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FUN WITH GAUGE THEORIES IN 5 DIMENSIONSStuart RabyDepartment of Physi
s, The Ohio State University174 W 18th Ave, Columbus, OH 43210, USA(Re
eived June 28, 2002)Dedi
ated to Stefan Pokorski on his 60th birthdayWe dis
uss gauge symmetry breaking with Wilson loops in 5 dimen-sions. We present a simple example with the �fth dimension 
ompa
ti�edon an S1=Z2 orbifold. The Wilson loop in this SO(3) example repla
esthe adjoint Higgs s
alar (needed to break SO(3) to U(1)) in the well-knownGeorgi�Glashow model. We then show that gauge symmetry breaking witha Wilson loop on this S1=Z2 orbifold is gauge equivalent to gauge symme-try breaking on a parti
ular S1=(Z2�Z 02) orbifold. The latter orbifold hasbeen used in many re
ent 
onstru
tions with gauge symmetry breaking in�ve dimensional supersymmetri
 and non-supersymmetri
 models. Finallywe expli
itly 
onstru
t a magneti
 monopole string solution; the analog ofthe 't Hooft�Polyakov monopole. The monopole string has �nite energy,and length equal to the size of the extra dimension.PACS numbers: 04.50.+h, 11.25.Mj, 11.15.Ex1. Introdu
tionRe
ently there has been quite a bit of interest in non-Abelian gauge�eld theories in 4 + d dimensions with d extra dimensions 
ompa
ti�ed onan orbifold [1�5℄. The extra dimensions 
an have inverse radii of order afew TeV, of order the GUT s
ale or anything in between. In these re
entstudies, symmetry breaking via orbifold boundary 
onditions has repla
edthe traditional method using the va
uum expe
tation values of Higgs s
alars.In an illustrative and simple example in one extra dimension, the orbifoldsS1=Z2 and S1=(Z2�Z 02) have been used to break the GUT groups SU(5) !SU(3) � SU(2) � U(1) [1, 2℄, SO(10) ! SU(4) � SU(2)L � SU(2)R [3℄, theleft-right gauge symmetry SU(2)L�SU(2)R�U(1)B�L ! SU(2)L�U(1)R�U(1)B�L [4℄ or the ele
troweak uni�ed group SU(3)! SU(2)�U(1) [5℄.(2523)



2524 S. RabyIn this letter we argue that magneti
 monopoles are generi
 
onsequen
esof gauge symmetry breaking with Wilson loops on S1=Z2 orbifolds. We 
on-sider the simple example of an SO(3) gauge theory de�ned on the orbifoldM �S1=Z2 with a ba
kground gauge �eld. In an attempt to de�ne notationand set up some of the ideas we introdu
e the 
on
ept of Wilson loop sym-metry breaking in the simple example of the 
ir
le S1. We then generalizethis dis
ussion to the orbifold S1=Z2 and also elu
idate the equivalen
e ofgauge symmetry breaking with Wilson loops on S1=Z2 and gauge symme-try breaking on the orbifold S1=(Z2 � Z 02). Finally, we expli
itly 
onstru
tthe monopole string solution and dis
uss some of its properties. This letteris based on the re
ent paper [6℄ and the earlier work [7�13℄. For a re
entdis
ussion of Wilson loops on orbifolds see [14℄.2. SO(3) gauge theory on M � S1Consider a general gauge theory with symmetry group G in �ve dimen-sional spa
etime. The Lagrangian is given byL5 = � 14e25kTr (FMNFMN ) (1)where FMN � Pa F aMNT a, T a are generators in some �nite dimensionalrepresentation of G normalized su
h that Tr (T aT b) = kÆab and M;N =f0; 1; 2; 3; 5g: FMN = �MAN � �NAM + i[AM ; AN ℄: (2)(For the adjoint representation of SO(3) we use the standard normalizationof the generators with k = 2.) The gauge transformation of the gauge �eldAM (x�; y) � PaAaMT a(x�; y) (greek indi
es 
orrespond to 4-dimensionalMinkowski spa
etime and y � x5) is given byAM (x�; y)! UAM (x�; y)U y � iU�MU y; (3)where U = exp(i�a(x�; y)T a): (4)In our notation, Eq. (1), the gauge �elds have mass dimensions [1℄, andthe 
harge e5 has dimension [-1/2℄. We 
an also de�ne the e�e
tive fourdimensional, dimensionless, gauge 
oupling e by res
aling e5 in Eq. (1) viathe expression e5 = p2�R e. Note, if �5A� = 0, then F�5 redu
es to the
ovariant derivative of the 5th 
omponent of the gauge �eld A5. In this 
asewe 
an 
onveniently de�ne � � A5=e5 = e�=p2�R, where the s
alars � and



Fun with Gauge Theories in 5 Dimensions 2525e� have dimension [3=2℄ and [1℄. The Lagrangian (1) 
an then be rewrittenin the suggestive form:L5 = 12�R �� 14e2kTr (F��F ��) + 12kTr (D�e�D�e�)� : (5)This resembles the Georgi�Glashow model [9℄ of an SO(3) gauge theoryintera
ting with an isove
tor Higgs �eld. There are two di�eren
es, however.First, there is no potential V (e�) = �(e�ae�a�V 2)2 for the Higgs �eld whi
hwould break the gauge symmetry down to U(1) and se
ond, the Higgs �elddepends on the 5th 
oordinate. Although this analysis is limited to gauge�elds satisfying �5A� = 0, it nevertheless inspires the following dis
ussionof symmetry breaking via Wilson loops and the further 
onsideration ofmonopoles with Wilson loops. In general, however, �5A� 6= 0 and we needto keep the full Tr (F 2�5) term.2.1. Wilson loop gauge symmetry breaking on M � S1Assume the 5th dimension is 
ompa
ti�ed on a 
ir
le S1 parametrizedby y 2 [0; 2�R℄. The gauge symmetry 
an then be broken by the presen
e ofa ba
kground gauge �eld A5. This symmetry breaking me
hanism is knownas Hosotani or Wilson loop symmetry breaking [11℄. Consider the 
onstantba
kground to be along the third isospin dire
tion,A5(y) = A35T 3: (6)Using the single valued gauge transformation (periodi
 under y ! y+2�R)given by Eqs. (3), (4) with �(x�; y) = �ny=R, n 2 Z:U(y) = exp��inT 3 yR� ; (7)we obtain the transformation of A35:A35 ! A35 + nR : (8)Therefore the gauge non-equivalent values of A35 
an be 
hosen to lie between0 and 1=R. The holonomy due to this 
onstant ba
kground gauge �eld isgiven by T = exp�iI A5dy� = exp �i�T 3� : (9)with the arbitrary parameter � � 2�RA35. Note the set of possible holo-nomies f1; T�1; T�2; � � �g provides a mapping of the gauge group into the



2526 S. Rabydis
rete group Z. This non-trivial holonomy a�e
ts the spe
trum of thetheory. A massless periodi
 s
alar �eld � (satisfying �(y + 2�R) = �(y))with isospin eigenvalue I3 
an be de
omposed into Kaluza�Klein modes�(n)(x�) exp� inyR � : (10)The 5-dimensional wave equation DMDM� = 0 splits into an in�nite setof 4-dimensional wave equations for Kaluza�Klein modes �(n) with massesgiven by m2(n)�(n) exp� inyR � = � ��y + iA35T 3�2 �(n) exp� inyR �= � nR +A35I3�2 �(n) exp� inyR � : (11)It is now easy to obtain the spe
trum of gauge �elds 1. The gauge �eld A3�(y)has I3 = 0 and therefore its KK modes are not a�e
ted by the holonomy.The zero mode of this �eld 
orresponds to the gauge �eld of the unbrokenU(1). On the other hand, the masses of the KK modes of the W� gaugebosons, with I3 = �1, are given bym(n) = j nR�A35j. If A35 6= kR , where k 2 Z,the gauge bosonsW� are all massive. Clearly the SO(3) symmetry is brokento U(1). Note, the symmetry breaking s
ale satis�es 0 � A35 < 1=R, but isotherwise un
onstrained.2.2. Gauge pi
ture with vanishing ba
kgroundA 
onstant ba
kground gauge �eld A35 may be gauged away with thenon-periodi
 gauge transformationU(y) = exp �iyA35T 3� : (12)In this gauge the 
ovariant derivative in Eq. (11) is trivial, i.e. D5 = �5.Nevertheless it is easy to see that, as expe
ted, the physi
s is un
hanged.This gauge transformation is not single valued and thus the periodi
ity
ondition �(y + 2�R) = �(y) be
omes�(y + 2�R) = exp �i�T 3��(y): (13)1 Consider a ba
kground �eld gauge with AM = BM + aM where BM is the ba
k-ground value of the gauge �eld and aM are the small �u
tuations. The ba
kground
ovariant derivative is given by DM � �M + i[BM ; ℄. If we use the 
ovariant gauge�xing 
ondition DMaM � 0, then the gauge �eld equations of motion are given byDMDMaN+3i[BNM ; aM ℄ = 0. Note, for a 
onstant ba
kground gauge �eldBNM � 0.



Fun with Gauge Theories in 5 Dimensions 2527Now the mode expansions are of the form�(n)(x�) exp hi� nR +A35I3� yi (14)resulting in the identi
al spe
trum as before.3. SO(3) gauge theory on S1=Z23.1. The S1=Z2 orbifoldThe S1=Z2 orbifold is a 
ir
le S1 modded out by a Z2 parity symmetry:y ! �y. The 5th dimension is now a line segment y 2 [0; �R℄. This orbifoldhas two �xed points at y = 0 and �R. The Lagrangian (1) is invariant underthe parity transformation A�(�y) = A�(y) ; (15)A5(�y) = �A5(y) : (16)As in the 
ase of 
ompa
ti�
ation on a 
ir
le we 
onsider a 
onstant ba
k-ground for A35 (Eq. (6)). Clearly su
h a ba
kground is not 
onsistent withthe parity operation, Eq. (16). However, following [14℄ we de�ne a gen-eralized parity by 
ombining the parity transformation (16) with the gaugetransformation (8), for n = 1, A35 ! A35+1=R. We then look for a 
onsistentsolution with 
onstant A35. There are now only two possible values for A35.The possibility A35 = 0 is obviously allowed, but in this 
ase the gauge sym-metry is unbroken. The only nontrivial 
hoi
e 
orresponds to A35(y) = 12Rwhi
h 
hanges sign under the �naive� parity, A35(�y) = � 12R , but is gaugeequivalent to its original value. Therefore, instead of (15) � (16) we de�nethe �elds for negative y, in the region ��R < y < 0, in terms of the �eldsde�ned for positive y in the fundamental domain, 0 < y < �R, via the gener-alized parity transformation (i.e. a 
ombined �naive� parity transformation(16) and a gauge transformation) su
h that, in general:A�(�y) = U(�y)A�(y)U y(�y)� iU(�y)��U y(�y); (17)A5(�y) = �U(�y)A5(y)U y(�y)� iU(�y)��yU y(�y); (18)with U(y) = exp��i yRT 3� : (19)It is useful to de�ne new �elds, W�, in a usual way from A1 and A2:W� = 1p2 �A1 � iA2� ; T� = 1p2 �T 1 � iT 2� : (20)



2528 S. RabyWith this de�nition we have A1T 1+A2T 2 =W+T++W�T� and [T 3; T�℄ =�T�. Using the identityexp�i yRT 3� T� exp��i yRT 3� = exp��i yR�T� (21)it is easy to show that the generalized parity tranformation a
ts on gauge�elds as follows: W�� (�y) = exp��i yR�W�� (y); (22)W�5 (�y) = � exp��i yR�W�5 (y); (23)A3�(�y) = A3�(y); (24)A35(�y) = �A35(y) + 1R: (25)To summarize, using a more 
ompa
t notation, we have the following
onstraints on the �elds (valid for all modes, ex
ept the 
onstant pie
e of A35).Under the generalized parity transformation the �elds �P (with P = �1)satisfy: �P (�y) = P exp�i yRI3��P (y) (26)with isospin eigenvalue I3 = �1; 0. The periodi
ity 
ondition is given by:�P (y + 2�R) = �P (y): (27)We then obtain the following de
omposition into KK modes:�+(x�; y) = 1Xn=0�(n)+ (x�) exp��i y2RI3� 
osn yR for even I3; (28)�+(x�; y) = 1Xn=0�(n)+ (x�) exp��i y2RI3� 
os �n+ 12� yR for odd I3; (29)��(x�; y) = 1Xn=0�(n)+ (x�) exp��i y2RI3� sin(n+ 1) yR for even I3;(30)��(x�; y) = 1Xn=0�(n)+ (x�) exp��i y2RI3� sin �n+ 12� yR for odd I3: (31)From transformations (22)�(25) we see that the KK mode expansion of A3�[(+) �eld with I3 = 0℄ is given in Eq. (28) with 
orresponding masses n=R.This is the only �eld whi
h has a zero mode. It 
orresponds to the gauge �eldof the unbroken U(1). The expansion ofW�� [(+) �eld with I3 = �1℄ is given



Fun with Gauge Theories in 5 Dimensions 2529in Eq. (29) with 
orresponding masses (n+1=2)=R. Similarly, the expansionofW�5 [(�) �eld with I3 = �1℄ is given in Eq. (31) with 
orresponding masses(n+1=2)=R. And �nally, the expansion of A35 [(�) �eld with I3 = 0℄ is givenby Eq. (30) up to the value of the 
onstant ba
kground:A35(x�; y) = 12R + 1Xn=0A3(n)5 (x�) sin(n+ 1) yR: (32)The holonomy T in this 
ase is given byT = exp(iI A35T 3) = exp(i�T 3) = diag (�1;�1; 1): (33)Hen
e T 2 = 1 or the set of possible holonomies f1; Tg maps the gauge groupinto the dis
rete group Z2. Unlike the 
ase of Wilson loops on S1 dis
ussedin se
tion 2, the ba
kground gauge �eld and 
onsequently the holonomy onS1=Z2 
an only take dis
rete values.Now let us 
onsider the gauge pi
ture with vanishing ba
kground gauge�eld. As in the 
ase of 
ompa
ti�
ation on a 
ir
le, we 
an gauge away the
onstant ba
kground by the non-single valued gauge transformation given inEq. (12). The transformations under the generalized parity are now those ofEqs. (15) and (16). In addition the non-single valued gauge transformation
hanges the periodi
ity 
ondition as in Eq. (13) with � = �.To obtain the spe
trum of KK modes of a �eld � we 
onsider both thetransformation under parity and the e�e
t of a non-trivial holonomy. Underparity, P : �PT (y) ! �PT (�y) = P�PT (y); (34)with P 2 = 1 or P = �1. When going around the 
ir
le, the �elds transformin the following way:T : �PT (y) ! �PT (y + 2�R) = T�PT (y) (35)with T 2 = 1 or T = �1. Therefore there are four di�erent kinds of �elds��� 
orresponding to the four di�erent 
ombinations of (P; T ). It is easy tosee that a �eld with given (P; T ) 
an be expanded into the following modes:�n(+;+) = 
osn yR ;�n(+;�) = 
os �n+ 12� yR ;�n(�;+) = sin(n+ 1) yR ;�n(�;�) = sin �n+ 12� yR : (36)



2530 S. RabyOnly the (+;+) �elds have massless zero modes. Of all the gauge �eldsonly A3� is a (+;+) �eld with a zero mode. W�� , A35 and W�5 are (+;�),(�;+) and (�;�) �elds , respe
tively. Clearly the mode expansion and the
orresponding KK masses are the same as in the previous pi
ture. Note,our gauge transformation parameters (Eq. (4)) are 
onstrained to satisfy�3(x�; y) = �3n(x�)�n(+;+) and �1;2(x�; y) = �1;2n (x�)�n(+;�). Hen
e,SO(3) is the symmetry everywhere in the �ve dimensions, EXCEPT on theboundary at y = �R.3.2. Corresponden
e to S1=(Z2 � Z 02) orbifoldThe S1=Z2 orbifold with holonomy T in the gauge pi
ture without a 
on-stant ba
kground gauge �eld is dire
tly related to the S1=(Z2�Z 02) orbifoldused re
ently in the literature [1�5℄. This 
orresponden
e is also evident inthe work of Ref. [14,15℄. We just need to identify the S1=(Z2 �Z 02) orbifoldwith S1, a 
ir
le of 
ir
umferen
e 4�R, divided by the Z2 transformationy ! �y and Z 02 transformation y0 ! �y0, where y0 � y � �R. The physi-
al spa
e is again the line segment y 2 [0; �R℄ with orbifold �xed points aty = 0 and �R. It is easy to see that P 0 2 Z 02 in this pi
ture 
orrespondsto the 
ombined translation and parity transformation in the previous pi
-ture, namely P 0 = T P. Note, a point at y = y0 whi
h 
orresponds toy0 = y0 � �R is transformed by Z 02 into the point y0 = �(y0 � �R) 
orre-sponding to y = �y0 + 2�R; this is equivalent to the a
tion of T Z2 on thepoint at y = y0, see Fig. 1.
-2� R -� R 0 � R 2� RZ2T

Z 02
0

� R2� R-� R Z2T Z 02
FIG. 1: The Z 02 parity transformation is equivalent to the 
ombined Z2 parity transformation andtranslation T .of the 
ir
le in this pi
ture is 4�R). Going around the whole 
ir
le (from y0 to y0+2�R andthen from y0+2�R to y0+4�R) 
learly 
orresponds to T 2. From Eq. (16) we see that goingfrom y0+2�R to y0+4�R is equivalent to going ba
kwards from y0+2�R to y0. ThereforeT 2 = 11 and there are only two possibilities for holonomy, T = +1 and T = �1, the same asin the S1=Z2 pi
ture. Hen
e we have T 2 Z2. Note, in the above we have assumed that Pand T 
an be simultaneously diagonalized. In general however P and T do not 
ommute.In this 
ase we would have P T P = T�1.C. Monopole string on S1=Z2We saw that the gauge theory in 5-dimensions be
omes a \gauge - Higgs" theory afterthe 5th dimension is 
ompa
ti�ed. The Higgs potential whi
h breaks the SO(3) gaugesymmetry to U(1) is absent, however its e�e
t 
an be repla
ed by the Wilson loop along the
ompa
ti�ed dimension. It was shown by 't Hooft and Polyakov [8℄ that the Georgi{Glashowmodel has a magneti
 monopole solution to the equations of motion. It is natural to askwhether magneti
 monopoles are present in the 
ompa
ti�ed 5-dimensional gauge theoryand what is the 
orresponden
e with the usual 't Hooft { Polyakov solution.The equations of motion 
orresponding to the Lagrangian (5) are:D�D� ~� = 0 ; D�F �� = ie2[~�; D� ~�℄: (39)They 
orrespond to the equations of motion of the Georgi{Glashow model in the absen
e ofthe Higgs potential. 9

Fig. 1. The Z 02 parity transformation is equivalent to the 
ombined Z2 parity trans-formation and translation T .The a
tion of Z2 on the �elds is given byP : �PP 0(y) ! �PP 0(�y) = P�PP 0(y); (37)with P 2 = 1 or P = �1. Similarly, under Z 02 we haveP 0 : �PP 0(�R+ y0) ! �PP 0(�R � y0) = P 0�PP 0(�R + y0) (38)with P 0 = TP and (P 0)2 = 1 or P 0 = �1.



Fun with Gauge Theories in 5 Dimensions 2531It is easy to see what the holonomy means in this pi
ture. Sin
e points y0and y0+2�R are identi�ed, the 
losed loop 
orresponds to going around halfof the 
ir
le (the 
ir
umferen
e of the 
ir
le in this pi
ture is 4�R). Goingaround the whole 
ir
le (from y0 to y0 + 2�R and then from y0 + 2�R toy0 + 4�R) 
learly 
orresponds to T 2. From Eq. (16) we see that going fromy0+2�R to y0+4�R is equivalent to going ba
kwards from y0+2�R to y0.Therefore T 2 = 1 and there are only two possibilities for holonomy, T = +1and T = �1, the same as in the S1=Z2 pi
ture. Hen
e we have T 2 Z2.Note, in the above we have assumed that P and T 
an be simultaneouslydiagonalized. In general however P and T do not 
ommute. In this 
ase wewould have P T P = T�1.3.3. Monopole string on S1=Z2We saw that the gauge theory in 5-dimensions be
omes a �gauge-Higgs�theory after the 5th dimension is 
ompa
ti�ed. The Higgs potential whi
hbreaks the SO(3) gauge symmetry to U(1) is absent, however its e�e
t 
an berepla
ed by the Wilson loop along the 
ompa
ti�ed dimension. It was shownby 't Hooft and Polyakov [8℄ that the Georgi�Glashow model has a magneti
monopole solution to the equations of motion. It is natural to ask whethermagneti
 monopoles are present in the 
ompa
ti�ed 5-dimensional gaugetheory and what is the 
orresponden
e with the usual 't Hooft�Polyakovsolution.The equations of motion 
orresponding to the Lagrangian (5) are:D�D�e� = 0 ; D�F �� = ie2[e�;D�e�℄: (39)They 
orrespond to the equations of motion of the Georgi�Glashow modelin the absen
e of the Higgs potential.Consider the ansatz (for 0 < y < �R):A5e � e� = 12Re (~̂r � ~T ) F (r) ; (40)Ai = 1r (~T � ~̂r)i G(r) ; A0 = 0 ; (41)where r = qx2i , r̂i = xi=r and F (r) and G(r) are dimensionless fun
tions.Asymptoti
ally, for r ! 1 we have G(r) ! 1. Note, the 
onstant 12R inthe normalization of A5 has been �xed by the va
uum boundary 
onditionswith the 
hoi
e F (r) ! 1 as r !1 (see dis
ussion below). This is exa
tlythe 't Hooft�Polyakov ansatz, and therefore it is a solution to the equations



2532 S. Rabyof motion, Eq. (39) withV � limr!1sTr (e�2)k = 12Re : (42)In order to 
omplete the solution we need to extend the above solution tonegative y (i.e. ��R < y < 0). As in the 
ase with a 
onstant ba
kground�eld A5 we use the generalized parity operation, Eqs. (17) and (18), nowwith U(y) = exp��i yR~̂r � ~T� ; (43)we obtainA5(�y)e � e�(�y) = �F (r) + 22Re (~̂r � ~T ) ; (44)Ai(�y) = G(r)� 1r (~T � ~̂r)i 
os yR+G(r)� 1r (Ti � r̂i(~̂r � ~T )) sin yR + 1r (~T � ~̂r)i : (45)Note, that the asymptoti
 values of Ai and A5, normalized as in Eq. (40),for r !1 satisfy Ai(�y) = Ai(y) and A5(�y) = A5(y) 2. Hen
e we obtainthe asymptoti
 holonomy limr!1T (r) = exp(i�~̂r � ~T ) (46)satisfying the 
ondition T 2 = 1, i.e. T 2 Z2. Moreover in any given spatialdire
tion ~̂r, the asymptoti
 holonomy is gauge equivalent to the va
uumvalue, Eq. (33). It is this physi
al requirement, that asymptoti
ally faraway from the monopole we re
over the va
uum holonomy, whi
h �xes theasymptoti
 magnitude of A5, Eq. (40). Note, in the 
ase of a simple 
ir
le,dis
ussed in Se
tion 2.1, T 2 Z and the magnitude of A5 is arbitrary. Inthis 
ase, the monopole mass 
an be taken 
ontinuously to zero. Hen
emonopoles on S1 are unstable.Although the form of the gauge �elds for ��R < y < 0, de�ned by thegeneralized parity transformation of the 't Hooft ansatz for 0 < y < �Ris quite 
ompli
ated, it is easy to see that they are a solution to the �eld2 For any �nite r, the �eld Ai(y) is dis
ontinuous in y at the point y = �R. This resultsin some singular behavior for Fi5 at y = �R. This may be a serious problem for the
onstru
tion of monopoles on orbifolds or there may be a simple way of removing thesingularity. At any rate, this problem is presently under investigation.



Fun with Gauge Theories in 5 Dimensions 2533equations. This is be
ause the a
tion is both parity and gauge invariant. Infa
t the a
tion S � Z d4x +�RZ��R dyL = 2Z d4x +�RZ0 dyL (47)is 
ompletely de�ned in terms of the �elds in the fundamental domain0 � y � �R.The asymptoti
 (r !1) gauge �eld strength is given byFij = "ijk r̂k (~̂r � ~T )r2 : (48)The asymptoti
 U(1) Abelian magneti
 �eld is then given byBi � � 12ek "ijk Tr �( ê�) Fjk� = � r̂ie r2 ; (49)where ê� � e�=V . Therefore the solution is a magneti
 monopole string withtotal magneti
 
harge g = �1=e or equivalently a magneti
 
harge per unitlength in the 5th dire
tion given by g=�R.The monopole string energy density is given byH = 12�R � 14e2kTr (FijF ij) + 12kTr (Die�Die�)� : (50)It is a 
onstant fun
tion of y and thus we should really talk about a monopolestring stret
hed in the 5th dire
tion from y = 0 to y = �R. The energydensity, Eq. (50), is the usual four dimensional energy density divided by thelength of the �fth dimension and the energy per unit length of the monopolestring is obtained by integrating H over the three �at spatial dimensions.Note, the integrated energy density from Eq. (50) 
an be written asH = Z d3x1kTr "14 �1eFij � "ijkDk e��2 � 12e "ijk Fij Dk e�# ; (51)where the integration over y has been performed. The se
ond term 
an berewritten using Bian
hi identity as 12ek"ijk�kTr (Fij e�) and its 
ontributionto the energy of the monopole is� 12ek "ijk Z d3x�kTr (Fij e�) = �V Z ~B � d~S = �4�V g: (52)



2534 S. RabyWhen the �rst term in (51) vanishes the monopole solution is said to satisfythe Bogomol'nyi bound and su
h monopoles are 
alled BPS monopoles. Infa
t, the general 't Hooft�Polyakov monopole solution redu
es to a BPSmonopole in the limit that the Higgs potential for the adjoint s
alar vanishes.Hen
e our monopole strings are in fa
t BPS monopole strings and their massis given by Mm = 4�Ve = MW� = 12�R ; (53)where � = e2=4� is the dimensionless �ne stru
ture 
onstant at the s
ale1=R, and R is the orbifold radius.It is also important to express the equations for the BPS 
ondition andthe monopole energy density in an expli
itly gauge invariant and 5D 
ovari-ant form. The BPS 
ondition isFij = �"ijkFk5 (54)and the energy density is given byH = � 12e5k "ijk Tr (Fij Dk�) = � 12e25k"ijk Tr (Fij Fk5)= � 18e25k"0NPQR Tr (FNP FQR) : (55)Note it is then 
lear that the �ve dimensional Hamiltonian density is thetime 
omponent of a �ve ve
tor given byPM = � 18e25k "MNPQRTr (FNP FQR) � �NKMN (56)with KMN = � 14e25k "MNPQRTr (AP FQR � i23AP AQAR) : (57)Hen
e PM satis�es the topologi
al 
onservation law �MPM � 0.As a �nal note we 
an also 
onsider the monopole solution in the gaugewith vanishing ba
kground gauge �eld, i.e. hA5i � 0. We �nd (for0 < y < �R)A5e � e� = F (r)� 12Re (~̂r � ~T ) ; (58)Ai = G(r)� 1r (~T � ~̂r)i 
os y2R+G(r)� 1r (Ti � r̂i(~̂r � ~T )) sin y2R + 1r (~T � ~̂r)i : (59)



Fun with Gauge Theories in 5 Dimensions 2535Then for ��R < y < 0 we obtain, by expli
itly gauge transforming the �eldsin Eqs. (44) and (45), A5(�y) = �A5(y) and Ai(�y) = Ai(y) as expe
tedfrom �naive� parity, Eqs. (15) and (16).4. Con
lusionsIn this letter we dis
ussed Wilson loop symmetry breaking on orbifoldsin �ve dimensions. We have also 
leared up the mathemati
al 
orrespon-den
e between two apparently distin
t orbifolds 
onsidered in the literature,namely S1=Z2 with a ba
kground gauge �eld and S1=(Z2 � Z 02). In fa
tthey are identi
al upon res
aling the radius by a fa
tor of 2. Although ouranalysis has been in non-supersymmetri
 gauge theories, it should be easy toextend to the 
ase of orbifold symmetry breaking in supersymmetri
 gaugetheories.We have 
onstru
ted monopole string solutions for an SO(3) gauge group;valid when SO(3) is broken to U(1). Our 
onstru
tion 
an be extended to anySU(N) gauge group on an M �S1=Z2 orbifold with ba
kground gauge �eld.Su
h monopole strings may have interesting phenomenologi
al 
onsequen
esfor grand uni�ed s
enarios with large extra dimensions [1℄. They would beexpe
ted to have mass of order 1=2�R, with a 
ompa
ti�
ation s
ale 1=R assmall as a few TeV. Note that a GUT monopole string 
an lead to 
atalysisof baryon number violating pro
esses [16℄.Another interesting example would be in the 
ase of the SU(3) ele
-troweak uni�
ation model re
ently dis
ussed in the literature [5℄. It is easyto show that this model also 
ontains monopole strings when the symmetryis broken to either SU(2) � U(1)Y or dire
tly to U(1)EM with the additionof a Higgs multiplet in the triplet representation. Su
h a monopole stringwill have mass of order 60=R.Clearly in light of the results presented here, it will be interesting tostudy monopole string produ
tion at high energy a

elerators and at �nitetemperatures in the early universe.I would like to take this opportunity to 
ongratulate S. Pokorski on theo

asion of his 60th birthday. I would like to thank him for his valued friend-ship and also for the many fruitful dis
ussions we have had over the years.Partial support for this work 
ame from DOE 
ontra
t DOE/ER/01545.
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