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BRANE INDUCED SUPERSYMMETRY BREAKDOWNAND RESTORATIONK.A. Meissnera, H.P. Nillesb and M. Ole
howskia;baInstitute of Theoreti
al Physi
s, Warsaw UniversityHo»a 69, 00�681 Warsaw, PolandbPhysikalis
hes Institut der Universität Bonn,Nussallee 12, 53115 Bonn, Germany(Re
eived June 3, 2002)Dedi
ated to Stefan Pokorski on his 60th birthdayWe investigate the phenomenon of brane indu
ed supersymmetry break-down on orbifolds in the presen
e of a S
herk�S
hwarz me
hanism. General
onsisten
y 
onditions are derived for arbitrary dimensions and the resultsare illustrated in the spe
i�
 example of a 5-dimensional theory 
ompa
t-i�ed on S1=Z2. This in
ludes a dis
ussion of the Kaluza�Klein spe
trumand the possibility of a brane indu
ed supersymmetry restoration.PACS numbers: 04.50.+h, 11.25.Sq, 11.30.Pb1. Introdu
tionThe sear
h for a satisfa
tory breakdown of supersymmetry is one of themost important 
hallenges in higher dimensional quantum �eld theories andstring theories. Me
hanisms at our disposal so far are the S
herk�S
hwarzme
hanism [1, 2℄, orbifold twists [3�5℄ (or more generally spa
es with nontrivial holonomy groups [6℄) as well as brane indu
ed supersymmetry break-ing [7, 8℄. As in all these 
ases extra dimensions are involved these me
h-anisms show some similarities, but there are also de
isive di�eren
es. Oneimportant di�eren
e 
on
erns the question of the possible appearan
e of
hiral fermions as a 
onsequen
e of supersymmetry breaking. As the 
om-pa
ti�
ation of higher dimensional supersymmetri
 theories usually leads toN -extended supersymmetry in d = 4, we need a me
hanism that breakssupersymmetry to N = 1 or N = 0 while allowing for a 
hiral fermionspe
trum via the me
hanism of orbifold twists.(2435)
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howskiIn spe
i�
 models we are very often 
onfronted with a situation thata 
ertain 
ombination of the above mentioned me
hanisms is at work, a
ompli
ated situation that needs a 
areful analysis to identify the most gen-eral properties of su
h a s
heme. Also, it has been suggested that braneindu
ed supersymmetry breakdown is related to the S
herk�S
hwarz me
h-anism [9, 10℄, a 
onje
ture based on the fa
t that supersymmetry brokenat a given brane 
ould be restored by a similar me
hanism on a di�erentbrane [7,11,12℄. Su
h a me
hanism has been analysed in detail in [12℄ in theframework of the heteroti
 M-theory of Ho°ava and Witten [13℄. As this isa rather 
ompli
ated set-up and as some approximations are involved, theexpli
it 
al
ulations were quite di�
ult and not that easy to present in asimple way. In the present paper we would like to dis
uss the set-up of the
ombined a
tion of the three me
hanisms in the most general way and illus-trate the s
hemes in the framework of simple 5-dimensional examples. Ourgeneral formulae are valid also for d > 5, but expli
it solutions are mu
hharder to obtain. Meanwhile a similar e�e
t has been investigated in [14,15℄that has some overlap with the present work. The situation dis
ussed thereis, however, less general than the one 
onsidered in the present work (andwe also di�er in some of the expli
it formulae).As these me
hanisms are in some sense similar, we start in Se
tion 2 witha 
areful de�nition of S
herk�S
hwarz me
hanism and orbifolding. Se
tion 3then gives the general 
onditions for S
herk�S
hwarz me
hanism on orbifoldsand explains the additional restri
tions as 
ompared to the one on manifolds.In Se
tion 4 we dis
uss the most general spe
trum of the fermion masses onorbifolds with a S
herk�S
hwarz me
hanism. Here it is 
ru
ial to display thedependen
e of these masses on the higher dimensional 
oordinates to 
lassifythe possibilities for brane indu
ed supersymmetry breakdown. In Se
tion 5we give solutions for spe
i�
 simple examples of interest, and point outsome subtleties in the dis
ussion of brane lo
ated mass terms. Se
tion 6summarizes our main results.2. Compa
ti�
ation, S
herk�S
hwarz me
hanism and orbifoldingTo explain the mutual relations among 
ompa
ti�
ation, orbifolding andthe S
herk�S
hwarz me
hanism it is useful to des
ribe all these three 
on-stru
tions using the same mathemati
al language. In this se
tion we 
om-pare de�nitions of these three phenomena. We use a one-dimensional exam-ple to illustrate all important points.2.1. Compa
ti�
ationLet us 
onsider a theory de�ned in D dimensions. Its a
tion is givenby an integral of an appropriate D-dimensional Lagrangian depending on



Brane Indu
ed Supersymmetry Breakdown and Restoration 2437D-dimensional �elds SD = ZF dDzLD (�(z)) : (1)Su
h a theory is e�e
tively d-dimensional at low energies if the 
oordinatesz of the D-dimensional spa
e F 
an be split into two setszM = fx�; ymg ; (2)(M = 1; : : : ;D; � = 1; : : : ; d; m = d + 1; : : : ;D) in su
h a way that 
o-ordinates ym des
ribe some (D � d)-dimensional 
ompa
t spa
e C. In thesimplest 
ase this means that the full spa
e-time is a produ
t of two fa
torsF =M �C ; (3)where M is non-
ompa
t and d-dimensional (it should be just the4-dimensional Minkowski spa
e in realisti
 models). Integrating over the
ompa
t 
oordinates y one 
an obtain an e�e
tive d-dimensional theory validfor energies mu
h smaller than the inverse of the length s
ale 
hara
teristi
for the size of C.The simplest way to 
ompare the S
herk�S
hwarz me
hanism and theordinary 
ompa
ti�
ation is to 
onsider a 
ase when the 
ompa
t spa
e C
an be obtained from a non-
ompa
t 
overing spa
e N using some group G.Let G be a dis
rete group a
ting freely on N . The a
tion of this group isrepresented by some operators Tg mapping N into itself. For all g1; g2; g3 2G they satisfy the 
ondition(g1g2 = g3) ) (Tg1Tg2 = Tg3) : (4)The a
tion of G is free whi
h means that Tg has �xed points inN only wheng is the identity element of G. We identify points whi
h di�er by the a
tionof Tg for any g 2 G Tg(y) � y : (5)In other words: we identify two points if they belong to the same orbit inN .In this way we obtain a 
ompa
t spa
eN ! C =N=G : (6)But identi�
ation of points in the spa
e is not enough. We have also todemand that �physi
s� at two identi�ed points is the same. More pre
isely:we have to allow only su
h 
on�gurations in the non 
ompa
t spa
e N forwhi
h the 
ontribution to the a
tion from a given point is the same as fromany other point identi�ed with it (same for ea
h point of a given orbit in



2438 K.A. Meissner, H.P. Nilles, M. Ole
howskithe 
overing spa
e). This should be true at the quantum level in the fulltheory but in order to simplify the notation we write it as the 
lassi
al level
ondition for the Lagrangian at two identi�ed points:L (� (x;Tg(y))) = L (�(x; y)) : (7)Only then the a
tion for the non 
ompa
t spa
e N is equivalent to thatfor the 
ompa
t spa
e C (they di�er only by an unimportant normalization
onstant).In the ordinary 
ompa
ti�
ation the above requirement is ful�lled bydemanding that all the �elds have the analogous periodi
ity property underTg: � (x;Tg(y)) = �(x; y) : (8)This 
ondition is, of 
ourse, su�
ient to satisfy Eq. (7) but in general it isnot ne
essary. It is enough to demand that �elds at Tg(y) are related to�elds at y by some transformations:� (x;Tg(y)) = Tg�(x; y) ; (9)where operations Tg are elements of the global 1 symmetry group of thetheory (whi
h again we write at a 
lassi
al level only):L (Tg�) = L (�) : (10)2.2. S
herk�S
hwarz me
hanismNow it is easy to de�ne the S
herk�S
hwarz me
hanism: it is su
h 
om-pa
ti�
ation for whi
h at least some of twist transformations Tg are di�erentfrom identity. The ordinary 
ompa
ti�
ation is the very spe
ial 
ase whenTg = l1 for all g 2 G.Of 
ourse, the transformations Tg in the �eld spa
e 
annot be arbitrary.They, similarly to the transformations Tg in the physi
al spa
e (4), mustrespe
t the group stru
ture of G:(g1g2 = g3) ) (Tg1Tg2 = Tg3) : (11)In other words, the transformations Tg must form an appropriate represen-tation of G. This is obvious be
ause for every fx; yg and g3 = g1g2 weget Tg1Tg2�(x; y) = Tg1�(x;Tg2(y))= �(x;Tg1Tg2(y)) = �(x;Tg3(y)) = Tg3�(x; y) : (12)1 If T is an element of a lo
al symmetry group than we have a Hosotani me
hanism[16,17℄ whi
h is equivalent to gauge symmetry breaking by nontrivial Wilson lines.
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ed Supersymmetry Breakdown and Restoration 2439No additional twists are allowed be
ause Tg1Tg2(y) and Tg3(y) denote thesame point in the 
overing spa
e N (and not two di�erent points whi
h areidenti�ed).The above de�nitions are quite simple but nevertheless there is some
onfusion about the S
herk�S
hwarz me
hanism in the literature. It seemsthat the reason is the following: In both kinds of 
ompa
ti�
ation the �elds �are fun
tions on the non-
ompa
t spa
eN . In the ordinary 
ompa
ti�
ationthey are also fun
tions on the 
ompa
t spa
e C be
ause of the 
ondition(9). On the other hand, in the presen
e of some nontrivial S
herk�S
hwarztwists Tg, at least some of the �elds 
annot be des
ribed by (single-valued)fun
tions onC. Instead, they 
an be des
ribed by se
tions of some nontrivial�ber bundle with the 
ompa
t spa
e C as a base spa
e. Of 
ourse, thestru
ture of that �ber bundle is not arbitrary, it is determined by the twistoperators Tg.Using the notion of �ber bundles it is possible to de�ne theories onthe 
ompa
t spa
e C even without referring to the non-
ompa
t spa
e N(sometimes C 
annot be obtained asN=G). We use only C and de�ne �eldsas se
tions of �ber bundles over C. Ordinary 
ompa
ti�
ation 
orrespondsto a 
ase when this �ber bundle is trivial, i.e. just a produ
t of the �eldspa
e and the base spa
e. Using this formalism one 
an also 
he
k whena nontrivial S
herk�S
hwarz me
hanism is at all possible. To apply thisme
hanism we need a nontrivial �ber bundle. Su
h bundles exist only whenthe base spa
e (C in our 
ase) is a non 
ontra
tible one.Let us illustrate our dis
ussion with the simplest possible example, thatof the one dimensional 
ir
le S1. It 
an be obtained from the one dimensionalreal spa
e,N = R, by using the group of addition of integer numbers, G = Z.The n-th element of Z is represented on R by the translation by 2�nR:Tn(y) = y + 2�nR : (13)Identifying points whi
h di�er by the a
tion of any of these translationswe obtain a fundamental domain of length 2�R whi
h 
an be des
ribed byy 2 [y0; y0 + 2�R[ or y 2 ℄y0; y0 + 2�R℄ for arbitrary y0. The interval mustbe open at one end be
ause y = y0 and y = y0 + 2�R des
ribe the samepoint in the 
ompa
t spa
e and should not be 
ounted twi
e.The group Z has in�nitely many elements but all of them 
an be obtainedfrom just one, represented by translation by 2�R. Thus we need only oneindependent twist transformation T :�(x; y + 2�R) = T�(x; y) : (14)Other transformations are powers of this one: Tn = T n. Of 
ourse, T mustbe a global symmetry of the Lagrangian.
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howskiLet us simplify this even further and 
onsider only one real �eld �. Forordinary 
ompa
ti�
ation T = l1, and our theory is des
ribed by real fun
-tions on S1: �(y) (we drop dependen
e on x). Non trivial S
herk�S
hwarzme
hanism is obtained e.g. for T = �1 (of 
ourse, the Lagrangian mustbe invariant under � ! ��) and the theory 
an be des
ribed in terms ofse
tions of a Möbius strip. How 
an we go ba
k to a des
ription in term offun
tions? We need a fundamental domain in the 
overing spa
e R. As wedis
ussed after Eq. (13) it 
an be 
hosen to be [y0; y0 + 2�R[ . One 
an useany y0 but y0 = ��R is a good 
hoi
e if one wants to use even and oddfun
tions. So se
tions of the Möbius strip are represented by single-valuedfun
tions on [��R; �R℄ (we may add the endpoint y = �R and de�ne thatthe value of a fun
tion at y = �R is equal to an appropriate limit) withadditional 
ondition �(�R) = T�(��R) = ��(��R) : (15)In pra
ti
al 
al
ulations it is usually more 
onvenient to work with thesefun
tions than with se
tions of the Möbius strip. But, of 
ourse, one hasto remember that they are single-valued fun
tions on the interval I =[��R; �R℄, but in general are NOT single-valued fun
tions on the 
ir
le S1.It is important to remember also that the position of �the point of dis-
ontinuity� (y0 = ��R in the above example), has no real meaning � one
annot say in a meaningful way at whi
h point the Möbius strip is twisted.The S
herk�S
hwarz me
hanism is related to global properties of the �eldsand does not distinguish any parti
ular point(s) in the 
ompa
t spa
e.2.3. OrbifoldingLet us now dis
uss the orbifolding. It is a very important 
onstru
tionapplied in some higher dimensional theories. It 
an be used to obtain 
hiralfermions starting from a model with only non 
hiral ones. It has to be 
on-trasted with the 
ompa
ti�
ation whi
h does not 
hange the 
hiral stru
tureof the theory to whi
h it is applied. Nevertheless, using the language intro-du
ed in this se
tion, it is possible to de�ne the orbifolding in a very similarway to that used to analyse the S
herk�S
hwarz 
ompa
ti�
ation. We startwith a spa
e des
ribed by a manifold P and some dis
rete group H whi
h isrepresented by operations Zh transforming P into itself. We identify pointsin P whi
h di�er by the a
tion of Zh for any h 2 H and demand that the�elds at su
h two points di�er by some transformation Zh:Zh(y)� y ; (16)�(x;Zh(y)) = Zh�(x; y) ; (17)
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ed Supersymmetry Breakdown and Restoration 2441and all these transformations Zh must be global symmetries of the theory.The only di�eren
e with the 
ompa
ti�
ation is that the group H does nota
t freely in P . Some of the transformations Zh have �xed point in P andthe resulting spa
e is in general not a manifold but an orbifoldP ! O = P =H : (18)Contrary to the S
herk�S
hwarz 
ompa
ti�
ation, there are spe
ial pointsin the spa
e obtained by orbifolding. The resulting spa
e (orbifold) is nolonger a smooth manifold.The simplest and very popular example is that of the 
ir
le S1 dividedby the two element group Z2. The a
tion of the only nontrivial element ofZ2 is represented by the re�e
tionZ(y) = �y : (19)This operation squares to identity so the same must be true for the 
orre-sponding operation Z in the �eld spa
e. Thus it is always possible to 
hoosea basis in whi
h all �elds have well de�ned parities� (x;Z(y)) = �(x;�y) = Z�(x; y) ; (20)where Z is a diagonal matrix with eigenvalues �1.This one-dimensional example is somewhat spe
ial. The orbifold S1=Z2is equivalent to a manifold with a boundary (the �xed points have 
odi-mension 1 and 
an be treated as boundaries). In general, orbifolds are notequivalent to manifolds with boundaries.3. Consisten
y 
onditions for S
herk�S
hwarz me
hanismon orbifoldsLet us now dis
uss the situation when we perform orbifolding andS
herk�S
hwarz 
ompa
ti�
ation together in one theory. Many models ofthis type, espe
ially 5-dimensional ones, have been re
ently proposed in theliterature. The orbifolding is ne
essary to obtain 
hiral fermions and alsobreaks some supersymmetry while the S
herk�S
hwarz me
hanism 
an beused to break the remaining supersymmetry. We will see that it is quite sim-ple to analyse both of these me
hanisms simultaneously using the formalismof the previous se
tion. In the �rst subse
tion we present the 
onsisten
y
onditions whi
h must be ful�lled for a general S
herk�S
hwarz 
ompa
ti�-
ation on orbifolds. In the se
ond subse
tion we dis
uss in more detail theimportant 
ase of the S1=Z2 orbifold.
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aseAs we dis
ussed in the previous se
tion, the S
herk�S
hwarz 
ompa
t-i�
ation and the orbifolding, despite important di�eren
es between them,
an be des
ribed using the same formalism. Also the situation when both
onstru
tions appear simultaneously is quite straightforward to analyse. Westart with a non 
ompa
t spa
e N and a dis
rete group F a
ting on it. Thisgroup F must be only a little bit more 
ompli
ated than in the previous
ases. It 
ontains a non trivial subgroup whi
h a
ts freely on N (and isused to make the resulting spa
e 
ompa
t like in the S
herk�S
hwarz me
h-anism) but has also non trivial elements whi
h have �xed points when a
tingon N (like in orbifolding). Let us denote those di�erent types of elements ofF by g and h, respe
tively. They are represented by transformations Tg andZh. They in fa
t form one representation of F and we use di�erent lettersonly to distinguish those transformations whi
h have �xed points.As usually we identify points whi
h di�er by the a
tion of any (
ombi-nation) of those transformations. We allow also for, in general non trivial,twists in the �eld spa
e: Tg(y) � y ; (21)Zh(y) � y ; (22)�(x;Tg(y)) = Tg�(x; y) ; (23)�(x;Zh(y)) = Zh�(x; y) : (24)The twist operators Tg and Zh must, of 
ourse, form a representation of thegroup F and must be global symmetries of the theory. In full analogy toEq. (11) they have to satisfy the appropriate 
onsisten
y 
onditions also forthe �mixed� produ
ts, e.g.(g1h2 = h3) ) (Tg1Zh2 = Zh3) : (25)Now we 
an easily 
ompare the S
herk�S
hwarz me
hanism without andwith orbifolding. In both 
ases we start with the same non 
ompa
t spa
eN . In the �rst 
ase we use a group G whi
h free a
tion on N is representedby operators Tg. The a
tion of that group in the �eld spa
e is representedby Tg. Then we enlarge the group in su
h a way that some of its elementshave �xed points when a
ting on N . For de�niteness we may 
hose it to bea dire
t produ
t: F = G � H. The se
ond subgroup H is represented bysome non freely a
ting operators Zh. What is the in�uen
e of the orbifoldinggroup H on the S
herk�S
hwarz twists Tg? Are they more restri
ted or 
anthey be more general? The answer is obvious: after orbifolding the S
herk�S
hwarz twists are more restri
ted as 
ompared to the same theory without
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ed Supersymmetry Breakdown and Restoration 2443orbifolding. The reason is that there are additional 
onsisten
y 
onditionsof type shown in Eq. (25).It o

urs that those additional 
onsisten
y 
onditions 
an be quite re-stri
tive. To show this we investigate now the interplay between the S
herk�S
hwarz me
hanism and orbifolding in the important 
ase of the one-dimen-sional 
ir
le.3.2. S
herk�S
hwarz me
hanism on S1=Z2 orbifoldWe obtain the orbifold S1=Z2 by dividing the real axis R by the groupZ� Z2. It is enough to 
onsider one element of Z and one element of Z2.The equations (21)�(24) take the following form:T (y) = y + 2�R ; (26)Z(y) = �y ; (27)�(x; y + 2�R) = T�(x; y) ; (28)�(x;�y) = Z�(x; y) : (29)Now we want to �nd the additional 
onsisten
y 
onditions of the form pre-sented in Eq. (25). There is one su
h 
ondition and it follows from the fa
tthat translation T and re�e
tion Z for arbitrary y ful�l the 
ondition:T ZT (y) = Z(y) ; (30)from whi
h it follows thatTZT�(x; y) = TZ� (x;T (y)) = T�(x;ZT (y))= �(x;T ZT (y)) = �(x;Z(y)) = Z�(x; y) : (31)So the operators in the �eld spa
e must satisfy the relationTZT = Z : (32)We will show below that the above 
ondition puts quite strong restri
tionson the possible form of the twist T .We know that the operator Z must square up to identity so its eigenvaluesmust be equal to 1 or �1. Let us start with a basis in whi
h the �rst neigenvalues of Z are +1 and the last m eigenvalues are �1. In su
h a basisZ and T matri
es have the formZ =  l1n � l1m ! ; T =  A BC D ! : (33)
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t that T is unitary we get thefollowing 
ondition ZT = T yZ : (34)Substituting Z and T in the form (33) to this equation we �nd that thediagonal blo
ks, A and D, are hermitian while the o�-diagonal ones ful�lthe 
ondition C = �By. Thus we 
an 
hange the basis in two (n � n andm�m) subspa
es in su
h a way that T has the formT =  A B�By D ! (35)with diagonal and real A and D. Now we again use Eq. (32); multiplying itwith Z we �nd (TZ)2 = (TZT )Z = Z2 = l1 ; (36)whi
h in terms of the matri
es A, B and D readsA2 +BBy = l1n ; (37)D2 +ByB = l1m ; (38)AB �BD = 0 : (39)The last equation 
an be rewritten using the 
omponents of the matri
es asBij (Aii �Djj) = 0 (40)for all i = 1; : : : ; n and j = 1; : : : ;m. This means that the elements ofthe o�-diagonal matrix B 
an be non zero only in subspa
es in whi
h thediagonal matri
es (A and D) have equal eigenvalues. So now we 
an 
hangethe basis in su
h a way that the matri
es Z and T have the following form:Z = 0BBB� l1n1 � l1m1 l1n2 � l1m2 ::: 1CCCA ; (41)
T = 0BBBB� a1 l1n1 B1�By1 a1 l1m1 a2 l1n2 B2�By2 a2 l1m2 :::

1CCCCA ; (42)
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ed Supersymmetry Breakdown and Restoration 2445where all ai are di�erent. Let us 
on
entrate on the �rst (n1+m1)�(n1+m1)blo
k of T . We 
an perform two arbitrary 
hanges of basis, one in then1 dimensional subspa
e and se
ond in the m1 dimensional one, and thestru
tures of Z and T matri
es remain the same. We 
an use this freedomto put the B1 matrix in the form (for n1 � m1; the other 
ase 
an beanalysed in an analogous way)B1 = 0BB� b1 b2 � bn1 0 0 ::: 1CCA ; (43)with real bi. Now we 
an use the 
onditions (37) and (38). It is easy tosee that there are two possibilities: either a1 = �1, B1 = 0 or n1 = m1,B1 = b1 l1n1 with the 
onstant b1 satisfyinga21 + b21 = 1 : (44)We 
an perform now the last 
hange of the basis: we permute appropriatelythe 
oordinates in subspa
es with ni > 1. Now the matri
es Z and T havetheir �nal form:Z = 0BB� �3 �3 � � l1jn�mj 1CCA ; (45)
T = 0BB� R(2��1) R(2��2) � Ijn�mj 1CCA ; (46)where Ijn�mj is a diagonal matrix of dimension jn�mj with diagonal entriesequal �1 while R(2��i) is a matrix des
ribing rotation by an angle 2��i:R(2��i) =  
os(2��i) � sin(2��i)sin(2��i) 
os(2��i) ! : (47)Observe that now T is blo
k-diagonal with only 2- and 1-dimensional sub-spa
es. If any of the dimensions ni in the form (42) is bigger than 1 then the
orresponding 2ni � 2ni subspa
e de
omposes to ni blo
k-diagonal entrieswith the same rotation angle 2��.We see that the possible S
herk�S
hwarz me
hanism in the 
ase of theone dimensional orbifold S1=Z2 is quite restri
ted. The only allowed twists
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es 
onsisting of one �eld whi
his even under the Z2 parity and one �eld whi
h is odd; and the 
hange ofsign of some �elds whi
h are not rotated. It should be stressed that (
on-trary to some 
laims in the literature [14℄) orbifolding of the 
ir
le does notopen any possibilities for generalizing the S
herk�S
hwarz me
hanism. Thesituation is just opposite: additional, quite strong 
onstraints must be ful-�lled. One 
an no longer use any arbitrary global symmetry of the theoryfor the twists, only twists of the form (46) 
an be 
onsistently used. Inparti
ular one 
annot �generalize� the S
herk�S
hwarz me
hanism by allow-ing for extra dis
ontinuities of the �elds at the �xed points of the orbifold.Any dis
ontinuities, as well as other lo
al features of the �elds, are deter-mined by appropriate equations of motion. As we have already stressed,the S
herk�S
hwarz me
hanism determines only the global properties of the�elds.4. Fermion spe
trum on S1=Z2 with S
herk�S
hwarz me
hanismand mass termsOriginally the S
herk�S
hwarz me
hanism [1, 2℄ was used to break su-persymmetry. The masses of all levels of the Kaluza�Klein tower (espe
iallyfor gravitini) were shifted by a 
onstant. It is interesting to 
he
k how masslevels are 
hanged by the S
herk�S
hwarz me
hanism on orbifolds. We will
on
entrate on the 
ompa
ti�
ation from 5 to 4 dimensions on S1=Z2.4.1. Kineti
 Lagrangian in 5 dimensionsMany 5-dimensional models using the 
ompa
ti�
ation on S1=Z2 havebeen dis
ussed re
ently in the literature. But instead of 
hoosing any spe
i�
model of this type we will 
onsider a rather general situation. Thus ouranalysis 
an be used to investigate many di�erent, not only 5-dimensionaltheories, by spe
ifying some parameters.Let us 
onsider one 5-dimensional fermion �eld. Usually it is des
ribedby a pair of spinors satisfying the symple
ti
 Majorana 
ondition(�i)� = C5"ij�j ; (48)where C5 is the 5-dimensional 
harge 
onjugation matrix. In the 
ase of theS1=Z2 
ompa
ti�
ation those spinors have the following Z2 parity properties�1(�y) = +� 5�1(y) ; (49)�2(�y) =�� 5�2(y) : (50)But it is not very 
onvenient to use these 5-dimensional symple
ti
 Majora-na spinors. We are interested in the 
ompa
ti�ed, e�e
tively 4-dimensional
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he
k that these new spinors ful�l the 4-dimensional Majorana
ondition ( i)� = C4 i (53)(with C4 being the 4-dimensional 
harge 
onjugation matrix) and have wellde�ned parities under Z2:  1(�y) = + 1(y) ; (54) 2(�y) =� 2(y) : (55)where we dropped Then the 5-dimensional kineti
 term for our spinor �i 
anbe rewritten in terms of  i�12�i�M�M�i = �12 h 1
��� 1 +  2
��� 2 �  1�y 2 +  2�y 1i ; (56)where we dropped eventual 
ouplings to gauge bosons. We add also dire
tmass terms for the fermions. To be as general as possible we allow for they dependen
e in these mass terms. There 
an be two kinds of su
h massterms: even and odd under the Z2 parity:m�(�y) = �m�(y) : (57)Taking into a

ount the parity properties of  i (54), (55) we get the followingZ2 invariant kineti
 LagrangianLkin = �12h+  1
��� 1 +  2
��� 2 �  1�y 2 +  2�y 1�m+ � 1 1 +  2 2��m� � 1 2 +  2 1� i: (58)The last four terms in the square bra
ket will give e�e
tive 4-dimensionalmass terms after 
ompa
ti�
ation (integration over the 5-th 
oordinate y).One 
ould think about further generalization of the above Lagrangian byallowing for two independent Z2-even mass terms, one for  1 and anotherfor  2. This 
ould be an option for two independent spinors  i but notin models dis
ussed here. The spinors  1 and  2 are related. They are
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howskijust di�erent 
omponents of one 5-dimensional spinor. Before orbifolding,all the intera
tions for  2 are stri
tly determined by those for  1 simplyby 5-dimensional Lorentz invarian
e. After orbifolding there is only onequantum number whi
h di�erentiate between  1 and  2; the Z2 parity whi
his even for one �eld and odd for the other. But this does not in�uen
e termsquadrati
 in any of these �elds be
ause su
h terms are Z2-even anyway. So,in 5-dimensional theories 
ompa
ti�ed on S1=Z2 the Z2-even mass term m+should be the same for both fermions.2 Similar 
on
lusions 
an be obtainedalso for higher dimensional theories. One 
ommon m+ mass term appearse.g. in the 
ase of the 11-dimensional heteroti
 M-theory [12℄ whi
h is apra
ti
al realization of the situation dis
ussed in this paper.The rest of this se
tion is devoted to the analysis of the e�e
tive4-dimensional spe
trum of fermions 
oming from this 5-dimensional Lagran-gian (58) after 
ompa
ti�
ation on S1=Z2 with possible S
herk�S
hwarztwists.A few remarks about the possible origin of su
h a Lagrangian andy-dependent mass terms are in order. The even mass terms, 
onstant orlo
ated at the �xed points of the orbifold, 
an be expli
itly present in themodel under 
onsideration. Other mass terms 
annot appear dire
tly be-
ause they are not allowed by the symmetries of the theory (e.g. the dire
todd mass term is forbidden by Z2 parity). But they 
an appear indire
tlywhen some �elds develop non zero va
uum expe
tation values (VEVs) whi
hbreak those symmetries. More generally, the Lagrangian (58) should betreated as a part of an e�e
tive Lagrangian obtained in a given theory aftersome operations. Su
h operations 
an be e.g.: taking into a

ount non zeroVEVs of the ba
kground �elds, rede�nitions of �elds, redu
tion from higherdimensions (if we start with a theory whi
h is more than 5-dimensional),
hanging from a possible warped metri
 to an e�e
tive �at one et
. Ouranalysis 
an be applied to all situations when after all ne
essary rede�ni-tions we 
an get the Lagrangian in the form of (58). That Lagrangian iswritten for a spin 1/2 fermion but it 
an be also easily generalized to the
ase of spin 3/2 (we have to add two gamma matri
es between  i and  jin an appropriate way). So our results are valid also for the very interesting
ase of gravitini in supersymmetri
 models.A very good example of the above mentioned rede�nitions is that of theheteroti
 M-theory. We analysed the massless gravitino in su
h a model inthe presen
e of brane lo
ated gaugino 
ondensates in our previous paper [12℄.In this model it is ne
essary to perform several �eld rede�nitions to take into2 The authors of Refs. [14, 15℄ also 
onsider Lagrangians whi
h do not agree with this
on
lusion. In parti
ular in Eq. (3.1) in [15℄ they assume that there is a delta likemass term for  1 but not for  2. It is un
lear how su
h a situation 
ould be realizedin a 5-dimensional model.
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ount six extra dimensions 
ompa
ti�ed on a Calabi�Yau manifold. Somerede�nitions are 
onne
ted to the fa
t that the ba
kground matri
 is warped.In the e�e
tive 5-dimensional Lagrangian we obtained two types of massesfor the gravitino �eld, analogous to those present in (58). Both are generatedby non zero VEVs of some 
omponents of the 4-th rank tensor �eld GABCDpresent in the 11-dimensional supergravity. VEV of G11ab
 gives an evenmass term in 5-dimensions while VEV of Ga�ab�b gives an odd one (a; b and�a;�b are, respe
tively, holomorphi
 and anti-holomorphi
 
oordinates on theCalabi�Yau manifold). Thus we see that the Z2 even and odd, 
oordinate-dependent mass terms 
an quite naturally appear in higher dimensionalmodels.4.2. Mass eigenstate equations and S
herk�S
hwarz boundary 
onditionsBefore we look for the spe
trum of fermions whi
h 
an be obtained fromthe Lagrangian (58) we have to spe
ify the properties of the �elds under theS
herk�S
hwarz twist. In the previous se
tion we have proved that the mostgeneral twist 
an be de
omposed into rotations in 2-dimensional subspa
es,ea
h 
onsisting of one even and one odd �eld. The two Majorana fermions  1and  2 form su
h a 2-dimensional subspa
e. In prin
iple it is possible that 1 and  2 belong to two di�erent su
h subspa
es if there are more �eldswith appropriate quantum numbers (remember that any S
herk�S
hwarztwist must be a global symmetry of the theory so it 
annot mix arbitrary�elds). In su
h a 
ase one should 
onsider  1,  2 to be ve
tors and m+,m� to be matri
es in some type of a �avor spa
e. However we are not goingto 
onsider here su
h a 
ompli
ation espe
ially be
ause it is not importantfor the most interesting 
ase of the gravitino in supersymmetri
 models. We
on
entrate on a 2-dimensional subspa
e for whi
h the twists are given by3Z =  1 00 �1 ! ; T =  
os(2��) � sin(2��)sin(2��) 
os(2��) ! ; (59)in the basis � = ( 1;  2)T . In this 
ase the twist 
ondition (28) reads  1(x; �R) 2(x; �R) ! =  
os(2��) 1(x;��R)� sin(2��) 2(x;��R)sin(2��) 1(x;��R) + 
os(2��) 2(x;��R) ! :(60)When the twist parameter � is equal to zero, we have the standard 
om-pa
ti�
ation in whi
h  1(y) and  2(y) are (periodi
) fun
tions on the 
ir
le.3 T of this form may be an element of the SU(2)R automorphism group of the d = 5supersymmetry.
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howskiNow we are ready to analyse the spe
trum. First we de
ompose the5-dimensional �elds  i in the following way:  1(x; y) 2(x; y) ! =Xn �n(x) u1n(y)u2n(y) ! : (61)We are looking for su
h a de
omposition for whi
h �n(x) is the n-th 4-dimensional Majorana fermion with a de�nite masses Mn. The ve
tor offun
tions (u1n(y); u2n(y))T des
ribes the shape of this n-th mass eigenstatein the 5-th dimension. We need both 
omponents be
ause in general masseigenstates do not have de�nite parities. Substituting this de
ompositioninto the Lagrangian (58) we �nd that the fun
tions uin(y) must satisfy thefollowing di�erential equations�u1n(y)�y + [Mn �m+(y)℄u2n(y)�m�(y)u1n(y) = 0 ; (62)�u2n(y)�y � [Mn �m+(y)℄u1n(y) +m�(y)u2n(y) = 0 : (63)They 
an be rewritten in a more 
ompa
t form as�un(y)�y + [Mn �m+(y)℄i�2un(y)�m�(y)�3un(y) = 0 ; (64)where �i are Pauli matri
es in a spa
e in whi
h the even and odd 
omponentsform a ve
tor un. The equations alone are not enough, we have to spe
ifyalso the boundary 
onditions. Parity properties of the �elds determine theboundary 
ondition at y = 0: u1n(0)u2n(0) ! =  
n0 ! ; (65)where 
n are 
onstants whi
h should be adjusted in order to have the 
orre
tnormalization of the 4-dimensional �elds. The boundary 
ondition at y =��R 
an be obtained from Eq. (60). Substituting expansion (61) into (60)and using the parity properties of uin(y) we get:u2n(�R)u1n(�R) = tan(��) : (66)The masses and shapes of the 4-dimensional modes 
an in prin
iple be foundby solving the above di�erential equations (62), (63) with the boundary
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onditions given by (65), (66). It is possible to simplify this problem ifwe are interested only in the masses. To this end we 
onsider only theratio of the odd 
omponent to the even 
omponent of the wave fun
tion:tn(y) = u2n(y)=u1n(y). The di�erential equation for this fun
tion de
ouplesfrom that for the other independent 
ombination of u2n(y) and u1n(y) andreads �tn(y)�y = [Mn �m+(y)℄ �1 + t2n(y)�� 2m�(y)tn(y) : (67)The appropriate boundary 
onditionstn(0) = 0 ; (68)tn(�R) = tan(��) ; (69)
an be used to obtain the dis
rete spe
trum of masses Mn. Unfortunatelyfor arbitrary mass terms m�(y) it is not possible to �nd the solutions eitherfor tn(y) or for the separate 
omponents uin(y) in a 
losed form.5. Fermion spe
trum for some types of modelsIn this se
tion we dis
uss some situations when exa
t solutions 
an befound or when at least some important features of the solutions 
an beanalysed. 5.1. Arbitrary m+(y) with vanishing m�The situation is very simple when the odd mass term is absent:m�(y)=0.Then the equations for the modes 
an be easily solved. Using the form (64)we immediately �ndun(y) = exp8<:�i�2 yZ0 ds [Mn �m+(s)℄9=;un(0) : (70)Observe that the above exponent is just equal to the rotation matrix with therotation angle given by the integral of [Mn�m+℄. Thus the mass eigenstatesare given by u1n(y)u2n(y) ! = 1p�R 0BB� 
os �Mny � yR0 dsm+(s)�sin�Mny � yR0 dsm+(s)� 1CCA ; (71)
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howskiwhere we used the boundary 
ondition (65) at y = 0. It is very easy to solvealso the boundary 
ondition (66) at y = �R; the masses Mn must satisfythe following equality:tan0� �RZ0 dy [Mn �m+(y)℄1A = tan(��) ; (72)hen
e, they are given by a simple formulaMn = n+ �+ �+R ; (73)where � is the S
herk�S
hwarz twist parameter and �+ is de�ned by�+ = 1� �RZ0 dy m+(y) : (74)From the above formulae we 
an see that the S
herk�S
hwarz twist parame-ter � and the integrated 5-dimensional, Z2-even mass term �+ have exa
tlythe same in�uen
e on the 4-dimensional mass eigenvalues. They both shiftthe masses of all the standard Kaluza�Klein levels by a 
onstant: �=R and�+=R, respe
tively.From Eq. (73) it is obvious that there are several possibilities when thosetwo e�e
ts produ
e no net e�e
t leaving the masses of the KK states un-
hanged. In the 
ase of a gravitino �eld in a supersymmetri
 model this
orresponds to unbroken supersymmetry. This happens when the mass termand the S
herk�S
hwarz parameter satisfy the 
ondition�+ 1� �RZ0 dy m+(y) = k 2 Z for m�(y) = 0 : (75)This, of 
ourse, does not mean that the S
herk�S
hwarz me
hanism is equiv-alent to arbitrary mass terms satisfying the above equations. As we havealready stressed, the S
herk�S
hwarz me
hanism is related to global proper-ties of the �elds and not to their lo
al behavior. The S
herk�S
hwarz twistparameter appears dire
tly only in the mass formula. On the other handthe mass term m+(y) enters expli
itly also the equations determining theshapes of the modes. And those shapes 
an be important for example if one
onsiders intera
tions with other �elds. In fa
t the S
herk�S
hwarz me
ha-nism is equivalent to the me
hanism of adding a mass term only if this massterm is Z2-even and 
onstant, and for sure not when the mass terms are
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alized at the �xed points of the orbifold (su
h delta-like lo
alization ofthe mass terms is quite typi
al for models 
onsidered in the literature).Let us now dis
uss the possibility of vanishing fermion (gravitino) mass.The simplest possibility o

urs when k = 0 in Eq. (75). In su
h a 
asethe e�e
ts due to the S
herk�S
hwarz twist and the even mass term 
an
elexa
tly against ea
h other in the mass formula (73) for ea
h KK level (thiswas observed in Ref. [14℄ for delta-like mass terms). A di�erent interestingsituation o

urs when the sum of � and �+ is a non zero integer. Thestru
ture of the whole KK tower remains un
hanged but the masses of allindividual states do 
hange. If we 
onsider a smooth in
rease of parameters� and �+ from zero to their �nal values: the initially massless mode getsnon zero mass while one of the massive modes be
omes massless.This 
rossing of levels 
annot o

ur if �; �+ � 1. At least one of theseparameters must be 
omparable to 1. The S
herk�S
hwarz twist parameter� 
an have values only in the range [�1=2; 1=2℄. The reason is that, as weshown in the previous se
tion, the S
herk�S
hwarz twist in the 
ase of S1=Z2is just a rotation by and angle 2�� and the boundary 
ondition (66) dependsonly on tan(��). So, � and (�+n) des
ribe in fa
t exa
tly the same model.The situation with the mass term m+(y) and its (normalized) integral �+is di�erent. Two models in whi
h the value of �+ di�ers by an integer arereally di�erent. But one should be 
areful. The 
rossing of levels 
an o

urwhen the average of m+(y) over the 5-th 
oordinate satis�es�RR0 dym+(y)�RR0 dy = O� 1R� ; (76)and it is ne
essary to 
he
k whether this is still in the range of validity ofused approximations and/or assumptions.5.2. Comments on delta like terms on orbifoldsIn many models dis
ussed in the literature the even mass terms m+(y)have the form of Dira
 delta sour
es lo
ated at the branes (�xed points oforbifolds used in those models). Su
h terms are sometimes taken improperlyinto a

ount, so let us make some 
omments to 
larify this issue. There is aproblem whi
h quite often appears in the literature, namely when one has tomultiply Æ(y) by fun
tions vanishing at y = 0, e.g. fun
tions odd in y. Thenaive, and in
orre
t, way is to assume that all su
h produ
ts are zero be
auseÆ(y) 6= 0 only at the point for whi
h the other fun
tions do vanish. To 
larifythis we start with reminding the obvious fa
t that the Dira
 delta �fun
tion�
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howskiis not a fun
tion but a distribution. So one should treat it 
onsistently as adistribution or as a limit of some appropriate fun
tions. Using any of theseapproa
hes one 
an easily solve the above mentioned problem of multiplyingÆ(y) by odd fun
tions. For arbitrary set of (not ne
essary di�erent) fun
tionsgi(y) odd in y the following relations hold:Æ(y) 2n+1Yi=1 gi(y) = 0 ; (77)Æ(y) 2nYi=1 gi(y) = 12n+ 1Æ(y) limy!0 2nYi=1 gi(y) : (78)From the last equation it follows in parti
ular that the delta like mass sour
es
ouple not only to even but also to odd parity �elds be
ause the odd �elds
an have jumps at y = 0 so also nonzero limits for y ! 0. And there is noobvious way to forbid su
h 
ouplings by some additional symmetries be
ausethe odd and even �elds are just 
omponents of one 5-dimensional �eld withde�nite quantum numbers. Be
ause of that we have a 
ommon, Z2-evenmass term m+ for both �elds,  1 and  2, in the kineti
 Lagrangian (58).Su
h situation is realized e.g. for the gravitino mass terms in the heteroti
M-theory [12℄.Another kind of problems 
an appear when a delta like mass term haslarge magnitude. From Eq. (71) we see that the eigenfun
tions in the 
aseof vanishing m� 
orrespond to a unit ve
tor rotating in the (u1, u2) spa
ewith the y-dependent phase angle given by'(y) = 24Mny � yZ0 dsm+(s)35 : (79)Let us dis
uss the behavior of this angle 
lose to y = 0. We regularize Æ(y)by some fun
tions f"(y) whi
h integrate to 1 and have support for jyj < "with " ! 0. The mass term is approximated by m+(y) = 
f"(y). For verysmall y we 
an negle
t the Mny 
ontribution in Eq. (79). Then for ea
hfun
tion f" the phase at y = " is given by:'"(") = � "Z0 dy 
f"(y) = � 
2 : (80)The phase is the same for all " so it has this value also in the limit " ! 0.Therefore in�nitesimally 
lose to the brane the state ve
tor satis�es the
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ondition u1n(") = 
os� 
2�u1n(0); (81)u2n(") =� sin� 
2�u1n(0): (82)The values of 
 whi
h di�er by multiples of 4� give the same values of u1(")and u2("). They give however di�erent behavior of the state ve
tor overthe interval y 2 [0; "℄ for " 6= 0. The state ve
tor 
orresponding to a biggervalue of 
 rotates more times by the full angle 2� between points y = 0and y = ". Thus, the equations (81), (82) taken at " = 0 are alone notenough to des
ribe a given eigenstate. For small values of the magnitude 
the eigenstate may be des
ribed by fun
tions u1(y) and u2(y) whi
h are justdis
ontinuous at y = 0. But for large values of 
 a more 
areful treatmentis ne
essary.The last remark on delta-like terms on orbifolds 
on
erns their normal-ization. Performing the integral in Eq. (80) we get only �
=2 and not �
be
ause we integrate only over the �half� of the delta's support, that forpositive y. This is the so 
alled down-stairs approa
h to the S1=Z2 orbifoldin whi
h we integrate over the interval y 2 [0; �R℄ using the additional pre-s
ription that Dira
 deltas lo
ated at the �xed points give after integration1=2 instead of 1. In the up-stairs approa
h one integrates over full 
ir
le S1but the �nal result must be divided by 2.5.3. Constant, simultaneously non zero, m+ and m�Let us now turn to more 
ompli
ated 
ases of the S
herk�S
hwarz me
ha-nism on orbifolds, when the odd mass term in the Lagrangian (58) is di�erentfrom zero. Now it is not possible to solve the di�erential equation for themass eigenstates (64) by simple integration and exponentiation (as we didto get Eq. (70) in the 
ase of m� = 0). The reason is that matri
es �2 and�3 do not 
ommute and they are multiplied by fun
tions of y. The formalsolution of (64) involves an appropriate ordering operator and not just theordinary exponential fun
tion. Be
ause of that, it is not possible to write themass eigenstates, given by solutions of (64), in an expli
it, 
losed form. Inthe 
ase of arbitrary m�(y) it is also not possible to solve expli
itly Eq. (67)whi
h determines the masses eigenvalues (without determining the shapesof the states). But there are some simple 
ases in whi
h we 
an solve someof the equations or at least be able do �nd some properties of the solutionson whi
h we 
on
entrate in the rest of this se
tion.One of the 
ases when it is possible to �nd expli
itly the eigenstates iswhen both mass terms m+ and m� are 
onstant. Then the solution to (64)
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howskiis given by un(y) = exp f(�i�2[Mn �m+℄ + �3m�) ygun(0) (83)whi
h 
an be rewritten as u1n(y)u2n(y) ! /  
os (�ny) + m��n sin (�ny)Mn�m+�n sin (�ny) ! ; (84)where �n =q(Mn �m+)2 �m2� (85)and we used the boundary 
ondition at y = 0, Eq. (65). The solution (84) isvalid even for imaginary �n (then trigonometri
al fun
tions are repla
ed withappropriate hyperboli
 ones). Now we have to implement also the se
ondboundary 
ondition, the one at y = ��R. This 
ondition 
annot be ful�lledfor imaginary �n (with one ex
eption whi
h we dis
uss later). For real �nwe 
an �nd that the masses Mn are given by the solution of the followingequation(Mn �m+) tan(��) = �n tan ��n�R� ar
tan�m��n ��+m� (86)in whi
h Mn appears impli
itly on the r.h.s. via the parameters �n de�nedin Eq. (85). The same 
ondition for mass eigenvalues 
an be obtained fromequation (67) with boundary 
onditions (68)�(69). The reality 
ondition for�n means that the mass eigenstates are given by (84) with mass eigenvaluessatisfying (86) when jMn �m+j > jm�j : (87)Now we dis
uss the additional solution whi
h 
orresponds to one ex
ep-tion from the reality 
ondition for �n mentioned above. It exists only whenthe S
herk�S
hwarz twist is trivial: � = 0. In su
h a 
ase there is a statewith mass M = m+ and shape given by u1(y)u2(y) ! / 0� exp� yR0 dsm�(s)�0 1A : (88)Observe that we have used an integral of m�(y), and not just the produ
tof a 
onstant m� with y, in the above formula. It is not di�
ult to 
he
kthat the solution of su
h form is valid for arbitrary y-dependent mass termm�(y). It is quite important be
ause it des
ribes the massless mode in the
ase of vanishing m+. It should be stressed that su
h a state appears only
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ase of a non trivial S
herk�S
hwarztwist there 
an be no massless mode for arbitrary m�(y) if m+ = 0.Let us now go ba
k to the mass eigenvalue 
ondition (86) and the masseigenstates (84). They allow to extend our dis
ussion of (non)equivalen
e ofthe S
herk�S
hwarz me
hanism and dire
t 5-dimensional mass terms. When
onsidering the situation with vanishing Z2-odd mass m� (see dis
ussionafter Eqs. (74) and (75)) we have observed that in su
h a 
ase the S
herk�S
hwarz me
hanism is equivalent to adding a 
onstant Z2-even mass m+.Moreover, by a suitable 
hoi
e of the S
herk�S
hwarz twist parameter �it is possible to reprodu
e the spe
trum (but not the shapes of the masseigenstates) obtained in the 
ase of vanishing � and given y-dependent m+.The situation 
hanges for m� 6= 0 (also if it is 
onstant). From Eq. (86)it is 
lear that the masses in the 
ase of the S
herk�S
hwarz me
hanismare, for arbitrary �, di�erent from the masses obtained in a theory withdire
t mass terms. The twist parameter � and the Z2-even mass m+ enterthe mass formula (86) in quite di�erent ways. The relation between m+and mass eigenvalues is very simple. The 
onstant m+ appears only in the
ombination (Mn �m+) so it just shifts all the mass states by a 
onstant.On the other hand, the relation between � and the mass spe
trum is quite
ompli
ated and in general 
annot be solved expli
itly. But one feature ofthat relation 
an be read from the mass formula (86). For arbitrary m+ andm� it is possible to 
hoose � in su
h a way that one state with any givenmass (within some range of values) is present in the spe
trum. A state withmass M0 appears in the spe
trum if the S
herk�S
hwarz twist parameter isgiven by� = 1� ar
tan� �0M0 �m+ tan ��0�R� ar
tan�m��0 ��+m�� ; (89)with �0 = q(M0 �m+)2 �m2+ if this mass satis�es the 
ondition jM0 �m+j > jm�j. In parti
ular there is a value of � for whi
h one state ismassless if jm+j > jm�j.5.4. Delta like m+ in the presen
e of arbitrary m�(y)So far we dis
ussed three spe
ial situations: arbitrary m+ with vanish-ing m�; 
onstant m+ and m�; arbitrary m� with vanishing m+ (only themassless mode). In general it is not possible to �nd expli
it solutions formore 
ompli
ated 
ases. However, there is a very interesting 
lass of modelswhi
h 
an be analysed using the results obtained so far. Let us 
onsidera situation when the Z2 even and odd mass terms are des
ribed by somearbitrary fun
tions of y subje
t to the 
onstraint m+(y)m�(y) = 0 for all y.
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howskiThis 
ondition is ful�lled for example in all models in whi
h the Z2-evenmass terms are lo
ated at the branes. The reason is that arbitrary m�(y)vanishes at y = 0 and y = �R.For su
h models it is possible to 
he
k whether a massless state existsin the spe
trum. It is very important be
ause this way one 
an determineunder what 
onditions supersymmetry remains unbroken in the presen
e ofthe S
herk�S
hwarz twists and the dire
t mass terms.First we divide the interval [0; �R℄ into pie
es in su
h a way that at ea
hpie
e only one of the mass terms, m+(y) or m�(y), is non vanishing. We �nda possible solution 
orresponding to M = 0 for ea
h of these sub-intervals.The solution for yi < y < yi+1 is given byu0(y) = exp8<:i�2 yZyi dsm+(s)9=;u0(yi); if m�(y) = 0 for y 2 [yi; yi+1℄ ;(90)u0(y) = exp8<:�3 yZyi dsm�(s)9=;u0(yi); if m+(y) = 0 for y 2 [yi; yi+1℄ :(91)We build the full solution from those partial ones starting from the boundary
ondition at y = 0 (65) and demanding that it is 
ontinuous at pointsyi where the 
hara
ter of the solution 
hanges from (90) to (91) or vi
eversa. At the end we 
he
k whether u0(�R) obtained this way, ful�lls theboundary 
ondition (66). Su
h a pro
edure allows us to 
he
k what valueof the S
herk�S
hwarz twist angle is 
ompatible with a massless fermion forgiven y-dependent mass terms m+(y) and m�(y).Let us illustrate this by an example ofm+(y) terms lo
ated at the branes:m+(y) = 2m0Æ(y) + 2m�Æ(y � �R) : (92)All we have to know about m�(y) is its integralM� = �RZ0 dy m�(y) : (93)We divide the interval [0; �R℄ into three regions (two of them in�nitesimallysmall 
lose to the branes) and use the pro
edure des
ribed above. The resultfor u0(�R) reads
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ed Supersymmetry Breakdown and Restoration 2459u0(�R) = exp fi�2m�g exp f�3M�g exp fi�2m0gu0(0)= 
os(m�) sin(m�)� sin(m�) 
os(m�) !� eM� 00 e�M� �� 
os(m0) sin(m0)� sin(m0) 
os(m0) ! 
0 != 
 
os(m�) 
os(m0)eM� � sin(m�) sin(m0)e�M�� sin(m�) 
os(m0)eM� � 
os(m�) sin(m0)e�M� ! : (94)This solution agrees with the S
herk�S
hwarz twist 
ondition (66) ifsin(m�) 
os(m0)eM� + 
os(m�) sin(m0)e�M�
os(m�) 
os(m0)eM� � sin(m�) sin(m0)e�M� = � tan(��) : (95)In the 
ase of the gravitino this formula � relating the mass terms lo
atedat ea
h of the branes, the bulk (Z2�odd) mass term and the S
herk�S
hwarztwist � must be ful�lled if supersymmetry in the e�e
tive 4-dimensionaltheory is to be unbroken.The above formula 
an be applied also in the 
ase of ordinary 
ompa
ti�-
ation without the S
herk�S
hwarz me
hanism. Putting � to zero we obtainthe 
ondition tan(m�)tan(m0) = �e�2M� : (96)When the Z2-odd mass term integrates to zero, M� = 0, we get the usual
ondition for the unbroken supersymmetry: m� = �m0 (up to terms whi
hare multiples of 2� whi
h we dis
ussed after Eq. (75)). In the 
ase of vanish-ing M� the brane lo
ated mass terms generated for the gravitino must addup to zero. In the presen
e of non zeroM� the situation is more 
ompli
atedand supersymmetry 
an be unbroken when the 
ondition (96) is satis�ed.The 
ondition (95) for the existen
e of a massless mode is a quite 
ompli-
ated relation between the S
herk�S
hwarz twist angle and the three massparameters: m0, m�, M�. Let us now 
onsider a situation when all themass parameters are small. Expanding Eq. (95) and keeping only the lead-ing terms we get a mu
h simpler relationm0 +m� = � tan(��) : (97)Observe that the integral of the Z2-odd mass, M�, dropped out from theformula. Moreover, in the 
ase of ordinary 
ompa
ti�
ation (� = 0) we
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howskiget a very simple equality m� = �m0 for arbitrary but small M�. Theseapproximate 
onditions should be used e.g. in 
ases when one does not knowthe full theory but only some terms of an expansion in some small parameter.Let us illustrate this with the heteroti
 M-theory. The �eld theoreti
allimit of this theory is known only up to the �rst order of the expansionin �2=3 (related to the 11-dimensional 
oupling 
onstant). We have shownin [12℄ that e�e
tively there are two kinds of 5-dimensional mass terms forthe gravitino: the Z2-even one generated by hG11ab
i and the Z2-odd one
oming from hGa�ab�bi. Both of them are linear in the expansion parameter�2=3 so one should use the approximate formula (97) and not the full one(96). Thus the 
ondition for unbroken supersymmetry is just that the branelo
ated mass terms should sum up to zero as was shown in [12℄.It is possible to gain a qualitative understanding why in more 
ompli-
ated models the 
ondition for unbroken supersymmetry (96) di�ers formthe simple global 
an
ellation of the sour
es, m�+m0 = 0, even without theS
herk�S
hwarz twist. In the presen
e of the non zero mass term M� themassless gravitino is not a 
onstant mode even without any brane terms. Ingeneral its amplitude is di�erent at ea
h brane. Thus, the gravitino 
oupleswith di�erent strength to sour
es present at ea
h of the branes. In general,a simple algebrai
 
an
ellation of sour
es is not enough to leave supersym-metry unbroken. From Eq. (96) it is 
lear that the details of the shape ofthe zero mode � determined by the details of the fun
tion m�(y) � arenot important. Important is only the relation between the gravitino wavefun
tion at both branes � determined by the integral of m�(y).6. Con
lusionsAs we have seen, the 
onsisten
y 
onditions for a S
herk�S
hwarz me
h-anism on orbifolds are available in general form (Subse
tion 3.1). The stru
-ture of possible S
herk�S
hwarz twists whi
h 
an be applied on orbifolds ismore restri
ted than in the 
ase of manifolds. We found the most generalform of su
h twists whi
h 
an be 
onsistently used in 5-dimensional theories
ompa
ti�ed on S1=Z2. Only rotations in 2-dimensional subspa
es (ea
h
onsisting of one �eld with positive and one with negative parity under Z2)or multipli
ation by �1 are allowed.The 
onsisten
y 
onditions 
an be used to obtain di�erential equationsand boundary 
onditions whi
h determine the spe
trum of the e�e
tive the-ory after 
ompa
ti�
ation. Solutions, however, are di�
ult to obtain in
losed form due to the 
omplexity of the problem. We have therefore useda simple S1=Z2 orbifold to illustrate our results. One of the important in-gredients in the dis
ussion is the general form of the possible mass terms(and their dependen
e on the higher dimensional 
oordinates) that make
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onne
tion to brane indu
ed supersymmetry breaking. Of parti
ularimportan
e is the appearan
e of the mass term m� in Eq. (58). Its exis-ten
e depends on the presen
e of VEVs of higher dimensional ba
kground�elds, as was dis
ussed already in [12℄. The investigation in [14, 15℄ did not
onsider su
h a term. In addition, their ansatz for the brane lo
ated massterms and intera
tions di�ers from the one adopted here.Expli
it solutions have been presented for two 
lasses of models: thosewith 
onstant mass termsm+ and m� and those with arbitrary y-dependentm+(y) but with vanishing m�. Closed solutions for general mass termsm+(y) and m�(y) are di�
ult to obtain. Fortunately some of the mostinteresting 
ases, as e.g those with delta-like mass terms lo
ated at the branes
an be analysed with su�
ient a

ura
y. It is possible to �nd 
onditionsdetermining whether massless fermions are present in the spe
trum. Thisallows to 
he
k if supersymmetry is broken in a theory with given form of themass terms m+(y) and m�(y) in the presen
e of non trivial S
herk�S
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