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D-BRANES AND NON-COMMUTATIVE GEOMETRY�Ja
ek Paweª
zykInstitute of Theoreti
al Physi
s, Warsaw UniversityHo»a 69, 00-681 Warsaw, Poland(Re
eived June 3, 2002)Dedi
ated to Stefan Pokorski on his 60th birthdayAn algebrai
 des
ription of (untwisted) D-branes on 
ompa
t groupmanifolds G using quantum algebras related to Uq(g) is dis
ussed. It re-produ
es the known 
hara
teristi
s of stable branes in the WZW models.A toy model of NCG based on a quiver diagram for branes on orbifold isalso presented.PACS numbers: 11.25.Hf, 11.25.Mj, 02.40.Gh, 02.20.Uw1. Introdu
tionRe
ently the physi
s of D-branes has been extensively studied with helpof NCG tools. Flat branes in a 
onstant B ba
kground [1℄ leads to quan-tum spa
es with a Moyal�Weyl star produ
t. A rather di�erent situationis given by D-branes on 
ompa
t Lie groups G, whi
h 
arry a (NSNS) B�eld whi
h is not 
losed. It has been shown, using CFT [2℄ and DBI (Dira
�Born�Infeld) [3℄ des
riptions that stable branes 
an wrap 
ertain 
onjuga
y
lasses in the group manifold. On the other hand, the matrix model [4℄ andCFT 
al
ulations [5℄ led to a beautiful pi
ture where, in a spe
ial limit, thema
ros
opi
 branes are formed as a bound state of D0-branes. Attempt-ing to unify these various approa
hes, we proposed in re
ent papers [6, 7℄ a(quantum) matrix des
ription of D-branes on group manifold G. This led toa quantum algebra based on quantum group symmetries, whi
h reprodu
edall stati
 properties of stable D-branes on G. The �rst part of the paper isdevoted to this subje
t.NCG language 
an also be useful in des
ription of branes on orbifolds[8, 9℄. Here I present some preliminary results 
on
erning a toy model of� Work supported in part by the Polish State Committee for S
ienti�
 Resear
h (KBN)under 
ontra
t no 5 P03B 150 20 (2001�2002).(2489)
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zykNCG whi
h exhibits the �eld theory of branes on orbifold as a 
ertain Yang�Mills theory. The approa
h bears some resemblan
e with the de
onstru
tionideas [10℄. These results were obtained in 
ollaboration with S. Pokorski andA. Sitarz. 2. CFT of untwisted D-branesThe WZWmodel is spe
i�ed by a group G and a level k [11,12℄. We shall
onsider only simple, 
ompa
t groups (G will be SU(N) mainly), so that thelevel k must be a positive integer. The WZW branes 
an be des
ribed byboundary states jBii 2 H
losed respe
ting a set of boundary 
onditions. Alarge 
lass of boundary 
onditions (so 
alled untwisted branes) is of the form�Jn + ~J�n�jBii = 0 n 2 Z : (1)Here Jn are the modes of the left-moving 
urrents and ~Jn are the modes ofthe right-moving 
urrents. The boundary 
ondition (1) breaks half of thesymmetries of the WZW model bgL � bgR down to the ve
tor part bgV . The
hiral symmetry (the isometry of G) gL � gR a
ts on (1) rotating branes.The untwisted branes are labelled by � 2 P+k 
orresponding to integrableirreps of bg, whi
h are pre
isely the weights in the �fundamental al
ove� (A.2).The CFT des
ription yields also an important formula for the energy of thebrane �, E� = Y�>0 sin����(�+�)k+g_ �sin�� ���k+g_� : (2)For k � N , one 
an expand the denominator in (2) to obtain a formulawhi
h 
ompared with results obtained from DBI a
tion [3, 13℄ shows thatthe leading k-dependen
e �ts perfe
tly with the interpretation of a branewrapping on
e a 
onjuga
y 
lass given by an element t� of the maximaltorus of G.The CFT provides hints towards the des
ription of branes as quantummanifolds. It is known that the dynami
s of D-branes is given by openstring ex
itations. The relevant operators, entering as building blo
ks thestring operators, are the primary �elds of the BCFT. The number of lowest
onformal weight primaries is �nite for any 
ompa
t WZW model (in generalfor any RCFT). In the k ! 1 limit, the primaries 
an be interpreted as
orresponding to a (�nite dimensional) algebra of fun
tions on the brane(see [14, 15℄). For �nite k, the interpretation is not that 
lear be
ause the
andidate algebra as given in [14℄ is not asso
iative. However, the algebra
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omes asso
iative [6,14℄ after �twisting� (resulting in a modi�
ation of theprodu
t of the primary �elds), so that it 
an be 
onsidered as an algebra offun
tions of a quantum manifold. Then the primaries be
ome modules ofthe quantum group Uq(gV ) instead of bgV . The CFT 
onsiderations make usto expe
t that the relations de�ning the algebra of fun
tions on the quantummanifold to be invariant under the 
hiral 
ounterpart of the 
hiral algebra,i.e. under Uq(gL � gR)R.3. Branes on G by quantum algebrasWe expe
t that the relevant quantum spa
es are des
ribed by quantumalgebras M whi
h transform appropriately under a quantum symmetry. To�ndM we shall make an �edu
ated guess� based on 
onsiderations 
ontainedin the previous se
tion, and justify it by 
omparing its predi
tions with theresults listed above. Thus �rst we postulate the form of the relations betweengenerators of the quantum algebra. We expe
t the relations to be at mostquadrati
 in generators, and to have appropriate 
ovarian
e under the a
tionof a quantum group. Moreover, we require the 
entral terms of the algebrato be invariant under the �ve
tor� subalgebra of this quantum symmetry.Thus our 
onstru
tions mimi
 the symmetry pattern and its breaking bythe D-branes in CFT.Let M be generated by elements M ij with indi
es i; j in the de�ningrepresentation VN of G, subje
t to some 
ommutation relations and 
on-straints. With hindsight, we 
laim that these relations are given by theso-
alled re�e
tion equation (RE) [16℄, whi
h in a short notation readsR21M1R12M2 = M2R21M1R12 : (3)Here R is the R matrix of Uq(g) in the de�ning representation. Displayingthe indi
es expli
itly we have(RE) i kj l : Rka ib M b
 R
j ad Mdl = Mka Rab i
 M 
d Rdj bl : (4)The indi
es fi; jg, fk; lg 
orrespond to the �rst (1) and the se
ond (2) ve
torsspa
e VN in (3). An example of the algebra generated by RE relations ispresented in Se
. 3.4. Be
ause M should des
ribe branes embedded in G,we need to impose 
onstraints whi
h ensure it. In the 
ase G = SU(N),these are detq(M) = 1 where detq is the so-
alled quantum determinant (8)and some reality 
onditions imposed on M ij . One 
an show that RE and theabove 
onstraints are invariant under the Hopf algebra Uq(gL� gR)R whi
h
an be 
hara
terized by the fa
t that its Hopf subalgebra is Uq(gV ).M ij 's 
an also be thought of as some matri
es (as in Myers model [4℄)out of whi
h we 
an form an a
tion invariant under the relevant quantum
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zykgroups. The a
tion has the stru
ture S = Tr q(1+ : : :), where dots representsome expressions in the M 's (the quantum tra
e is de�ned in (12)). Thepoint of [6℄ was that for some equations of motion, the �dots�-terms vanishon 
lassi
al 
on�gurations. We postulate that the equations of motion forM are given by RE (3). If so, then their energy is equal toE = Tr q(1) : (5)As we shall see this energy is not just a 
onstant (as might be suggested bythe notation), but it depends on the representations of the algebra, where itbe
omes the quantum dimension (12).3.1. Central elements of REBelow we dis
uss some general properties of the algebra de�ned by (3).We need to �nd the 
entral elements, whi
h are expe
ted to 
hara
terize itsirreps. This problem was solved in [17℄. The (generi
) 
entral elements ofthe algebra (3) are
n = Tr q(Mn) � Tr VN (Mn v) 2M ; (6)where the tra
e is taken over the de�ning representation VN , andv = � �q�2H�� (7)is a numeri
al matrix whi
h satis�es S2(r) = v�1rv for the generator r ofGV . These elements 
n are independent for n = 1; 2; : : : ; rank(G) and the
n's for n = 1; : : : rank(G)� 1 �x the position of the brane 
on�guration onthe group manifold.There is another 
entral term known as the quantum determinant anddenoted by detq(M). While it 
an be expressed as a polynomial in 
n's(n = 1; : : : ; rank(G)), detq(M) is invariant under the full 
hiral quantumalgebra. We need it to impose the 
onstraint 11 = detq(M) : (8)For q = 1, RE redu
es to [M ij ;Mkl ℄ = 0, thus any polynomial inM ij is 
entraland we re
over ordinary group manifold. It is worth to mention that thenumber of 
entral elements is �nite thus providing kind of foliation of thegroup manifold de�ned by M.1 For other groups su
h as SO(N) and SP(N), additional 
onstraints (whi
h are alsoinvariant under the full 
hiral quantum algebra) must be imposed.



D-Branes and Non-Commutative Geometry 24933.2. Representations of M and quantum D-branesBy 
onstru
tion,M ij 's 
an be 
onsidered as quantized 
oordinate fun
-tions on G providing some kind of quantization of the manifold G. How-ever, we are interested here in the quantization of the orbits C(t�), whi
hare submanifolds of G. We 
laim that they are des
ribed by irreps (�xed bythe set of Casimirs) �V : M ! Mat(V;C) of M. Indeed, the map �V 
anbe 
onsidered as the dual of the embedding map C(t�)! G. This will allowus to make statements on the lo
ation of the branes in G.Consider an irredu
ible representation of M. The Casimirs 
n (6) thentake distin
t values whi
h 
an be 
al
ulated. Moreover, they are invariantunder (ve
tor) rotations. In view of their form (6), this suggests that anirrep ofM should be 
onsidered as quantization of (the algebra of fun
tionson) some 
onjuga
y 
lass C(t�), the position of whi
h is determined by thevalues of the Casimirs 
n.The representations of the algebraM 
oin
ide with those of Uq(g), whi
hare largely understood, although quite 
ompli
ated at roots of unity. Thefa
t relevant for us is that representations V� of Uq(g) with � 2 P+k have thefollowing properties:� they are unitary,� their quantum-dimension dimq(V�) = Tr V�(q2H�) given in (12) is pos-itive [18℄,� � 
orresponds pre
isely to the integrable modules of the a�ne Liealgebra bg whi
h governs the CFT.The representations belonging to the boundary of P+k will 
orrespond to thedegenerate branes.Having 
hara
terized the admissible representations V�, we propose thatthe representation of M on V� for � 2 P+k is a quantized or �fuzzy�D-brane, denoted by D�. It is an algebra of maps from V� to V� whi
htransforms under the quantum adjoint a
tion of Uq(g). For �small� weights�, this algebra 
oin
ides with Mat(V�). There are some modi�
ations for�large� weights � be
ause q is a root of unity. The reason is that Mat(V�)then 
ontains unphysi
al degrees of freedom whi
h should be trun
ated.A �rst justi�
ation is that there is indeed a one-to-one 
orresponden
ebetween the (untwisted) branes in string theory and these quantum branes,sin
e both are labeled by � 2 P+k . To give a more detailed 
omparison, we
al
ulate the tra
es (6) and show that the energy (2) of the branes in stringtheory will be re
overed pre
isely in terms of the quantum dimension.
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zyk3.3. Value of the 
entral termsThe values of the Casimirs 
n on D� are:
0 = Tr VN (q�2H�) = dimq(VN ) ; (9)
1(�) = Tr VN (q2(H�+H�)) ; (10)
n(�) = X�2VN ; �+�2P+k q2n((�+�)����N ��) dimq(V�+�)dimq(V�) ; n � 1 : (11)Here �N is the highest weight of the de�ning representation VN , and the sumin (11) goes over all � 2 VN su
h that �+ � lies in P+k . 
0 is �-independentuninteresting number.It is worth emphasizing here the agreement of the values of 
n with their
lassi
al 
ounterparts.The positions and the �size� of the branes essentially agree with theresults from string theory [13℄. In parti
ular, their size shrinks to zero if �approa
hes a 
orner of P+k , as 
an be seen easily in the SU(2) 
ase [6℄: as �goes from 0 to k, the branes start at the identity e, grow up to the equator,and then shrink again around �e. We will see that the algebra of fun
tionson D� pre
isely re�e
ts this behavior; however this is more subtle and willbe dis
ussed below. All of this is fundamentally tied to the fa
t that q is aroot of unity.Furthermore, the quantum dimension of the representation spa
e V� isdimq(V�) = Tr q(1) = Tr V�(q2H�) = Y�>0 sin(���(�+�))k+g_ )sin(� ���k+g_ ) : (12)The last equality above follows from Weyl's 
hara
ter formula. A

ordingto the interpretation (5) it should be the energy of the D-brane, and this isindeed the 
ase (see (2)). 3.4. G = SU(2) modelIn this se
tion we shall show how one 
an re
over the results of [6℄ fromthe general formalism we dis
ussed so far. The representation of the REgiven by generators of Uq(su(2)) (see appendix A) isM = 0� qH q�12�qH=2X�q�12�X+ qH=2 q�H + q�1�2X+X� 1A : (13)



D-Branes and Non-Commutative Geometry 2495Let us parameterize the M matrix as ([2℄ � [2℄q = q + q�1)M = � M4 � iM0 �iq�3=2p[2℄M+iq�1=2p[2℄M� M4 + iq�2M0 � ; (14)then RE is equivalent to[M4;M l℄ = 0; "lij M iM j = i(q � q�1)M4M l : (15)In order to 
al
ulate the 
entral terms we need v = �(q�2H�) = �(q�H) =diag(q�1; q) so that (using (6))
1 = Tr q(M) = q�1a+ qd = [2℄M4 ; (16)
2 = Tr q(M2) = [2℄ ((M4)2 � q�2gijM iM j) ; (17)detq(M) = (M4)2 + (M0)2 � q�1M+M� � qM�M+= (M4)2 + gijM iM j : (18)Only detq(M) is invariant under Uq(gL � gR)R. The expli
it value of M4 =
1=[2℄ is obtained fromM4 = 1[2℄ �q�1a+ q d� = 1[2℄ �qH�1 + q�(H�1) + �2X+X�� (19)whi
h is proportional to the standard Casimir of Uq(su(2)). On the n-thbrane Dn, H takes the value �n on the lowest weight ve
tor, thus M4 =
os( (n+1)�k+2 )= 
os( �k+2). If the square of radius of the quantum S3 is 
hosento be detq(M) = k (whi
h is the value given by the supergravity solutionfor the ba
kground), gijM iM j leads to the 
orre
t formulae for the squareof the radius of the n-th branes.Comparison of the results. Here we shall show that all the resultsobtained from the quantum matrix model gives in a limit either DBI results[3℄ or matrix model results [5℄. The limits of k and n for those models are:DBI � 1� n � k; k � 1, the matrix model � n� k; k !1.q-matrix DBI matrixr2n = k sin( n�k+2 ) sin( (n+2)�k+2 )
os2( �k+2 ) ! k sin2(n�k ) �2 (n+1)2�1kEn = T0 sin( (n+1)�k+2 )sin ( �k+2 ) ! k sin(�nk ) T0(n+ 1)(1 + �26 (n+1)2�1k2 )
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zykComparing with [3, 5℄ on 
an 
on
lude that the quantum matrix model re-sults are in perfe
t agreement with those obtained from the DBI and the ordi-nary matrix model. Let us also make the approximation of small spheres S2q;nand substitute M4 = pk + O(gijM iM j). Then xl = iM l=((q � q�1)pk)respe
ts q-fuzzy sphere equation as written in [19℄,i�ijl xixj = xl : (20)The above is the ordinary fuzzy sphere equation obtained in this 
ontext ine.g. [5℄. 4. D-branes on orbifolds and NCGConsider k N D3 branes sitting at the origin of C3. One 
an get stringstates of the brane on C3=� starting from the above 
ase by making 
ertainproje
tion2 [20℄. Let � = ZN a
t on C3: (z1; z2; z3) ! e�2�i=N (z1; z2; z3).The �at branes states are the gauge �elds for the group SU(k N) and 6s
alars (�a, a = 1; 2; 3) in the adjoint of SU(k N) whi
h we grouped in atriplet of SU(3)� SU(4) (here SU(4) is the R-group of the N = 4 theory).Orbifolding identi�es this SU(3) with the C3 rotations. This sets the a
tionof ZN on �a. Moreover the orbifold group a
ts on the adjoint indi
es of thegauge group. The indi
es of the fundamental of U(k N) (thus also branes)are split into N equal sets (indexed by i; j; : : : = 1; : : : N) on whi
h ZN a
tsnaturally. The adjoint (gauge bosons) under SU(k N) belonging to the (i; �j)set transform as A�i;j ! e2�(j�i)=NAi;�j : (21)Then �a�i;j ! e2�(j�i�1) i=N�a�i;j . The appropriate orbifold proje
tion 
uts allZN -non-invariant �elds breaking SU(k N)! SU(k)1�: : :SU(k)N , where wehave indi
ated the index of the gauge group. The spe
trum of the massless�elds 
onsist of SU(k)i gauge �elds and 3 
omplex s
alars in the bifunda-mental (�ki; ki+1) of SU(k)i�SU(k)i+1. This 
an be depi
ted on the so-
alledquiver diagram (for � = Z6 ). The Lagrangian for the intera
tion between�elds one gets form N = 4 theory proje
ting out all terms with the non-invariant �elds.
2 We limit 
onsideration to massless bosoni
 �elds.
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i−1

i+1

i

4.1. YM theory on set of pointsHere we show that one 
an 
onstru
t the above theory (with the 
orre
tintera
tion) out of YM theory on a NC spa
e times ordinary (
ommutative)Minkowski spa
e.Thus we de�ne NCG for set of N points and arrows as in the quiver.The arrows will represent the di�erentials. Expli
itly the di�erential of afun
tion f = (f1; : : : fN) isdfi = (fi+1 � fi)Xa �a + (fi � fi�1)Xa ��a ; (22)where � is a 
onjugation and �a are di�erentials assign to di�erent arrows
onne
ting the same nodes of the quiver. The 
onjugation for fun
tion isdenoted with �bar�. It is 
lear that the di�erential is ZN 
ovariant. Allfun
tions are 
ommutative but the they do not 
ommute with di�erentials.One 
an 
he
k that d(fg) = df g + f dg if �fi = fi+1�; ��fi+1 = fi��.With above rule we also have (df)� = d( �f). Imposing d2 = 0 we get (�a)2 =(��a)2 = 0 and e.g.:�a��b = ���b�a; d�a = d��a = 0 : (23)Let us assume that over ea
h point i we have a ve
tor U(k)i-bundle i.e.the spa
e-time gauge group is as in the orbifold 
ase SU(k)1 � : : : SU(k)N .The di�erential 
onstru
ted above allows to de�ne the 
onne
tion on a the
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zykbundle (we display its 
omponents along set of N points only):ri = d+Xa �ai �a �X��ai�1��a ; (24)where �ai are the gauge �elds 
orresponding to �a. One 
an 
he
k thatthe 
onne
tion is Hermitian and �ai is in bifundamental (�ki; ki+1). Thus weget the proper �eld 
ontent of the theory and also proper 
oupling betweens
alars and gauge �elds be
ause it is 
ompletely determined by the gaugegroup properties.The 
urvature r2i = Fi of the 
onne
tion depends on the 
ommutationsbetween �a's.Fi = r2i = (�ai ��bi ���bi�1�ai�1)�a��b+(�ai �bi+1��bi�ai+1)�a�b+
:
 : (25)One 
an 
he
k that the square of the above 
urvature yields the same self-intera
tion of the s
alars as for the orbifold model.I would like to thank my tea
her S. Pokorski for his past, present andfuture 
ollaboration and kind interest in my various proje
ts.Appendix ASome properties of g and Uq(g)We 
olle
t some notations used throughout this paper. g denotes the(simple, �nite-dimensional) Lie algebra of G, with Cartan matrix Aij =2�i��j�j ��j . Here � �� is the Killing form whi
h is de�ned for arbitrary weights,and �i are the simple roots. The set of dominant integral weights is denotedby P+ = nXni�i ; ni 2 Z�0o ; (A.1)where the fundamental weights �i satisfy �i ��j = d�i Æij , and the length ofa root � is d� = ���2 . The Weyl ve
tor is the sum over all positive roots,� = 12P�>0 �. For a positive integer k, one de�nes the �fundamental al
ove�in weight spa
e as P+k = f� 2 P+; � � � � kg ; (A.2)where � is the highest (maximal) root. It is a �nite set of dominant integralweights. For G = SU(N), this is expli
itly P+k = fPni�i ; Pi ni � kg. Weshall normalize the Killing form su
h that d� = 1, so that the dual Coxeternumber is given by g_ = (�+ 12�) � �, whi
h is N for SU(N).For any weight �, we de�ne H� 2 g to be the Cartan element whi
htakes the value H�v� = (� � �) v� on ve
tors v� with weight � in some
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onsider only �nite-dimensional representations(=modules) of g. V� denotes the irredu
ible highest-weight module of Gwith highest weight � 2 P+, and V�+ is the 
onjugate (=dual) moduleof V�. The de�ning representation of the 
lassi
al matrix groups SU(N),SO(N), and Sp(N) will be denoted by VN , being N -dimensional.The generators X�i ;Hi of Uq(g) satisfy the relations[Hi;Hj℄ = 0; [Hi;X�j ℄ = �AjiX�j ; (A.3)[X+i ;X�j ℄ = Æi;j qdiHi � q�diHiqdi � q�di = Æi;j [Hi℄qi ; (A.4)where qi = qdi and [a℄q � qa�q�aq�q�1 . Comultipli
ation and antipode are de�nedby�(Hi) = Hi 
 1 + 1
Hi; �(X�i ) = X�i 
 qdiHi=2 + q�diHi=2 
X�i ;S(Hi) = �Hi; S(X�i ) = �q�diX�i : (A.5)The 
oprodu
t is 
onveniently written in Sweedler-notation as �(u) =u1 
 u2, for u 2 Uq(g), where a summation is implied. It is easy to ver-ify that S2(u) = q2H�uq�2H� for all u 2 Uq(g), where � = 12P�>0 � is theWeyl ve
tor. This is used in the de�nition of the quantum tra
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