale A is expected to be relatively close to M..
Since the nature of the UV completion is unknown, these theories should
be understood as an expansion in the energy of the process at hand, with
effects of the unknown physics beyond A reflected in the (infinite number of)
undetermined coefficients which must be treated as theoretical inputs. The
theory can be predictive at energies much below A, when effects of order
E"™/A™ may be neglected, and only a finite number of terms in the effective
Lagrangian contribute to measurable quantities.

In this article we attempt to rigorously treat gauge fields which can
propagate in compact extra dimensions from an effective field theory point
of view. We find that in addition to the bulk kinetic terms for the gauge
field generally considered in the literature, there is also a kinetic term for the
gauge field localized on branes or at the boundaries of an orbifolded compact
space. Such a term was recently considered by Dvali, Gabadadze, and Shif-
man [22]. The original motivation was to have the fifth dimension infinite in
size, with the brane term allowing one to recover four dimensional behavior
at short distances, but in this article we will show that, as happens in the
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analogous case of gravity [23], it has interesting implications for compact
spaces as well. The brane kinetic term is not suppressed by any power of A
compared to the 5d couplings which result in the apparently renormalizable
4d interactions at low energies, and is consistent with all symmetries of the
theory. Thus, from general renormalizability arguments, one expects that
the term must be included in any consistent description of the theory'. In
fact, one can show from explicit computation that such a term is required to
cancel divergences in the five dimensional (5d) theory. Thus, its magnitude
should be treated as an input to the theory, and one might expect it to be
sizeable.

In this article, while we have chosen to illustrate the physics with the
specific example of bulk gauge fields, we recognize that by no means is
this the only possibility. Any bulk field will experience renormalizations on
branes or boundaries of the type we are describing. Previous work [23,26—29]
has focused on the case of gravity in various background geometries and
numbers of dimensions, as is motivated by solutions of the hierarchy problem.
We choose to work with gauge theories in five dimensions because, aside from
being well-motivated for the reasons outlined above, they are under better
theoretical control than theories with quantum gravity or larger numbers
of extra dimensions. We find that some of the qualitative results seen in
the gravitational case, such as the appearance of “collective” Kaluza—Klein
modes with small masses and strong couplings, may also be explored in our
framework.

The article is organized as follows. In Section 2 we briefly discuss the
existence of such a brane kinetic term, and argue that from an effective
theory point of view it should be included. In Section 3, we compute the
resulting spectrum of KK modes of the gauge fields and examine the masses
and couplings to brane and bulk fields. In Section 4 we examine some of the
phenomenological implications of the modifications to masses and couplings.
We reserve Section 5 for our conclusions.

2. Framework and brane kinetic terms

We now discuss the existence of local gauge kinetic terms from the point
of view of effective field theory. To illustrate our discussion, we consider
a five dimensional (5d) theory of gauge fields AM

1 1
S = /d% {—4—2]—'MN]-'MN — 8(25)—5

FHF ,,} , 1
95 493 M ( )

! For an example of a string theory model in which gauge kinetic terms on boundaries
occur at tree level with calculable magnitude, see [24,25].
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where capital latin letters refer to the full 5d coordinates, M = 0,1,2,3,5,
and lower case greek letters refer only to the four uncompactified dimensions,
u = 0,1,2,3. Note that written this way, the bulk gauge coupling g5 has
mass dimension —1/2 and the gauge field AM (z#, z5) has dimension 1. The
brane coupling g, is dimensionless and characterizes the “opacity” of the
brane. Analyses which neglect the brane term (1/g2 — 0) can be understood
as the “transparent brane” approximation. One may rescale the bulk term
to its canonical normalization by absorbing 1/gs into Ay, in which case the
brane term has a coefficient with dimensions of length, 7. = g2/g2 and Ay,
has dimension 3/2, as usual for a boson in five dimensions. F is the usual
field-strength functional of the gauge fields,

Fln = OuAl — OnAY + AL A (2)

for a non-Abelian Yang—Mills theory, with the final term omitted in the
Abelian case. We generally omit the group index on the gauge fields wherever
we may do so without confusion.

The 5th coordinate x5 corresponds to a compactified dimension S'/Zs,
with —7R < z5 < wR. Under the orbifold Z5, the points —z5 and z5 are
identified, and the fields transform as

Azt —x5) = Af(2", z5),
.A5($“, —I5) = —.A5($“,$5). (3)

The action and orbifold are compatible with the 5d subset of gauge trans-
formations (AM — AM — M \(z™) for a U(1) theory) with transformation
function A\(zM) chosen to be an even function of x5.

It is important to note that we have added only the four-dimensional
part of the gauge field kinetic term on the brane. If our theory was invariant
under the full 5d set of gauge and Lorentz transformations, these symmetries
would have forced us to include the full 5d gauge kinetic term. However, the
5d Lorentz invariance is broken firstly by the fact that one of the dimensions
is compact, secondly by the orbifold boundary conditions, and finally by
choosing z5 = 0 as a special point with different physics from the rest of
the extra dimension. As discussed above, five dimensional gauge invariance
is similarly present only in a restricted sense. Thus, one could also consider
including the remaining terms on the brane with a different coefficient

1
/dI55(I5) {@ [BH.AE,(?“.AE,—2(9#./4585./4“—%85.,4“85./4#]+Interactions} .(4)

In the thin brane approximation under which we work, all of these terms
may be neglected. The first two terms vanish because the orbifold boundary



Branes and Orbifolds are Opaque 2359

conditions require As to vanish at the orbifold fixed points (and in fact we
will impose A5 = 0 everywhere as a convenient gauge choice). The last term
is somewhat more subtle. Naively the orbifold conditions seem to require
0sA,, as an odd function of x5, to vanish at the fixed points. However, as
we will see below the effect of the brane term is to force the slope of the
KK wave functions to be discontinuous at z5 = 0, implying the derivative
is not well defined in the thin brane approximation. However, it is clear
that when the derivative is understood in terms of the difference between
the wave function of A, around z5 = 0, the term vanishes.

One can attempt to consider this problem more carefully by introduc-
ing a finite brane thickness. For example, one can replace the J-function
with any smooth function sharply peaked about the orbifold fixed point. In
a “fat brane” model, which represents the brane and its attendant localized
fermions as a scalar field whose VEV has a domain wall profile along the
extra dimension, this function is related to the scalar potential which gener-
ates the domain wall, and the brane width and shape can be adjusted. This
finite thickness for the brane will smooth our KK wave function solutions
such that their derivatives will become well-defined, and in fact the terms in
Eq. (4) will vanish at zz = 0. However, the terms still have some non-zero
effect in the region away from x5 = 0, but still inside the brane. Thus,
their effect must be proportional to the thickness of the brane, and we are
justified in dropping the terms of Eq. (4) in the limit in which we treat the
brane as infinitely thin.

2.1. Branes are opaque

Many theories in which gauge fields exist in extra compact dimensions
introduce submanifolds, or branes on which fields may be confined. A sim-
ple application is to have chiral fermions living on a 3-brane. This allows
one to have an effective 4d theory which is chiral, despite the fact that
five (or more) dimensional theories generally produce mirror fermions after
compactification to 4d, and thus are vector-like.

The existence of a brane violates the 5d Poincare invariance, and thus
one would generically expect terms living on the brane would be invariant
only under the 4d Poincare invariance of the brane itself. Thus, it would be
quite plausible to consider a separate gauge kinetic term on the brane at tree
level. In fact, the existence of charged matter on the brane demands such
a term. Loops of the brane matter fields result in log divergent contributions
to the gauge field 2-point function, localized on the brane itself [22]. In this
case, if the brane is approximated as infinitely thin the computation becomes
effectively four-dimensional because the fields running around in the loops
are four dimensional. In fact, the log divergence is nothing more than the
familiar renormalization of the gauge coupling by the brane fields.
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The cancellation of the divergence invokes a local term in x5 of the form of
the gauge field kinetic term, and indicates that the bare theory without such
a term is inconsistent. After canceling the divergence, what is left behind
is a term whose coefficient cannot be computed in terms of other quantities
of the theory, but must instead be determined by experiment. As usual,
a log term appears in conjunction with the divergence, and its resummation
dictates that even if one were to imagine a UV completion which resulted in
the local term being zero at some energy scale, a non-zero term will evolve
at other energy scales through renormalization group evolution. One can,
of course, choose the coefficient 1/g2 to be very small, but unless one can
derive the small value of 1/g2 within the framework of a more fundamental
theory, this choice can be regarded as a fine-tuning.

One may also invoke the fat brane picture, allowing the brane to have
a non-zero thickness corresponding to the width of the transition region
between the two limiting values of the VEV. In this case, fermions can be
localized with wave functions whose widths are related to the thickness of the
fat brane. Loops of such fermions will also lead to localized renormalization
of the gauge fields, but now with a profile proportional to the fermion wave
functions, and not to the J-function one obtains in the thin brane case. The
detailed shape of the local term is thus model-dependent in general fat brane
cases.

2.2. Orbifolds are opaque

It is somewhat counter-intuitive that local terms exist for orbifold the-
ories even in the absence of localized fields. However, in theories with an
orbifold, the identification of x5 with —z5 indicates that the sign of momen-
tum along the fifth dimension is not meaningful, and singles out the orbifold
fixed points as special points where translation invariance is violated. These
effects may be cast into a particularly convenient form by using technology
developed in [32], in which one writes the bulk fields obeying orbifold bound-
ary conditions as a combination of fields which are unconstrained. So, for
example, a 5d bulk scalar @ which is odd under the orbifold Zs is written,

Bat,a5) = 519lat,as) — glat, ~ws)] 9

where ¢(z#, z5) is a 5d scalar field without orbifold boundary conditions, and
thus may be treated conventionally. @, by construction, obeys the orbifold
boundary conditions. The @ propagator in momentum space now contains
terms which flip the sign of the momentum in the extra dimension

(@0 (¢,q) = {—5,,5,,1(,,2— 5_2115’%
q° — g5

: bstta— . ©)
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The first term conserves g5 whereas the second induces the sign flip. If this
scalar is now coupled to a bulk gauge field AM | its loop contributions to the
gauge field two-point function will also contain a term which conserves the
gauge field momentum, and a term which conserves its magnitude but flips
its sign [32]. Transforming back to position space, one has the operator

_Z_Cfl‘”fﬂy [(5(1‘5) + 5(I5 — 7TR)] ) (7)

where r. contains the loop integrals, and is log divergent. Again, this signals
that the term is in actuality tree-level, and all we have divined is the running
from the cut-off scale to the energy scales of interest to us. Therefore, even
universal extra dimensions, with no fields living on the boundaries, will
generally have kinetic terms which do live on the boundaries. Note that the
same term is induced on both boundaries, which is important if a KK parity
is to be a self-consistent symmetry of the low energy dynamics.

2.3. Naiwve dimensional analysis

While the effective field theory perspective strictly demands the coeffi-
cient of the brane kinetic term to be a free parameter of the theory, it is
interesting to see how large one might expect this term to be if one makes
further assumptions. In particular, Naive Dimensional Analysis (NDA) de-
termines the size of various couplings under the assumption that all couplings
are strong at the scale A [33]. While NDA estimates are interesting (and
sometimes useful in order to judge the applicability of perturbation theory),
we do not wish to consider them as predictions — we take the more practi-
cal view that the brane kinetic terms are remnants of the unknown physics
beyond the cut-off, and must be included irrespective of their size in any
valid effective field theory description.

The techniques of [34] allow us to simply determine the values of the cou-
plings g5 and 7. at A, and we may use the renormalization group to examine
their magnitudes at other energy scales of interest. The NDA estimate for
re at A is given by

re ~ % (®)
and thus r¢/R ~ 6nM./A. If A is as low as roughly 20 times M., we have
re/R ~ 1. At lower energy scales r. will receive additional logarithmic
corrections under the renormalization group. Since these corrections are
suppressed by loop factors, they can be considered subdominant corrections
to the NDA estimates.
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3. Kaluza—Klein decomposition

We now derive the KK decomposition for the gauge fields in the presence
of the brane kinetic term. Before starting, it is worthwhile to recall the
results for transparent branes (r. — 0). In the transparent brane case, the
action Eq. (1) can be decomposed into

1 1 1
kS / s {—Z]—'W]-',w + 5054 85A“} , (9)

95

where we have chosen a gauge in which A5 = 0, corresponding to a unitary
gauge in which the fifth components of the gauge field are eaten by the
4d components to provide longitudinal degrees of freedom to the massive
modes [35]. We expand the gauge field in a KK tower

At m5) = folws) Ak(z) (10)

where f,(z5) is a set of complete functions which we choose by requiring the
KK masses to be diagonal

agfn(xf)) :m% fn(:L'E)) (11)

The solution to this equation consistent with the orbifold boundary con-
ditions are cosines, with frequencies (masses) m, = n/R, n = 0,1,2,3....
There is a zero mode, whose wave function is a constant in x5, and thus
properly normalized is 1/v/2wR. The normalization for the cosine functions
is given by 1/ V7R, and this difference in normalization results in a v/2 en-
hancement of the KK gauge boson coupling to brane matter compared to
the coupling of the gauge boson zero mode (i.e., see Ref. [36]).

3.1. One opaque brane

In this section we derive the KK decomposition for a five dimensional
theory in the presence of a single non-zero localized gauge kinetic term.
For small choices of g2/g?, the brane term is a perturbation on the KK
spectrum, introducing a small amount of mixing between the KK modes of
various levels. For g2 /g2 ~ R, these mixing effects drastically affect the KK
decomposition, and one is no longer justified in treating the brane term as
a perturbation, but should instead include its effect on the KK spectrum
ab initio.
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In the presence of the brane term, the KK decomposition will be diagonal
if the wave functions f,(z5) satisfy

= [[das 14 78] Fals) Fme) = Zodu
95

= [ dos fa(e0) fulas) = Zamibum, (12

where the prime represents partial differentiation with respect to x5. In order
to solve these equations simultaneously, we follow a variant of the procedure
used in Ref. [30] to handle scalar fields. We begin with the relevant 5d
linearized equation of motion for the gauge field

O™ A, — 8, (O AM) + 1e 8(25) {0,0" Ay — 9, (0, A)} =0, (13)

where we have dropped the group index on A for convenience. We now
expand the gauge field in a KK tower as in Eq. (10), and determine the
fn(z5) by requiring the A} to satisfy the linearized equation of motion of
a 4d massive gauge field

0,0" AL — 9" (9,AY) + m2 AL = 0. (14)

This procedure becomes particularly simple if we make the 5d gauge choice
A’ = 0. In that case one obtains the equation for the f,

[0 +miy + re my 6(z5)] fa = 0. (15)

This equation, which embodies the diagonalization conditions in Eq. (12),
is the same as the equation found in [30] for a scalar field. It bears a strong
resemblance to the nonrelativistic Schrédinger equation for a d-function po-
tential whose strength is energy-dependent, and its spectrum is thus guar-
anteed to have real eigenvalues. Away from x5 = 0, the solutions are sums of
sine and cosine functions. We thus write solutions piece-wise in the regions
z5 < 0 and x5 > 0 and impose periodicity and continuity at x5 =0

fn($5 - QWR) = fn($5) 5
fn(0+) = fn(o_)a
Fn(0F) = f(07) = —remi fa(0), (16)

where 07 and 0~ denote the limit as x5 approaches zero from above or below.
The resulting solutions have quantized masses which are solutions of the
transcendental equation,

Tc Mnp

5 = — tan[r R my] (my >0), (17)
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Fig. 1. Graphical solution of the eigenmass equation, — tan[rmR] = (r./2R) X mR
for several values of r./R.

w

which may be solved graphically as in Fig. 1. The corresponding wave
functions are

cos[mpzs]) + (my %) sin[myzs] x5 <0
Fulas) = N ’ e (18)
cos[my 5] — (my, %5 ) sin[m, 5] 5 >0
We define the constant A, by normalizing f, such that
+7R
/ diE5 f§($5) = 1, (19)
—TR
which results in
1 m?2 r? T
- = 14 n'c_ "¢ )
N2 ”R< Ty 27‘&'R) ’ (20)

for n > 1 and Ny = 1/v2nR. Inserting this KK decomposition into our
original 5d action, Eq. (1), and performing the integration over z; results in
kinetic terms for the gauge fields which are diagonal:
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2
£y = Z {—% Zin, (8MAZ — 8,,AZ) (OFAY — " AR) + Z,, %AﬁAﬁ} , (21)
n
where Z,, is a normalization factor with dimensions of mass. This equation
is consistent with Eq. (12), indicating that we have successfully diagonalized
the KK decomposition.

Note that Eq. (17) always has a solution for m,, =0, and that the cor-
responding fo(xs) is always a constant. Thus, there is always a zero mode
gauge field whose profile does not depend on the extra dimension. In the
limit . — 0, in which the brane kinetic term is negligible, we reproduce the
standard KK spectrum with masses n/R. In Fig. 2, we present the masses
of the first four KK modes as a function of r./R. Clearly, for r./R ~ 1,
the spectrum shows some distortion in the spacing between the lowest modes.
For any r./R, the higher modes asymptote to equal spacing of 1/R as ex-
pected, though the spectrum still shows an over-all shift dependent on r./R.
For r. > R, the masses asymptotically approach n/2R.

It is also instructive to examine the couplings of the KK tower to var-
ious types of fields, either confined to branes or living in the bulk. Some
representative interaction terms in the 5d theory are

L = /d$5{5($5 —$w) [EAM'YM/)]

+ ( - 5(””5)) (209,42 — 0,A5) e Af AL

N
1

- (—2 + (?)) et pode A AL AL AG) } (22)
95 9a

The first term represents coupling to a fermion on a brane at z, (for
a bulk fermion mode with wave function fy(x5) one replaces 6(z5 — zy) —
| fu(25)]?) and the later two terms are the interactions among the bulk gauge
fields for a non-Abelian theory. In order to derive the effective interactions
between various KK modes, one inserts the KK decomposition into this

equation, and then rescales each A™ by Z, Y2 i1 order to canonically nor-
malize its kinetic terms. Given our convention to normalize the fy(z5), the
n-mode gauge field has Z,

1[40

Z, = <—2+fn(2)), (23)
g5 9a

where f,(0) = N, is the wave function of the n-th mode evaluated at the

origin.
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For the brane field at zy this results in coupling to the nth KK mode,

fn(%p) (24)

VZy

The wave functions fy,(z5) for the first two modes are presented in Fig. 3.
Note that this implies that the zero mode gauge field, whose wave function
is constant, couples universally to all brane matter with coupling

N7 S )
90 95 9a
irrespective of the location of the brane. Of course, in principle a brane
containing charged matter located away from z5 = 0 would also be opaque,
and should be included in our derivation of the f,(z5). We analyze this case
in the next sections.
For fields localized on the opaque brane itself, the relevant coupling to

the higher modes may also be expressed

1 1 1

Z - ROE R 26)
In Fig. 2 we show the ratio of g2 to g2 as a function of r./R. Evident
from the figure is the usual r./R = 0 expectation that all modes couple
equally strongly to the brane fields, with coupling g, = v2go. However,
once my, ~ 1/r. the brane no longer seems transparent, and the KK modes
have difficulty penetrating it, decoupling from its fields. This is evident from
the wave functions (see Fig. 3) themselves, which show significant distortion
away from the brane once the masses are greater than 1/r.

Couplings of the higher KK modes of bulk fields are model-dependent,
being given by integrals of products of several of the wave functions. For
example, if there are bulk fermions, the coupling of the n-mode gauge field
to two bulk fermion modes with wave functions ffp(x5) and fi($5) is

o [ s Fulas) Filan)” £, (27)

Thanks to the orthonormality of the fermion KK decomposition, the zero
mode gauge field couples only to two fermions of the same mode number,
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with universal coupling gg. For the three- and four-point gauge field vertices,
we have:

P ;/m <L+M
N Zp 7 Z, 2 g2

Inmlk = / < @

Ny AVAN g5 ga

between the A,-A,,-A; and A,-A,,-A;-A; modes, respectively. We have
suppressed the vector and color indices, but these are simply restored.

The above results can be simplified for the vertices involving the zero
mode, because its wave function is independent of x5 and thus drops out of
the integration. In the three-point vertex, we find that setting [ = 0 reduces
the integration to the same one which diagonalized the kinetic energy term;
thus using Eq. (12) the integration gives Z,d,, and the vertex factor is
f0(0)0mn/vVZo = godmn for all modes. In the four-point vertex, setting
I = k = 0 results in the same integral, Z,,d,,,, and the vertex factor is thus
fg( )omn/Zo = g 20m. Together, these results demonstrate the fact that
the zero mode gauge field’s couplings take a universal form as dictated by
its unbroken gauge invariance, resulting in the same coupling to both bulk
and brane fields.

) fn(IE)) fm(mf)) fl(IE))a (28)

) Fu(s) ) fu(as) fulas) (29)

3.2. Two opaque branes

It is relatively simple to generalize our results to include two branes at
the orbifold fixed points, one at z5 = 0 and one at x5 = wR. The action
thus contains,

FH Fy— (x5 —1R)—5

S /d5 { fMNfMN d(s5) L 4g2

1
e }"“’f,“,} . (30)

The wave functions satisfy the eigenvalue equation in terms of r, = g2 /g2
and 7 = g%/gg
(02 +m2 + ram26(z5) + remid(zs — 7R)] fn = 0. (31)

Wave functions can be constructed by the same technique used in the pre-
vious section to match solutions across the branes. The resulting solutions
are,

<

cos|mqpxs| + (M, =) sin|jmyz x5 <0
[mpzs5] + (my ) sin[my,z5] 5 3

<

cos[myxs] — (mp %) sin[my,zs] x5 > 0
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in which the dependence on ry is hidden inside the quantized masses, which
satisfy the relation

0= (ra Ty mi — 4) tan[mpmR] — 2 (rq + 1p) M . (33)

This equation may be reduced to the form m,, = a function of tan[m,nR]
using the quadratic equation, and solved numerically as before. This deter-
mines the mass spectrum and couplings of the KK gauge bosons. Continuing
to normalize the integral of f2 to one, the Z, normalization factors are

_ f2(0) | fA(wR)
n = <g5 2 92 ) (34

The couplings of given modes or combinations of modes are derived from
these results. For brane field couplings to a single KK mode, one finds the
same equation (24) as before in terms of the new wave functions. The
couplings among gauge modes are

1 0(zs) (x5 — WR))
nml — d 5
Jniml \/ZZZ/%(% 2 T a

X fu(zs) fm(zs) fi(zs), (35)
B 1 1 d(zs) | d(zs —7R)
Jrmik = ¢anmzzzk/ s (gg e TR )

X fn(z5) fm(z5) fi(zs) fr(z5) . (36)

In particular, the zero mode coupling is

1w L1 -
90 95 Ja 9

Before considering specific two-brane configurations, we note that many
of these formulae are easy to generalize. In particular, the Z, generalize
into an obvious sum of 1/g2 plus f2(z;)/g? for each opaque brane at z; with
coefficient 1/ g?. The coupling to brane matter fields always takes the same
form, and the bulk couplings generalize to an integral over the same product
of the f,, times 1/¢2 plus §(z5 — z;)/g?. What remains is to determine the
eigenmass equation and associated wave functions for a given set of branes,
a straight forward (but in the case of many branes, tedious) exercise.
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3.2.1. Symmetric branes

For our first example, consider equal brane kinetic terms, r, = r, = 7.
This is the case induced by radiative corrections to 5d theories with orbifold
boundary conditions and no brane fields. Note that this set-up preserves
a Z9 symmetry under which even number KK modes are even and odd
number modes are odd. This KK parity forces couplings involving an odd
number of odd-mode fields to vanish. The resulting mass spectrum satisfies
the equation,

Ty  cosim,mR] £+ 1

(mn 2 0) , (38)

2 sin[m,7R] -

and is shown for the first few KK modes in Fig. 4. The + sign in the
equation is realized for the first KK mode, and higher modes are realized
for alternating signs. An interesting feature of the two brane case is evident
for r¢/R > 1, in which the mass of the first KK mode approaches zero
and the remaining modes approach their canonical values of (n — 1)/R.
This contrasts with the one brane case, for which the first KK mode mass
was always greater than 1/2R. One can solve exactly for a solution with
mi1R < 1 by expanding the sin and cos in the eigenmass equation. The
result is

4 4
mf:_2(1+“)z : (39)

T ™R mre R

This lightest KK mode can be understood to be a sort of “collective mode”,
composed of a tiny amount of every wave function in the otherwise unper-
turbed tower. The coupling of the n-mode gauge fields to fields confined on
either opaque brane may be expressed as,

1 1 2
2~ R0 8 10
and is plotted for the first few modes in Fig. 4. Unlike the rest of the tower,
which exhibits similar decoupling from the branes seen in the one brane
case, the collective mode’s coupling approaches the zero mode coupling in
the limit of large r./R. We have chosen to extend Fig. 4 up to r./R = 100
in order to display the asymptotic behavior as a function of r./R. For
completeness, in Fig. 5 we show the behaviour of the first and second KK
mode wave functions.
One can gain intuition into the reason why this feature appears in the
case with two opaque branes by considering an observer living on the brane
at x5 = 0 and measuring the gauge coupling at that brane by scattering
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Fig.4. Then =1,2,3,4 (bottom to top) KK mode masses in units of 1/R and KK
mode couplings relative to the zero mode coupling as a function of r./R for two
branes with equal terms.
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various types of charged matter at various energies. At distances somewhat
shorter than the size of the extra dimension, the observer fails to realize
that the other brane is present, and scattering between matter localized on
different branes should cease. Furthermore, at these energies the distances
probed are too short to realize that there is a second opaque brane at all,
and the observed coupling should not depend on g. At very high energies,
the distances probed are short enough that the fact that there is an extra
dimension becomes irrelevant and the coupling should be dominated by the
coupling present on the brane, and thus must approach g,. However, in
contrast to the one brane case, the zero mode coupling does not approach
Ja, but to a combination of g, and g,. Thus, something is needed to re-
store the correct behavior, and the higher KK modes will not serve because
they decouple from the brane. Thus, the collective mode’s couplings must
approach the zero mode coupling (for g, = g) with an appropriate relative
sign in order for the net force to be described by g, alone.

One can further explore this intuitive picture by examining the effective
coupling between fields either on the same brane or on different branes. In
the KK description of the theory, the net force between them is a sum over
all of the KK modes

ghgh oo gigh/ o @ij (Q%)
ZQ2+m2_Q2 +Zl+m%/Q2 - QQ ’ (41)

where @Q? is the momentum transfer, ¢’ is the coupling of the n-th KK
mode to the i-th brane, and «;;(Q?) is an effective coupling which includes
the exchange of all KK modes in the interaction of brane field ¢ with brane
field j. Using our numerical solution for the symmetric two brane case,
we can explicitly compute the effective intra- and inter-brane couplings.
The result is shown in Fig. 6, and illustrates the physics described above.
At low Q? the exchange is dominated by the zero mode, and the two effective
couplings are equal to the zero mode coupling. The effect of the collective
mode appears rather early, thanks to its small mass, and the couplings begin
to differ. For Q% > 1/7?R?, interactions occur at distance scales smaller
than the separation between the two branes, and the intra-brane coupling
vanishes as each brane fails to realize that the other is there. Finally, at
very large momentum transfer the brane field fails to realize that there is
an extra dimension, and the physics is described entirely by its own (four
dimensional) gauge term with coupling g,.



Branes and Orbifolds are Opaque 2375

5 L R L) B R AL B R AL B AR T T TTTT

Two branes, r, =r,=5R

{ IN
\\‘HH‘\H\‘\H\

O 1 \\JUU‘ l\\luu‘ LaJLll \\H\H‘ L \HHH‘ Il \\\H%
* 10?7 1wt 2 10 10> 10°

Q2 R2

=
o

Fig. 6. The effective coupling between two fields on the same brane (upper line) and
two fields on different branes (lower line) as a function of momentum transfer, Q2.

3.2.2. Asymmetric branes

Another interesting case has two branes with different terms. For sim-
plicity, we fix the term on the first brane (at z5 = 0) to r, = r. and allow
the term on the second brane (at z5 = mR) to vary as r, = zr,. For z # 1,
this configuration explicitly violates KK parity. As motivation, one might
imagine a construction in which some fermions (for example, the leptons)
are confined to the brane at x5 = 0 while some others (for instance, the
quarks) are confined to the other brane at x5 = wR. This configuration can
suppress local operators leading to unacceptably fast proton decay because
of a low Planck scale [2]. Given the asymmetry between the two branes, it
would be somewhat contrived if the gauge kinetic terms living on them were
the same. In addition, the much larger number of quark degrees of freedom
will imply very different quantum corrections to both terms, so the choice of
equal couplings at the two branes is only justified in some particular cases.

The KK masses are now solutions of the general two brane eigenmass
equation (33). In terms of z and 7 its solutions can be expressed

2 2
S (1+2) £/(1 + 2)2 + 4tan? [m,7R] ’ (42)
z tan [my, 7 R]

where again the 4+ sign is realized for the first KK mode solution, and succes-
sive modes are realized for alternating signs. Results are plotted for ry = R
and r2 = zR in Fig. 7. The features are roughly similar to those evident in
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the symmetric two brane case, including the existence of a collective mode
in the limit of r1, 79 > R with very small mass

m? = 2 <2+r1(1+z))%2(1+z) (13)

zr? TR zrr R

Having found the masses, the next step is to examine the wave functions.
We expect that for asymmetric branes, the larger brane term will dominate,
pushing the wave functions further away from that brane. This implies that
the higher KK modes couple more weakly to brane fields on one of the
opaque branes than to those fields on the other. This is evident in the wave
functions, plotted for the first two modes in Fig. 8. For z = 1 we see, apart
from an over-all sign, equal coupling at both branes, whereas for z > 1 the
wave functions become very small on the brane at x5 = wR. This has the
implication that the KK modes couple much more strongly to fields located
on the less opaque brane than to fields localized on the more opaque brane.
We plot these couplings in Fig. 7, and find that the effect is quite striking for
z > 1. One can understand this feature in terms of the effective couplings
on each brane. z > 1 implies that gl? is very small, and thus dominates the
zero mode coupling. This in turn implies that, since the effective coupling in
the ultra-violet should converge to the local brane terms, KK modes should
rapidly decouple from the second brane, while they must couple relatively
strongly to the first one in order to make up the difference between the zero
mode coupling and the local term on that brane.

4. Implications for phenomenology

Our results can have profound implications for the phenomenology of
models in which gauge fields propagate in the bulk. The standard picture
for this situation is that high energy colliders can identify an extra dimension
by discovering the tower of KK modes with masses n/R and couplings V2
times greater than the zero mode coupling to brane-localized matter [15,36].
In the limit of a very small gauge-kinetic term on the brane these results will
approximately hold for a large number of KK modes, and this phenomeno-
logical picture will remain valid. However, the results above indicate that
these theories have, in addition to the parameter R which controls the size
of the extra dimension and thus the masses of the KK modes, at least one
other, “hidden” parameter, r., which will distort the KK spectrum and mod-
ify the couplings to brane fields. Since it is effectively a tree level coupling,
it is somewhat arbitrary to set it equal to zero.



Branes and Orbifolds are Opaque 2379

4.1. One brane case

As a simple example of what the local brane couplings may do to limits
from colliders, let us consider the effect of virtual KK photon and Z exchange
on the process ete™ — ff. This was discussed for the transparent brane case
in Ref. [36]. At energies far below the mass of the first KK mode, the effect
of the virtual KK photon exchange can be included model-independently as
a four-fermion operator

0, = Qs er'e] [Tf] (44)
w

where the dependence on R is hidden inside the coefficient V/

an/ag
Vo=my Y, ?wg , (45)
n>1

where M, is the mass of the nth KK gauge boson and «,, the product of its
couplings to the e and f fields.
In the transparent brane case

Vemh B Y = wmb RCR) (re=0), (46)

n>1

with the factor of 2 a result of the KK mode couplings being /2 times
the zero mode couplings, and the sum over n includes all KK states, whose
masses are n/R. In the five dimensional case we consider the sum is con-
vergent to ((2) as indicated (though the result changes only by about 5% if
truncated at m = 10), but in higher dimensions it would have to be cut-off
in some fashion, introducing dependence on the UV completion. Similar
operators can be written for KK modes of the W* and Z (and in the case
of Oz will generally interfere with O, in physical processes). In the ro — 0
limit, the quantity V will be the same for all of the bulk gauge fields. Thus,
including all relevant operators, Ref. [36] deduces that with 200 pb~" of
/5 = 195GeV LEP data the reach extends up to V' < 4.5 x 103 which cor-
responds to R™! < 2.2 TeV. At the NLC with /s = 500 GeV and collecting
500 fb~! of data the bound becomes V < 1.2 x 107* or R™' < 13 TeV.
The situation with r. ~ R can be quite different. For example, we con-
sider the one-brane case with both e and f fields living on the opaque brane.
To compute V one must return to the definition, Eq. (45) where oy, and M),
are now complicated functions of R and rc, as shown in Fig. 2. The leading
term (from the first KK mode) may be somewhat enhanced by the mass
of that mode being lighter than 1/R, but is also somewhat decreased by
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the suppressed coupling to brane fields. The suppression dominates the en-
hancement. The higher KK number states are still approximately equally
spaced in mass, but their couplings to brane fields become highly suppressed,
and the sum in Eq. (45) converges much more quickly than the r. = 0 ex-
pression in Eq. (46). Using the new expression for V', we translate the LEP
and NLC bounds on V' (which are independent of the new physics) into the
plane of 1/R and r./R. For r./R 2 1 the limits on 1/R can be substantially
modified; for the LEP (projected NLC) limits derived above, we have, for
re/R~1, R"122TeV (12TeV) and for r./R~10, R~'>1.3 TeV (8.1 TeV).

Another interesting possibility is the fact that each gauge group in the
bulk may have a separate r. on the brane. This would allow mass splittings
between the KK modes much larger than one would normally consider from
radiative corrections. This allows each gauge boson to have its own V,
which would not be expected from the simple extra-dimensional picture
with transparent branes. It further has the effect that the KK modes for
the neutral weak boson sector can have a different Weinberg angle than the
one observed for the zero modes, and thus may be poorly approximated as
KK modes of the ordinary photon and Z, and better represented as different
mixtures of heavy copies of the SU(2) and U(1) neutral bosons. A similar
effect can also occur when some of the weak gauge groups and/or Higgs
fields are confined to a brane [37].

4.2. Two branes and split fermions

When there are two or more branes, the lightest KK mode is generally
a collective mode which does not decouple from the brane, and whose mass
is not characterized by R™', but instead by 1/+/Rr.. This leads to the
interesting possibility in which a first KK mode can be discovered, but higher
modes (whose masses are characterized by R~! and whose couplings to brane
fields are suppressed) remain out of reach. This is very different from the
transparent brane case in which one expects evenly spaced KK modes, so
that the second mode has mass twice as large as the first mode and the same
coupling strength. The discovery potential for the collective mode will be
similar to existing searches for standard W’ and Z’ bosons, colorons [38],
and so forth.

In models with low-scale quantum gravity, there is motivation to con-
sider the possibility that quarks and leptons live on separate branes, in
order to prevent dangerous operators which would mediate proton decay
in conflict with existing bounds [2]. The simplest implementation of such
a picture has two branes, one containing the quarks (and possibly the glu-
ons) and the other containing the leptons. One is thus forced to consider the
weak gauge bosons propagating in the bulk, and loops of the brane fermions
should induce kinetic terms for the weak gauge fields localized on each brane.
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Given the obvious asymmetry in the underlying dynamics which localized
the quarks on one brane but the leptons on the other, it seems natural that
one brane (i.e. the quark brane) could have a larger kinetic term than the
other one (i.e. the lepton brane), and the results of Section 3.2.2 could be
relevant to the phenomenology of the KK modes. This leads to two inter-
esting variations on the usual phenomenology of bulk gauge fields. The first
is that, owing to the larger repulsion from the quark brane than from the
lepton brane, the KK modes may couple more weakly to quarks than to
leptons. This would alter the expected relative production cross sections at,
say high energy eTe™ colliders and hadron colliders, and would further affect
the branching ratios into a given species of fermion. Furthermore, at large
momentum transfers, the two branes lose sight of each other, and at very
high energies, quarks and leptons miss each other because of their separation
in the extra dimension [39]. This is evident in our two-brane results for the
effective coupling between fields located one on each of the two branes (see
Fig. 6) which approaches zero at high Q2. In contrast, quark-quark and
lepton-lepton interactions remain appreciable even at large Q2.

Models which separate not only quarks from leptons, but also left- and
right-handed quarks and leptons from each other, may naturally explain
the observed hierarchy of fermion masses [2—4] by generating small Yukawa
couplings for the zero modes as the tiny overlap in fermion wave functions.
Each localized fermion demands a renormalization of the gauge field whose
shape is related to the profile of the fermion KK modes, and a full theory of
flavor could have as many separate contributions as there are fermions. The
resulting picture is therefore rather complicated and model-dependent, and
is beyond the scope of this work, but we can divine some general features
from the simple cases we have studied.

First, we would see the high energy suppression of cross sections outlined
above for split quarks and leptons for any two different fermions, including
same flavor fermions with different helicities! Since the induced localized
gauge kinetic terms are sensitive to the shape of the fermion zero mode
wave functions, production cross sections and decay branching ratios could
be flavor-dependent in a complicated way. The properties of the KK gauge
bosons thus provide one with a powerful test of extra-dimensional flavor
dynamics, exploring the cartography of the extra dimension [40)].

Second, models with split fermions have strong flavor-changing neutral
current (FCNC) constraints from Kaluza—Klein modes of gauge fields [4,41,
42|, because while the gauge fields couple flavor-diagonally, the KK modes
couple flavor-dependently, inducing FCNC’s after the CKM rotation from
the gauge to mass basis is performed. The limits derived in this way on
R~! from the Kaon system are quite strong, of order R~! > 100-1000 TeV.
However, these limits could be relaxed quite substantially if appreciable 7.
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terms are included. Such terms will force the KK modes of the gauge fields
to try to avoid the places where fermions are localized, and would limit the
strength of the FCNC'’s.

5. Conclusions

Theories with extra dimensions offer both unique solutions to the puz-
zles of particle physics as well as unique theoretical challenges. To date,
all known descriptions must be regarded as effective theories, and without
a deeper model to describe the underlying physics responsible for the com-
pactification of dimensions, generation of branes and boundary conditions,
and confinement of fields to brane world-volumes, the best one can do is to
write down effective descriptions which are self-consistent. The theoretical
motivations are many, and the resulting phenomenology intriguing.

We have explored a simple consequence of any theory with gauge fields
in the bulk of the extra dimensions, and charged matter either in the bulk
subject to orbifold boundary conditions, or confined to a brane. Radiative
corrections to these theories mandate that such branes or boundaries are
not transparent to the gauge fields — instead they are opaque. While the
opacity of the brane, parameterized by the size of a kinetic term for the
gauge field living on the brane or boundary, is not calculable in terms of
other parameters in the theory without introducing assumptions about the
nature of the UV completion, this does not justify ignoring it. Such terms
may very well be large, and comprise an important part of relating a theory
with extra dimensions to the real world. The effect on phenomenology can
be sizable, and the result qualitatively different from the situation in which
they are neglected. For example, charged fields confined to an opaque brane
will decouple from the high Kaluza—Klein modes of the gauge field, contrast-
ing with the standard picture under with all KK modes couple equally to
brane fields. This decoupling of the higher KK modes is somewhat similar
to the effect of dimensional deconstruction [43,44], which replaces an extra
dimension with a chain of 4d gauge theories linked by scalar fields. In the
deconstructed case, the analogues of the KK modes of bulk fields naturally
distort and terminate at some high energy scale. In the case of the brane ki-
netic term, the KK spectrum remains infinite, but nevertheless the coupling
to brane fields becomes arbitrarily small for arbitrarily heavy modes.

In addition, the existence of local gauge kinetic terms implies there may
be collective KK modes whose masses are not related to the size of the extra
dimension, but instead to the size of the brane kinetic term. These collective
modes typically do not decouple the way the higher KK modes do, and thus
have unique phenomenology compared with the typical expectations of extra
dimensional theories. Finally, theories which have different types of matter
living at different locations in an extra dimension can show the interesting
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behavior that at very high energies interactions between different particles
are suppressed. At very high energies, the particles miss each other because
of their extra-dimensional separation.

Our framework has been five dimensional theories with gauge fields living
in all five dimensions. We have chosen this framework because it is simple
and predictive, but there are many alternatives to explore. Our results are
representative for any bulk field, and suggest that a complete, self-consistent
effective theory including compact dimensions has a few more parameters
than one might naively guess. The appearance of divergences, which must
be renormalized, implies that it is more generic to treat these effects as tree-
level couplings, in contrast to the naive expectation that they arise as loop
effects. It would also be interesting to explore larger numbers of compact
dimensions, to see the results in theories with six or more dimensions. In
addition, it would be exciting to see if our results could be exploited in
model-building, allowing new extra dimensional theories to better explain
the puzzles of the Standard Model.
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