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An algebraic description of (untwisted) D-branes on compact group
manifolds G using quantum algebras related to U,(g) is discussed. It re-
produces the known characteristics of stable branes in the WZW models.
A toy model of NCG based on a quiver diagram for branes on orbifold is
also presented.
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1. Introduction

Recently the physics of D-branes has been extensively studied with help
of NCG tools. Flat branes in a constant B background [1] leads to quan-
tum spaces with a Moyal-Weyl star product. A rather different situation
is given by D-branes on compact Lie groups G, which carry a (NSNS) B
field which is not closed. It has been shown, using CFT [2] and DBI (Dirac—-
Born-Infeld) [3] descriptions that stable branes can wrap certain conjugacy
classes in the group manifold. On the other hand, the matrix model [4] and
CFT calculations [5] led to a beautiful picture where, in a special limit, the
macroscopic branes are formed as a bound state of DO-branes. Attempt-
ing to unify these various approaches, we proposed in recent papers [6,7] a
(quantum) matrix description of D-branes on group manifold G. This led to
a quantum algebra based on quantum group symmetries, which reproduced
all static properties of stable D-branes on G. The first part of the paper is
devoted to this subject.

NCG language can also be useful in description of branes on orbifolds
[8,9]. Here I present some preliminary results concerning a toy model of
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NCG which exhibits the field theory of branes on orbifold as a certain Yang—
Mills theory. The approach bears some resemblance with the deconstruction
ideas [10]. These results were obtained in collaboration with S. Pokorski and
A. Sitarz.

2. CFT of untwisted D-branes

The WZW model is specified by a group G and a level k [11,12]. We shall
consider only simple, compact groups (G will be SU(N) mainly), so that the
level £ must be a positive integer. The WZW branes can be described by
boundary states |B)) € H%d respecting a set of boundary conditions. A
large class of boundary conditions (so called untwisted branes) is of the form

<Jn+j_n)|B)) =0 nez. (1)

Here J,, are the modes of the left-moving currents and J, are the modes of
the right-moving currents. The boundary condition (1) breaks half of the
symmetries of the WZW model g, x gr down to the vector part gy. The
chiral symmetry (the isometry of G) gr, X gr acts on (1) rotating branes.
The untwisted branes are labelled by A € Pk+ corresponding to integrable
irreps of g, which are precisely the weights in the “fundamental alcove” (A.2).
The CFT description yields also an important formula for the energy of the

brane A,
sin <7r a];(i;rvp) )
B=]] —— "L
a>0 sin <7T ki.S';)V)

For k > N, one can expand the denominator in (2) to obtain a formula
which compared with results obtained from DBI action [3, 13| shows that
the leading k-dependence fits perfectly with the interpretation of a brane
wrapping once a conjugacy class given by an element ) of the maximal
torus of G.

The CFT provides hints towards the description of branes as quantum
manifolds. It is known that the dynamics of D-branes is given by open
string excitations. The relevant operators, entering as building blocks the
string operators, are the primary fields of the BCFT. The number of lowest
conformal weight primaries is finite for any compact WZW model (in general
for any RCFT). In the & — oo limit, the primaries can be interpreted as
corresponding to a (finite dimensional) algebra of functions on the brane
(see |14,15]). For finite k, the interpretation is not that clear because the
candidate algebra as given in [14] is not associative. However, the algebra

(2)
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becomes associative [6,14] after “twisting” (resulting in a modification of the
product of the primary fields), so that it can be considered as an algebra of
functions of a quantum manifold. Then the primaries become modules of
the quantum group U,(gy) instead of gy. The CFT considerations make us
to expect that the relations defining the algebra of functions on the quantum
manifold to be invariant under the chiral counterpart of the chiral algebra,
i.e. under Uy(gr, X gr)R.

3. Branes on G by quantum algebras

We expect that the relevant quantum spaces are described by quantum
algebras M which transform appropriately under a quantum symmetry. To
find M we shall make an “educated guess” based on considerations contained
in the previous section, and justify it by comparing its predictions with the
results listed above. Thus first we postulate the form of the relations between
generators of the quantum algebra. We expect the relations to be at most
quadratic in generators, and to have appropriate covariance under the action
of a quantum group. Moreover, we require the central terms of the algebra
to be invariant under the “vector” subalgebra of this quantum symmetry.
Thus our constructions mimic the symmetry pattern and its breaking by
the D-branes in CFT.

Let M be generated by elements M]Z with indices 7,7 in the defining
representation Viy of G, subject to some commutation relations and con-
straints. With hindsight, we claim that these relations are given by the
so-called reflection equation (RE) [16], which in a short notation reads

Roy My R1oMy = MoRoy MRy . (3)

Here R is the R matrix of U,(g) in the defining representation. Displaying
the indices explicitly we have

.o REY MP Ry M= MFRY. MSRYY L (4)

The indices {7, j}, {k, [} correspond to the first (1) and the second (2) vectors
space Vy in (3). An example of the algebra generated by RE relations is
presented in Sec. 3.4. Because M should describe branes embedded in G,
we need to impose constraints which ensure it. In the case G = SU(N),
these are det,(M) = 1 where det, is the so-called quantum determinant (8)
and some reality conditions imposed on M ; One can show that RE and the
above constraints are invariant under the Hopf algebra U,(gr, x gr)r which
can be characterized by the fact that its Hopf subalgebra is Uy, (gv ).

M;’s can also be thought of as some matrices (as in Myers model [4])
out of which we can form an action invariant under the relevant quantum



2492 J. PAWELCZYK

groups. The action has the structure S = Tr(1+...), where dots represent
some expressions in the M’s (the quantum trace is defined in (12)). The
point of [6] was that for some equations of motion, the “dots”-terms vanish
on classical configurations. We postulate that the equations of motion for
M are given by RE (3). If so, then their energy is equal to

E="Tr,(1). (5)

As we shall see this energy is not just a constant (as might be suggested by
the notation), but it depends on the representations of the algebra, where it
becomes the quantum dimension (12).

3.1. Central elements of RE

Below we discuss some general properties of the algebra defined by (3).
We need to find the central elements, which are expected to characterize its
irreps. This problem was solved in [17]. The (generic) central elements of
the algebra (3) are

cp =Try(M") =Try, (M" v) e M, (6)
where the trace is taken over the defining representation Vi, and
v=m(q7") (7)

is a numerical matrix which satisfies S?(r) = v~!'rv for the generator r of
Gy. These elements ¢, are independent for n = 1,2,...,rank(G) and the
cp’s for n =1, ...rank(G) — 1 fix the position of the brane configuration on
the group manifold.

There is another central term known as the quantum determinant and
denoted by det,(A). While it can be expressed as a polynomial in ¢,’s
(n = 1,...,rank(G)), dety(M) is invariant under the full chiral quantum
algebra. We need it to impose the constraint !

1 = dety(M). 8)

For ¢ = 1, RE reduces to [M;, Mlk] = 0, thus any polynomial in M; is central
and we recover ordinary group manifold. It is worth to mention that the
number of central elements is finite thus providing kind of foliation of the
group manifold defined by M.

! For other groups such as SO(N) and SP(N), additional constraints (which are also
invariant under the full chiral quantum algebra) must be imposed.
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3.2. Representations of M and quantum D-branes

By construction,M%’s can be considered as quantized coordinate func-
tions on G providing some kind of quantization of the manifold G. How-
ever, we are interested here in the quantization of the orbits C(ty), which
are submanifolds of G. We claim that they are described by irreps (fixed by
the set of Casimirs) my : M — Mat(V,C) of M. Indeed, the map 7y can
be considered as the dual of the embedding map C(¢)) — G. This will allow
us to make statements on the location of the branes in G.

Consider an irreducible representation of M. The Casimirs ¢, (6) then
take distinct values which can be calculated. Moreover, they are invariant
under (vector) rotations. In view of their form (6), this suggests that an
irrep of M should be considered as quantization of (the algebra of functions
on) some conjugacy class C(ty), the position of which is determined by the
values of the Casimirs c,.

The representations of the algebra M coincide with those of U,(g), which
are largely understood, although quite complicated at roots of unity. The
fact relevant for us is that representations V) of Uy(g) with A € P,;" have the
following properties:

e they are unitary,

2Hp)

e their quantum-dimension dim,(V)) = Try, (¢ given in (12) is pos-

itive [18],

e )\ corresponds precisely to the integrable modules of the affine Lie
algebra g which governs the CFT.

The representations belonging to the boundary of P,:r will correspond to the
degenerate branes.

Having characterized the admissible representations V), we propose that
the representation of M on V) for ) € Pk+ is a quantized or “fuzzy”
D-brane, denoted by D,. It is an algebra of maps from V) to V) which
transforms under the quantum adjoint action of U,(g). For “small” weights
A, this algebra coincides with Mat(Vy). There are some modifications for
“large” weights A because ¢ is a root of unity. The reason is that Mat(V})
then contains unphysical degrees of freedom which should be truncated.

A first justification is that there is indeed a one-to-one correspondence
between the (untwisted) branes in string theory and these quantum branes,
since both are labeled by A € Pk+ . To give a more detailed comparison, we
calculate the traces (6) and show that the energy (2) of the branes in string
theory will be recovered precisely in terms of the quantum dimension.
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3.8. Value of the central terms

The values of the Casimirs ¢, on D) are:

co = Trvy (¢7*) = dimg(Viy), (9)
ci(A) = Try, (@), (10)
) = Y @ ImeWan) sy gy

dim,(Vy) ’
VGVN;)nLVGP,;L q( )

Here Ay is the highest weight of the defining representation Vy, and the sum
in (11) goes over all v € Viy such that A + v lies in P,". ¢ is A-independent
uninteresting number.

It is worth emphasizing here the agreement of the values of ¢, with their
classical counterparts.

The positions and the “size” of the branes essentially agree with the
results from string theory [13]. In particular, their size shrinks to zero if A
approaches a corner of P, as can be seen easily in the SU(2) case [6]: as A
goes from 0 to k, the branes start at the identity e, grow up to the equator,
and then shrink again around —e. We will see that the algebra of functions
on D, precisely reflects this behavior; however this is more subtle and will
be discussed below. All of this is fundamentally tied to the fact that ¢ is a
root of unity.

Furthermore, the quantum dimension of the representation space V) is

sin(ﬂ'a',gj‘_ize)))

dimt](v)\) = Tl‘q(l) = TrV,\(q2Hp) = H Sin(ﬂ'ka—'p)
+gV

a>0

(12)

The last equality above follows from Weyl’s character formula. According
to the interpretation (5) it should be the energy of the D-brane, and this is
indeed the case (see (2)).

3.4. G = SU(2) model

In this section we shall show how one can recover the results of [6] from
the general formalism we discussed so far. The representation of the RE
given by generators of U,(su(2)) (see appendix A) is

1
M= ¢" g 22X (13)
_ ) .
q 2AX, "2 M T NXL X
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Let us parameterize the M matrix as ([2] = [2],=q+ ¢ !)

M- M*—iM®  —ig32\/2]M (14)
ig 2\ /RIM- M*+ig M0 )7

then RE is equivalent to

(M, M) =0, e MM =i(q—q "YM*'M'". (15)
In order to calculate the central terms we need v = w(q¢ 2H¢) = n(¢~¥) =
diag(q—!,q) so that (using (6))
et = Tro(M)=q 'a+qd=[2]M*, (16)
cg = Trg(M?) =[2] (M*)? - q gy M' M), (17)
det,(M) = (M*)? +(M°)? —¢g 'M*M~ —qM M+
= (M) + gy M' M7 . (18)

Only det, (M) is invariant under U,(gr, X gr)r. The explicit value of M* =
c1/[2] is obtained from

M* = ﬁ (¢7'a+qd) = é (" T 42X X)) (19)
which is proportional to the standard Casimir of Uj(su(2)). On the n-th
brane D,,, H takes the value —n on the lowest weight vector, thus M* =
cos((nl,;f2 )/ cos(755)- If the square of radius of the quantum S3 is chosen
to be dety(M) = k (which is the value given by the supergravity solution
for the background), gij M* M7 leads to the correct formulae for the square
of the radius of the n-th branes.

Comparison of the results. Here we shall show that all the results
obtained from the quantum matrix model gives in a limit either DBI results
[3] or matrix model results [5]. The limits of k& and n for those models are:
DBI — 1« n <k, k> 1, the matrix model — n < k, k — oo.

g-matrix DBI matrix
(n+2)7r .
r2 = Pl kiés)QS&lnSr 3“ bk sin?(ZZ) 2 ("Hk)hl
sin( (n+1)7r) . 11
By = To gt — | Esin(Z2) | Ty(n + 1)(1 + = @71
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Comparing with [3,5] on can conclude that the quantum matrix model re-
sults are in perfect agreement with those obtained from the DBI and the ordi-
nary matrix model. Let us also make the approximation of small spheres Sg’n
and substitute M* = vk + O(g;jM'M?). Then z' = iM'/((q — ¢~') Vk)
respects g-fuzzy sphere equation as written in [19],

ieij w'ad = 2t (20)

The above is the ordinary fuzzy sphere equation obtained in this context in
e.g. [5].

4. D-branes on orbifolds and NCG

Consider £ N D3 branes sitting at the origin of C3. One can get string
states of the brane on C3/I starting from the above case by making certain
projection? [20]. Let I' = Zy act on C3: (21, 29, 23) — e_2”/N(zl,22,23).
The flat branes states are the gauge fields for the group SU(k N) and 6
scalars (9%, a = 1,2,3) in the adjoint of SU(k N) which we grouped in a
triplet of SU(3)C SU(4) (here SU(4) is the R-group of the N’ = 4 theory).
Orbifolding identifies this SU(3) with the C? rotations. This sets the action
of Zn on @°. Moreover the orbifold group acts on the adjoint indices of the
gauge group. The indices of the fundamental of U(k N) (thus also branes)
are split into N equal sets (indexed by 7,7,... =1,... N) on which Zy acts
naturally. The adjoint (gauge bosons) under SU(k N) belonging to the (i, 5)
set transform as

Az — TN 4, o (21)

Then d%‘.fj — e2r(j—i=1) i/N d%‘."j. The appropriate orbifold projection cuts all
Zy-non-invariant fields breaking SU(k N) — SU(k); x...SU(k)n, where we
have indicated the index of the gauge group. The spectrum of the massless
fields consist of SU(k); gauge fields and 3 complex scalars in the bifunda-
mental (k;, ki 1) of SU(k); x SU(k);4+1. This can be depicted on the so-called
quiver diagram (for I' = Zgz). The Lagrangian for the interaction between
fields one gets form N = 4 theory projecting out all terms with the non-
invariant fields.

2 We limit consideration to massless bosonic fields.
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4.1. YM theory on set of points

Here we show that one can construct the above theory (with the correct
interaction) out of YM theory on a NC space times ordinary (commutative)
Minkowski space.

Thus we define NCG for set of N points and arrows as in the quiver.
The arrows will represent the differentials. FExplicitly the differential of a
function f = (fy,... fn) is

dfi = (fir1 = F) D x“+ (fi— fii) DX, (22)

where * is a conjugation and x® are differentials assign to different arrows
connecting the same nodes of the quiver. The conjugation for function is
denoted with “bar”. It is clear that the differential is Zy covariant. All
functions are commutative but the they do not commute with differentials.
One can check that d(fg) = df g + f dg if xfi = fixix, X" fir1 = fix"
With above rule we also have (df)* = d(f). Imposing d? = 0 we get (x*)? =
(x**)?2 =0 and e.g.:

XX = —xx, dx® =dx* =0. (23)

Let us assume that over each point i we have a vector U(k);-bundle i.e.
the space-time gauge group is as in the orbifold case SU(k); x ...SU(k)n.
The differential constructed above allows to define the connection on a the
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bundle (we display its components along set of N points only):
Vi=d+ Y Oxa— > "X, (24)
a

where @ are the gauge fields corresponding to x,. One can check that
the connection is Hermitian and &{ is in bifundamental (ki, kiy1). Thus we
get the proper field content of the theory and also proper coupling between
scalars and gauge fields because it is completely determined by the gauge
group properties.

The curvature V? = F; of the connection depends on the commutations
between x,’s.

F; =V} = (97 8" — &%) 8 ))X"X* + (D] D)y — B} Oy ) XX’ +ec. (25)

One can check that the square of the above curvature yields the same self-
interaction of the scalars as for the orbifold model.

I would like to thank my teacher S. Pokorski for his past, present and
future collaboration and kind interest in my various projects.

Appendix A
Some properties of g and Uy(g)

We collect some notations used throughout this paper. g denotes the
(simple, finite-dimensional) Lie algebra of G, with Cartan matrix A;; =
23;'2 . Here “~ is the Killing form which is defined for arbitrary weights,
and «; are the simple roots. The set of dominant integral weights is denoted
by

Pt = {an/lz, n; € ZZO} , (Al)

where the fundamental weights A; satisfy «; - A; = dq;0;5, and the length of
a root a is dy = %*. The Weyl vector is the sum over all positive roots,
p= % Y aso @ For a positive integer &, one defines the “fundamental alcove”
in weight space as

Pr={xeP"; X-0<k}, (A.2)

where 6 is the highest (maximal) root. It is a finite set of dominant integral
weights. For G = SU(N), this is explicitly P\ = {3 n;d;; Yo, ni < k}. We
shall normalize the Killing form such that dy = 1, so that the dual Coxeter
number is given by g = (p + 16) - 6, which is N for SU(N).

For any weight A, we define Hy € g to be the Cartan element which
takes the value Hyv, = (X p) v, on vectors v, with weight x4 in some
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representation. We shall consider only finite-dimensional representations
(=modules) of g. V) denotes the irreducible highest-weight module of G
with highest weight A € P*, and V,+ is the conjugate (=dual) module
of V). The defining representation of the classical matrix groups SU(N),
SO(N), and Sp(N) will be denoted by Vi, being N-dimensional.

The generators XZ-“—L, H; of Uy(g) satisty the relations

[Hi, Hj] = 0, [Hy, X;']=+A4;X;, (A.3)
diH; _ —d;H;
X x] =6, —9 Togt [H] (A.4)
i BT i — gdi bl :

;:qq: - Comultiplication and antipode are defined

where ¢; = ¢% and [a], =
by

AH) = Hi@1+1@H;,  A(X]) =X @q% M2 4 ¢4l g x*
S(Hy) = —H;,  S(X})=—¢74XF . (A.5)

The coproduct is conveniently written in Sweedler-notation as A(u) =
u1 ® ug, for u € Uy(g), where a summation is implied. It is easy to ver-
ify that S%(u) = ¢*rug 2 for all u € Uy(g), where p = £ 3 o is the
Weyl vector. This is used in the definition of the quantum traces (6), (12).
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