
Vol. 33 (2002) ACTA PHYSICA POLONICA B No 9
FUN WITH GAUGE THEORIES IN 5 DIMENSIONSStuart RabyDepartment of Physis, The Ohio State University174 W 18th Ave, Columbus, OH 43210, USA(Reeived June 28, 2002)Dediated to Stefan Pokorski on his 60th birthdayWe disuss gauge symmetry breaking with Wilson loops in 5 dimen-sions. We present a simple example with the �fth dimension ompati�edon an S1=Z2 orbifold. The Wilson loop in this SO(3) example replaesthe adjoint Higgs salar (needed to break SO(3) to U(1)) in the well-knownGeorgi�Glashow model. We then show that gauge symmetry breaking witha Wilson loop on this S1=Z2 orbifold is gauge equivalent to gauge symme-try breaking on a partiular S1=(Z2�Z 02) orbifold. The latter orbifold hasbeen used in many reent onstrutions with gauge symmetry breaking in�ve dimensional supersymmetri and non-supersymmetri models. Finallywe expliitly onstrut a magneti monopole string solution; the analog ofthe 't Hooft�Polyakov monopole. The monopole string has �nite energy,and length equal to the size of the extra dimension.PACS numbers: 04.50.+h, 11.25.Mj, 11.15.Ex1. IntrodutionReently there has been quite a bit of interest in non-Abelian gauge�eld theories in 4 + d dimensions with d extra dimensions ompati�ed onan orbifold [1�5℄. The extra dimensions an have inverse radii of order afew TeV, of order the GUT sale or anything in between. In these reentstudies, symmetry breaking via orbifold boundary onditions has replaedthe traditional method using the vauum expetation values of Higgs salars.In an illustrative and simple example in one extra dimension, the orbifoldsS1=Z2 and S1=(Z2�Z 02) have been used to break the GUT groups SU(5) !SU(3) � SU(2) � U(1) [1, 2℄, SO(10) ! SU(4) � SU(2)L � SU(2)R [3℄, theleft-right gauge symmetry SU(2)L�SU(2)R�U(1)B�L ! SU(2)L�U(1)R�U(1)B�L [4℄ or the eletroweak uni�ed group SU(3)! SU(2)�U(1) [5℄.(2523)



2524 S. RabyIn this letter we argue that magneti monopoles are generi onsequenesof gauge symmetry breaking with Wilson loops on S1=Z2 orbifolds. We on-sider the simple example of an SO(3) gauge theory de�ned on the orbifoldM �S1=Z2 with a bakground gauge �eld. In an attempt to de�ne notationand set up some of the ideas we introdue the onept of Wilson loop sym-metry breaking in the simple example of the irle S1. We then generalizethis disussion to the orbifold S1=Z2 and also eluidate the equivalene ofgauge symmetry breaking with Wilson loops on S1=Z2 and gauge symme-try breaking on the orbifold S1=(Z2 � Z 02). Finally, we expliitly onstrutthe monopole string solution and disuss some of its properties. This letteris based on the reent paper [6℄ and the earlier work [7�13℄. For a reentdisussion of Wilson loops on orbifolds see [14℄.2. SO(3) gauge theory on M � S1Consider a general gauge theory with symmetry group G in �ve dimen-sional spaetime. The Lagrangian is given byL5 = � 14e25kTr (FMNFMN ) (1)where FMN � Pa F aMNT a, T a are generators in some �nite dimensionalrepresentation of G normalized suh that Tr (T aT b) = kÆab and M;N =f0; 1; 2; 3; 5g: FMN = �MAN � �NAM + i[AM ; AN ℄: (2)(For the adjoint representation of SO(3) we use the standard normalizationof the generators with k = 2.) The gauge transformation of the gauge �eldAM (x�; y) � PaAaMT a(x�; y) (greek indies orrespond to 4-dimensionalMinkowski spaetime and y � x5) is given byAM (x�; y)! UAM (x�; y)U y � iU�MU y; (3)where U = exp(i�a(x�; y)T a): (4)In our notation, Eq. (1), the gauge �elds have mass dimensions [1℄, andthe harge e5 has dimension [-1/2℄. We an also de�ne the e�etive fourdimensional, dimensionless, gauge oupling e by resaling e5 in Eq. (1) viathe expression e5 = p2�R e. Note, if �5A� = 0, then F�5 redues to theovariant derivative of the 5th omponent of the gauge �eld A5. In this asewe an onveniently de�ne � � A5=e5 = e�=p2�R, where the salars � and



Fun with Gauge Theories in 5 Dimensions 2525e� have dimension [3=2℄ and [1℄. The Lagrangian (1) an then be rewrittenin the suggestive form:L5 = 12�R �� 14e2kTr (F��F ��) + 12kTr (D�e�D�e�)� : (5)This resembles the Georgi�Glashow model [9℄ of an SO(3) gauge theoryinterating with an isovetor Higgs �eld. There are two di�erenes, however.First, there is no potential V (e�) = �(e�ae�a�V 2)2 for the Higgs �eld whihwould break the gauge symmetry down to U(1) and seond, the Higgs �elddepends on the 5th oordinate. Although this analysis is limited to gauge�elds satisfying �5A� = 0, it nevertheless inspires the following disussionof symmetry breaking via Wilson loops and the further onsideration ofmonopoles with Wilson loops. In general, however, �5A� 6= 0 and we needto keep the full Tr (F 2�5) term.2.1. Wilson loop gauge symmetry breaking on M � S1Assume the 5th dimension is ompati�ed on a irle S1 parametrizedby y 2 [0; 2�R℄. The gauge symmetry an then be broken by the presene ofa bakground gauge �eld A5. This symmetry breaking mehanism is knownas Hosotani or Wilson loop symmetry breaking [11℄. Consider the onstantbakground to be along the third isospin diretion,A5(y) = A35T 3: (6)Using the single valued gauge transformation (periodi under y ! y+2�R)given by Eqs. (3), (4) with �(x�; y) = �ny=R, n 2 Z:U(y) = exp��inT 3 yR� ; (7)we obtain the transformation of A35:A35 ! A35 + nR : (8)Therefore the gauge non-equivalent values of A35 an be hosen to lie between0 and 1=R. The holonomy due to this onstant bakground gauge �eld isgiven by T = exp�iI A5dy� = exp �i�T 3� : (9)with the arbitrary parameter � � 2�RA35. Note the set of possible holo-nomies f1; T�1; T�2; � � �g provides a mapping of the gauge group into the



2526 S. Rabydisrete group Z. This non-trivial holonomy a�ets the spetrum of thetheory. A massless periodi salar �eld � (satisfying �(y + 2�R) = �(y))with isospin eigenvalue I3 an be deomposed into Kaluza�Klein modes�(n)(x�) exp� inyR � : (10)The 5-dimensional wave equation DMDM� = 0 splits into an in�nite setof 4-dimensional wave equations for Kaluza�Klein modes �(n) with massesgiven by m2(n)�(n) exp� inyR � = � ��y + iA35T 3�2 �(n) exp� inyR �= � nR +A35I3�2 �(n) exp� inyR � : (11)It is now easy to obtain the spetrum of gauge �elds 1. The gauge �eld A3�(y)has I3 = 0 and therefore its KK modes are not a�eted by the holonomy.The zero mode of this �eld orresponds to the gauge �eld of the unbrokenU(1). On the other hand, the masses of the KK modes of the W� gaugebosons, with I3 = �1, are given bym(n) = j nR�A35j. If A35 6= kR , where k 2 Z,the gauge bosonsW� are all massive. Clearly the SO(3) symmetry is brokento U(1). Note, the symmetry breaking sale satis�es 0 � A35 < 1=R, but isotherwise unonstrained.2.2. Gauge piture with vanishing bakgroundA onstant bakground gauge �eld A35 may be gauged away with thenon-periodi gauge transformationU(y) = exp �iyA35T 3� : (12)In this gauge the ovariant derivative in Eq. (11) is trivial, i.e. D5 = �5.Nevertheless it is easy to see that, as expeted, the physis is unhanged.This gauge transformation is not single valued and thus the periodiityondition �(y + 2�R) = �(y) beomes�(y + 2�R) = exp �i�T 3��(y): (13)1 Consider a bakground �eld gauge with AM = BM + aM where BM is the bak-ground value of the gauge �eld and aM are the small �utuations. The bakgroundovariant derivative is given by DM � �M + i[BM ; ℄. If we use the ovariant gauge�xing ondition DMaM � 0, then the gauge �eld equations of motion are given byDMDMaN+3i[BNM ; aM ℄ = 0. Note, for a onstant bakground gauge �eldBNM � 0.



Fun with Gauge Theories in 5 Dimensions 2527Now the mode expansions are of the form�(n)(x�) exp hi� nR +A35I3� yi (14)resulting in the idential spetrum as before.3. SO(3) gauge theory on S1=Z23.1. The S1=Z2 orbifoldThe S1=Z2 orbifold is a irle S1 modded out by a Z2 parity symmetry:y ! �y. The 5th dimension is now a line segment y 2 [0; �R℄. This orbifoldhas two �xed points at y = 0 and �R. The Lagrangian (1) is invariant underthe parity transformation A�(�y) = A�(y) ; (15)A5(�y) = �A5(y) : (16)As in the ase of ompati�ation on a irle we onsider a onstant bak-ground for A35 (Eq. (6)). Clearly suh a bakground is not onsistent withthe parity operation, Eq. (16). However, following [14℄ we de�ne a gen-eralized parity by ombining the parity transformation (16) with the gaugetransformation (8), for n = 1, A35 ! A35+1=R. We then look for a onsistentsolution with onstant A35. There are now only two possible values for A35.The possibility A35 = 0 is obviously allowed, but in this ase the gauge sym-metry is unbroken. The only nontrivial hoie orresponds to A35(y) = 12Rwhih hanges sign under the �naive� parity, A35(�y) = � 12R , but is gaugeequivalent to its original value. Therefore, instead of (15) � (16) we de�nethe �elds for negative y, in the region ��R < y < 0, in terms of the �eldsde�ned for positive y in the fundamental domain, 0 < y < �R, via the gener-alized parity transformation (i.e. a ombined �naive� parity transformation(16) and a gauge transformation) suh that, in general:A�(�y) = U(�y)A�(y)U y(�y)� iU(�y)��U y(�y); (17)A5(�y) = �U(�y)A5(y)U y(�y)� iU(�y)��yU y(�y); (18)with U(y) = exp��i yRT 3� : (19)It is useful to de�ne new �elds, W�, in a usual way from A1 and A2:W� = 1p2 �A1 � iA2� ; T� = 1p2 �T 1 � iT 2� : (20)



2528 S. RabyWith this de�nition we have A1T 1+A2T 2 =W+T++W�T� and [T 3; T�℄ =�T�. Using the identityexp�i yRT 3� T� exp��i yRT 3� = exp��i yR�T� (21)it is easy to show that the generalized parity tranformation ats on gauge�elds as follows: W�� (�y) = exp��i yR�W�� (y); (22)W�5 (�y) = � exp��i yR�W�5 (y); (23)A3�(�y) = A3�(y); (24)A35(�y) = �A35(y) + 1R: (25)To summarize, using a more ompat notation, we have the followingonstraints on the �elds (valid for all modes, exept the onstant piee of A35).Under the generalized parity transformation the �elds �P (with P = �1)satisfy: �P (�y) = P exp�i yRI3��P (y) (26)with isospin eigenvalue I3 = �1; 0. The periodiity ondition is given by:�P (y + 2�R) = �P (y): (27)We then obtain the following deomposition into KK modes:�+(x�; y) = 1Xn=0�(n)+ (x�) exp��i y2RI3� osn yR for even I3; (28)�+(x�; y) = 1Xn=0�(n)+ (x�) exp��i y2RI3� os �n+ 12� yR for odd I3; (29)��(x�; y) = 1Xn=0�(n)+ (x�) exp��i y2RI3� sin(n+ 1) yR for even I3;(30)��(x�; y) = 1Xn=0�(n)+ (x�) exp��i y2RI3� sin �n+ 12� yR for odd I3: (31)From transformations (22)�(25) we see that the KK mode expansion of A3�[(+) �eld with I3 = 0℄ is given in Eq. (28) with orresponding masses n=R.This is the only �eld whih has a zero mode. It orresponds to the gauge �eldof the unbroken U(1). The expansion ofW�� [(+) �eld with I3 = �1℄ is given



Fun with Gauge Theories in 5 Dimensions 2529in Eq. (29) with orresponding masses (n+1=2)=R. Similarly, the expansionofW�5 [(�) �eld with I3 = �1℄ is given in Eq. (31) with orresponding masses(n+1=2)=R. And �nally, the expansion of A35 [(�) �eld with I3 = 0℄ is givenby Eq. (30) up to the value of the onstant bakground:A35(x�; y) = 12R + 1Xn=0A3(n)5 (x�) sin(n+ 1) yR: (32)The holonomy T in this ase is given byT = exp(iI A35T 3) = exp(i�T 3) = diag (�1;�1; 1): (33)Hene T 2 = 1 or the set of possible holonomies f1; Tg maps the gauge groupinto the disrete group Z2. Unlike the ase of Wilson loops on S1 disussedin setion 2, the bakground gauge �eld and onsequently the holonomy onS1=Z2 an only take disrete values.Now let us onsider the gauge piture with vanishing bakground gauge�eld. As in the ase of ompati�ation on a irle, we an gauge away theonstant bakground by the non-single valued gauge transformation given inEq. (12). The transformations under the generalized parity are now those ofEqs. (15) and (16). In addition the non-single valued gauge transformationhanges the periodiity ondition as in Eq. (13) with � = �.To obtain the spetrum of KK modes of a �eld � we onsider both thetransformation under parity and the e�et of a non-trivial holonomy. Underparity, P : �PT (y) ! �PT (�y) = P�PT (y); (34)with P 2 = 1 or P = �1. When going around the irle, the �elds transformin the following way:T : �PT (y) ! �PT (y + 2�R) = T�PT (y) (35)with T 2 = 1 or T = �1. Therefore there are four di�erent kinds of �elds��� orresponding to the four di�erent ombinations of (P; T ). It is easy tosee that a �eld with given (P; T ) an be expanded into the following modes:�n(+;+) = osn yR ;�n(+;�) = os �n+ 12� yR ;�n(�;+) = sin(n+ 1) yR ;�n(�;�) = sin �n+ 12� yR : (36)



2530 S. RabyOnly the (+;+) �elds have massless zero modes. Of all the gauge �eldsonly A3� is a (+;+) �eld with a zero mode. W�� , A35 and W�5 are (+;�),(�;+) and (�;�) �elds , respetively. Clearly the mode expansion and theorresponding KK masses are the same as in the previous piture. Note,our gauge transformation parameters (Eq. (4)) are onstrained to satisfy�3(x�; y) = �3n(x�)�n(+;+) and �1;2(x�; y) = �1;2n (x�)�n(+;�). Hene,SO(3) is the symmetry everywhere in the �ve dimensions, EXCEPT on theboundary at y = �R.3.2. Correspondene to S1=(Z2 � Z 02) orbifoldThe S1=Z2 orbifold with holonomy T in the gauge piture without a on-stant bakground gauge �eld is diretly related to the S1=(Z2�Z 02) orbifoldused reently in the literature [1�5℄. This orrespondene is also evident inthe work of Ref. [14,15℄. We just need to identify the S1=(Z2 �Z 02) orbifoldwith S1, a irle of irumferene 4�R, divided by the Z2 transformationy ! �y and Z 02 transformation y0 ! �y0, where y0 � y � �R. The physi-al spae is again the line segment y 2 [0; �R℄ with orbifold �xed points aty = 0 and �R. It is easy to see that P 0 2 Z 02 in this piture orrespondsto the ombined translation and parity transformation in the previous pi-ture, namely P 0 = T P. Note, a point at y = y0 whih orresponds toy0 = y0 � �R is transformed by Z 02 into the point y0 = �(y0 � �R) orre-sponding to y = �y0 + 2�R; this is equivalent to the ation of T Z2 on thepoint at y = y0, see Fig. 1.
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FIG. 1: The Z 02 parity transformation is equivalent to the ombined Z2 parity transformation andtranslation T .of the irle in this piture is 4�R). Going around the whole irle (from y0 to y0+2�R andthen from y0+2�R to y0+4�R) learly orresponds to T 2. From Eq. (16) we see that goingfrom y0+2�R to y0+4�R is equivalent to going bakwards from y0+2�R to y0. ThereforeT 2 = 11 and there are only two possibilities for holonomy, T = +1 and T = �1, the same asin the S1=Z2 piture. Hene we have T 2 Z2. Note, in the above we have assumed that Pand T an be simultaneously diagonalized. In general however P and T do not ommute.In this ase we would have P T P = T�1.C. Monopole string on S1=Z2We saw that the gauge theory in 5-dimensions beomes a \gauge - Higgs" theory afterthe 5th dimension is ompati�ed. The Higgs potential whih breaks the SO(3) gaugesymmetry to U(1) is absent, however its e�et an be replaed by the Wilson loop along theompati�ed dimension. It was shown by 't Hooft and Polyakov [8℄ that the Georgi{Glashowmodel has a magneti monopole solution to the equations of motion. It is natural to askwhether magneti monopoles are present in the ompati�ed 5-dimensional gauge theoryand what is the orrespondene with the usual 't Hooft { Polyakov solution.The equations of motion orresponding to the Lagrangian (5) are:D�D� ~� = 0 ; D�F �� = ie2[~�; D� ~�℄: (39)They orrespond to the equations of motion of the Georgi{Glashow model in the absene ofthe Higgs potential. 9

Fig. 1. The Z 02 parity transformation is equivalent to the ombined Z2 parity trans-formation and translation T .The ation of Z2 on the �elds is given byP : �PP 0(y) ! �PP 0(�y) = P�PP 0(y); (37)with P 2 = 1 or P = �1. Similarly, under Z 02 we haveP 0 : �PP 0(�R+ y0) ! �PP 0(�R � y0) = P 0�PP 0(�R + y0) (38)with P 0 = TP and (P 0)2 = 1 or P 0 = �1.



Fun with Gauge Theories in 5 Dimensions 2531It is easy to see what the holonomy means in this piture. Sine points y0and y0+2�R are identi�ed, the losed loop orresponds to going around halfof the irle (the irumferene of the irle in this piture is 4�R). Goingaround the whole irle (from y0 to y0 + 2�R and then from y0 + 2�R toy0 + 4�R) learly orresponds to T 2. From Eq. (16) we see that going fromy0+2�R to y0+4�R is equivalent to going bakwards from y0+2�R to y0.Therefore T 2 = 1 and there are only two possibilities for holonomy, T = +1and T = �1, the same as in the S1=Z2 piture. Hene we have T 2 Z2.Note, in the above we have assumed that P and T an be simultaneouslydiagonalized. In general however P and T do not ommute. In this ase wewould have P T P = T�1.3.3. Monopole string on S1=Z2We saw that the gauge theory in 5-dimensions beomes a �gauge-Higgs�theory after the 5th dimension is ompati�ed. The Higgs potential whihbreaks the SO(3) gauge symmetry to U(1) is absent, however its e�et an bereplaed by the Wilson loop along the ompati�ed dimension. It was shownby 't Hooft and Polyakov [8℄ that the Georgi�Glashow model has a magnetimonopole solution to the equations of motion. It is natural to ask whethermagneti monopoles are present in the ompati�ed 5-dimensional gaugetheory and what is the orrespondene with the usual 't Hooft�Polyakovsolution.The equations of motion orresponding to the Lagrangian (5) are:D�D�e� = 0 ; D�F �� = ie2[e�;D�e�℄: (39)They orrespond to the equations of motion of the Georgi�Glashow modelin the absene of the Higgs potential.Consider the ansatz (for 0 < y < �R):A5e � e� = 12Re (~̂r � ~T ) F (r) ; (40)Ai = 1r (~T � ~̂r)i G(r) ; A0 = 0 ; (41)where r = qx2i , r̂i = xi=r and F (r) and G(r) are dimensionless funtions.Asymptotially, for r ! 1 we have G(r) ! 1. Note, the onstant 12R inthe normalization of A5 has been �xed by the vauum boundary onditionswith the hoie F (r) ! 1 as r !1 (see disussion below). This is exatlythe 't Hooft�Polyakov ansatz, and therefore it is a solution to the equations



2532 S. Rabyof motion, Eq. (39) withV � limr!1sTr (e�2)k = 12Re : (42)In order to omplete the solution we need to extend the above solution tonegative y (i.e. ��R < y < 0). As in the ase with a onstant bakground�eld A5 we use the generalized parity operation, Eqs. (17) and (18), nowwith U(y) = exp��i yR~̂r � ~T� ; (43)we obtainA5(�y)e � e�(�y) = �F (r) + 22Re (~̂r � ~T ) ; (44)Ai(�y) = G(r)� 1r (~T � ~̂r)i os yR+G(r)� 1r (Ti � r̂i(~̂r � ~T )) sin yR + 1r (~T � ~̂r)i : (45)Note, that the asymptoti values of Ai and A5, normalized as in Eq. (40),for r !1 satisfy Ai(�y) = Ai(y) and A5(�y) = A5(y) 2. Hene we obtainthe asymptoti holonomy limr!1T (r) = exp(i�~̂r � ~T ) (46)satisfying the ondition T 2 = 1, i.e. T 2 Z2. Moreover in any given spatialdiretion ~̂r, the asymptoti holonomy is gauge equivalent to the vauumvalue, Eq. (33). It is this physial requirement, that asymptotially faraway from the monopole we reover the vauum holonomy, whih �xes theasymptoti magnitude of A5, Eq. (40). Note, in the ase of a simple irle,disussed in Setion 2.1, T 2 Z and the magnitude of A5 is arbitrary. Inthis ase, the monopole mass an be taken ontinuously to zero. Henemonopoles on S1 are unstable.Although the form of the gauge �elds for ��R < y < 0, de�ned by thegeneralized parity transformation of the 't Hooft ansatz for 0 < y < �Ris quite ompliated, it is easy to see that they are a solution to the �eld2 For any �nite r, the �eld Ai(y) is disontinuous in y at the point y = �R. This resultsin some singular behavior for Fi5 at y = �R. This may be a serious problem for theonstrution of monopoles on orbifolds or there may be a simple way of removing thesingularity. At any rate, this problem is presently under investigation.



Fun with Gauge Theories in 5 Dimensions 2533equations. This is beause the ation is both parity and gauge invariant. Infat the ation S � Z d4x +�RZ��R dyL = 2Z d4x +�RZ0 dyL (47)is ompletely de�ned in terms of the �elds in the fundamental domain0 � y � �R.The asymptoti (r !1) gauge �eld strength is given byFij = "ijk r̂k (~̂r � ~T )r2 : (48)The asymptoti U(1) Abelian magneti �eld is then given byBi � � 12ek "ijk Tr �( ê�) Fjk� = � r̂ie r2 ; (49)where ê� � e�=V . Therefore the solution is a magneti monopole string withtotal magneti harge g = �1=e or equivalently a magneti harge per unitlength in the 5th diretion given by g=�R.The monopole string energy density is given byH = 12�R � 14e2kTr (FijF ij) + 12kTr (Die�Die�)� : (50)It is a onstant funtion of y and thus we should really talk about a monopolestring strethed in the 5th diretion from y = 0 to y = �R. The energydensity, Eq. (50), is the usual four dimensional energy density divided by thelength of the �fth dimension and the energy per unit length of the monopolestring is obtained by integrating H over the three �at spatial dimensions.Note, the integrated energy density from Eq. (50) an be written asH = Z d3x1kTr "14 �1eFij � "ijkDk e��2 � 12e "ijk Fij Dk e�# ; (51)where the integration over y has been performed. The seond term an berewritten using Bianhi identity as 12ek"ijk�kTr (Fij e�) and its ontributionto the energy of the monopole is� 12ek "ijk Z d3x�kTr (Fij e�) = �V Z ~B � d~S = �4�V g: (52)



2534 S. RabyWhen the �rst term in (51) vanishes the monopole solution is said to satisfythe Bogomol'nyi bound and suh monopoles are alled BPS monopoles. Infat, the general 't Hooft�Polyakov monopole solution redues to a BPSmonopole in the limit that the Higgs potential for the adjoint salar vanishes.Hene our monopole strings are in fat BPS monopole strings and their massis given by Mm = 4�Ve = MW� = 12�R ; (53)where � = e2=4� is the dimensionless �ne struture onstant at the sale1=R, and R is the orbifold radius.It is also important to express the equations for the BPS ondition andthe monopole energy density in an expliitly gauge invariant and 5D ovari-ant form. The BPS ondition isFij = �"ijkFk5 (54)and the energy density is given byH = � 12e5k "ijk Tr (Fij Dk�) = � 12e25k"ijk Tr (Fij Fk5)= � 18e25k"0NPQR Tr (FNP FQR) : (55)Note it is then lear that the �ve dimensional Hamiltonian density is thetime omponent of a �ve vetor given byPM = � 18e25k "MNPQRTr (FNP FQR) � �NKMN (56)with KMN = � 14e25k "MNPQRTr (AP FQR � i23AP AQAR) : (57)Hene PM satis�es the topologial onservation law �MPM � 0.As a �nal note we an also onsider the monopole solution in the gaugewith vanishing bakground gauge �eld, i.e. hA5i � 0. We �nd (for0 < y < �R)A5e � e� = F (r)� 12Re (~̂r � ~T ) ; (58)Ai = G(r)� 1r (~T � ~̂r)i os y2R+G(r)� 1r (Ti � r̂i(~̂r � ~T )) sin y2R + 1r (~T � ~̂r)i : (59)



Fun with Gauge Theories in 5 Dimensions 2535Then for ��R < y < 0 we obtain, by expliitly gauge transforming the �eldsin Eqs. (44) and (45), A5(�y) = �A5(y) and Ai(�y) = Ai(y) as expetedfrom �naive� parity, Eqs. (15) and (16).4. ConlusionsIn this letter we disussed Wilson loop symmetry breaking on orbifoldsin �ve dimensions. We have also leared up the mathematial orrespon-dene between two apparently distint orbifolds onsidered in the literature,namely S1=Z2 with a bakground gauge �eld and S1=(Z2 � Z 02). In fatthey are idential upon resaling the radius by a fator of 2. Although ouranalysis has been in non-supersymmetri gauge theories, it should be easy toextend to the ase of orbifold symmetry breaking in supersymmetri gaugetheories.We have onstruted monopole string solutions for an SO(3) gauge group;valid when SO(3) is broken to U(1). Our onstrution an be extended to anySU(N) gauge group on an M �S1=Z2 orbifold with bakground gauge �eld.Suh monopole strings may have interesting phenomenologial onsequenesfor grand uni�ed senarios with large extra dimensions [1℄. They would beexpeted to have mass of order 1=2�R, with a ompati�ation sale 1=R assmall as a few TeV. Note that a GUT monopole string an lead to atalysisof baryon number violating proesses [16℄.Another interesting example would be in the ase of the SU(3) ele-troweak uni�ation model reently disussed in the literature [5℄. It is easyto show that this model also ontains monopole strings when the symmetryis broken to either SU(2) � U(1)Y or diretly to U(1)EM with the additionof a Higgs multiplet in the triplet representation. Suh a monopole stringwill have mass of order 60=R.Clearly in light of the results presented here, it will be interesting tostudy monopole string prodution at high energy aelerators and at �nitetemperatures in the early universe.I would like to take this opportunity to ongratulate S. Pokorski on theoasion of his 60th birthday. I would like to thank him for his valued friend-ship and also for the many fruitful disussions we have had over the years.Partial support for this work ame from DOE ontrat DOE/ER/01545.
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