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Dedicated to Stefan Pokorski on his 60th birthday

The new idea of deconstruction allows to realize the physics of extra
dimensions in a strictly four dimensional set-up. After a short review of
these techniques extended to supersymmetry, I will report on an applica-
tion to build models in which the low energy spectrum shows no sign of
supersymmetry but still the radiative corrections to the mass parameters
are weakly dependent on the cutoff scale, if this one remains low enough.
As a consequence, the Higgs mass dependence in high energy physics is
effectively parametrized by the deconstruction scale which also fixes the
gauge boson masses through the Higgs vacuum expectation value. In this
regard, deconstruction, somehow as gauge invariance, is a dynamical princi-
ple that dictates the interactions of particles and gauge fields at low energy
and quantum level.

PACS numbers: 12.60.Jv, 12.60.Cn, 12.15.Lk

1. Electroweak symmetry breaking and the quest for new physics

The structure of Stefan Pokorski’s career and works nicely reproduces
the structure of the Standard Model of Particle Physics. Indeed an intrusive
inspection on Spires (find a Pokorski,s and topcite 100+) will easily
convince anyone that his papers belong to three different sectors: the gauge
sector [1], the flavor sector [2] and the electroweak symmetry breaking sec-
tor [3]. As for all of us, his interest in the mechanism of SU(2);, x U(1)y

* Presented at Planck 2002, the Fifth European Meeting, From the Planck Scale to
the Electroweak Scale “Supersymmetry and Brane Worlds”, Kazimierz, Poland, May
25-29, 2002. Special session dedicated to S. Pokorski on the occasion of his 60-th
birthday.
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breaking is certainly motivated by its potential relevance in the illustrious
quest for new physics. I will report here on his last proposal for an elec-
troweak symmetry breaking scenario [5], which I had the honor and the plea-
sure to think of with Stefan and his youngest collaborator Adam Falkowski.
This proposal makes use of the notion of deconstruction theories pioneerly
unraveled by Stefan and his collaborators and that I will review in the next
Section.

The ElectroWeak Symmetry Breaking (EWSB) sector is essentially char-
acterized by two unknown parameters: the Higgs mass and the cutoff scale
of the Standard Model (SM). These two parameters have escaped any direct
measurements so far. Yet theoretical consistency constraints like the noto-
rious unitarity, triviality, stability & naturality bounds (for a recent review,
see for instance [4]) as well as indirect measurements through electroweak
precision data jeopardize our current understanding of the SM quantum
structure and contrive any extension beyond the SM. In revealing a deep
connection between physics at high energies and EWSB, the two papers [6]
were of primordial importance: they established that, while supersymme-
try fixes the tree level Higgs potential, soft breaking terms induce radiative
corrections that trigger EWSB at one loop. The only remaining problem
was thus to understand how supersymmetry itself is broken. The standard
lore for the last twenty years was that supersymmetry is broken in a hidden
sector and this breaking is mediated through gravity or gauge interaction to
the visible sector. Unfortunately, the low energy theory contains more than
one hundred of parameters that have to be somehow fine-tuned to pass all
phenomenological tests. Meanwhile, inspired by string theory, an alternative
and more geometrical approach to break supersymmetry was worked out [7]
using compactification of extra dimension. The idea is to impose different
boundary conditions to the different components of a supersymmetric mul-
tiplet. While the low energy theory may break all the supercharges of the
high energy theory, it has been realized recently [8] that the local symmetry
properties along the extra dimension, even if globally broken, can still dictate
the structure of the theory at low energy and then protect it from harmful
radiative corrections. The price to pay is to deal with higher dimensional
gauge theories plagued by non-renormalizability.

2. Deconstruction

The recent progresses of String Theories have led physicists to a re-
thinking of the nature of space-time dimensions [9]. First T-duality nul-
lifies the notion of large and small dimension since the spectrum M, ,, =
n/R + mR/I? is invariant under the exchange of Kaluza—Klein and wind-
ing modes when R < I2/R (I is the string length scale). Even more, S
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duality teaches us that a space dimension is an emergent phenomena asso-
ciated to a strongly coupled dynamic: the size of the eleventh dimension of
M-theory, R = gsls, really opens up non perturbatively from a ten dimen-
sional strongly coupled string theory. In an extreme step, the Matrix Theory
description of M-theory proposes to abolish all space dimensions and to re-
duce string theory to quantum mechanics over a space of matrices.

Last year Stefan, Hill and Wang [10], and simultaneously Arkani-Hamed,
Cohen and Georgi [11], realized that one does not have to rely on string the-
ory to taste the emergence of extra dimensions. Actually even in high school
anyone experienced such a phenomena: simple point like balls linked to each
other by springs behave, at distances larger than the distance between the
balls, as a true one-dimensional string [12|. This mechanical analogy allows
to construct 5D gauge theories out of 4D gauge theories. The energy of
the spring-ball system, E = 3, 2m;3? + 1k;(2; — ;+1)%, becomes a La-
grangian describing the dynamics of several copies of interacting 4D gauge
fields A;: L = Y, —1FL F!" + m?(Al, — AiF1)2. In order to preserve
unitarity, the hoping mass term advantageously emerges dynamically in a
Higgs phase when link scalars ¢;, transforming as bifundamental under two
adjacent gauge groups, acquire a vacuum expectation value (note that the
link scalars can themselves describe fermionic technicolor-like condensates
of asymptotically free theories). This approach is nothing but a latticization
of the fifth dimension where the link scalars are Wilson lines connecting two
nearest-neighbor gauge groups. In the Higgs phase, the product of gauge
groups is broken to the diagonal gauge group and the broken-massive gauge
bosons can be identified with the KK modes of a 5D gauge theory. More
precisely, the following theory space configuration:

- @ -
—  » [sum)) - -

after spontaneous breaking, ¢; = v1, involves one massless SU(M) gauge
boson in interaction with N —1 massive gauge bosons m ;) = 2gv sin km/2N,
k=1...N — 1. The structure of the interactions exactly matches with the
KK modes one resulting from a S?/Zs orbifold compactification and, in the
large N limit, the spectra also agree. There is a one to one correspondence
between the three parameters defining the moose theory (g, N and v) and
the three parameters defining the 5D orbifold theory (the gauge coupling
g5, the radius R of the orbifold and the cutoff scale 4): g5 = \/g/v,R =
N/(mwgv), A = mgv. The KK states of the extra dimension arise from having
many gauge symmetries in four dimensions.

This approach can be extended to supersymmetric gauge theories
[11,13]. The gauge fields are promoted to full 4D N = 1 vector super-
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fields while the link scalars are promoted to chiral superfields. In order to
lift flat directions and to give masses to singlets, a superpotential is intro-
duced: W = p>=M sz\il Si(det &; — vM), where S; are Lagrange multiplier
chiral superfields. The resulting spectrum is

Scalar Fermion Vector

m=0 2(M?—-1)real 2(M?-1) Weyl M?-1
mgy  M?—1real  M?—1Dirac M?-1

and exhibits a 4D N = 2 structure which also results from the discrete
Lorentz invariance with the same speed of light along the fifth dimension as
for the other four.

The introduction of matter requires a doubling (matter and mirror mat-
ter) to construct a supersymmetric hopping superpotential:

W = Zyz QiPiQis1 + Zmz QiQi .

(Q;, resp. Q;, transforms as fundamental, resp. antifundamental, represen-
tation of SU(M);.) The N' = 2, or 5D Lorentz invariance, is preserved if and
only if the Yukawa couplings y; are equal to the gauge couplings. Further-
more, the resulting NV = 2 hypermultiplet will be massless when m; = —gv.

As T will describe in the next section, one use of deconstruction (su-
persymmetric) theories is the breaking of supersymmetry in the low energy
effective action. Indeed a hard supersymmetry breaking in theory space can
manifest itself softly below the deconstruction scale v in the sense that ra-
diative corrections to the Higgs mass will be sized by v and not the cutoff
scale of the theory (provided that this one remains low enough).

3. Soft electroweak breaking from hard supersymmetry breaking

Deconstruction helps to tackle the hierarchy problem in the sense that
divergences in non-supersymmetric theories can be considerably softened
compared to generic 4D theories'. The aim of the following toy model based
on replication of SU(2) 4D gauge groups (we will comment later on the
introduction of U(1)y interactions) is to illustrate this softening.

We start with A/ = 1 supersymmetric models consisting of a chain of N
gauge groups which communicate to each other through N —1 bifundamental
link superfields @;. To realize the SM matter and Higgs fields in the bulk we
need to deconstruct 5D hypermultiplets. To this end, to every gauge group

! Recently, another approach to EWSB in deconstruction has been proposed [14].
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we attach a set of chiral multiplets: ‘Higgs doublets’ and ‘quark doublets’,
in the fundamental of the i-th group and their mirror partners with opposite
quantum numbers. The superpotential is chosen as?:

N-1 N N-1 N
W= yrHi®Hiy— Y mlHH+ Y y?Qi®iQiy1 — Y miQiQi. (1)
i—1 ie1 im1 i—1

To complete the Standard Model quark spectrum we need to add right-
handed quark multiplets U; and D; and their mirrors. Since no color or
hypercharge group is present in our toy-model these fields are singlets. The
superpotential is chosen as W = Zf:ll yrUUip1 — Z’f\il myU;U; and anal-
ogously for D;. In order to get the Yukawa interactions of the Higgs boson
with the up-quarks it is sufficient to add to the superpotential the Yukawa
term which involves only the superfields from the first site W = A Q1 H,U;.

At this point one could proceed towards the phenomenological models in
the standard way, that is add soft terms to obtain splittings of the multiplets
and to trigger the electroweak symmetry breaking. Deconstruction allows
to investigate an alternative road.

3.1. Yukawa loop corrections to the Higgs boson mass

Generically, the dominant contribution to the one-loop Higgs mass is
due to Yukawa interactions with the top quarks. In SM this contribution
is quadratically divergent, while in the MSSM the quadratic divergence is
canceled by the top squark loops. Here, we analyze the set-up where such
boson-fermion cancellation occurs when we break supersymmetry in a hard
way by removing some of the degrees of freedom in a non-supersymmetric
way. For the discussion of divergences it is irrelevant what is the precise
pattern of the breaking; the only important thing is that the part of the
Lagrangian involving the fields of the first site maintains the supersymmetric
form. In particular, we assume that all supertraces at the first site are
vanishing.

If the link vevs are absent it is clear that at one-loop Yukawa inter-
actions do not feel the supersymmetry breaking on the other end of the
chain. Thus, the one-loop radiative correction to the hy squared mass pro-
portional to the Yukawa coupling A are absent. As soon as we switch on the
link vevs, the fields living at different sites are allowed to mix and we have
to perform an orthogonal transformation to diagonalize the mass matrix.
Since supersymmetry is broken, generically the spectrum is completely non-
supersymmetric (boson and fermion masses will be different and there can

% From now, z; and 1x, will denote respectively the scalar and the chiral fermionic
components of the chiral superfield X;. The mass eigenstates will be denoted with
parenthesized subscripts: z(n) and ¥x,,, with masses m{,,, and mfm).
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U(n)s9(n) wQ(n) U(n),4q(n)

d(m)> U(m) YUy

Fig. 1. One-loop diagrams involving the top Yukawa coupling and contributing to
the squared mass of the Higgs boson.

be a different number of bosonic and fermionic degrees of freedom). How-
ever, the A-proportional corrections to the Higgs mass are still controlled by
the first site and, as a consequence, they are finite! To see this we need to
perform an orthogonal transformation to express the original fields in terms
of the mass eigenstates: ¢; = nagnq(n), o, = Dop bZan/JQ(n). The zero
mode Higgs mass receives one-loop radiative corrections proportional to the
Yukawa coupling through the diagrams depicted in Fig. 1. The divergences
in ém? are found to be proportional to:

om? ~ A2 (Z lad,|? — (Z |b?n|2)2> +2 In A2 (QOQ]L — mq2) 0 (2)

a

n?
b?n are coefficients of the orthogonal transformation diagonalizing the squark

and quark squared mass matrices, respectively (similar relations have also
been used to simplify the logarithmically divergent part). This leads to the
conclusion that the Higgs mass gets logarithmically divergent contribution
proportional to the supertrace in the quark sector at the first site, which
we assumed to vanish. Thus, in spite of the fact that the theory is non-
supersymmetric, the Higgs mass (in fact the same holds for the squarks)
gets, from the Yukawa interactions, only a finite one-loop correction to its
mass. These conclusions hold even if the model has a different number of
bosonic and fermionic degrees of freedom!

To illustrate this discussion we present a construction inspired by the
five-dimensional of the BHN model [8]. Arriving at the spectrum of [§]
involves some tunings of the parameters. But we stress that these tunings
are by no means important for the cancellation of divergences; they serve
only to obtain simple mass matrices, so that formulae for the Higgs boson
mass can be evaluated explicitly. So we tune the parameters as (go is the
common gauge coupling):

The coefficient of the quadratic divergence vanishes by the fact, that a

h d h
yi =yl =y =y =g0 and m; ; i
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We also add &y link-Higgs, as in Fig. 2, which we need to avoid a massless
gaugino mode.

(A%, x%)

+ (0, 9ay)

(}LN7/I/)HN) (qu/)flw)
(an:%qy) (Gn,0)

Fig.2. The magnifying glass view of the N-th site of the model. The fields ¢, hy
and dJQN have been removed in order to break supersymmetry and induce a mass
splitting in the low-energy theory.

We break supersymmetry by setting ¢n, hy and ’I/JQN — the mirror
components of the SM fields — to zero in the Lagrangian (see Fig. 2). This
is, of course, hard breaking of supersymmetry, as some of the fields at the
last site lose their superpartners (a similar supersymmetry breaking has also
been proposed in Ref. [15]). At the massless level we have only the gauge
field, quarks and the Higgs boson. Their lightest superpartners have masses
mey ~ gov/(2N + 1) and include a Dirac gaugino, two squarks for every
quark and a Dirac Higgsino.

The one-loop radiative correction to the Higgs mass can now be com-
puted explicitly and after some algebra, we arrive at:

om? = =22 g>v? F(A,N), (4)

where F'(A, N) is a pure numerical factor given by:

X
N3 h2z + 1)(ch 2z + 2ch 4Nz — 1
F(A,N):—Q/dxchxshgx(c I—; )(c I2+ ¢ z=1) (5)
s sh®2Nzch” (2N + 1)z
0

the cutoff X being related to the cutoff scale of the theory by A4=2gyvshX.
The normalized coupling, A, = A\/N 3/2 is the Yukawa coupling of the zero
mode Higgs to the zero mode quarks, i.e., the Yukawa coupling of the ef-
fective SM; similarly, g = go/V/N is the zero mode SU(2) gauge coupling.
Notice that according to our general discussion, F'(A, N) is finite when A
goes to infinity.

We have shown in general that one-loop corrections in certain non-
supersymmetric theories can be surprisingly softened. What about two- and
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higher-loop corrections? The one-loop cancellation of quadratic divergences
depends crucially on the tree-level equality of the Yukawa and 4-scalar cou-
plings of the Higgs field on the first site. However, due to the mass splitting
between quarks and squarks these couplings are renormalized differently.
Thus we expect quadratic divergences to reappear at the two-loop level.

3.2. Gauge loop corrections to the Higgs boson mass

Except for the top-Yukawa couplings there are other sources of quadratic
divergences which are proportional to the gauge coupling or to the Yukawa
couplings to the link fields. Following the discussion of the top-Yukawa con-
tributions we analyze the general conditions to avoid any quadratic diver-
gences. The first potential source originates from the couplings of the Higgs
field to the gauge multiplet and to itself in the D-term scalar potential. The
second source comes from the F-term of the superpotential. The situation
is qualitatively different than in the case of top-Yukawa contribution, as
interactions occur at all sites. To avoid quadratic divergences proportional
to go we have to ensure that at every site the full Higgs multiplet interacts
with the full gauge multiplet.

Similarly, for quadratic divergences proportional to y; to be absent, we
need full link and mirror multiplets to be present at the i-th site. Note that,
since yy = 0, adding or removing scalar link and mirror degrees of freedom
at the N-th site has no consequence for the divergence of the Higgs mass.
We used this fact in our model and placed the hard supersymmetry breaking
sector at the N-th site.

H(n) )‘(")7 7/)4)?”) ’ 1/’¢fn)

¢((lm)7 d’fn) T/JH(m)

Fig.3. One-loop diagrams involving gauge interactions and contributing to the
squared mass of the Higgs boson.

In our specific model these interactions are all proportional to the gauge
coupling (as we tuned the link-Yukawa couplings with the gauge coupling).
The diagrams that contribute to the one-loop zero mode Higgs mass are
depicted in Fig 3. They give:

5m2 = _9402 G(Aa N) 3 (6)
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where g is the zero mode SU(2) gauge coupling and v is the deconstruction
scale. The numerical factor G(A,N) is given in terms of a complicated
integral explicitly written in [5]. As it can be checked and following our
general discussion, this integral is free of quadratic divergence. However, it
exhibits a logarithmic divergence in the cutoff scale:

(7)

The cutoff dependence is similar as in the softly broken supersymmetry, but
the Msysy scale is replaced here by the deconstruction scale v. If v is close to
the weak scale (which is the case as long as N is not too large) then the one-
loop sensitivity to the cutoff is weak and the only dependence in high energy
physics to the Higgs mass is parametrized by the deconstruction scale, v.

3.3. One-loop effective potential and EWSB

The previous evaluation of the Yukawa and gauge radiative corrections
to the zero mode Higgs mass suggests that they will trigger the electroweak
symmetry breaking. To study in full details this breaking, we need now to
compute the one-loop effective potential given by:

1 4 k2 2
V:—’I‘r/dkE In §+mg(”H), (8)
2 (2m)* kL + m’(vn)

where my, and m are respectively the bosonic and fermionic mass matrices
as functions of the vev of the Higgs field, vy>. We consider only the top-
multiplet contribution and the dependence on the Higgs vev is coming from
the Yukawa interactions localized on the first site only.

For the stop sector, we obtain the following squared mass matrix (m, n,
p,g=1...N):

Th%m)(smp + ap C(m) C(p) bb M) c(m) C(q)

; (9)

by () c(n) c(p) fn%n)dnq
where we have defined: ¢(m) = cos %, and the two coefficients a; and

by are related to the Yukawa coupling as:

4)\21)%I
ap = ——————
(2N +1)N

4oy
and by = —— 0 10
" eN+ )N (10)

3 In this paper, our convention is to define vy as the vev of the complex Higgs field,
i.e., vg ~ 174 GeV.
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Note that squarks mix with mirror squarks once the electroweak symmetry
is broken.

Similarly in the top sector, the squared mass matrix reads (m,p =
0...N—1,nqg=1...N—1):

M Omp + g Nty d(m) d(p) by 1 myq) d(m) d(q)
, o (11)
by npmn) d(n) d(p) My Ong

where we have now defined d(m) = cos 557, and the two coefficients ay and
by are given by:

(12)

Let us mention that two important supertraces are independent of the
vev of the Higgs:

STrM? =2g3v> and STrM*=6g5v". (13)

This ensures that the one-loop potential for v has no divergent dependence
on the cutoff of the theory: the EWSB is triggered by the low energy physics
and is not dominated by unknown physics that will be revealed at or above
the cutoff scale. Adding the tree-level Higgs self-coupling originating from
the D-terms, we get:

S’I‘rm4ln<m2> : (14)

1 3
V(vn) = gg%vn + 1672 gov

8

where the supertrace is over the 2N bosonic and 2N —1 fermionic eigenvalues
of the matrices (9) and (11).

Let us now turn to the determination of the spectrum. The secular
equation of the stop squared mass matrix is given by:

N 2m—1)m \ 2
1— %[ﬁ Z M =0 (15)
N@2N +1)20 \ 2~ m%m) — p?

which, using some remarkable identities, can be rewritten as a polynomial
equation of degree 2N:

RTN(1—2?) =72 RUN (1 — 2?), (16)
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where z is the dimensionless eigenvalue z = p/(2gov), 7 = A\waN/(gov)
characterizes the Higgs vev in units of gov, and RTx and RUy_1 are the
reduced Chebyshev polynomials:

Ton11(VX) Uzn-1(VX) _

RTN(X) = and RU 17
N (X) /X N-1(X) = 7x (17)
Similarly, the fermionic secular equation is
4)\2 2 mnw 2
v cos
1— £ _H 2 ( n 72N> =0 (18)
N3 Z m (m) — p

and it can be written in the form of a polynomial equation of degree 2N — 1:
RTn_1(1—2®) =7 '2 RUN_1(1 — &?). (19)

All the pieces are now set to numerically evaluate the potential V' (vy)
and find its minimum. The results are plotted in Fig. 4 for different values of
the replication number N. The Higgs mass after EWSB becomes a function
of low energy parameters only: the top Yukawa coupling, the Higgs vev, the

<H>)
29v /(ZQV) V(<H>)
0. 0008 o 0.4
0. 0007} | 510

6:10°°| v/\
0. 0006} | ", 3 03
0' 0005 Zm: 0.05 0.1 0.15 0.2 0.25) o
0. 0004 X o2
0. 0003 —

Z
0. 0002 X 0.1
0. 0001
0O 0.050.10.150.20.250.3 ——
(H) 174 GeV

(HY

(@ (b)

Fig.4. One-loop effective potential for the Higgs scalar field for different value of
the replication number N. As in softly broken supersymmetric theories, the tree
level Higgs potential is fixed by symmetry and radiative corrections trigger EWSB.
The Higgs vev is a function of the top Yukawa coupling, the SM gauge coupling
constants and the deconstruction scale. Figure (a) plots the potential in units of
the deconstruction scale. When the Higgs vev is fitted to its phenomenological
value (figure (b)), a prediction for the Higgs mass is obtained.
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electroweak gauge coupling and the replication number. The deconstruction
scale, v is indeed fixed in terms of the low energy parameters once the Higgs
vev is fitted to its phenomenological value. Some numerical results are given
in Table I for the Higss mass, the stop mass, the first KK excitation of the
top and the deconstruction scale, v.

TABLE 1

Spectrum after EWSB for different values of the replication number, N.

Higgs mass stop mass top first KK v

(GeV) (GeV) (GeV) (GeV)
N =2 158 142 502 437
N=3 166 158 532 565
N =4 170 161 533 664
N=5 172 167 537 745
N =10 178 164 517 1051

3.4. Towards a more realistic model

Finally, we comment on how the toy-model presented here can be ex-
tended to match the Standard Model phenomenology. The obvious missing
pieces are:

e SU(3) color group In the real world quarks transform in the 3 or
3 representation of the color group. Replicating SU(3) gauge group
so as to obtain only one octet of massless gluon and superpartners
separated by a mass gap does not bring any complication. One in-
troduces a set of link-Higgs superfields I'; transforming as (3, 3j;1)
and the rest of the construction is analogous to the SU(2) case. The
problem appears when we want to obtain the KK-tower for the quark
doublets; the gauge invariant superpotential must now have the form
W = gg Z(%QZ O, Qi1 — vQ;Q;) and leads to non-renormalizable
interactions. A more satisfactory alternative which allows to main-
tain renormalizability is not to replicate the color gauge group and
assume that all quark superfields @;, U; and D; are charged under a
single SU(3). Then the superpotential for these superfields has the
same form as in the pure SU(2) case. Of course, then the model has
no extra-dimensional interpretation but this does not change any con-
clusions about softness of the radiative corrections. It is nothing but
a deconstructed version of a brane-world scenario where QCD inter-
actions are localized on the brane while weak interactions are free to
propagate in the bulk.
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e U(1) hypercharge group Similar problems as in the SU(3) case arise
when we replicate the hypercharge group: writing an invariant super-
potential so as to get the KK-tower of quarks and leptons implies
non-renormalizable interactions. In addition, one must worry about
anomalies, which must be compensated, e.g., by deconstructed Wess—
Zumino terms [16]. Therefore, the more plausible alternative is not
to replicate the hypercharge group. One avoids non-renormalizable
interactions and as a byproduct the anomalies automatically cancel.
Indeed, the fermion spectrum at all sites but the last one is vector-
like: every fermion is accompanied by the mirror fermion with opposite
quantum numbers. At the N-th site the fermion spectrum is the same
as in the MSSM. However, the scalar content is different and trY does
not vanish, which is a source of quadratic divergences?. Moreover since
the U(1)y interactions break translational invariance along the fifth
dimension, exact cancellation between boson and fermion loops does
not hold. Actually, the U(1)y interactions give a quadratic divergent
contribution to the Higgs zero mode mass:

2_§912A2

sm? = .
T

Requiring that this contribution remains subdominant requires a rel-
atively low cutoff scale around 5 TeV.

4. Conclusion

Deconstruction, somehow as gauge invariance, is a dynamical principle
that contributes to dictate the interactions of particles and gauge fields. As
advocated in this proceeding, deconstruction can be a useful tool to break
supersymmetry without relying on an unknown and highly constrained soft
sector: indeed even if supersymmetry is hardly broken locally in theory
space, the structure of interactions as resulting from deconstruction is such
that the Higgs potential at one loop remains governed by the symmetry of
the theory (as long as the cutoff scale remains below around 5 TeV) and
does not depend in the details of the physics at high energy that effectively
manifests itself at low energy through the deconstruction scale. Then the
top Yukawa couplings trigger EWSB and this breaking is dictated by low
energy parameters only.

* We thank H.P. Nilles and S. Raby for interesting comment on this point. See [17] for
a discussion on similar effects in 5D theories
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