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Dedicated to Stefan Pokorski on his 60th birthday

It is a great pleasure to be here today and celebrate Stefan Pokorski.
Given the breadth of his scientific activity, it is no surprise that this talk
touches yet another subject to which Stefan, as well as other younger mem-
bers of the Warsaw group, have given and are giving important contribu-
tions.

PACS numbers: 04.50.+h, 11.25.Sq, 11.25.Mj

1. Introduction

Coordinate-dependent compactifications of higher-dimensional theories,
first proposed by Scherk and Schwarz [1], provide an elegant and efficient
mechanism for mass generation and symmetry breaking. The basic idea
is very simple: one twists the periodicity conditions in the compact extra
dimensions by a symmetry of the action (or, more generally, of the equations
of motion). From a four-dimensional (4D) point of view, this twist induces
mass terms that break the symmetries with which it does not commute (for
early applications, see [2]).

This talk will discuss coordinate-dependent compactifications of field the-
ories on orbifolds, focusing on compactifications from five to four dimensions
on the orbifold S'/Z,, and on the issue of supersymmetry breaking. The
emphasis will be on some recent results obtained in [3,4]: a new formulation
of the Scherk—Schwarz mechanism that involves localized mass (and possibly
interaction) terms for the bulk fields at the orbifold fixed points, allowed by
the fact that at the fixed points the fields and their derivatives can jump.
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These results have a wide range of applications. They can be used to
generate the explicit breaking of global symmetries, such as rigid supersym-
metry or flavor symmetry. They can also be used to induce the spontaneous
breaking of local symmetries, such as grand unified gauge symmetries or su-
pergravity. Indeed, as will be discussed later in this talk, they encompass the
most important features of dynamical supersymmetry breaking mechanisms
such as gaugino condensation at the orbifold fixed points.

The plan of the talk is as follows. We first explain the general features
of the ‘traditional’ and ‘new’ versions of the Scherk—Schwarz mechanism.
We then illustrate our results with the simplest example, a free 5D massless
fermion with a U(1) twist. We continue with the discussion of the superHiggs
effect, i.e. the spontaneous breaking of local supersymmetry, in the simple
case of pure 5D supergravity. We conclude with a short summary of the
main results and with some comments on the prospects for further work.

2. The general mechanism

As a case study, we consider a generic 5D theory compactified on the
orbifold S'/Z,, with space-time coordinates z™ = (z™,y). The circle S' is
obtained from the real axis R' by identifying points connected by a 27 R
translation of the fifth coordinate, where R is the compactification radius:

T: y—y+27R. (1)

The orbifold S'/Z; is then obtained from the circle S' = R!/T by further
identifying points connected by a reflection of the fifth coordinate about the
origin:
Zy: y— —y. (2)

We could then define the theory on the interval [0, 7R], but we prefer to
work on the covering space S' or on the full real axis R'.

We denote by ¥ (z™,y) all the fields of the 5D theory, classifying them in
representations of the 4D Lorentz group. We define the Z5 transformation
properties of the fields by

U(-y)=Z¥(y), (3)

where Z is a matrix such that Z2 = 1. It is not restrictive for us to take a
basis in which Z is diagonal,

Q+
w:( zp—>’ Z =diag(1,...,1,—1,...,—1). (4)

We assume that the theory has a symmetry (for simplicity we take a
global, continuous one), whose action on the fields is given by ¥ — ¥’ =
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U Fi ¥, where U Fi is a unitary matrix depending on the real parameters 6,
but not on the space-time coordinates. We implement the Scherk—Schwarz
mechanism by twisting the periodicity ! conditions on S'. Since the fields
¥ (y) are multi-valued on the circle, it is convenient to define the twist on
the full real axis:

U (y) =Ug U(y + 27R). (5)

A well-known consistency condition [5,6] between the twist and the orb-
ifold projection is that
U;ZUz=7. (6)

The reason is that the matrices U Ei and Z should provide a representation of
the corresponding transformations T and Z5 acting on the extra coordinate
y: starting from g, the action of Zs leads to —y, which coincides with what we
would obtain by acting first with T, y — y+ 27 R, then with Z5, y+27R —
—y — 27R, and finally with T again, —y — 2a#R — —y. Notice that, if
[Ug, Z] =0, then we get U% =1, and the twist is quantized: UZ =41. On
the other hand, if [U 5> Z] # 0 there is room, in a generic 5D field theory and
at the classical level, for continuous twist parameters. If we concentrate on

-

the continuous case, and write Ug = exp(iﬁ- f), where the generator 5 T

is hermitian, we see that Eq. (6) is satisfied if {#- T, Z} = 0. Then we can
take 5 T to be purely off-diagonal in the basis of Eq. (4).

The consequences of the twist of Eq. (5) can be most easily studied by
moving to a basis of periodic fields, and this can be achieved by performing
a non-periodic, y-dependent field redefinition. A convenient choice is to take

a transformation of the form 2:
T (2™, y) = V(y) (™, y), (7)
where L
V(y) =110, (8)
and B B
P(z™,y +21R) = ¥(2™,y). (9)

The twist of Eq. (5) is reproduced if

fly+2mR) = f(y) + 1. (10)

! Sometimes one speaks loosely of boundary conditions, even if there are no boundaries
or special points on S'. There are instead two special points on the orbifold S*/Zs,
the fixed points y = 0 and y = R, which will play an important role in what follows.

2 This is not the most general possibility, and there is some interest in studying the
formal consequences of different but physically equivalent choices [7].
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Moreover, the field redefinition of Eq. (7) preserves the Zy parities if

f(=y)=—f(y). (11)

Were it not for the y-dependence of V(y), the field redefinition of
Egs. (7)-(9) would leave the action invariant. Moving to the basis of pe-
riodic fields ¥, the only changes in the action are those produced by the
terms containing derivatives with respect to y. If there are no derivative
interactions, the only such terms are the kinetic terms, and in the transition
to the basis of periodic fields only mass terms are generated. If instead the
original theory contains derivative interactions, then additional interaction
terms do appear.

It is important here to stress a point that some recent papers seem to
have missed. Barring the subtleties connected with the orbifold fixed points,
that will be addressed shortly, and concentrating for a moment on the case
of the circle, physics is completely fixed by the five-dimensional action and
by the twist condition (5). Different local field redefinitions of the form (7)
may give rise to different y-dependences of the mass terms, but they just
correspond to equivalent descriptions of the same physics.

Since, in the present context, mass terms arise from twists in the y
direction, it is useful to write:

vig,e = [o,+vio,v| ¥ =D,¥. (12)
This allows to interpret Dy@ as a covariant derivative, with connection
A, =Vi(=id)V=F-Tf'(y). (13)

Thus, a theory with twisted fields ¥ can be written in terms of an equivalent
theory [8] with periodic fields ¥ and a background gauge field A,. In the
simple case under consideration, the non-local order parameter is just the

‘flux’
Yo+2TR

dyA,=f-T. (14)
Yo

In analogy with Bloch’s theorem of solid state physics (see e.g. [9]), there is
a ‘standard’ parameterization in which

Y
-7 1
so that Lo
-T
Ay = AT _ constant . (16)
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This parameterization makes the derivation of the spectrum easier, but the
fact that it leads to a y-independent 5D mass term has no intrinsic physical
meaning, in agreement with the non-locality of the mechanism.

We are now ready to explain the observation of [3]. On the circle S, the
fields ¥ must be smooth functions of the extra coordinate . On the orbifold
S'/Zs, however, we may allow the fields to have cusps or discontinuities
(collectively denoted as ‘jumps’ in the following) at the orbifold fixed points:

W(yq—i-f) =0, W(yq—f), (17)

where y, = qgmR, g € Z,0 < ¢ < 1 and U, is a global symmetry transfor-
mation. The jumps across points related by a 27 R translation must be the
same, SO

U2q = U(), qu_H = U7r . (18)
A consistency condition identical to (6) must hold for each of the jumps:
U,2U0,= 7. (19)

The reason is that an infinitesimal translation across yg, followed by a re-
flection about the origin and by another infinitesimal translation across y_g,
must correspond to a simple reflection.

The physical spectrum is now controlled by the Scherk—Schwarz twist
and by the jumps at the orbifold fixed points. This generalization leads
to field bases where the Scherk—Schwarz mechanism can be represented by
localized mass terms, and the latter control the field discontinuities via prop-
erly derived equations of motion.

In the next section, we shall show on a simple example that the theory
with discontinuities is equivalent to a conventional Scherk—Schwarz theory
with a modified twist.

3. The simplest example

To illustrate our mechanism in a simple setting, we consider, following [3],
a free 5D massless Dirac fermion, written in terms of 5D fields with 4D spinor
indices. In the notation of Egs. (3) and (4), we write:

(41 — P 1 0
() ) 0 -1 20
The free massless 5D Dirac Lagrangian can be decomposed as:
L=i0 "0, 0 — L[0T (i6%)0,¥ +hc] , (21)

and the corresponding equations of motion read

10" 0 ¥ — (i6%)0, ¥ =0, (22)
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where the hat on 62 reminds us that it acts on the two-dimensional space
of Eq. (20). Irrespectively of the behavior of the fields at the orbifold fixed
points, Eq. (22) must be valid in each region y, < y < y4+1 of the real axis.

The Lagrangian (21) and the equation of motion (22) are invariant under
global SU(2) transformations of the form ¥’ = Uz ¥, where Uz € SU(2).

We take for simplicity a U(1) subgroup with a single parameter £:

Ug = exp (iﬁ&g) = < _C(s)fnﬁ,ﬁ o ) ’ =

cos 3

(24)

U, = exp (z’dqég) = < cosdy  sind ) ,

—sind, cosdy

where doy = 09 and dg441 = 5 for any ¢ € Z. The consistency conditions of
Egs. (6) and (19) are obviously satisfied. In contrast with the ‘traditional’
case, the generalized boundary conditions are now specified by three real
parameters, the twist 8 and the jumps &g 5.

To determine the four-dimensional spectrum, we seek solutions ¥(y) to
Eq. (22), with the boundary conditions of Eqgs. (23) and (24). Exploiting
the fact that i0™0, ¥ = m ¥, we find

(y) = x < cos[my — a(y)] ) ’ (25)

sin[my — a(y)]

where y is a y-independent 4D spinor,

(B0 by
m=5~""9rR (n€Z), (26)
and G0 — 5o+ 6
aly) = 2= (y) + 2 0m 0. (27)

4 4
Here (y) is the ‘sign’ function defined on S!, and

ny)=2¢+1, y<y<ygr1, (€ Z), (28)

is the ‘staircase’ function that steps by two units every 7R along y. The
function «a(y) satisfies

aly + 27R) = a(y) + 0o + dr . (29)

so the solution (25) has the correct Scherk-Schwarz twist.

The spectrum (26) is characterized by a uniform shift with respect to a
traditional Kaluza-Klein compactification. In contrast to the usual Scherk-
Schwarz mechanism, however, the shift depends on the jumps dg and d,, as



Supersymmetry Breaking with Extra Dimensions 2469

well as on the twist 8. In particular, it is possible to have a vanishing shift
for nonvanishing . In the limit §;, — 0, our results reduce to the conven-
tional Scherk—Schwarz spectrum. Note that the eigenfunction of Eq. (25)
is discontinuous: the even part has cusps and the odd part has jumps at
Yy = Yq, as required by the boundary conditions. In the limit §; — 0 the
eigenfunction becomes regular everywhere.

For any 6,4, the system is equivalent to a conventional Scherk—Schwarz
compactification with twist 8¢ =  — §g — dr. The new field variable, ¥, is
related to the discontinuous variable, ¥, via the generalized function a(y),

< Pic ) _ < cosa(y) sina(y) ) < P ) (30)
o, )\ —sina(y) cosa(y) o '

This is reminiscent of strong CP violation, where the physical order param-
eter is not @, but the combination 6 — argdet my, where m, is the quark
mass matrix. Similarly, the mass shift of our system is controlled not by 3
alone, but by the twist 8¢, which includes contributions from jumps in the
fermion fields. Asin QCD, where we can eliminate the phase in det m, by a
chiral transformation, here we can remove the jumps by a redefinition of the
fermion fields. In the new basis, there are no jumps, but the twist acquires
an additional contribution.

Discontinuous field variables arise from mass terms localized at the fixed
points. This can be seen by starting from a Lagrangian £ of the form (21)
for the continuous fields ¢§’2(y), characterized by a twist 8¢ = 8 — §g —
but no jumps:

L(pe) = Lo Ol + ipZe " Opt)?
+ |5 @Ral — wlow?) the. (31)

If we perform the field redefinition of Eq. (30), the 5D Lagrangian becomes:

L) = L) + Lorane(®), (32)
where
Lorane($) = =50/ (0) b1y + i) + bc. (33)
and .
o) = [00y — 120) + b2 6y — ygs)] - (39)
=3

The fields 11 2 have now jumps dg . and a twist § = ¢+ g + dr. We see
that the jumps d, arise from mass terms localized at the fixed points.
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The discontinuities of the fields can be recovered by integrating the equa-
tions of motion. The trick is to find the correct equations. To understand the
type of subtleties that may arise, when trying to apply the naive variational
principle to localized actions, imagine taking the variation of a localized La-
grangian £ bilinear in a discontinuous field #5. In the variation, products of
the form (0L/02) d1p2 will appear. Since (0L/0y2) contains a J-function,
and dvs may behave as a step function, we cannot use the naive equations of
motion to infer that (0L/02) must vanish at the fixed point. We can avoid
all subtleties associated with discontinuous field variables by defining the
term that appears in the brane action to be continuous across the orbifold
fixed points. For the case at hand, this means that we must choose the field
variables so that the combination 1)1 + 1219 is continuous. Alternatively,
we can obtain the equations of motion by first regularizing the delta func-
tions, so that 1 and 1 are both continuous, and then taking the singular
limit.

It is interesting to note that the same physical system can be obtained
from another brane Lagrangian, one in which we treat the even field 1 (y)
as continuous. The discontinuity of the odd field 12 (y) is then

0,
P2(yq + &) — P2(yg — &) = —2tan5ql/)1(yq). (35)

This jump is reproduced by the brane Lagrangian

1
‘C{Jrane(d}) = _Ef(y) P11 + hee., (36)
where 5 5
1) =23 [tan P oty-sm0) + a0 dy-smen)| 6D
qEZ

In this case, we vary with respect to 11 (y) and 15 (y); the discontinuous field
19(y) does not appear in the brane Lagrangian.

In summary, the brane Lagrangians (33) and (36) give rise to equivalent
theories in the absence of brane interactions, provided we use an appropriate
procedure to derive the equations of motion.

4. The superHiggs effect

We now discuss, along the lines of [4], the application of our mechanism
to the spontaneous breaking of (the residual) supersymmetry, in 5D super-
gravity compactified on the orbifold S'/Z,. As anticipated at the beginning,
the long list of references on the subject of supersymmetry breaking in M-
theory and in 5D field-theory orbifolds [10] includes many papers by Stefan
and by other members of the Warsaw group.
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In the case under consideration, the ‘new’ formulation of the Scherk—
Schwarz mechanism discussed above leads to what can be called [4] ‘brane-
induced supersymmetry breaking’, and reproduces the main features of gaug-
ino condensation in M-theory, i.e.:

e there are localized gravitino mass terms at the orbifold fixed points,
characterized by two independent constants Py and Py;

e the classical four-dimensional vacuum energy vanishes identically;
e the compactification radius R is a classical flat direction;

e the order parameter is the non-local quantity Py + P, thus we can
have one unbroken supersymmetry with Py = — P, # 0;

e the goldstinos, absorbed by the massive gravitinos in the superHiggs
effect, are associated with the fifth components of the gravitinos.

Since all these features, apart from the first one, are shared by the ‘tradi-
tional’ Scherk—Schwarz mechanism, it is natural to expect that a suitable
generalization of such mechanism may indeed encompass also the distinctive
feature of localized gravitino mass terms.

The simplest starting point for the present discussion is pure 5D Poincaré
supergravity [11] in its on-shell formulation. The supergravity multiplet
contains the fiinfbein eMA, the gravitino ¥y and the graviphoton By. For
the present purposes, we just need to recall the terms of the 5D bulk La-
grangian and supersymmetry transformation laws that contain derivatives
of the gravitino field and of the supersymmetry transformation parameter.
In the notation of [4]:

KLpuk = ’L'EMNOPQEMEN()DP WQ + ..., (38)

2
60 =Dy + ... (39)

where the gravitino ¥y; and the supersymmetry parameter 7 are described
by five-dimensional Dirac spinors:

7 ) = ()
wg N 77 nQ ( )
As for the orbifold projection, we assign even Zs-parity to

err;l y €555 Bs ) Qljrln ) ¢§ ) 771 ’ (41)

and odd Zy-parity to

e5a7 €ms o Bma Q/J?na ,‘»bEl)a 772' (42)
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We start by recalling the essential features of the conventional Scherk—
Schwarz mechanism. The Lagrangian has a global SU(2)g invariance, under

which the field .
By = ( vy ) , (43)
W

which should not be confused with ¥y, transforms as a doublet. In analogy
with the previous example, the gravitino boundary conditions can be twisted
by a U(1)r C SU(2)g transformation,

&, (y + 21 R) = B0 B¢ (). (44)

The label ‘¢’ indicates that the fields are continuous across the two orbifold
fixed points, i.e. 6§ = 65 = 0. With standard technology, we can derive the
gravitino spectrum, characterized by the non-local order parameter ¢

Cc

Méﬁézg—ﬁ—h), (p=0,£1,£2,...). (45)
We are now ready to show that our generalized Scherk—Schwarz mecha-
nism can lead to the bulk-plus-brane action of brane-induced supersymmetry
breaking. We can exploit the fact that, on the orbifold S'/Z,, the general-
ized gravitino boundary conditions are characterized by an overall twist and
by jumps at the orbifold fixed points. It is then sufficient to perform the

following field redefinition:

85,(y) = W Gy (y) (46)

where the function a(y) is the same as in the previous section. From these
expressions, it is not hard to check that the fields @y;(y) have jumps 6y and
0, at the orbifold fixed points, and twist 8¢ + dg + d,. Indeed, if we choose

p=—(0+0x) , (47)

the fields @y;(y) are periodic.

The bulk action is not invariant under this field redefinition. As before,
the y derivatives give rise to a singular connection, which generates a brane
action localized at the orbifold fixed points:

1
Lorane = 5e4 [5a”)d0 + (a” = wn)ds] (vio™p} + V20" 7 ) + he. (48)

Supersymmetry invariance of the total action S = Sy + Sprane 1S guaran-
teed by the fact that we have redefined the fields of an invariant bulk action,
provided that we redefine the supersymmetry parameter n accordingly.
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We can now proceed with a discussion that exactly parallels the one
given in the previous section. The brane action (48) must be handled with
care if we want to derive the correct equations of motion. The fields zp}ﬁQ
are too singular to apply the naive variational principle without regular-
ization. Indeed, the even fields are not piecewise smooth: for example,
P (0) # limgyo[1h), (+€) + ), (=€)]/2, so we cannot apply the standard
Fourier decomposition. As in the example of the previous section, we can
either regularize the Lagrangian (48) or move to an equivalent brane La-
grangian,

1 ) Or
Lirane = e 8(z°) tan EO + 6(z° — 7k) tan 5 Ylo®yl + he., (49)

to which we can safely apply the naive variational principle to derive the
equations of motion, since the even fields ¢} are continuous. With either
method, we can compute the gravitino mass spectrum, and find

o) _ P 0o + Or
M372_5+ 2R

(p=0,%1,%2,...). (50)

This result can be matched with the one of brane-induced supersymmetry
breaking. Taking for simplicity Py and P to be real, we find:

KJ3PO (ﬂ.)
do (r) = 2 arctan — (51)

5. Conclusions and outlook

In this talk we have explained how coordinate-dependent compactifica-
tions on field-theory orbifolds can be generalized, to include localized mass
terms for bulk fields at the orbifold fixed points. We have stressed the fact
that, in a basis where fields are only piecewise smooth, physics depends
not only on the overall twist of the fields, but also on their jumps at the
orbifold fixed points. As an important application, we have discussed the
phenomenon of brane-induced breaking of local supersymmetry, but several
other applications are conceivable.

There are several aspects that would deserve further investigations.

Here and in [3,4] the discussion was kept at the purely classical level,
but the quantum consistency of the different models should be examined,
especially in connection with localized anomalies and Fayet—Iliopoulos terms
[12]. The study of the quantum corrections to the effective potential, in the
presence of the MSSM fields, could also lead to a dynamical determination
of the radius R, along the lines of [13].
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The examples considered in this talk have focused on twists and jumps
affecting fermions. The bosonic case, relevant for the discussion of gauge
symmetry breaking, can be discussed along similar lines [14].

It would be interesting to give an interpretation ‘a la Hosotani’ of spon-
taneous supersymmetry breaking via the Scherk—Schwarz mechanism, going
beyond the attempts performed so far [15].

Finally, an interesting open problem is the extension of the traditional
Scherk—Schwarz mechanism and its generalization to the case of warped
compactifications.

This work was partially supported by the European Programme HPRN-
CT-2000-00148 (Across the Energy Frontier).
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