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SUPERSYMMETRY BREAKINGWITH EXTRA DIMENSIONSFabio ZwirnerDipartimento di Fisia, Università di Roma `La Sapienza'andINFN, Sezione di Roma, P. le Aldo Moro 2, I�00185 Rome, Italy(Reeived July 1, 2002)Dediated to Stefan Pokorski on his 60th birthdayIt is a great pleasure to be here today and elebrate Stefan Pokorski.Given the breadth of his sienti� ativity, it is no surprise that this talktouhes yet another subjet to whih Stefan, as well as other younger mem-bers of the Warsaw group, have given and are giving important ontribu-tions.PACS numbers: 04.50.+h, 11.25.Sq, 11.25.Mj1. IntrodutionCoordinate-dependent ompati�ations of higher-dimensional theories,�rst proposed by Sherk and Shwarz [1℄, provide an elegant and e�ientmehanism for mass generation and symmetry breaking. The basi ideais very simple: one twists the periodiity onditions in the ompat extradimensions by a symmetry of the ation (or, more generally, of the equationsof motion). From a four-dimensional (4D) point of view, this twist induesmass terms that break the symmetries with whih it does not ommute (forearly appliations, see [2℄).This talk will disuss oordinate-dependent ompati�ations of �eld the-ories on orbifolds, fousing on ompati�ations from �ve to four dimensionson the orbifold S1=Z2, and on the issue of supersymmetry breaking. Theemphasis will be on some reent results obtained in [3,4℄: a new formulationof the Sherk�Shwarz mehanism that involves loalized mass (and possiblyinteration) terms for the bulk �elds at the orbifold �xed points, allowed bythe fat that at the �xed points the �elds and their derivatives an jump.(2463)



2464 F. ZwirnerThese results have a wide range of appliations. They an be used togenerate the expliit breaking of global symmetries, suh as rigid supersym-metry or �avor symmetry. They an also be used to indue the spontaneousbreaking of loal symmetries, suh as grand uni�ed gauge symmetries or su-pergravity. Indeed, as will be disussed later in this talk, they enompass themost important features of dynamial supersymmetry breaking mehanismssuh as gaugino ondensation at the orbifold �xed points.The plan of the talk is as follows. We �rst explain the general featuresof the `traditional' and `new' versions of the Sherk�Shwarz mehanism.We then illustrate our results with the simplest example, a free 5D masslessfermion with a U(1) twist. We ontinue with the disussion of the superHiggse�et, i.e. the spontaneous breaking of loal supersymmetry, in the simplease of pure 5D supergravity. We onlude with a short summary of themain results and with some omments on the prospets for further work.2. The general mehanismAs a ase study, we onsider a generi 5D theory ompati�ed on theorbifold S1=Z2, with spae-time oordinates xM � (xm; y). The irle S1 isobtained from the real axis R1 by identifying points onneted by a 2� Rtranslation of the �fth oordinate, where R is the ompati�ation radius:T : y �! y + 2� R : (1)The orbifold S1=Z2 is then obtained from the irle S1 = R1=T by furtheridentifying points onneted by a re�etion of the �fth oordinate about theorigin: Z2 : y �! �y : (2)We ould then de�ne the theory on the interval [0; �R℄, but we prefer towork on the overing spae S1 or on the full real axis R1.We denote by 	(xm; y) all the �elds of the 5D theory, lassifying them inrepresentations of the 4D Lorentz group. We de�ne the Z2 transformationproperties of the �elds by 	(�y) = Z 	(y) ; (3)where Z is a matrix suh that Z2 = 1. It is not restritive for us to take abasis in whih Z is diagonal,	 = � 	+	� � ; Z = diag (1; : : : ; 1;�1; : : : ;�1) : (4)We assume that the theory has a symmetry (for simpliity we take aglobal, ontinuous one), whose ation on the �elds is given by 	 ! 	 0 =



Supersymmetry Breaking with Extra Dimensions 2465U~� 	 , where U~� is a unitary matrix depending on the real parameters ~�,but not on the spae-time oordinates. We implement the Sherk�Shwarzmehanism by twisting the periodiity 1 onditions on S1. Sine the �elds	(y) are multi-valued on the irle, it is onvenient to de�ne the twist onthe full real axis: 	(y) = U~� 	(y + 2�R) : (5)A well-known onsisteny ondition [5,6℄ between the twist and the orb-ifold projetion is that U~�ZU~� = Z : (6)The reason is that the matries U~� and Z should provide a representation ofthe orresponding transformations T and Z2 ating on the extra oordinatey: starting from y, the ation of Z2 leads to�y, whih oinides with what wewould obtain by ating �rst with T , y ! y+2�R, then with Z2, y+2�R!�y � 2�R, and �nally with T again, �y � 2�R ! �y. Notie that, if[U~� ; Z℄ = 0, then we get U2~� = 1, and the twist is quantized: U2~� = �1. Onthe other hand, if [U~�; Z℄ 6= 0 there is room, in a generi 5D �eld theory andat the lassial level, for ontinuous twist parameters. If we onentrate onthe ontinuous ase, and write U~� = exp(i~� � ~T ), where the generator ~� � ~Tis hermitian, we see that Eq. (6) is satis�ed if f~� � ~T ; Zg = 0. Then we antake ~� � ~T to be purely o�-diagonal in the basis of Eq. (4).The onsequenes of the twist of Eq. (5) an be most easily studied bymoving to a basis of periodi �elds, and this an be ahieved by performinga non-periodi, y-dependent �eld rede�nition. A onvenient hoie is to takea transformation of the form 2:	(xm; y) = V (y) e	(xm; y) ; (7)where V (y) = ei~��~Tf(y) ; (8)and e	(xm; y + 2�R) = e	(xm; y) : (9)The twist of Eq. (5) is reprodued iff(y + 2�R) = f(y) + 1 : (10)1 Sometimes one speaks loosely of boundary onditions, even if there are no boundariesor speial points on S1. There are instead two speial points on the orbifold S1=Z2,the �xed points y = 0 and y = �R, whih will play an important role in what follows.2 This is not the most general possibility, and there is some interest in studying theformal onsequenes of di�erent but physially equivalent hoies [7℄.



2466 F. ZwirnerMoreover, the �eld rede�nition of Eq. (7) preserves the Z2 parities iff(�y) = �f(y) : (11)Were it not for the y-dependene of V (y), the �eld rede�nition ofEqs. (7)�(9) would leave the ation invariant. Moving to the basis of pe-riodi �elds e	 , the only hanges in the ation are those produed by theterms ontaining derivatives with respet to y. If there are no derivativeinterations, the only suh terms are the kineti terms, and in the transitionto the basis of periodi �elds only mass terms are generated. If instead theoriginal theory ontains derivative interations, then additional interationterms do appear.It is important here to stress a point that some reent papers seem tohave missed. Barring the subtleties onneted with the orbifold �xed points,that will be addressed shortly, and onentrating for a moment on the aseof the irle, physis is ompletely �xed by the �ve-dimensional ation andby the twist ondition (5). Di�erent loal �eld rede�nitions of the form (7)may give rise to di�erent y-dependenes of the mass terms, but they justorrespond to equivalent desriptions of the same physis.Sine, in the present ontext, mass terms arise from twists in the ydiretion, it is useful to write:V y�y	 = h�y + V y�yV i e	 = Dy e	 : (12)This allows to interpret Dy e	 as a ovariant derivative, with onnetionAy � V y(�i�y)V = ~� � ~Tf 0(y) : (13)Thus, a theory with twisted �elds 	 an be written in terms of an equivalenttheory [8℄ with periodi �elds e	 and a bakground gauge �eld Ay. In thesimple ase under onsideration, the non-loal order parameter is just the`�ux' y0+2�RZy0 dy Ay = ~� � ~T : (14)In analogy with Bloh's theorem of solid state physis (see e.g. [9℄), there isa `standard' parameterization in whihf(y) = y2�R ; (15)so that Ay = ~� � ~T2�R = onstant : (16)



Supersymmetry Breaking with Extra Dimensions 2467This parameterization makes the derivation of the spetrum easier, but thefat that it leads to a y-independent 5D mass term has no intrinsi physialmeaning, in agreement with the non-loality of the mehanism.We are now ready to explain the observation of [3℄. On the irle S1, the�elds 	 must be smooth funtions of the extra oordinate y. On the orbifoldS1=Z2, however, we may allow the �elds to have usps or disontinuities(olletively denoted as `jumps' in the following) at the orbifold �xed points:	(yq + �) = Uq	(yq � �) ; (17)where yq = q�R, q 2 Z, 0 < � � 1 and Uq is a global symmetry transfor-mation. The jumps aross points related by a 2�R translation must be thesame, so U2q � U0 ; U2q+1 � U� : (18)A onsisteny ondition idential to (6) must hold for eah of the jumps:UqZUq = Z : (19)The reason is that an in�nitesimal translation aross yq, followed by a re-�etion about the origin and by another in�nitesimal translation aross y�q,must orrespond to a simple re�etion.The physial spetrum is now ontrolled by the Sherk�Shwarz twistand by the jumps at the orbifold �xed points. This generalization leadsto �eld bases where the Sherk�Shwarz mehanism an be represented byloalized mass terms, and the latter ontrol the �eld disontinuities via prop-erly derived equations of motion.In the next setion, we shall show on a simple example that the theorywith disontinuities is equivalent to a onventional Sherk�Shwarz theorywith a modi�ed twist. 3. The simplest exampleTo illustrate our mehanism in a simple setting, we onsider, following [3℄,a free 5D massless Dira fermion, written in terms of 5D �elds with 4D spinorindies. In the notation of Eqs. (3) and (4), we write:	 = �  1 2 � ; 	 = �  1 2 � ; Z = � 1 00 �1 � : (20)The free massless 5D Dira Lagrangian an be deomposed as:L = i	T�m�m	 � 12 �	T (i�̂2)�y	 + h::� ; (21)and the orresponding equations of motion readi�m�m	 � (i�̂2)�y	 = 0 ; (22)



2468 F. Zwirnerwhere the hat on �̂2 reminds us that it ats on the two-dimensional spaeof Eq. (20). Irrespetively of the behavior of the �elds at the orbifold �xedpoints, Eq. (22) must be valid in eah region yq < y < yq+1 of the real axis.The Lagrangian (21) and the equation of motion (22) are invariant underglobal SU(2) transformations of the form 	 0 = U~�	 , where U~� 2 SU(2).We take for simpliity a U(1) subgroup with a single parameter �:U� = exp �i��̂2� = � os � sin�� sin� os � � ; (23)Uq = exp �iÆq�̂2� = � os Æq sin Æq� sin Æq os Æq � ; (24)where Æ2q = Æ0 and Æ2q+1 = Æ� for any q 2 Z. The onsisteny onditions ofEqs. (6) and (19) are obviously satis�ed. In ontrast with the `traditional'ase, the generalized boundary onditions are now spei�ed by three realparameters, the twist � and the jumps Æ0;�.To determine the four-dimensional spetrum, we seek solutions 	(y) toEq. (22), with the boundary onditions of Eqs. (23) and (24). Exploitingthe fat that i�m�m	 = m	 , we �nd	(y) = �� os[my � �(y)℄sin[my � �(y)℄ � ; (25)where � is a y-independent 4D spinor,m = nR � (� � Æ0 � Æ�)2�R ; (n 2 Z) ; (26)and �(y) = Æ0 � Æ�4 "(y) + Æ0 + Æ�4 �(y) : (27)Here "(y) is the `sign' funtion de�ned on S1, and�(y) = 2q + 1 ; yq < y < yq+1 ; (q 2 Z) ; (28)is the `stairase' funtion that steps by two units every �R along y. Thefuntion �(y) satis�es �(y + 2�R) = �(y) + Æ0 + Æ� : (29)so the solution (25) has the orret Sherk�Shwarz twist.The spetrum (26) is haraterized by a uniform shift with respet to atraditional Kaluza�Klein ompati�ation. In ontrast to the usual Sherk�Shwarz mehanism, however, the shift depends on the jumps Æ0 and Æ�, as



Supersymmetry Breaking with Extra Dimensions 2469well as on the twist �. In partiular, it is possible to have a vanishing shiftfor nonvanishing �. In the limit Æq ! 0, our results redue to the onven-tional Sherk�Shwarz spetrum. Note that the eigenfuntion of Eq. (25)is disontinuous: the even part has usps and the odd part has jumps aty = yq, as required by the boundary onditions. In the limit Æq ! 0 theeigenfuntion beomes regular everywhere.For any Æq, the system is equivalent to a onventional Sherk�Shwarzompati�ation with twist � = � � Æ0 � Æ�. The new �eld variable, 	, isrelated to the disontinuous variable, 	 , via the generalized funtion �(y),�  1 2 � = � os�(y) sin�(y)� sin�(y) os�(y) � �  1 2 � : (30)This is reminisent of strong CP violation, where the physial order param-eter is not �, but the ombination � � arg detmq, where mq is the quarkmass matrix. Similarly, the mass shift of our system is ontrolled not by �alone, but by the twist �, whih inludes ontributions from jumps in thefermion �elds. As in QCD, where we an eliminate the phase in detmq by ahiral transformation, here we an remove the jumps by a rede�nition of thefermion �elds. In the new basis, there are no jumps, but the twist aquiresan additional ontribution.Disontinuous �eld variables arise from mass terms loalized at the �xedpoints. This an be seen by starting from a Lagrangian L of the form (21)for the ontinuous �elds  1;2 (y), haraterized by a twist � = � � Æ0 � Æ�but no jumps: L( ) = i 1�m�m 1 + i 2�m�m 2+ �12 � 2�y 1 �  1�y 2�+ h::� : (31)If we perform the �eld rede�nition of Eq. (30), the 5D Lagrangian beomes:L( ) = L( ) + Lbrane( ) ; (32)where Lbrane( ) = �12�0(y) ( 1 1 +  2 2) + h:: ; (33)and �0(y) = +1Xq=�1 [Æ0 Æ(y � y2q) + Æ� Æ(y � y2q+1)℄ : (34)The �elds  1;2 have now jumps Æ0;� and a twist � = � + Æ0 + Æ�. We seethat the jumps Æq arise from mass terms loalized at the �xed points.



2470 F. ZwirnerThe disontinuities of the �elds an be reovered by integrating the equa-tions of motion. The trik is to �nd the orret equations. To understand thetype of subtleties that may arise, when trying to apply the naive variationalpriniple to loalized ations, imagine taking the variation of a loalized La-grangian L bilinear in a disontinuous �eld  2. In the variation, produts ofthe form (�L=� 2) Æ 2 will appear. Sine (�L=� 2) ontains a Æ-funtion,and Æ 2 may behave as a step funtion, we annot use the naive equations ofmotion to infer that (�L=� 2) must vanish at the �xed point. We an avoidall subtleties assoiated with disontinuous �eld variables by de�ning theterm that appears in the brane ation to be ontinuous aross the orbifold�xed points. For the ase at hand, this means that we must hoose the �eldvariables so that the ombination  1 1+ 2 2 is ontinuous. Alternatively,we an obtain the equations of motion by �rst regularizing the delta fun-tions, so that  1 and  2 are both ontinuous, and then taking the singularlimit.It is interesting to note that the same physial system an be obtainedfrom another brane Lagrangian, one in whih we treat the even �eld  1(y)as ontinuous. The disontinuity of the odd �eld  2(y) is then 2(yq + �)�  2(yq � �) = �2 tan Æq2  1(yq) : (35)This jump is reprodued by the brane LagrangianL 0brane( ) = �12f(y) 1 1 + h:: ; (36)where f(y) = 2Xq2Z �tan Æ02 Æ(y�y2q) + tan Æ�2 Æ(y�y2q+1)� : (37)In this ase, we vary with respet to  1(y) and  2(y); the disontinuous �eld 2(y) does not appear in the brane Lagrangian.In summary, the brane Lagrangians (33) and (36) give rise to equivalenttheories in the absene of brane interations, provided we use an appropriateproedure to derive the equations of motion.4. The superHiggs e�etWe now disuss, along the lines of [4℄, the appliation of our mehanismto the spontaneous breaking of (the residual) supersymmetry, in 5D super-gravity ompati�ed on the orbifold S1=Z2. As antiipated at the beginning,the long list of referenes on the subjet of supersymmetry breaking in M-theory and in 5D �eld-theory orbifolds [10℄ inludes many papers by Stefanand by other members of the Warsaw group.



Supersymmetry Breaking with Extra Dimensions 2471In the ase under onsideration, the `new' formulation of the Sherk�Shwarz mehanism disussed above leads to what an be alled [4℄ `brane-indued supersymmetry breaking', and reprodues the main features of gaug-ino ondensation in M-theory, i.e.:� there are loalized gravitino mass terms at the orbifold �xed points,haraterized by two independent onstants P0 and P�;� the lassial four-dimensional vauum energy vanishes identially;� the ompati�ation radius R is a lassial �at diretion;� the order parameter is the non-loal quantity P0 + P�, thus we anhave one unbroken supersymmetry with P0 = �P� 6= 0;� the goldstinos, absorbed by the massive gravitinos in the superHiggse�et, are assoiated with the �fth omponents of the gravitinos.Sine all these features, apart from the �rst one, are shared by the `tradi-tional' Sherk�Shwarz mehanism, it is natural to expet that a suitablegeneralization of suh mehanism may indeed enompass also the distintivefeature of loalized gravitino mass terms.The simplest starting point for the present disussion is pure 5D Poinarésupergravity [11℄ in its on-shell formulation. The supergravity multipletontains the fünfbein e AM , the gravitino 	M and the graviphoton BM. Forthe present purposes, we just need to reall the terms of the 5D bulk La-grangian and supersymmetry transformation laws that ontain derivativesof the gravitino �eld and of the supersymmetry transformation parameter.In the notation of [4℄:�Lbulk = i"MNOPQ	M�NODP	Q + : : : ; (38)Æ	M = 2�DM� + : : : ; (39)where the gravitino 	M and the supersymmetry parameter � are desribedby �ve-dimensional Dira spinors:	M � �  1 2 �M ; � � � �1�2 � : (40)As for the orbifold projetion, we assign even Z2-parity toe am ; e55̂ ; B5 ;  1m ;  25 ; �1 ; (41)and odd Z2-parity toe a5 ; em5̂ ; Bm ;  2m ;  15 ; �2 : (42)



2472 F. ZwirnerWe start by realling the essential features of the onventional Sherk�Shwarz mehanism. The Lagrangian has a global SU(2)R invariane, underwhih the �eld �M � �  1M 2M � ; (43)whih should not be onfused with 	M, transforms as a doublet. In analogywith the previous example, the gravitino boundary onditions an be twistedby a U(1)R � SU(2)R transformation,�M(y + 2�R) = ei��̂2�M(y) : (44)The label `' indiates that the �elds are ontinuous aross the two orbifold�xed points, i.e. Æ0 = Æ� = 0. With standard tehnology, we an derive thegravitino spetrum, haraterized by the non-loal order parameter �:M(�)3=2 = �R � �2�R ; (� = 0;�1;�2; : : :) : (45)We are now ready to show that our generalized Sherk�Shwarz meha-nism an lead to the bulk-plus-brane ation of brane-indued supersymmetrybreaking. We an exploit the fat that, on the orbifold S1=Z2, the general-ized gravitino boundary onditions are haraterized by an overall twist andby jumps at the orbifold �xed points. It is then su�ient to perform thefollowing �eld rede�nition:�M(y) = ei�(y)�̂2�M(y) ; (46)where the funtion �(y) is the same as in the previous setion. From theseexpressions, it is not hard to hek that the �elds �M(y) have jumps Æ0 andÆ� at the orbifold �xed points, and twist � + Æ0 + Æ�. Indeed, if we hoose� = � (Æ0 + Æ�) ; (47)the �elds �M(y) are periodi.The bulk ation is not invariant under this �eld rede�nition. As before,the y derivatives give rise to a singular onnetion, whih generates a braneation loalized at the orbifold �xed points:Lbrane = 12�e4 �Æ(x5)Æ0 + Æ(x5 � ��)Æ�� � 1a�ab 1b +  2a�ab 2b�+ h:: (48)Supersymmetry invariane of the total ation S = Sbulk + Sbrane is guaran-teed by the fat that we have rede�ned the �elds of an invariant bulk ation,provided that we rede�ne the supersymmetry parameter � aordingly.



Supersymmetry Breaking with Extra Dimensions 2473We an now proeed with a disussion that exatly parallels the onegiven in the previous setion. The brane ation (48) must be handled withare if we want to derive the orret equations of motion. The �elds  1;2mare too singular to apply the naive variational priniple without regular-ization. Indeed, the even �elds are not pieewise smooth: for example, 1m(0) 6= lim�!0[ 1m(+�) +  1m(��)℄=2, so we annot apply the standardFourier deomposition. As in the example of the previous setion, we aneither regularize the Lagrangian (48) or move to an equivalent brane La-grangian,Lbrane = 1� e4 �Æ(x5) tan Æ02 + Æ(x5 � ��) tan Æ�2 �  1a�ab 1b + h:: ; (49)to whih we an safely apply the naive variational priniple to derive theequations of motion, sine the even �elds  1m are ontinuous. With eithermethod, we an ompute the gravitino mass spetrum, and �ndM(�)3=2 = �R + Æ0 + Æ�2�R ; (� = 0;�1;�2; : : :) : (50)This result an be mathed with the one of brane-indued supersymmetrybreaking. Taking for simpliity P0 and P� to be real, we �nd:Æ0 (�) = 2 artan �3P0 (�)2 : (51)5. Conlusions and outlookIn this talk we have explained how oordinate-dependent ompati�a-tions on �eld-theory orbifolds an be generalized, to inlude loalized massterms for bulk �elds at the orbifold �xed points. We have stressed the fatthat, in a basis where �elds are only pieewise smooth, physis dependsnot only on the overall twist of the �elds, but also on their jumps at theorbifold �xed points. As an important appliation, we have disussed thephenomenon of brane-indued breaking of loal supersymmetry, but severalother appliations are oneivable.There are several aspets that would deserve further investigations.Here and in [3, 4℄ the disussion was kept at the purely lassial level,but the quantum onsisteny of the di�erent models should be examined,espeially in onnetion with loalized anomalies and Fayet�Iliopoulos terms[12℄. The study of the quantum orretions to the e�etive potential, in thepresene of the MSSM �elds, ould also lead to a dynamial determinationof the radius R, along the lines of [13℄.



2474 F. ZwirnerThe examples onsidered in this talk have foused on twists and jumpsa�eting fermions. The bosoni ase, relevant for the disussion of gaugesymmetry breaking, an be disussed along similar lines [14℄.It would be interesting to give an interpretation `a la Hosotani' of spon-taneous supersymmetry breaking via the Sherk�Shwarz mehanism, goingbeyond the attempts performed so far [15℄.Finally, an interesting open problem is the extension of the traditionalSherk�Shwarz mehanism and its generalization to the ase of warpedompati�ations.This work was partially supported by the European Programme HPRN-CT-2000-00148 (Aross the Energy Frontier).REFERENCES[1℄ J. Sherk, J. H. Shwarz, Phys. Lett. B82, 60 (1979); Nul. Phys. B153, 61(1979).[2℄ P. Fayet, Phys. Lett. B159, 121 (1985); Nul. Phys. B263, 649 (1986).[3℄ J.A. Bagger, F. Feruglio, F. Zwirner, Phys. Rev. Lett. 88, 101601 (2002).[4℄ J. Bagger, F. Feruglio, F. Zwirner, J. High Energy Phys. 0202, 010 (2002).[5℄ S. Ferrara, C. Kounnas, M. Porrati, Phys. Lett. B206, 25 (1988); C. Kounnas,M. Porrati, Nul. Phys. B310, 355 (1988); S. Ferrara, C. Kounnas, M. Porrati,F. Zwirner, Nul. Phys. B318, 75 (1989).[6℄ M. Porrati, F. Zwirner, Nul. Phys. B326, 162 (1989); E. Dudas, C. Grojean,Nul. Phys. B507, 553 (1997); I. Antoniadis, M. Quiros, Nul. Phys. B505,109 (1997); Phys. Lett. B416, 327 (1998).[7℄ C. Biggio, F. Feruglio, A. Wulzer, F. Zwirner, in progress.[8℄ Y. Hosotani, Phys. Lett. B126, 309 (1983), Phys. Lett. B129, 193 (1983);Ann. Phys. 190, 233 (1989). See also the talks by Raby and Silvestrini at thisConferene.[9℄ N.W. Ashroft, N.D. Mermin, Solid State Physis, Holt, Rinehart and Win-ston, 1976.[10℄ P. Horava, Phys. Rev.D54, 7561 (1996); I. Antoniadis, M. Quiros, Nul. Phys.B505, 109 (1997); Phys. Lett. B416, 327 (1998); H.P. Nilles, M. Olehowski,M. Yamaguhi, Phys. Lett. B415, 24 (1997); Nul. Phys. B530, 43 (1998);Z. Lalak, S. Thomas, Nul. Phys. B515, 55 (1998); A. Lukas, B.A. Ovrut,D. Waldram, Phys. Rev. D57, 7529 (1998); E.A. Mirabelli, M.E. Peskin,Phys. Rev. D58, 065002 (1998); J.R. Ellis, Z. Lalak, S. Pokorski, W. Poko-rski, Nul. Phys. B540, 149 (1999); J.R. Ellis, Z. Lalak, W. Pokorski, Nul.Phys. B559, 71 (1999); K.A. Meissner, H.P. Nilles, M. Olehowski, Nul.Phys. B561, 30 (1999); M.A. Luty, R. Sundrum, Phys. Rev. D62, 035008(2000); D.E. Kaplan, G.D. Kribs, M. Shmaltz, Phys. Rev. D62, 035010
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