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D-BRANES AND NON-COMMUTATIVE GEOMETRY�Jaek PaweªzykInstitute of Theoretial Physis, Warsaw UniversityHo»a 69, 00-681 Warsaw, Poland(Reeived June 3, 2002)Dediated to Stefan Pokorski on his 60th birthdayAn algebrai desription of (untwisted) D-branes on ompat groupmanifolds G using quantum algebras related to Uq(g) is disussed. It re-produes the known harateristis of stable branes in the WZW models.A toy model of NCG based on a quiver diagram for branes on orbifold isalso presented.PACS numbers: 11.25.Hf, 11.25.Mj, 02.40.Gh, 02.20.Uw1. IntrodutionReently the physis of D-branes has been extensively studied with helpof NCG tools. Flat branes in a onstant B bakground [1℄ leads to quan-tum spaes with a Moyal�Weyl star produt. A rather di�erent situationis given by D-branes on ompat Lie groups G, whih arry a (NSNS) B�eld whih is not losed. It has been shown, using CFT [2℄ and DBI (Dira�Born�Infeld) [3℄ desriptions that stable branes an wrap ertain onjugaylasses in the group manifold. On the other hand, the matrix model [4℄ andCFT alulations [5℄ led to a beautiful piture where, in a speial limit, themarosopi branes are formed as a bound state of D0-branes. Attempt-ing to unify these various approahes, we proposed in reent papers [6, 7℄ a(quantum) matrix desription of D-branes on group manifold G. This led toa quantum algebra based on quantum group symmetries, whih reproduedall stati properties of stable D-branes on G. The �rst part of the paper isdevoted to this subjet.NCG language an also be useful in desription of branes on orbifolds[8, 9℄. Here I present some preliminary results onerning a toy model of� Work supported in part by the Polish State Committee for Sienti� Researh (KBN)under ontrat no 5 P03B 150 20 (2001�2002).(2489)



2490 J. PaweªzykNCG whih exhibits the �eld theory of branes on orbifold as a ertain Yang�Mills theory. The approah bears some resemblane with the deonstrutionideas [10℄. These results were obtained in ollaboration with S. Pokorski andA. Sitarz. 2. CFT of untwisted D-branesThe WZWmodel is spei�ed by a group G and a level k [11,12℄. We shallonsider only simple, ompat groups (G will be SU(N) mainly), so that thelevel k must be a positive integer. The WZW branes an be desribed byboundary states jBii 2 Hlosed respeting a set of boundary onditions. Alarge lass of boundary onditions (so alled untwisted branes) is of the form�Jn + ~J�n�jBii = 0 n 2 Z : (1)Here Jn are the modes of the left-moving urrents and ~Jn are the modes ofthe right-moving urrents. The boundary ondition (1) breaks half of thesymmetries of the WZW model bgL � bgR down to the vetor part bgV . Thehiral symmetry (the isometry of G) gL � gR ats on (1) rotating branes.The untwisted branes are labelled by � 2 P+k orresponding to integrableirreps of bg, whih are preisely the weights in the �fundamental alove� (A.2).The CFT desription yields also an important formula for the energy of thebrane �, E� = Y�>0 sin����(�+�)k+g_ �sin�� ���k+g_� : (2)For k � N , one an expand the denominator in (2) to obtain a formulawhih ompared with results obtained from DBI ation [3, 13℄ shows thatthe leading k-dependene �ts perfetly with the interpretation of a branewrapping one a onjugay lass given by an element t� of the maximaltorus of G.The CFT provides hints towards the desription of branes as quantummanifolds. It is known that the dynamis of D-branes is given by openstring exitations. The relevant operators, entering as building bloks thestring operators, are the primary �elds of the BCFT. The number of lowestonformal weight primaries is �nite for any ompat WZW model (in generalfor any RCFT). In the k ! 1 limit, the primaries an be interpreted asorresponding to a (�nite dimensional) algebra of funtions on the brane(see [14, 15℄). For �nite k, the interpretation is not that lear beause theandidate algebra as given in [14℄ is not assoiative. However, the algebra



D-Branes and Non-Commutative Geometry 2491beomes assoiative [6,14℄ after �twisting� (resulting in a modi�ation of theprodut of the primary �elds), so that it an be onsidered as an algebra offuntions of a quantum manifold. Then the primaries beome modules ofthe quantum group Uq(gV ) instead of bgV . The CFT onsiderations make usto expet that the relations de�ning the algebra of funtions on the quantummanifold to be invariant under the hiral ounterpart of the hiral algebra,i.e. under Uq(gL � gR)R.3. Branes on G by quantum algebrasWe expet that the relevant quantum spaes are desribed by quantumalgebras M whih transform appropriately under a quantum symmetry. To�ndM we shall make an �eduated guess� based on onsiderations ontainedin the previous setion, and justify it by omparing its preditions with theresults listed above. Thus �rst we postulate the form of the relations betweengenerators of the quantum algebra. We expet the relations to be at mostquadrati in generators, and to have appropriate ovariane under the ationof a quantum group. Moreover, we require the entral terms of the algebrato be invariant under the �vetor� subalgebra of this quantum symmetry.Thus our onstrutions mimi the symmetry pattern and its breaking bythe D-branes in CFT.Let M be generated by elements M ij with indies i; j in the de�ningrepresentation VN of G, subjet to some ommutation relations and on-straints. With hindsight, we laim that these relations are given by theso-alled re�etion equation (RE) [16℄, whih in a short notation readsR21M1R12M2 = M2R21M1R12 : (3)Here R is the R matrix of Uq(g) in the de�ning representation. Displayingthe indies expliitly we have(RE) i kj l : Rka ib M b Rj ad Mdl = Mka Rab i M d Rdj bl : (4)The indies fi; jg, fk; lg orrespond to the �rst (1) and the seond (2) vetorsspae VN in (3). An example of the algebra generated by RE relations ispresented in Se. 3.4. Beause M should desribe branes embedded in G,we need to impose onstraints whih ensure it. In the ase G = SU(N),these are detq(M) = 1 where detq is the so-alled quantum determinant (8)and some reality onditions imposed on M ij . One an show that RE and theabove onstraints are invariant under the Hopf algebra Uq(gL� gR)R whihan be haraterized by the fat that its Hopf subalgebra is Uq(gV ).M ij 's an also be thought of as some matries (as in Myers model [4℄)out of whih we an form an ation invariant under the relevant quantum



2492 J. Paweªzykgroups. The ation has the struture S = Tr q(1+ : : :), where dots representsome expressions in the M 's (the quantum trae is de�ned in (12)). Thepoint of [6℄ was that for some equations of motion, the �dots�-terms vanishon lassial on�gurations. We postulate that the equations of motion forM are given by RE (3). If so, then their energy is equal toE = Tr q(1) : (5)As we shall see this energy is not just a onstant (as might be suggested bythe notation), but it depends on the representations of the algebra, where itbeomes the quantum dimension (12).3.1. Central elements of REBelow we disuss some general properties of the algebra de�ned by (3).We need to �nd the entral elements, whih are expeted to haraterize itsirreps. This problem was solved in [17℄. The (generi) entral elements ofthe algebra (3) aren = Tr q(Mn) � Tr VN (Mn v) 2M ; (6)where the trae is taken over the de�ning representation VN , andv = � �q�2H�� (7)is a numerial matrix whih satis�es S2(r) = v�1rv for the generator r ofGV . These elements n are independent for n = 1; 2; : : : ; rank(G) and then's for n = 1; : : : rank(G)� 1 �x the position of the brane on�guration onthe group manifold.There is another entral term known as the quantum determinant anddenoted by detq(M). While it an be expressed as a polynomial in n's(n = 1; : : : ; rank(G)), detq(M) is invariant under the full hiral quantumalgebra. We need it to impose the onstraint 11 = detq(M) : (8)For q = 1, RE redues to [M ij ;Mkl ℄ = 0, thus any polynomial inM ij is entraland we reover ordinary group manifold. It is worth to mention that thenumber of entral elements is �nite thus providing kind of foliation of thegroup manifold de�ned by M.1 For other groups suh as SO(N) and SP(N), additional onstraints (whih are alsoinvariant under the full hiral quantum algebra) must be imposed.



D-Branes and Non-Commutative Geometry 24933.2. Representations of M and quantum D-branesBy onstrution,M ij 's an be onsidered as quantized oordinate fun-tions on G providing some kind of quantization of the manifold G. How-ever, we are interested here in the quantization of the orbits C(t�), whihare submanifolds of G. We laim that they are desribed by irreps (�xed bythe set of Casimirs) �V : M ! Mat(V;C) of M. Indeed, the map �V anbe onsidered as the dual of the embedding map C(t�)! G. This will allowus to make statements on the loation of the branes in G.Consider an irreduible representation of M. The Casimirs n (6) thentake distint values whih an be alulated. Moreover, they are invariantunder (vetor) rotations. In view of their form (6), this suggests that anirrep ofM should be onsidered as quantization of (the algebra of funtionson) some onjugay lass C(t�), the position of whih is determined by thevalues of the Casimirs n.The representations of the algebraM oinide with those of Uq(g), whihare largely understood, although quite ompliated at roots of unity. Thefat relevant for us is that representations V� of Uq(g) with � 2 P+k have thefollowing properties:� they are unitary,� their quantum-dimension dimq(V�) = Tr V�(q2H�) given in (12) is pos-itive [18℄,� � orresponds preisely to the integrable modules of the a�ne Liealgebra bg whih governs the CFT.The representations belonging to the boundary of P+k will orrespond to thedegenerate branes.Having haraterized the admissible representations V�, we propose thatthe representation of M on V� for � 2 P+k is a quantized or �fuzzy�D-brane, denoted by D�. It is an algebra of maps from V� to V� whihtransforms under the quantum adjoint ation of Uq(g). For �small� weights�, this algebra oinides with Mat(V�). There are some modi�ations for�large� weights � beause q is a root of unity. The reason is that Mat(V�)then ontains unphysial degrees of freedom whih should be trunated.A �rst justi�ation is that there is indeed a one-to-one orrespondenebetween the (untwisted) branes in string theory and these quantum branes,sine both are labeled by � 2 P+k . To give a more detailed omparison, wealulate the traes (6) and show that the energy (2) of the branes in stringtheory will be reovered preisely in terms of the quantum dimension.



2494 J. Paweªzyk3.3. Value of the entral termsThe values of the Casimirs n on D� are:0 = Tr VN (q�2H�) = dimq(VN ) ; (9)1(�) = Tr VN (q2(H�+H�)) ; (10)n(�) = X�2VN ; �+�2P+k q2n((�+�)����N ��) dimq(V�+�)dimq(V�) ; n � 1 : (11)Here �N is the highest weight of the de�ning representation VN , and the sumin (11) goes over all � 2 VN suh that �+ � lies in P+k . 0 is �-independentuninteresting number.It is worth emphasizing here the agreement of the values of n with theirlassial ounterparts.The positions and the �size� of the branes essentially agree with theresults from string theory [13℄. In partiular, their size shrinks to zero if �approahes a orner of P+k , as an be seen easily in the SU(2) ase [6℄: as �goes from 0 to k, the branes start at the identity e, grow up to the equator,and then shrink again around �e. We will see that the algebra of funtionson D� preisely re�ets this behavior; however this is more subtle and willbe disussed below. All of this is fundamentally tied to the fat that q is aroot of unity.Furthermore, the quantum dimension of the representation spae V� isdimq(V�) = Tr q(1) = Tr V�(q2H�) = Y�>0 sin(���(�+�))k+g_ )sin(� ���k+g_ ) : (12)The last equality above follows from Weyl's harater formula. Aordingto the interpretation (5) it should be the energy of the D-brane, and this isindeed the ase (see (2)). 3.4. G = SU(2) modelIn this setion we shall show how one an reover the results of [6℄ fromthe general formalism we disussed so far. The representation of the REgiven by generators of Uq(su(2)) (see appendix A) isM = 0� qH q�12�qH=2X�q�12�X+ qH=2 q�H + q�1�2X+X� 1A : (13)



D-Branes and Non-Commutative Geometry 2495Let us parameterize the M matrix as ([2℄ � [2℄q = q + q�1)M = � M4 � iM0 �iq�3=2p[2℄M+iq�1=2p[2℄M� M4 + iq�2M0 � ; (14)then RE is equivalent to[M4;M l℄ = 0; "lij M iM j = i(q � q�1)M4M l : (15)In order to alulate the entral terms we need v = �(q�2H�) = �(q�H) =diag(q�1; q) so that (using (6))1 = Tr q(M) = q�1a+ qd = [2℄M4 ; (16)2 = Tr q(M2) = [2℄ ((M4)2 � q�2gijM iM j) ; (17)detq(M) = (M4)2 + (M0)2 � q�1M+M� � qM�M+= (M4)2 + gijM iM j : (18)Only detq(M) is invariant under Uq(gL � gR)R. The expliit value of M4 =1=[2℄ is obtained fromM4 = 1[2℄ �q�1a+ q d� = 1[2℄ �qH�1 + q�(H�1) + �2X+X�� (19)whih is proportional to the standard Casimir of Uq(su(2)). On the n-thbrane Dn, H takes the value �n on the lowest weight vetor, thus M4 =os( (n+1)�k+2 )= os( �k+2). If the square of radius of the quantum S3 is hosento be detq(M) = k (whih is the value given by the supergravity solutionfor the bakground), gijM iM j leads to the orret formulae for the squareof the radius of the n-th branes.Comparison of the results. Here we shall show that all the resultsobtained from the quantum matrix model gives in a limit either DBI results[3℄ or matrix model results [5℄. The limits of k and n for those models are:DBI � 1� n � k; k � 1, the matrix model � n� k; k !1.q-matrix DBI matrixr2n = k sin( n�k+2 ) sin( (n+2)�k+2 )os2( �k+2 ) ! k sin2(n�k ) �2 (n+1)2�1kEn = T0 sin( (n+1)�k+2 )sin ( �k+2 ) ! k sin(�nk ) T0(n+ 1)(1 + �26 (n+1)2�1k2 )



2496 J. PaweªzykComparing with [3, 5℄ on an onlude that the quantum matrix model re-sults are in perfet agreement with those obtained from the DBI and the ordi-nary matrix model. Let us also make the approximation of small spheres S2q;nand substitute M4 = pk + O(gijM iM j). Then xl = iM l=((q � q�1)pk)respets q-fuzzy sphere equation as written in [19℄,i�ijl xixj = xl : (20)The above is the ordinary fuzzy sphere equation obtained in this ontext ine.g. [5℄. 4. D-branes on orbifolds and NCGConsider k N D3 branes sitting at the origin of C3. One an get stringstates of the brane on C3=� starting from the above ase by making ertainprojetion2 [20℄. Let � = ZN at on C3: (z1; z2; z3) ! e�2�i=N (z1; z2; z3).The �at branes states are the gauge �elds for the group SU(k N) and 6salars (�a, a = 1; 2; 3) in the adjoint of SU(k N) whih we grouped in atriplet of SU(3)� SU(4) (here SU(4) is the R-group of the N = 4 theory).Orbifolding identi�es this SU(3) with the C3 rotations. This sets the ationof ZN on �a. Moreover the orbifold group ats on the adjoint indies of thegauge group. The indies of the fundamental of U(k N) (thus also branes)are split into N equal sets (indexed by i; j; : : : = 1; : : : N) on whih ZN atsnaturally. The adjoint (gauge bosons) under SU(k N) belonging to the (i; �j)set transform as A�i;j ! e2�(j�i)=NAi;�j : (21)Then �a�i;j ! e2�(j�i�1) i=N�a�i;j . The appropriate orbifold projetion uts allZN -non-invariant �elds breaking SU(k N)! SU(k)1�: : :SU(k)N , where wehave indiated the index of the gauge group. The spetrum of the massless�elds onsist of SU(k)i gauge �elds and 3 omplex salars in the bifunda-mental (�ki; ki+1) of SU(k)i�SU(k)i+1. This an be depited on the so-alledquiver diagram (for � = Z6 ). The Lagrangian for the interation between�elds one gets form N = 4 theory projeting out all terms with the non-invariant �elds.
2 We limit onsideration to massless bosoni �elds.
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4.1. YM theory on set of pointsHere we show that one an onstrut the above theory (with the orretinteration) out of YM theory on a NC spae times ordinary (ommutative)Minkowski spae.Thus we de�ne NCG for set of N points and arrows as in the quiver.The arrows will represent the di�erentials. Expliitly the di�erential of afuntion f = (f1; : : : fN) isdfi = (fi+1 � fi)Xa �a + (fi � fi�1)Xa ��a ; (22)where � is a onjugation and �a are di�erentials assign to di�erent arrowsonneting the same nodes of the quiver. The onjugation for funtion isdenoted with �bar�. It is lear that the di�erential is ZN ovariant. Allfuntions are ommutative but the they do not ommute with di�erentials.One an hek that d(fg) = df g + f dg if �fi = fi+1�; ��fi+1 = fi��.With above rule we also have (df)� = d( �f). Imposing d2 = 0 we get (�a)2 =(��a)2 = 0 and e.g.:�a��b = ���b�a; d�a = d��a = 0 : (23)Let us assume that over eah point i we have a vetor U(k)i-bundle i.e.the spae-time gauge group is as in the orbifold ase SU(k)1 � : : : SU(k)N .The di�erential onstruted above allows to de�ne the onnetion on a the



2498 J. Paweªzykbundle (we display its omponents along set of N points only):ri = d+Xa �ai �a �X��ai�1��a ; (24)where �ai are the gauge �elds orresponding to �a. One an hek thatthe onnetion is Hermitian and �ai is in bifundamental (�ki; ki+1). Thus weget the proper �eld ontent of the theory and also proper oupling betweensalars and gauge �elds beause it is ompletely determined by the gaugegroup properties.The urvature r2i = Fi of the onnetion depends on the ommutationsbetween �a's.Fi = r2i = (�ai ��bi ���bi�1�ai�1)�a��b+(�ai �bi+1��bi�ai+1)�a�b+: : (25)One an hek that the square of the above urvature yields the same self-interation of the salars as for the orbifold model.I would like to thank my teaher S. Pokorski for his past, present andfuture ollaboration and kind interest in my various projets.Appendix ASome properties of g and Uq(g)We ollet some notations used throughout this paper. g denotes the(simple, �nite-dimensional) Lie algebra of G, with Cartan matrix Aij =2�i��j�j ��j . Here � �� is the Killing form whih is de�ned for arbitrary weights,and �i are the simple roots. The set of dominant integral weights is denotedby P+ = nXni�i ; ni 2 Z�0o ; (A.1)where the fundamental weights �i satisfy �i ��j = d�i Æij , and the length ofa root � is d� = ���2 . The Weyl vetor is the sum over all positive roots,� = 12P�>0 �. For a positive integer k, one de�nes the �fundamental alove�in weight spae as P+k = f� 2 P+; � � � � kg ; (A.2)where � is the highest (maximal) root. It is a �nite set of dominant integralweights. For G = SU(N), this is expliitly P+k = fPni�i ; Pi ni � kg. Weshall normalize the Killing form suh that d� = 1, so that the dual Coxeternumber is given by g_ = (�+ 12�) � �, whih is N for SU(N).For any weight �, we de�ne H� 2 g to be the Cartan element whihtakes the value H�v� = (� � �) v� on vetors v� with weight � in some



D-Branes and Non-Commutative Geometry 2499representation. We shall onsider only �nite-dimensional representations(=modules) of g. V� denotes the irreduible highest-weight module of Gwith highest weight � 2 P+, and V�+ is the onjugate (=dual) moduleof V�. The de�ning representation of the lassial matrix groups SU(N),SO(N), and Sp(N) will be denoted by VN , being N -dimensional.The generators X�i ;Hi of Uq(g) satisfy the relations[Hi;Hj℄ = 0; [Hi;X�j ℄ = �AjiX�j ; (A.3)[X+i ;X�j ℄ = Æi;j qdiHi � q�diHiqdi � q�di = Æi;j [Hi℄qi ; (A.4)where qi = qdi and [a℄q � qa�q�aq�q�1 . Comultipliation and antipode are de�nedby�(Hi) = Hi 
 1 + 1
Hi; �(X�i ) = X�i 
 qdiHi=2 + q�diHi=2 
X�i ;S(Hi) = �Hi; S(X�i ) = �q�diX�i : (A.5)The oprodut is onveniently written in Sweedler-notation as �(u) =u1 
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