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BRANE INDUCED SUPERSYMMETRY BREAKDOWNAND RESTORATIONK.A. Meissnera, H.P. Nillesb and M. Olehowskia;baInstitute of Theoretial Physis, Warsaw UniversityHo»a 69, 00�681 Warsaw, PolandbPhysikalishes Institut der Universität Bonn,Nussallee 12, 53115 Bonn, Germany(Reeived June 3, 2002)Dediated to Stefan Pokorski on his 60th birthdayWe investigate the phenomenon of brane indued supersymmetry break-down on orbifolds in the presene of a Sherk�Shwarz mehanism. Generalonsisteny onditions are derived for arbitrary dimensions and the resultsare illustrated in the spei� example of a 5-dimensional theory ompat-i�ed on S1=Z2. This inludes a disussion of the Kaluza�Klein spetrumand the possibility of a brane indued supersymmetry restoration.PACS numbers: 04.50.+h, 11.25.Sq, 11.30.Pb1. IntrodutionThe searh for a satisfatory breakdown of supersymmetry is one of themost important hallenges in higher dimensional quantum �eld theories andstring theories. Mehanisms at our disposal so far are the Sherk�Shwarzmehanism [1, 2℄, orbifold twists [3�5℄ (or more generally spaes with nontrivial holonomy groups [6℄) as well as brane indued supersymmetry break-ing [7, 8℄. As in all these ases extra dimensions are involved these meh-anisms show some similarities, but there are also deisive di�erenes. Oneimportant di�erene onerns the question of the possible appearane ofhiral fermions as a onsequene of supersymmetry breaking. As the om-pati�ation of higher dimensional supersymmetri theories usually leads toN -extended supersymmetry in d = 4, we need a mehanism that breakssupersymmetry to N = 1 or N = 0 while allowing for a hiral fermionspetrum via the mehanism of orbifold twists.(2435)



2436 K.A. Meissner, H.P. Nilles, M. OlehowskiIn spei� models we are very often onfronted with a situation thata ertain ombination of the above mentioned mehanisms is at work, aompliated situation that needs a areful analysis to identify the most gen-eral properties of suh a sheme. Also, it has been suggested that braneindued supersymmetry breakdown is related to the Sherk�Shwarz meh-anism [9, 10℄, a onjeture based on the fat that supersymmetry brokenat a given brane ould be restored by a similar mehanism on a di�erentbrane [7,11,12℄. Suh a mehanism has been analysed in detail in [12℄ in theframework of the heteroti M-theory of Ho°ava and Witten [13℄. As this isa rather ompliated set-up and as some approximations are involved, theexpliit alulations were quite di�ult and not that easy to present in asimple way. In the present paper we would like to disuss the set-up of theombined ation of the three mehanisms in the most general way and illus-trate the shemes in the framework of simple 5-dimensional examples. Ourgeneral formulae are valid also for d > 5, but expliit solutions are muhharder to obtain. Meanwhile a similar e�et has been investigated in [14,15℄that has some overlap with the present work. The situation disussed thereis, however, less general than the one onsidered in the present work (andwe also di�er in some of the expliit formulae).As these mehanisms are in some sense similar, we start in Setion 2 witha areful de�nition of Sherk�Shwarz mehanism and orbifolding. Setion 3then gives the general onditions for Sherk�Shwarz mehanism on orbifoldsand explains the additional restritions as ompared to the one on manifolds.In Setion 4 we disuss the most general spetrum of the fermion masses onorbifolds with a Sherk�Shwarz mehanism. Here it is ruial to display thedependene of these masses on the higher dimensional oordinates to lassifythe possibilities for brane indued supersymmetry breakdown. In Setion 5we give solutions for spei� simple examples of interest, and point outsome subtleties in the disussion of brane loated mass terms. Setion 6summarizes our main results.2. Compati�ation, Sherk�Shwarz mehanism and orbifoldingTo explain the mutual relations among ompati�ation, orbifolding andthe Sherk�Shwarz mehanism it is useful to desribe all these three on-strutions using the same mathematial language. In this setion we om-pare de�nitions of these three phenomena. We use a one-dimensional exam-ple to illustrate all important points.2.1. Compati�ationLet us onsider a theory de�ned in D dimensions. Its ation is givenby an integral of an appropriate D-dimensional Lagrangian depending on



Brane Indued Supersymmetry Breakdown and Restoration 2437D-dimensional �elds SD = ZF dDzLD (�(z)) : (1)Suh a theory is e�etively d-dimensional at low energies if the oordinatesz of the D-dimensional spae F an be split into two setszM = fx�; ymg ; (2)(M = 1; : : : ;D; � = 1; : : : ; d; m = d + 1; : : : ;D) in suh a way that o-ordinates ym desribe some (D � d)-dimensional ompat spae C. In thesimplest ase this means that the full spae-time is a produt of two fatorsF =M �C ; (3)where M is non-ompat and d-dimensional (it should be just the4-dimensional Minkowski spae in realisti models). Integrating over theompat oordinates y one an obtain an e�etive d-dimensional theory validfor energies muh smaller than the inverse of the length sale harateristifor the size of C.The simplest way to ompare the Sherk�Shwarz mehanism and theordinary ompati�ation is to onsider a ase when the ompat spae Can be obtained from a non-ompat overing spae N using some group G.Let G be a disrete group ating freely on N . The ation of this group isrepresented by some operators Tg mapping N into itself. For all g1; g2; g3 2G they satisfy the ondition(g1g2 = g3) ) (Tg1Tg2 = Tg3) : (4)The ation of G is free whih means that Tg has �xed points inN only wheng is the identity element of G. We identify points whih di�er by the ationof Tg for any g 2 G Tg(y) � y : (5)In other words: we identify two points if they belong to the same orbit inN .In this way we obtain a ompat spaeN ! C =N=G : (6)But identi�ation of points in the spae is not enough. We have also todemand that �physis� at two identi�ed points is the same. More preisely:we have to allow only suh on�gurations in the non ompat spae N forwhih the ontribution to the ation from a given point is the same as fromany other point identi�ed with it (same for eah point of a given orbit in



2438 K.A. Meissner, H.P. Nilles, M. Olehowskithe overing spae). This should be true at the quantum level in the fulltheory but in order to simplify the notation we write it as the lassial levelondition for the Lagrangian at two identi�ed points:L (� (x;Tg(y))) = L (�(x; y)) : (7)Only then the ation for the non ompat spae N is equivalent to thatfor the ompat spae C (they di�er only by an unimportant normalizationonstant).In the ordinary ompati�ation the above requirement is ful�lled bydemanding that all the �elds have the analogous periodiity property underTg: � (x;Tg(y)) = �(x; y) : (8)This ondition is, of ourse, su�ient to satisfy Eq. (7) but in general it isnot neessary. It is enough to demand that �elds at Tg(y) are related to�elds at y by some transformations:� (x;Tg(y)) = Tg�(x; y) ; (9)where operations Tg are elements of the global 1 symmetry group of thetheory (whih again we write at a lassial level only):L (Tg�) = L (�) : (10)2.2. Sherk�Shwarz mehanismNow it is easy to de�ne the Sherk�Shwarz mehanism: it is suh om-pati�ation for whih at least some of twist transformations Tg are di�erentfrom identity. The ordinary ompati�ation is the very speial ase whenTg = l1 for all g 2 G.Of ourse, the transformations Tg in the �eld spae annot be arbitrary.They, similarly to the transformations Tg in the physial spae (4), mustrespet the group struture of G:(g1g2 = g3) ) (Tg1Tg2 = Tg3) : (11)In other words, the transformations Tg must form an appropriate represen-tation of G. This is obvious beause for every fx; yg and g3 = g1g2 weget Tg1Tg2�(x; y) = Tg1�(x;Tg2(y))= �(x;Tg1Tg2(y)) = �(x;Tg3(y)) = Tg3�(x; y) : (12)1 If T is an element of a loal symmetry group than we have a Hosotani mehanism[16,17℄ whih is equivalent to gauge symmetry breaking by nontrivial Wilson lines.



Brane Indued Supersymmetry Breakdown and Restoration 2439No additional twists are allowed beause Tg1Tg2(y) and Tg3(y) denote thesame point in the overing spae N (and not two di�erent points whih areidenti�ed).The above de�nitions are quite simple but nevertheless there is someonfusion about the Sherk�Shwarz mehanism in the literature. It seemsthat the reason is the following: In both kinds of ompati�ation the �elds �are funtions on the non-ompat spaeN . In the ordinary ompati�ationthey are also funtions on the ompat spae C beause of the ondition(9). On the other hand, in the presene of some nontrivial Sherk�Shwarztwists Tg, at least some of the �elds annot be desribed by (single-valued)funtions onC. Instead, they an be desribed by setions of some nontrivial�ber bundle with the ompat spae C as a base spae. Of ourse, thestruture of that �ber bundle is not arbitrary, it is determined by the twistoperators Tg.Using the notion of �ber bundles it is possible to de�ne theories onthe ompat spae C even without referring to the non-ompat spae N(sometimes C annot be obtained asN=G). We use only C and de�ne �eldsas setions of �ber bundles over C. Ordinary ompati�ation orrespondsto a ase when this �ber bundle is trivial, i.e. just a produt of the �eldspae and the base spae. Using this formalism one an also hek whena nontrivial Sherk�Shwarz mehanism is at all possible. To apply thismehanism we need a nontrivial �ber bundle. Suh bundles exist only whenthe base spae (C in our ase) is a non ontratible one.Let us illustrate our disussion with the simplest possible example, thatof the one dimensional irle S1. It an be obtained from the one dimensionalreal spae,N = R, by using the group of addition of integer numbers, G = Z.The n-th element of Z is represented on R by the translation by 2�nR:Tn(y) = y + 2�nR : (13)Identifying points whih di�er by the ation of any of these translationswe obtain a fundamental domain of length 2�R whih an be desribed byy 2 [y0; y0 + 2�R[ or y 2 ℄y0; y0 + 2�R℄ for arbitrary y0. The interval mustbe open at one end beause y = y0 and y = y0 + 2�R desribe the samepoint in the ompat spae and should not be ounted twie.The group Z has in�nitely many elements but all of them an be obtainedfrom just one, represented by translation by 2�R. Thus we need only oneindependent twist transformation T :�(x; y + 2�R) = T�(x; y) : (14)Other transformations are powers of this one: Tn = T n. Of ourse, T mustbe a global symmetry of the Lagrangian.



2440 K.A. Meissner, H.P. Nilles, M. OlehowskiLet us simplify this even further and onsider only one real �eld �. Forordinary ompati�ation T = l1, and our theory is desribed by real fun-tions on S1: �(y) (we drop dependene on x). Non trivial Sherk�Shwarzmehanism is obtained e.g. for T = �1 (of ourse, the Lagrangian mustbe invariant under � ! ��) and the theory an be desribed in terms ofsetions of a Möbius strip. How an we go bak to a desription in term offuntions? We need a fundamental domain in the overing spae R. As wedisussed after Eq. (13) it an be hosen to be [y0; y0 + 2�R[ . One an useany y0 but y0 = ��R is a good hoie if one wants to use even and oddfuntions. So setions of the Möbius strip are represented by single-valuedfuntions on [��R; �R℄ (we may add the endpoint y = �R and de�ne thatthe value of a funtion at y = �R is equal to an appropriate limit) withadditional ondition �(�R) = T�(��R) = ��(��R) : (15)In pratial alulations it is usually more onvenient to work with thesefuntions than with setions of the Möbius strip. But, of ourse, one hasto remember that they are single-valued funtions on the interval I =[��R; �R℄, but in general are NOT single-valued funtions on the irle S1.It is important to remember also that the position of �the point of dis-ontinuity� (y0 = ��R in the above example), has no real meaning � oneannot say in a meaningful way at whih point the Möbius strip is twisted.The Sherk�Shwarz mehanism is related to global properties of the �eldsand does not distinguish any partiular point(s) in the ompat spae.2.3. OrbifoldingLet us now disuss the orbifolding. It is a very important onstrutionapplied in some higher dimensional theories. It an be used to obtain hiralfermions starting from a model with only non hiral ones. It has to be on-trasted with the ompati�ation whih does not hange the hiral strutureof the theory to whih it is applied. Nevertheless, using the language intro-dued in this setion, it is possible to de�ne the orbifolding in a very similarway to that used to analyse the Sherk�Shwarz ompati�ation. We startwith a spae desribed by a manifold P and some disrete group H whih isrepresented by operations Zh transforming P into itself. We identify pointsin P whih di�er by the ation of Zh for any h 2 H and demand that the�elds at suh two points di�er by some transformation Zh:Zh(y)� y ; (16)�(x;Zh(y)) = Zh�(x; y) ; (17)



Brane Indued Supersymmetry Breakdown and Restoration 2441and all these transformations Zh must be global symmetries of the theory.The only di�erene with the ompati�ation is that the group H does notat freely in P . Some of the transformations Zh have �xed point in P andthe resulting spae is in general not a manifold but an orbifoldP ! O = P =H : (18)Contrary to the Sherk�Shwarz ompati�ation, there are speial pointsin the spae obtained by orbifolding. The resulting spae (orbifold) is nolonger a smooth manifold.The simplest and very popular example is that of the irle S1 dividedby the two element group Z2. The ation of the only nontrivial element ofZ2 is represented by the re�etionZ(y) = �y : (19)This operation squares to identity so the same must be true for the orre-sponding operation Z in the �eld spae. Thus it is always possible to hoosea basis in whih all �elds have well de�ned parities� (x;Z(y)) = �(x;�y) = Z�(x; y) ; (20)where Z is a diagonal matrix with eigenvalues �1.This one-dimensional example is somewhat speial. The orbifold S1=Z2is equivalent to a manifold with a boundary (the �xed points have odi-mension 1 and an be treated as boundaries). In general, orbifolds are notequivalent to manifolds with boundaries.3. Consisteny onditions for Sherk�Shwarz mehanismon orbifoldsLet us now disuss the situation when we perform orbifolding andSherk�Shwarz ompati�ation together in one theory. Many models ofthis type, espeially 5-dimensional ones, have been reently proposed in theliterature. The orbifolding is neessary to obtain hiral fermions and alsobreaks some supersymmetry while the Sherk�Shwarz mehanism an beused to break the remaining supersymmetry. We will see that it is quite sim-ple to analyse both of these mehanisms simultaneously using the formalismof the previous setion. In the �rst subsetion we present the onsistenyonditions whih must be ful�lled for a general Sherk�Shwarz ompati�-ation on orbifolds. In the seond subsetion we disuss in more detail theimportant ase of the S1=Z2 orbifold.



2442 K.A. Meissner, H.P. Nilles, M. Olehowski3.1. General aseAs we disussed in the previous setion, the Sherk�Shwarz ompat-i�ation and the orbifolding, despite important di�erenes between them,an be desribed using the same formalism. Also the situation when bothonstrutions appear simultaneously is quite straightforward to analyse. Westart with a non ompat spae N and a disrete group F ating on it. Thisgroup F must be only a little bit more ompliated than in the previousases. It ontains a non trivial subgroup whih ats freely on N (and isused to make the resulting spae ompat like in the Sherk�Shwarz meh-anism) but has also non trivial elements whih have �xed points when atingon N (like in orbifolding). Let us denote those di�erent types of elements ofF by g and h, respetively. They are represented by transformations Tg andZh. They in fat form one representation of F and we use di�erent lettersonly to distinguish those transformations whih have �xed points.As usually we identify points whih di�er by the ation of any (ombi-nation) of those transformations. We allow also for, in general non trivial,twists in the �eld spae: Tg(y) � y ; (21)Zh(y) � y ; (22)�(x;Tg(y)) = Tg�(x; y) ; (23)�(x;Zh(y)) = Zh�(x; y) : (24)The twist operators Tg and Zh must, of ourse, form a representation of thegroup F and must be global symmetries of the theory. In full analogy toEq. (11) they have to satisfy the appropriate onsisteny onditions also forthe �mixed� produts, e.g.(g1h2 = h3) ) (Tg1Zh2 = Zh3) : (25)Now we an easily ompare the Sherk�Shwarz mehanism without andwith orbifolding. In both ases we start with the same non ompat spaeN . In the �rst ase we use a group G whih free ation on N is representedby operators Tg. The ation of that group in the �eld spae is representedby Tg. Then we enlarge the group in suh a way that some of its elementshave �xed points when ating on N . For de�niteness we may hose it to bea diret produt: F = G � H. The seond subgroup H is represented bysome non freely ating operators Zh. What is the in�uene of the orbifoldinggroup H on the Sherk�Shwarz twists Tg? Are they more restrited or anthey be more general? The answer is obvious: after orbifolding the Sherk�Shwarz twists are more restrited as ompared to the same theory without



Brane Indued Supersymmetry Breakdown and Restoration 2443orbifolding. The reason is that there are additional onsisteny onditionsof type shown in Eq. (25).It ours that those additional onsisteny onditions an be quite re-stritive. To show this we investigate now the interplay between the Sherk�Shwarz mehanism and orbifolding in the important ase of the one-dimen-sional irle.3.2. Sherk�Shwarz mehanism on S1=Z2 orbifoldWe obtain the orbifold S1=Z2 by dividing the real axis R by the groupZ� Z2. It is enough to onsider one element of Z and one element of Z2.The equations (21)�(24) take the following form:T (y) = y + 2�R ; (26)Z(y) = �y ; (27)�(x; y + 2�R) = T�(x; y) ; (28)�(x;�y) = Z�(x; y) : (29)Now we want to �nd the additional onsisteny onditions of the form pre-sented in Eq. (25). There is one suh ondition and it follows from the fatthat translation T and re�etion Z for arbitrary y ful�l the ondition:T ZT (y) = Z(y) ; (30)from whih it follows thatTZT�(x; y) = TZ� (x;T (y)) = T�(x;ZT (y))= �(x;T ZT (y)) = �(x;Z(y)) = Z�(x; y) : (31)So the operators in the �eld spae must satisfy the relationTZT = Z : (32)We will show below that the above ondition puts quite strong restritionson the possible form of the twist T .We know that the operator Z must square up to identity so its eigenvaluesmust be equal to 1 or �1. Let us start with a basis in whih the �rst neigenvalues of Z are +1 and the last m eigenvalues are �1. In suh a basisZ and T matries have the formZ =  l1n � l1m ! ; T =  A BC D ! : (33)



2444 K.A. Meissner, H.P. Nilles, M. OlehowskiMultiplying Eq. (32) with T y and using the fat that T is unitary we get thefollowing ondition ZT = T yZ : (34)Substituting Z and T in the form (33) to this equation we �nd that thediagonal bloks, A and D, are hermitian while the o�-diagonal ones ful�lthe ondition C = �By. Thus we an hange the basis in two (n � n andm�m) subspaes in suh a way that T has the formT =  A B�By D ! (35)with diagonal and real A and D. Now we again use Eq. (32); multiplying itwith Z we �nd (TZ)2 = (TZT )Z = Z2 = l1 ; (36)whih in terms of the matries A, B and D readsA2 +BBy = l1n ; (37)D2 +ByB = l1m ; (38)AB �BD = 0 : (39)The last equation an be rewritten using the omponents of the matries asBij (Aii �Djj) = 0 (40)for all i = 1; : : : ; n and j = 1; : : : ;m. This means that the elements ofthe o�-diagonal matrix B an be non zero only in subspaes in whih thediagonal matries (A and D) have equal eigenvalues. So now we an hangethe basis in suh a way that the matries Z and T have the following form:Z = 0BBB� l1n1 � l1m1 l1n2 � l1m2 ::: 1CCCA ; (41)
T = 0BBBB� a1 l1n1 B1�By1 a1 l1m1 a2 l1n2 B2�By2 a2 l1m2 :::

1CCCCA ; (42)



Brane Indued Supersymmetry Breakdown and Restoration 2445where all ai are di�erent. Let us onentrate on the �rst (n1+m1)�(n1+m1)blok of T . We an perform two arbitrary hanges of basis, one in then1 dimensional subspae and seond in the m1 dimensional one, and thestrutures of Z and T matries remain the same. We an use this freedomto put the B1 matrix in the form (for n1 � m1; the other ase an beanalysed in an analogous way)B1 = 0BB� b1 b2 � bn1 0 0 ::: 1CCA ; (43)with real bi. Now we an use the onditions (37) and (38). It is easy tosee that there are two possibilities: either a1 = �1, B1 = 0 or n1 = m1,B1 = b1 l1n1 with the onstant b1 satisfyinga21 + b21 = 1 : (44)We an perform now the last hange of the basis: we permute appropriatelythe oordinates in subspaes with ni > 1. Now the matries Z and T havetheir �nal form:Z = 0BB� �3 �3 � � l1jn�mj 1CCA ; (45)
T = 0BB� R(2��1) R(2��2) � Ijn�mj 1CCA ; (46)where Ijn�mj is a diagonal matrix of dimension jn�mj with diagonal entriesequal �1 while R(2��i) is a matrix desribing rotation by an angle 2��i:R(2��i) =  os(2��i) � sin(2��i)sin(2��i) os(2��i) ! : (47)Observe that now T is blok-diagonal with only 2- and 1-dimensional sub-spaes. If any of the dimensions ni in the form (42) is bigger than 1 then theorresponding 2ni � 2ni subspae deomposes to ni blok-diagonal entrieswith the same rotation angle 2��.We see that the possible Sherk�Shwarz mehanism in the ase of theone dimensional orbifold S1=Z2 is quite restrited. The only allowed twists



2446 K.A. Meissner, H.P. Nilles, M. Olehowskiare: the rotations in two-dimensional subspaes onsisting of one �eld whihis even under the Z2 parity and one �eld whih is odd; and the hange ofsign of some �elds whih are not rotated. It should be stressed that (on-trary to some laims in the literature [14℄) orbifolding of the irle does notopen any possibilities for generalizing the Sherk�Shwarz mehanism. Thesituation is just opposite: additional, quite strong onstraints must be ful-�lled. One an no longer use any arbitrary global symmetry of the theoryfor the twists, only twists of the form (46) an be onsistently used. Inpartiular one annot �generalize� the Sherk�Shwarz mehanism by allow-ing for extra disontinuities of the �elds at the �xed points of the orbifold.Any disontinuities, as well as other loal features of the �elds, are deter-mined by appropriate equations of motion. As we have already stressed,the Sherk�Shwarz mehanism determines only the global properties of the�elds.4. Fermion spetrum on S1=Z2 with Sherk�Shwarz mehanismand mass termsOriginally the Sherk�Shwarz mehanism [1, 2℄ was used to break su-persymmetry. The masses of all levels of the Kaluza�Klein tower (espeiallyfor gravitini) were shifted by a onstant. It is interesting to hek how masslevels are hanged by the Sherk�Shwarz mehanism on orbifolds. We willonentrate on the ompati�ation from 5 to 4 dimensions on S1=Z2.4.1. Kineti Lagrangian in 5 dimensionsMany 5-dimensional models using the ompati�ation on S1=Z2 havebeen disussed reently in the literature. But instead of hoosing any spei�model of this type we will onsider a rather general situation. Thus ouranalysis an be used to investigate many di�erent, not only 5-dimensionaltheories, by speifying some parameters.Let us onsider one 5-dimensional fermion �eld. Usually it is desribedby a pair of spinors satisfying the sympleti Majorana ondition(�i)� = C5"ij�j ; (48)where C5 is the 5-dimensional harge onjugation matrix. In the ase of theS1=Z2 ompati�ation those spinors have the following Z2 parity properties�1(�y) = +� 5�1(y) ; (49)�2(�y) =�� 5�2(y) : (50)But it is not very onvenient to use these 5-dimensional sympleti Majora-na spinors. We are interested in the ompati�ed, e�etively 4-dimensional



Brane Indued Supersymmetry Breakdown and Restoration 2447theory. So let us de�ne two new spinors via the relations 1 = 1 + � 52 �1 � 1� � 52 �2 ; (51) 2 = 1� � 52 �1 + 1 + � 52 �2 : (52)It is easy to hek that these new spinors ful�l the 4-dimensional Majoranaondition ( i)� = C4 i (53)(with C4 being the 4-dimensional harge onjugation matrix) and have wellde�ned parities under Z2:  1(�y) = + 1(y) ; (54) 2(�y) =� 2(y) : (55)where we dropped Then the 5-dimensional kineti term for our spinor �i anbe rewritten in terms of  i�12�i�M�M�i = �12 h 1��� 1 +  2��� 2 �  1�y 2 +  2�y 1i ; (56)where we dropped eventual ouplings to gauge bosons. We add also diretmass terms for the fermions. To be as general as possible we allow for they dependene in these mass terms. There an be two kinds of suh massterms: even and odd under the Z2 parity:m�(�y) = �m�(y) : (57)Taking into aount the parity properties of  i (54), (55) we get the followingZ2 invariant kineti LagrangianLkin = �12h+  1��� 1 +  2��� 2 �  1�y 2 +  2�y 1�m+ � 1 1 +  2 2��m� � 1 2 +  2 1� i: (58)The last four terms in the square braket will give e�etive 4-dimensionalmass terms after ompati�ation (integration over the 5-th oordinate y).One ould think about further generalization of the above Lagrangian byallowing for two independent Z2-even mass terms, one for  1 and anotherfor  2. This ould be an option for two independent spinors  i but notin models disussed here. The spinors  1 and  2 are related. They are



2448 K.A. Meissner, H.P. Nilles, M. Olehowskijust di�erent omponents of one 5-dimensional spinor. Before orbifolding,all the interations for  2 are stritly determined by those for  1 simplyby 5-dimensional Lorentz invariane. After orbifolding there is only onequantum number whih di�erentiate between  1 and  2; the Z2 parity whihis even for one �eld and odd for the other. But this does not in�uene termsquadrati in any of these �elds beause suh terms are Z2-even anyway. So,in 5-dimensional theories ompati�ed on S1=Z2 the Z2-even mass term m+should be the same for both fermions.2 Similar onlusions an be obtainedalso for higher dimensional theories. One ommon m+ mass term appearse.g. in the ase of the 11-dimensional heteroti M-theory [12℄ whih is apratial realization of the situation disussed in this paper.The rest of this setion is devoted to the analysis of the e�etive4-dimensional spetrum of fermions oming from this 5-dimensional Lagran-gian (58) after ompati�ation on S1=Z2 with possible Sherk�Shwarztwists.A few remarks about the possible origin of suh a Lagrangian andy-dependent mass terms are in order. The even mass terms, onstant orloated at the �xed points of the orbifold, an be expliitly present in themodel under onsideration. Other mass terms annot appear diretly be-ause they are not allowed by the symmetries of the theory (e.g. the diretodd mass term is forbidden by Z2 parity). But they an appear indiretlywhen some �elds develop non zero vauum expetation values (VEVs) whihbreak those symmetries. More generally, the Lagrangian (58) should betreated as a part of an e�etive Lagrangian obtained in a given theory aftersome operations. Suh operations an be e.g.: taking into aount non zeroVEVs of the bakground �elds, rede�nitions of �elds, redution from higherdimensions (if we start with a theory whih is more than 5-dimensional),hanging from a possible warped metri to an e�etive �at one et. Ouranalysis an be applied to all situations when after all neessary rede�ni-tions we an get the Lagrangian in the form of (58). That Lagrangian iswritten for a spin 1/2 fermion but it an be also easily generalized to thease of spin 3/2 (we have to add two gamma matries between  i and  jin an appropriate way). So our results are valid also for the very interestingase of gravitini in supersymmetri models.A very good example of the above mentioned rede�nitions is that of theheteroti M-theory. We analysed the massless gravitino in suh a model inthe presene of brane loated gaugino ondensates in our previous paper [12℄.In this model it is neessary to perform several �eld rede�nitions to take into2 The authors of Refs. [14, 15℄ also onsider Lagrangians whih do not agree with thisonlusion. In partiular in Eq. (3.1) in [15℄ they assume that there is a delta likemass term for  1 but not for  2. It is unlear how suh a situation ould be realizedin a 5-dimensional model.



Brane Indued Supersymmetry Breakdown and Restoration 2449aount six extra dimensions ompati�ed on a Calabi�Yau manifold. Somerede�nitions are onneted to the fat that the bakground matri is warped.In the e�etive 5-dimensional Lagrangian we obtained two types of massesfor the gravitino �eld, analogous to those present in (58). Both are generatedby non zero VEVs of some omponents of the 4-th rank tensor �eld GABCDpresent in the 11-dimensional supergravity. VEV of G11ab gives an evenmass term in 5-dimensions while VEV of Ga�ab�b gives an odd one (a; b and�a;�b are, respetively, holomorphi and anti-holomorphi oordinates on theCalabi�Yau manifold). Thus we see that the Z2 even and odd, oordinate-dependent mass terms an quite naturally appear in higher dimensionalmodels.4.2. Mass eigenstate equations and Sherk�Shwarz boundary onditionsBefore we look for the spetrum of fermions whih an be obtained fromthe Lagrangian (58) we have to speify the properties of the �elds under theSherk�Shwarz twist. In the previous setion we have proved that the mostgeneral twist an be deomposed into rotations in 2-dimensional subspaes,eah onsisting of one even and one odd �eld. The two Majorana fermions  1and  2 form suh a 2-dimensional subspae. In priniple it is possible that 1 and  2 belong to two di�erent suh subspaes if there are more �eldswith appropriate quantum numbers (remember that any Sherk�Shwarztwist must be a global symmetry of the theory so it annot mix arbitrary�elds). In suh a ase one should onsider  1,  2 to be vetors and m+,m� to be matries in some type of a �avor spae. However we are not goingto onsider here suh a ompliation espeially beause it is not importantfor the most interesting ase of the gravitino in supersymmetri models. Weonentrate on a 2-dimensional subspae for whih the twists are given by3Z =  1 00 �1 ! ; T =  os(2��) � sin(2��)sin(2��) os(2��) ! ; (59)in the basis � = ( 1;  2)T . In this ase the twist ondition (28) reads  1(x; �R) 2(x; �R) ! =  os(2��) 1(x;��R)� sin(2��) 2(x;��R)sin(2��) 1(x;��R) + os(2��) 2(x;��R) ! :(60)When the twist parameter � is equal to zero, we have the standard om-pati�ation in whih  1(y) and  2(y) are (periodi) funtions on the irle.3 T of this form may be an element of the SU(2)R automorphism group of the d = 5supersymmetry.



2450 K.A. Meissner, H.P. Nilles, M. OlehowskiNow we are ready to analyse the spetrum. First we deompose the5-dimensional �elds  i in the following way:  1(x; y) 2(x; y) ! =Xn �n(x) u1n(y)u2n(y) ! : (61)We are looking for suh a deomposition for whih �n(x) is the n-th 4-dimensional Majorana fermion with a de�nite masses Mn. The vetor offuntions (u1n(y); u2n(y))T desribes the shape of this n-th mass eigenstatein the 5-th dimension. We need both omponents beause in general masseigenstates do not have de�nite parities. Substituting this deompositioninto the Lagrangian (58) we �nd that the funtions uin(y) must satisfy thefollowing di�erential equations�u1n(y)�y + [Mn �m+(y)℄u2n(y)�m�(y)u1n(y) = 0 ; (62)�u2n(y)�y � [Mn �m+(y)℄u1n(y) +m�(y)u2n(y) = 0 : (63)They an be rewritten in a more ompat form as�un(y)�y + [Mn �m+(y)℄i�2un(y)�m�(y)�3un(y) = 0 ; (64)where �i are Pauli matries in a spae in whih the even and odd omponentsform a vetor un. The equations alone are not enough, we have to speifyalso the boundary onditions. Parity properties of the �elds determine theboundary ondition at y = 0: u1n(0)u2n(0) ! =  n0 ! ; (65)where n are onstants whih should be adjusted in order to have the orretnormalization of the 4-dimensional �elds. The boundary ondition at y =��R an be obtained from Eq. (60). Substituting expansion (61) into (60)and using the parity properties of uin(y) we get:u2n(�R)u1n(�R) = tan(��) : (66)The masses and shapes of the 4-dimensional modes an in priniple be foundby solving the above di�erential equations (62), (63) with the boundary



Brane Indued Supersymmetry Breakdown and Restoration 2451onditions given by (65), (66). It is possible to simplify this problem ifwe are interested only in the masses. To this end we onsider only theratio of the odd omponent to the even omponent of the wave funtion:tn(y) = u2n(y)=u1n(y). The di�erential equation for this funtion deouplesfrom that for the other independent ombination of u2n(y) and u1n(y) andreads �tn(y)�y = [Mn �m+(y)℄ �1 + t2n(y)�� 2m�(y)tn(y) : (67)The appropriate boundary onditionstn(0) = 0 ; (68)tn(�R) = tan(��) ; (69)an be used to obtain the disrete spetrum of masses Mn. Unfortunatelyfor arbitrary mass terms m�(y) it is not possible to �nd the solutions eitherfor tn(y) or for the separate omponents uin(y) in a losed form.5. Fermion spetrum for some types of modelsIn this setion we disuss some situations when exat solutions an befound or when at least some important features of the solutions an beanalysed. 5.1. Arbitrary m+(y) with vanishing m�The situation is very simple when the odd mass term is absent:m�(y)=0.Then the equations for the modes an be easily solved. Using the form (64)we immediately �ndun(y) = exp8<:�i�2 yZ0 ds [Mn �m+(s)℄9=;un(0) : (70)Observe that the above exponent is just equal to the rotation matrix with therotation angle given by the integral of [Mn�m+℄. Thus the mass eigenstatesare given by u1n(y)u2n(y) ! = 1p�R 0BB� os �Mny � yR0 dsm+(s)�sin�Mny � yR0 dsm+(s)� 1CCA ; (71)



2452 K.A. Meissner, H.P. Nilles, M. Olehowskiwhere we used the boundary ondition (65) at y = 0. It is very easy to solvealso the boundary ondition (66) at y = �R; the masses Mn must satisfythe following equality:tan0� �RZ0 dy [Mn �m+(y)℄1A = tan(��) ; (72)hene, they are given by a simple formulaMn = n+ �+ �+R ; (73)where � is the Sherk�Shwarz twist parameter and �+ is de�ned by�+ = 1� �RZ0 dy m+(y) : (74)From the above formulae we an see that the Sherk�Shwarz twist parame-ter � and the integrated 5-dimensional, Z2-even mass term �+ have exatlythe same in�uene on the 4-dimensional mass eigenvalues. They both shiftthe masses of all the standard Kaluza�Klein levels by a onstant: �=R and�+=R, respetively.From Eq. (73) it is obvious that there are several possibilities when thosetwo e�ets produe no net e�et leaving the masses of the KK states un-hanged. In the ase of a gravitino �eld in a supersymmetri model thisorresponds to unbroken supersymmetry. This happens when the mass termand the Sherk�Shwarz parameter satisfy the ondition�+ 1� �RZ0 dy m+(y) = k 2 Z for m�(y) = 0 : (75)This, of ourse, does not mean that the Sherk�Shwarz mehanism is equiv-alent to arbitrary mass terms satisfying the above equations. As we havealready stressed, the Sherk�Shwarz mehanism is related to global proper-ties of the �elds and not to their loal behavior. The Sherk�Shwarz twistparameter appears diretly only in the mass formula. On the other handthe mass term m+(y) enters expliitly also the equations determining theshapes of the modes. And those shapes an be important for example if oneonsiders interations with other �elds. In fat the Sherk�Shwarz meha-nism is equivalent to the mehanism of adding a mass term only if this massterm is Z2-even and onstant, and for sure not when the mass terms are



Brane Indued Supersymmetry Breakdown and Restoration 2453loalized at the �xed points of the orbifold (suh delta-like loalization ofthe mass terms is quite typial for models onsidered in the literature).Let us now disuss the possibility of vanishing fermion (gravitino) mass.The simplest possibility ours when k = 0 in Eq. (75). In suh a asethe e�ets due to the Sherk�Shwarz twist and the even mass term anelexatly against eah other in the mass formula (73) for eah KK level (thiswas observed in Ref. [14℄ for delta-like mass terms). A di�erent interestingsituation ours when the sum of � and �+ is a non zero integer. Thestruture of the whole KK tower remains unhanged but the masses of allindividual states do hange. If we onsider a smooth inrease of parameters� and �+ from zero to their �nal values: the initially massless mode getsnon zero mass while one of the massive modes beomes massless.This rossing of levels annot our if �; �+ � 1. At least one of theseparameters must be omparable to 1. The Sherk�Shwarz twist parameter� an have values only in the range [�1=2; 1=2℄. The reason is that, as weshown in the previous setion, the Sherk�Shwarz twist in the ase of S1=Z2is just a rotation by and angle 2�� and the boundary ondition (66) dependsonly on tan(��). So, � and (�+n) desribe in fat exatly the same model.The situation with the mass term m+(y) and its (normalized) integral �+is di�erent. Two models in whih the value of �+ di�ers by an integer arereally di�erent. But one should be areful. The rossing of levels an ourwhen the average of m+(y) over the 5-th oordinate satis�es�RR0 dym+(y)�RR0 dy = O� 1R� ; (76)and it is neessary to hek whether this is still in the range of validity ofused approximations and/or assumptions.5.2. Comments on delta like terms on orbifoldsIn many models disussed in the literature the even mass terms m+(y)have the form of Dira delta soures loated at the branes (�xed points oforbifolds used in those models). Suh terms are sometimes taken improperlyinto aount, so let us make some omments to larify this issue. There is aproblem whih quite often appears in the literature, namely when one has tomultiply Æ(y) by funtions vanishing at y = 0, e.g. funtions odd in y. Thenaive, and inorret, way is to assume that all suh produts are zero beauseÆ(y) 6= 0 only at the point for whih the other funtions do vanish. To larifythis we start with reminding the obvious fat that the Dira delta �funtion�



2454 K.A. Meissner, H.P. Nilles, M. Olehowskiis not a funtion but a distribution. So one should treat it onsistently as adistribution or as a limit of some appropriate funtions. Using any of theseapproahes one an easily solve the above mentioned problem of multiplyingÆ(y) by odd funtions. For arbitrary set of (not neessary di�erent) funtionsgi(y) odd in y the following relations hold:Æ(y) 2n+1Yi=1 gi(y) = 0 ; (77)Æ(y) 2nYi=1 gi(y) = 12n+ 1Æ(y) limy!0 2nYi=1 gi(y) : (78)From the last equation it follows in partiular that the delta like mass souresouple not only to even but also to odd parity �elds beause the odd �eldsan have jumps at y = 0 so also nonzero limits for y ! 0. And there is noobvious way to forbid suh ouplings by some additional symmetries beausethe odd and even �elds are just omponents of one 5-dimensional �eld withde�nite quantum numbers. Beause of that we have a ommon, Z2-evenmass term m+ for both �elds,  1 and  2, in the kineti Lagrangian (58).Suh situation is realized e.g. for the gravitino mass terms in the heterotiM-theory [12℄.Another kind of problems an appear when a delta like mass term haslarge magnitude. From Eq. (71) we see that the eigenfuntions in the aseof vanishing m� orrespond to a unit vetor rotating in the (u1, u2) spaewith the y-dependent phase angle given by'(y) = 24Mny � yZ0 dsm+(s)35 : (79)Let us disuss the behavior of this angle lose to y = 0. We regularize Æ(y)by some funtions f"(y) whih integrate to 1 and have support for jyj < "with " ! 0. The mass term is approximated by m+(y) = f"(y). For verysmall y we an neglet the Mny ontribution in Eq. (79). Then for eahfuntion f" the phase at y = " is given by:'"(") = � "Z0 dy f"(y) = � 2 : (80)The phase is the same for all " so it has this value also in the limit " ! 0.Therefore in�nitesimally lose to the brane the state vetor satis�es the



Brane Indued Supersymmetry Breakdown and Restoration 2455ondition u1n(") = os� 2�u1n(0); (81)u2n(") =� sin� 2�u1n(0): (82)The values of  whih di�er by multiples of 4� give the same values of u1(")and u2("). They give however di�erent behavior of the state vetor overthe interval y 2 [0; "℄ for " 6= 0. The state vetor orresponding to a biggervalue of  rotates more times by the full angle 2� between points y = 0and y = ". Thus, the equations (81), (82) taken at " = 0 are alone notenough to desribe a given eigenstate. For small values of the magnitude the eigenstate may be desribed by funtions u1(y) and u2(y) whih are justdisontinuous at y = 0. But for large values of  a more areful treatmentis neessary.The last remark on delta-like terms on orbifolds onerns their normal-ization. Performing the integral in Eq. (80) we get only �=2 and not �beause we integrate only over the �half� of the delta's support, that forpositive y. This is the so alled down-stairs approah to the S1=Z2 orbifoldin whih we integrate over the interval y 2 [0; �R℄ using the additional pre-sription that Dira deltas loated at the �xed points give after integration1=2 instead of 1. In the up-stairs approah one integrates over full irle S1but the �nal result must be divided by 2.5.3. Constant, simultaneously non zero, m+ and m�Let us now turn to more ompliated ases of the Sherk�Shwarz meha-nism on orbifolds, when the odd mass term in the Lagrangian (58) is di�erentfrom zero. Now it is not possible to solve the di�erential equation for themass eigenstates (64) by simple integration and exponentiation (as we didto get Eq. (70) in the ase of m� = 0). The reason is that matries �2 and�3 do not ommute and they are multiplied by funtions of y. The formalsolution of (64) involves an appropriate ordering operator and not just theordinary exponential funtion. Beause of that, it is not possible to write themass eigenstates, given by solutions of (64), in an expliit, losed form. Inthe ase of arbitrary m�(y) it is also not possible to solve expliitly Eq. (67)whih determines the masses eigenvalues (without determining the shapesof the states). But there are some simple ases in whih we an solve someof the equations or at least be able do �nd some properties of the solutionson whih we onentrate in the rest of this setion.One of the ases when it is possible to �nd expliitly the eigenstates iswhen both mass terms m+ and m� are onstant. Then the solution to (64)



2456 K.A. Meissner, H.P. Nilles, M. Olehowskiis given by un(y) = exp f(�i�2[Mn �m+℄ + �3m�) ygun(0) (83)whih an be rewritten as u1n(y)u2n(y) ! /  os (�ny) + m��n sin (�ny)Mn�m+�n sin (�ny) ! ; (84)where �n =q(Mn �m+)2 �m2� (85)and we used the boundary ondition at y = 0, Eq. (65). The solution (84) isvalid even for imaginary �n (then trigonometrial funtions are replaed withappropriate hyperboli ones). Now we have to implement also the seondboundary ondition, the one at y = ��R. This ondition annot be ful�lledfor imaginary �n (with one exeption whih we disuss later). For real �nwe an �nd that the masses Mn are given by the solution of the followingequation(Mn �m+) tan(��) = �n tan ��n�R� artan�m��n ��+m� (86)in whih Mn appears impliitly on the r.h.s. via the parameters �n de�nedin Eq. (85). The same ondition for mass eigenvalues an be obtained fromequation (67) with boundary onditions (68)�(69). The reality ondition for�n means that the mass eigenstates are given by (84) with mass eigenvaluessatisfying (86) when jMn �m+j > jm�j : (87)Now we disuss the additional solution whih orresponds to one exep-tion from the reality ondition for �n mentioned above. It exists only whenthe Sherk�Shwarz twist is trivial: � = 0. In suh a ase there is a statewith mass M = m+ and shape given by u1(y)u2(y) ! / 0� exp� yR0 dsm�(s)�0 1A : (88)Observe that we have used an integral of m�(y), and not just the produtof a onstant m� with y, in the above formula. It is not di�ult to hekthat the solution of suh form is valid for arbitrary y-dependent mass termm�(y). It is quite important beause it desribes the massless mode in thease of vanishing m+. It should be stressed that suh a state appears only



Brane Indued Supersymmetry Breakdown and Restoration 2457when � = 0. This means that in the ase of a non trivial Sherk�Shwarztwist there an be no massless mode for arbitrary m�(y) if m+ = 0.Let us now go bak to the mass eigenvalue ondition (86) and the masseigenstates (84). They allow to extend our disussion of (non)equivalene ofthe Sherk�Shwarz mehanism and diret 5-dimensional mass terms. Whenonsidering the situation with vanishing Z2-odd mass m� (see disussionafter Eqs. (74) and (75)) we have observed that in suh a ase the Sherk�Shwarz mehanism is equivalent to adding a onstant Z2-even mass m+.Moreover, by a suitable hoie of the Sherk�Shwarz twist parameter �it is possible to reprodue the spetrum (but not the shapes of the masseigenstates) obtained in the ase of vanishing � and given y-dependent m+.The situation hanges for m� 6= 0 (also if it is onstant). From Eq. (86)it is lear that the masses in the ase of the Sherk�Shwarz mehanismare, for arbitrary �, di�erent from the masses obtained in a theory withdiret mass terms. The twist parameter � and the Z2-even mass m+ enterthe mass formula (86) in quite di�erent ways. The relation between m+and mass eigenvalues is very simple. The onstant m+ appears only in theombination (Mn �m+) so it just shifts all the mass states by a onstant.On the other hand, the relation between � and the mass spetrum is quiteompliated and in general annot be solved expliitly. But one feature ofthat relation an be read from the mass formula (86). For arbitrary m+ andm� it is possible to hoose � in suh a way that one state with any givenmass (within some range of values) is present in the spetrum. A state withmass M0 appears in the spetrum if the Sherk�Shwarz twist parameter isgiven by� = 1� artan� �0M0 �m+ tan ��0�R� artan�m��0 ��+m�� ; (89)with �0 = q(M0 �m+)2 �m2+ if this mass satis�es the ondition jM0 �m+j > jm�j. In partiular there is a value of � for whih one state ismassless if jm+j > jm�j.5.4. Delta like m+ in the presene of arbitrary m�(y)So far we disussed three speial situations: arbitrary m+ with vanish-ing m�; onstant m+ and m�; arbitrary m� with vanishing m+ (only themassless mode). In general it is not possible to �nd expliit solutions formore ompliated ases. However, there is a very interesting lass of modelswhih an be analysed using the results obtained so far. Let us onsidera situation when the Z2 even and odd mass terms are desribed by somearbitrary funtions of y subjet to the onstraint m+(y)m�(y) = 0 for all y.



2458 K.A. Meissner, H.P. Nilles, M. OlehowskiThis ondition is ful�lled for example in all models in whih the Z2-evenmass terms are loated at the branes. The reason is that arbitrary m�(y)vanishes at y = 0 and y = �R.For suh models it is possible to hek whether a massless state existsin the spetrum. It is very important beause this way one an determineunder what onditions supersymmetry remains unbroken in the presene ofthe Sherk�Shwarz twists and the diret mass terms.First we divide the interval [0; �R℄ into piees in suh a way that at eahpiee only one of the mass terms, m+(y) or m�(y), is non vanishing. We �nda possible solution orresponding to M = 0 for eah of these sub-intervals.The solution for yi < y < yi+1 is given byu0(y) = exp8<:i�2 yZyi dsm+(s)9=;u0(yi); if m�(y) = 0 for y 2 [yi; yi+1℄ ;(90)u0(y) = exp8<:�3 yZyi dsm�(s)9=;u0(yi); if m+(y) = 0 for y 2 [yi; yi+1℄ :(91)We build the full solution from those partial ones starting from the boundaryondition at y = 0 (65) and demanding that it is ontinuous at pointsyi where the harater of the solution hanges from (90) to (91) or vieversa. At the end we hek whether u0(�R) obtained this way, ful�lls theboundary ondition (66). Suh a proedure allows us to hek what valueof the Sherk�Shwarz twist angle is ompatible with a massless fermion forgiven y-dependent mass terms m+(y) and m�(y).Let us illustrate this by an example ofm+(y) terms loated at the branes:m+(y) = 2m0Æ(y) + 2m�Æ(y � �R) : (92)All we have to know about m�(y) is its integralM� = �RZ0 dy m�(y) : (93)We divide the interval [0; �R℄ into three regions (two of them in�nitesimallysmall lose to the branes) and use the proedure desribed above. The resultfor u0(�R) reads



Brane Indued Supersymmetry Breakdown and Restoration 2459u0(�R) = exp fi�2m�g exp f�3M�g exp fi�2m0gu0(0)= os(m�) sin(m�)� sin(m�) os(m�) !� eM� 00 e�M� �� os(m0) sin(m0)� sin(m0) os(m0) ! 0 !=  os(m�) os(m0)eM� � sin(m�) sin(m0)e�M�� sin(m�) os(m0)eM� � os(m�) sin(m0)e�M� ! : (94)This solution agrees with the Sherk�Shwarz twist ondition (66) ifsin(m�) os(m0)eM� + os(m�) sin(m0)e�M�os(m�) os(m0)eM� � sin(m�) sin(m0)e�M� = � tan(��) : (95)In the ase of the gravitino this formula � relating the mass terms loatedat eah of the branes, the bulk (Z2�odd) mass term and the Sherk�Shwarztwist � must be ful�lled if supersymmetry in the e�etive 4-dimensionaltheory is to be unbroken.The above formula an be applied also in the ase of ordinary ompati�-ation without the Sherk�Shwarz mehanism. Putting � to zero we obtainthe ondition tan(m�)tan(m0) = �e�2M� : (96)When the Z2-odd mass term integrates to zero, M� = 0, we get the usualondition for the unbroken supersymmetry: m� = �m0 (up to terms whihare multiples of 2� whih we disussed after Eq. (75)). In the ase of vanish-ing M� the brane loated mass terms generated for the gravitino must addup to zero. In the presene of non zeroM� the situation is more ompliatedand supersymmetry an be unbroken when the ondition (96) is satis�ed.The ondition (95) for the existene of a massless mode is a quite ompli-ated relation between the Sherk�Shwarz twist angle and the three massparameters: m0, m�, M�. Let us now onsider a situation when all themass parameters are small. Expanding Eq. (95) and keeping only the lead-ing terms we get a muh simpler relationm0 +m� = � tan(��) : (97)Observe that the integral of the Z2-odd mass, M�, dropped out from theformula. Moreover, in the ase of ordinary ompati�ation (� = 0) we



2460 K.A. Meissner, H.P. Nilles, M. Olehowskiget a very simple equality m� = �m0 for arbitrary but small M�. Theseapproximate onditions should be used e.g. in ases when one does not knowthe full theory but only some terms of an expansion in some small parameter.Let us illustrate this with the heteroti M-theory. The �eld theoretiallimit of this theory is known only up to the �rst order of the expansionin �2=3 (related to the 11-dimensional oupling onstant). We have shownin [12℄ that e�etively there are two kinds of 5-dimensional mass terms forthe gravitino: the Z2-even one generated by hG11abi and the Z2-odd oneoming from hGa�ab�bi. Both of them are linear in the expansion parameter�2=3 so one should use the approximate formula (97) and not the full one(96). Thus the ondition for unbroken supersymmetry is just that the braneloated mass terms should sum up to zero as was shown in [12℄.It is possible to gain a qualitative understanding why in more ompli-ated models the ondition for unbroken supersymmetry (96) di�ers formthe simple global anellation of the soures, m�+m0 = 0, even without theSherk�Shwarz twist. In the presene of the non zero mass term M� themassless gravitino is not a onstant mode even without any brane terms. Ingeneral its amplitude is di�erent at eah brane. Thus, the gravitino oupleswith di�erent strength to soures present at eah of the branes. In general,a simple algebrai anellation of soures is not enough to leave supersym-metry unbroken. From Eq. (96) it is lear that the details of the shape ofthe zero mode � determined by the details of the funtion m�(y) � arenot important. Important is only the relation between the gravitino wavefuntion at both branes � determined by the integral of m�(y).6. ConlusionsAs we have seen, the onsisteny onditions for a Sherk�Shwarz meh-anism on orbifolds are available in general form (Subsetion 3.1). The stru-ture of possible Sherk�Shwarz twists whih an be applied on orbifolds ismore restrited than in the ase of manifolds. We found the most generalform of suh twists whih an be onsistently used in 5-dimensional theoriesompati�ed on S1=Z2. Only rotations in 2-dimensional subspaes (eahonsisting of one �eld with positive and one with negative parity under Z2)or multipliation by �1 are allowed.The onsisteny onditions an be used to obtain di�erential equationsand boundary onditions whih determine the spetrum of the e�etive the-ory after ompati�ation. Solutions, however, are di�ult to obtain inlosed form due to the omplexity of the problem. We have therefore useda simple S1=Z2 orbifold to illustrate our results. One of the important in-gredients in the disussion is the general form of the possible mass terms(and their dependene on the higher dimensional oordinates) that make



Brane Indued Supersymmetry Breakdown and Restoration 2461the onnetion to brane indued supersymmetry breaking. Of partiularimportane is the appearane of the mass term m� in Eq. (58). Its exis-tene depends on the presene of VEVs of higher dimensional bakground�elds, as was disussed already in [12℄. The investigation in [14, 15℄ did notonsider suh a term. In addition, their ansatz for the brane loated massterms and interations di�ers from the one adopted here.Expliit solutions have been presented for two lasses of models: thosewith onstant mass termsm+ and m� and those with arbitrary y-dependentm+(y) but with vanishing m�. Closed solutions for general mass termsm+(y) and m�(y) are di�ult to obtain. Fortunately some of the mostinteresting ases, as e.g those with delta-like mass terms loated at the branesan be analysed with su�ient auray. It is possible to �nd onditionsdetermining whether massless fermions are present in the spetrum. Thisallows to hek if supersymmetry is broken in a theory with given form of themass terms m+(y) and m�(y) in the presene of non trivial Sherk�Shwarztwists.We would like to thank S. Groot Nibbelink for useful disussions.Work supported in part by the European Community's Human PotentialProgramme under ontrats HPRN�CT�2000�00131 Quantum Spaetime,HPRN�CT�2000�00148 Physis Aross the Present Energy Frontier andHPRN�CT�2000�00152 Supersymmetry and the Early Universe. KM andMO were partially supported by the Polish State Committee for Sienti�Researh (KBN) grant no. 2 P03B 052 16.REFERENCES[1℄ J. Sherk, J.H. Shwarz, Phys. Lett. B82, 60 (1979).[2℄ J. Sherk, J.H. Shwarz, Nul. Phys. B153, 61 (1979).[3℄ R. Rohm, Nul. Phys. B237, 553 (1984).[4℄ L.J. Dixon, J.A. Harvey, C. Vafa, E. Witten, Nul. Phys. B261, 678 (1985).[5℄ L.J. Dixon, J.A. Harvey, C. Vafa, E. Witten, Nul. Phys. B274, 285 (1986).[6℄ P. Candelas, G.T. Horowitz, A. Strominger, E. Witten, Nul. Phys. B258, 46(1985).[7℄ P. Ho°ava, Phys. Rev. D54, 7561 (1996) [arXiv:hep-th/9608019℄.[8℄ H.P. Nilles, M. Olehowski, M. Yamaguhi, Phys. Lett. B415, 24 (1997)[arXiv:hep-th/9707143℄.[9℄ I. Antoniadis, M. Quiros, Nul. Phys. B505, 109 (1997)[arXiv:hep-th/9705037℄.[10℄ I. Antoniadis, M. Quiros, Phys. Lett. B416, 327 (1998)[arXiv:hep-th/9707208℄.
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