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We discuss gauge symmetry breaking with Wilson loops in 5 dimen-
sions. We present a simple example with the fifth dimension compactified
on an S'/Z, orbifold. The Wilson loop in this SO(3) example replaces
the adjoint Higgs scalar (needed to break SO(3) to U(1)) in the well-known
Georgi—Glashow model. We then show that gauge symmetry breaking with
a Wilson loop on this S'/Z5 orbifold is gauge equivalent to gauge symme-
try breaking on a particular S'/(Z; x Z4) orbifold. The latter orbifold has
been used in many recent constructions with gauge symmetry breaking in
five dimensional supersymmetric and non-supersymmetric models. Finally
we explicitly construct a magnetic monopole string solution; the analog of
the ’t Hooft—Polyakov monopole. The monopole string has finite energy,
and length equal to the size of the extra dimension.

PACS numbers: 04.50.+h, 11.25.Mj, 11.15.Ex

1. Introduction

Recently there has been quite a bit of interest in non-Abelian gauge
field theories in 4 + d dimensions with d extra dimensions compactified on
an orbifold [1-5]. The extra dimensions can have inverse radii of order a
few TeV, of order the GUT scale or anything in between. In these recent
studies, symmetry breaking via orbifold boundary conditions has replaced
the traditional method using the vacuum expectation values of Higgs scalars.
In an illustrative and simple example in one extra dimension, the orbifolds
SY/Zy and S'/(Zy x Z}) have been used to break the GUT groups SU(5) —
SU(3) x SU(2) x U(1) [1,2], SO(10) — SU(4) x SU(2)1, x SU(2)g [3], the
left-right gauge symmetry SU(2)r, x SU(2)r x U(1)p_r, = SU(2)L, x U(1)g x
U(1)g_1 [4] or the electroweak unified group SU(3) — SU(2) x U(1) [5].

(2523)
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In this letter we argue that magnetic monopoles are generic consequences
of gauge symmetry breaking with Wilson loops on S!/Z, orbifolds. We con-
sider the simple example of an SO(3) gauge theory defined on the orbifold
M x S'/Zy with a background gauge field. In an attempt to define notation
and set up some of the ideas we introduce the concept of Wilson loop sym-
metry breaking in the simple example of the circle S'. We then generalize
this discussion to the orbifold S'/Z, and also elucidate the equivalence of
gauge symmetry breaking with Wilson loops on S'/Z5 and gauge symme-
try breaking on the orbifold S'/(Zy x Z}). Finally, we explicitly construct
the monopole string solution and discuss some of its properties. This letter
is based on the recent paper [6] and the earlier work [7-13]. For a recent
discussion of Wilson loops on orbifolds see [14].

2. SO(3) gauge theory on M x S!

Consider a general gauge theory with symmetry group G in five dimen-
sional spacetime. The Lagrangian is given by

1

L= ——F
> 4e§k

Tr (Fy v FMY) (1)

where Fyyny = ), FiynyT®, T® are generators in some finite dimensional
representation of G' normalized such that Tr(T°T%) = k6% and M,N =
{0,1,2,3,5}:

Fyn :8MAN—8NAM+’i[AM,AN]. (2)
(For the adjoint representation of SO(3) we use the standard normalization

of the generators with & = 2.) The gauge transformation of the gauge field
Av(zy,y) = >, AT (2, y) (greek indices correspond to 4-dimensional

Minkowski spacetime and y = x5) is given by
Ap(zy,y) — UAM(anu,y)UJr — anMUT, (3)
where
U = exp(i6° (2, ) T"). (4)

In our notation, Eq. (1), the gauge fields have mass dimensions [1], and
the charge e; has dimension [-1/2]. We can also define the effective four
dimensional, dimensionless, gauge coupling e by rescaling e5; in Eq. (1) via
the expression es = V2w R e. Note, if 954, = 0, then F,5 reduces to the
covariant derivative of the 5th component of the gauge field As. In this case
we can conveniently define & = Aj/es = &/ 2w R, where the scalars ¢ and
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& have dimension [3/2] and [1]. The Lagrangian (1) can then be rewritten
in the suggestive form:

1 1

1 ~ o~
=— |-—Tr(F,F")+ —Tr(D,9D" P)| .

Ls 2%

This resembles the Georgi—Glashow model [9] of an SO(3) gauge theory
interacting with an isovector Higgs field. There are two differences, however.
First, there is no potential V(@) = \(®% 9 — V?2)? for the Higgs field which
would break the gauge symmetry down to U(1) and second, the Higgs field
depends on the 5th coordinate. Although this analysis is limited to gauge
fields satisfying 054, = 0, it nevertheless inspires the following discussion
of symmetry breaking via Wilson loops and the further consideration of
monopoles with Wilson loops. In general, however, 954, # 0 and we need
to keep the full Tr (F35) term.

2.1. Wilson loop gauge symmetry breaking on M x S*

Assume the 5th dimension is compactified on a circle S' parametrized
by y € [0,27R]. The gauge symmetry can then be broken by the presence of
a background gauge field As. This symmetry breaking mechanism is known
as Hosotani or Wilson loop symmetry breaking [11]. Consider the constant
background to be along the third isospin direction,

As(y) = AJT°. (6)
Using the single valued gauge transformation (periodic under y — y + 27 R)
given by Eqgs. (3), (4) with 0(z,,y) = —ny/R, n € Z:
U(y) = exp (=inT*2) . (7)
R
we obtain the transformation of A3:

A - A4 (8)

Therefore the gauge non-equivalent values of A3 can be chosen to lie between
0 and 1/R. The holonomy due to this constant background gauge field is
given by

T = exp <z 7{ A5dy) = exp (iaT?). (9)

with the arbitrary parameter @ = 2rRA3. Note the set of possible holo-
nomies {1,7+", T#2 ...} provides a mapping of the gauge group into the



2526 S. RABY

discrete group Z. This non-trivial holonomy affects the spectrum of the
theory. A massless periodic scalar field ¢ (satisfying ¢(y + 27rR) = ¢(y))
with isospin eigenvalue I3 can be decomposed into Kaluza—Klein modes

dmaexe (). (10

The 5-dimensional wave equation DM Djy;¢ = 0 splits into an infinite set
of 4-dimensional wave equations for Kaluza—Klein modes ¢, with masses
given by

mny . 2 iny
m%n)qﬁ(n) exp <?) = — (8y + ’LA%T3) ¢(n) exp <?)
n 2 in
- <§ + Agfg) ¢(n) exp <fy> . (11)

It is now easy to obtain the spectrum of gauge fields '. The gauge field Az(y)
has I3 = 0 and therefore its KK modes are not affected by the holonomy.
The zero mode of this field corresponds to the gauge field of the unbroken
U(1). On the other hand, the masses of the KK modes of the W* gauge
bosons, with I3 = £1, are given by m(,) = |%:1:Ag|. If A3 # %, where k € 7Z,
the gauge bosons W are all massive. Clearly the SO(3) symmetry is broken
to U(1). Note, the symmetry breaking scale satisfies 0 < A3 < 1/R, but is
otherwise unconstrained.

2.2. Gauge picture with vanishing background

A constant background gauge field A2 may be gauged away with the
non-periodic gauge transformation

Uly) = exp (iyA3T?) . (12)

In this gauge the covariant derivative in Eq. (11) is trivial, i.e. D5 = 05.
Nevertheless it is easy to see that, as expected, the physics is unchanged.

This gauge transformation is not single valued and thus the periodicity
condition ¢(y + 2w R) = ¢(y) becomes

$(y + 21 R) = exp (iaT>) ¢(y). (13)

L Consider a background field gauge with Ay = By + aym where By is the back-
ground value of the gauge field and aps are the small fluctuations. The background
covariant derivative is given by Dy = dm + i[Bum, |. If we use the covariant gauge
fixing condition D™as; = 0, then the gauge field equations of motion are given by
DM Dyran +3i[Bnwm, aM] = 0. Note, for a constant background gauge field By = 0.
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Now the mode expansions are of the form
[ n 3
by (@) exp [i (5 + 4205 ] (14)

resulting in the identical spectrum as before.

3. SO(3) gauge theory on S'/Z,
3.1. The S'/Zy orbifold

The S'/Zy orbifold is a circle S' modded out by a Z, parity symmetry:
y — —y. The 5th dimension is now a line segment y € [0, 7R]. This orbifold
has two fixed points at y = 0 and mR. The Lagrangian (1) is invariant under
the parity transformation

Au(=y) = Auly), (15)
As(—y) = —As(y). (16)

As in the case of compactification on a circle we consider a constant back-
ground for A% (Eq. (6)). Clearly such a background is not consistent with
the parity operation, Eq. (16). However, following [14] we define a gen-
eralized parity by combining the parity transformation (16) with the gauge
transformation (8), for n = 1, A3 — A3 +1/R. We then look for a consistent
solution with constant A3. There are now only two possible values for A3.
The possibility A2 = 0 is obviously allowed, but in this case the gauge sym-
metry is unbroken. The only nontrivial choice corresponds to A3(y) = %
which changes sign under the “naive” parity, A3(—y) = —%, but is gauge
equivalent to its original value. Therefore, instead of (15) — (16) we define
the fields for negative y, in the region —mR < y < 0, in terms of the fields
defined for positive y in the fundamental domain, 0 < y < R, via the gener-
alized parity transformation (i.e. a combined “naive” parity transformation
(16) and a gauge transformation) such that, in general:

Au(—y) = U(=y) Au()U' (—y) — iU (=) 3,U " (=), (17)
As(—y) = ~U(-y)As(y)U" (—y) — iU(—y)0_, U’ (~y), (18)

with
U(y) = exp (—i%T3> . (19)

It is useful to define new fields, W™, in a usual way from A' and A

(A' FiA?), T*= 1 (T" £47?). (20)

W+ =
V2

Sl
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With this definition we have AT+ A2T? = WHTH4+W T~ and [T3,T%] =
+7T*. Using the identity

exp ( RT3) T exp ( RT3> = exp (ﬂ%) T+ (21)

it is easy to show that the generalized parity tranformation acts on gauge
fields as follows:

Wi(—y) = exp (£i%) Wi (y), (22)
Wi(—y) = —exp (i) Wi (). (23)
A(-y) = AL, 24)
AY-y) = ~A3) + 3. (25)

To summarize, using a more compact notation, we have the following
constraints on the fields (valid for all modes, except the constant piece of Ag)
Under the generalized parity transformation the fields ¢p (with P = £1)
satisfy:

.Y
dr(—y) = Pexp (i%15) ¢r(y) (26)
with isospin eigenvalue I3 = £1,0. The periodicity condition is given by:
¢p(y +2nR) = ¢p(y). (27)

We then obtain the following decomposition into KK modes:

o (n y
di(zp,y) = Z(ﬁg_)(l‘#) exp( ’Lﬁfg,) cosnp for even I3, (28)

bz, y) = Z¢+ x,) exp ’L—Ig) cos (n—i—%)% for odd I3, (29)

for even I3,(30)

=V IS

Y

- (zp,y) = ;Qs(f)(% eXP( 'L% )Slnn+1)
d—(zp,y) = z_:qsgf)(x# exp( z% )sm n+%)ﬁ for odd I5. (31)

From transformations (22)-(25) we see that the KK mode expansion of Ai
[(+) field with I3 = 0] is given in Eq. (28) with corresponding masses n/R.
This is the only field which has a zero mode. It corresponds to the gauge field
of the unbroken U(1). The expansion of Wlfc [(+) field with I3 = +1] is given
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in Eq. (29) with corresponding masses (n+1/2)/R. Similarly, the expansion
of W;E [(—) field with I3 = +£1] is given in Eq. (31) with corresponding masses
(n+1/2)/R. And finally, the expansion of A3 [(-) field with I3 = 0] is given
by Eq. (30) up to the value of the constant background:

o0

3(n . y
A(wpy) = 55 + 7;;45( () sinn +1) 5. (32)
The holonomy 7' in this case is given by
T = exp(i 7{ A3T?) = exp(inT?) = diag (-1, —1,1). (33)

Hence T2 = 1 or the set of possible holonomies {1, T} maps the gauge group
into the discrete group Zs. Unlike the case of Wilson loops on S' discussed
in section 2, the background gauge field and consequently the holonomy on
S'/Zy can only take discrete values.

Now let us consider the gauge picture with vanishing background gauge
field. As in the case of compactification on a circle, we can gauge away the
constant background by the non-single valued gauge transformation given in
Eq. (12). The transformations under the generalized parity are now those of
Egs. (15) and (16). In addition the non-single valued gauge transformation
changes the periodicity condition as in Eq. (13) with o = 7.

To obtain the spectrum of KK modes of a field ¢ we consider both the
transformation under parity and the effect of a non-trivial holonomy. Under
parity,

P: ¢pr(y) = épr(-y) = Popr(y), (34)
with P? =1 or P = +1. When going around the circle, the fields transform
in the following way:

T: ¢pr(y) = ¢pr(y+27R) =Topr(y) (35)

with 72 = 1 or T' = +1. Therefore there are four different kinds of fields
¢4+ corresponding to the four different combinations of (P,T'). It is easy to
see that a field with given (P,T') can be expanded into the following modes:

En(+,+) = cosn%,

En(+,—) = cos (n—i—%)%,

En(—4) = sin(n+1)%.

£n(—,—) = sin (n—i—%)%. (36)



2530 S. RABY

Only the (+,+) fields have massless zero modes. Of all the gauge fields
only Ai is a (+,+) field with a zero mode. Wﬂi, A3 and W5i are (+,—),
(—,+) and (—, —) fields , respectively. Clearly the mode expansion and the
corresponding KK masses are the same as in the previous picture. Note,
our gauge transformation parameters (Eq. (4)) are constrained to satisfy
0% (zu,y) = 05 (zu)én(+,+) and 0% (zy,y) = 0711’2(5%)571(4"_)- Hence,
SO(3) is the symmetry everywhere in the five dimensions, EXCEPT on the
boundary at y = 7R.

3.2. Correspondence to S'/(Zy x Zb) orbifold

The S'/Z, orbifold with holonomy T in the gauge picture without a con-
stant background gauge field is directly related to the S'/(Z2 x Z4) orbifold
used recently in the literature [1-5]. This correspondence is also evident in
the work of Ref. [14,15]. We just need to identify the S'/(Zy x Z}) orbifold
with S', a circle of circumference 47 R, divided by the Z, transformation
y — —y and Z} transformation y' — —y', where ¢ = y — 7R. The physi-
cal space is again the line segment y € [0, 7R] with orbifold fixed points at
y = 0 and 7R. It is easy to see that P’ € Z! in this picture corresponds
to the combined translation and parity transformation in the previous pic-
ture, namely P’ = TP. Note, a point at y = 1o which corresponds to
y' = yo — wR is transformed by Z) into the point y' = —(yo — 7R) corre-
sponding to y = —yo + 27 R; this is equivalent to the action of T Z on the
point at y = yq, see Fig. 1.

N
(®

/F\
—t——+——+{® : (®— -- --
27 R R 0 w 2 R -m R TR
z O,
i 2 R

Fig. 1. The Z} parity transformation is equivalent to the combined Z, parity trans-
formation and translation 7.
The action of Zs on the fields is given by

P: ¢pp(y) = ¢pp(—y) = Popp(y), (37)
with P2 =1 or P = 41. Similarly, under Z} we have
P’ ¢pp(rR+Yy) — ¢pp(nR—y')=P'opp(rR+Y) (38)
with P/ = TP and (P')?2 =1 or P' = +1.
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It is easy to see what the holonomy means in this picture. Since points yg
and yo+ 27 R are identified, the closed loop corresponds to going around half
of the circle (the circumference of the circle in this picture is 47R). Going
around the whole circle (from yg to yg + 2R and then from gy + 27R to
yo + 4nR) clearly corresponds to T2. From Eq. (16) we see that going from
1o + 27 R to yo + 47 R is equivalent to going backwards from yy + 27 R to yg.
Therefore T? = 1 and there are only two possibilities for holonomy, T' = +1
and T = —1, the same as in the S'/Z, picture. Hence we have T € Zo.
Note, in the above we have assumed that P and T can be simultaneously
diagonalized. In general however P and T do not commute. In this case we
would have P T P =T~

3.3. Monopole string on S/ Z,

We saw that the gauge theory in 5-dimensions becomes a “gauge-Higgs”
theory after the 5th dimension is compactified. The Higgs potential which
breaks the SO(3) gauge symmetry to U(1) is absent, however its effect can be
replaced by the Wilson loop along the compactified dimension. It was shown
by 't Hooft and Polyakov [8] that the Georgi-Glashow model has a magnetic
monopole solution to the equations of motion. It is natural to ask whether
magnetic monopoles are present in the compactified 5-dimensional gauge
theory and what is the correspondence with the usual ’t Hooft—Polyakov
solution.

The equations of motion corresponding to the Lagrangian (5) are:

D,D"é =0, D,F'" =ie’[®, D" ). (39)
They correspond to the equations of motion of the Georgi-Glashow model

in the absence of the Higgs potential.
Consider the ansatz (for 0 <y < 7R):

— = @:2—1%6(%?) F(r), (40)
Ay = %(f $ 7 G(r), Ag=0, (41)

where r = /22, #; = z;/r and F(r) and G(r) are dimensionless functions.

Asymptotically, for r — oo we have G(r) — 1. Note, the constant % in
the normalization of A5 has been fixed by the vacuum boundary conditions
with the choice F(r) — 1 as r — oo (see discussion below). This is exactly
the 't Hooft—Polyakov ansatz, and therefore it is a solution to the equations
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of motion, Eq. (39) with

. Tr(02) 1
=1 = —.
V= lim k 2Re

(42)

In order to complete the solution we need to extend the above solution to
negative y (i.e. —mR <y < 0). As in the case with a constant background
field As we use the generalized parity operation, Eqs. (17) and (18), now
with

U(y) = exp (i T). 43)
we obtain
As(-y) _ = —F(r)+2 -
56 = () = —5p— (" T), (44)
Ai(-y) = %(f X ;'_‘)icos%
+%(ﬂ—ﬂ(?f))sm%+%(fxﬁ)l (45)

Note, that the asymptotic values of A; and As, normalized as in Eq. (40),
for r — oo satisfy A;(—y) = A;(y) and As(—y) = As(y) 2. Hence we obtain
the asymptotic holonomy

lim T'(r) = exp(in7 - T)) (46)

T—00

satisfying the condition 72 = 1, i.e. T € Zo. Moreover in any given spatial
direction ;"', the asymptotic holonomy is gauge equivalent to the vacuum
value, Eq. (33). It is this physical requirement, that asymptotically far
away from the monopole we recover the vacuum holonomy, which fixes the
asymptotic magnitude of As, Eq. (40). Note, in the case of a simple circle,
discussed in Section 2.1, T € Z and the magnitude of As is arbitrary. In
this case, the monopole mass can be taken continuously to zero. Hence
monopoles on S! are unstable.

Although the form of the gauge fields for —mR < y < 0, defined by the
generalized parity transformation of the 't Hooft ansatz for 0 < y < 7R
is quite complicated, it is easy to see that they are a solution to the field

2 For any finite r, the field A;(y) is discontinuous in y at the point y = wR. This results
in some singular behavior for Fj5 at y = wR. This may be a serious problem for the
construction of monopoles on orbifolds or there may be a simple way of removing the
singularity. At any rate, this problem is presently under investigation.
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equations. This is because the action is both parity and gauge invariant. In

fact the action
SE/d4x/dy£—2/d4 /dyﬁ (47)

—7mR

is completely defined in terms of the fields in the fundamental domain
0<y<nR.
The asymptotic (r — oo) gauge field strength is given by

Eijk Tk (7 T)

Fij = 2 (48)
The asymptotic U(1) Abelian magnetic field is then given by
N 1 = 7
Bi=—5— e Tr ((9) Fix) = -5, (49)

where @ = ¢/V. Therefore the solution is a magnetic monopole string with
total magnetic charge g = —1/e or equivalently a magnetic charge per unit
length in the 5th direction given by g/7R.

The monopole string energy density is given by

1 1 - 1 -~ o~
It is a constant function of ¢ and thus we should really talk about a monopole
string stretched in the 5th direction from y = 0 to y = wR. The energy
density, Eq. (50), is the usual four dimensional energy density divided by the
length of the fifth dimension and the energy per unit length of the monopole
string is obtained by integrating H over the three flat spatial dimensions.
Note, the integrated energy density from Eq. (50) can be written as

H= /d3xTr

where the integration over y has been performed. The second term can be
rewritten using Bianchi identity as szjkakTr (F3j @) and its contribution
to the energy of the monopole is

1 \? 1 ~
<EFij F ik Dy 45) + 5 Ciik F;j Dy, ‘15] ; (51)

1 ~ L o
iﬂ Eijk/dgiﬁ akTI‘ (Fij @) = :EV/B -dS = :|:47TVg. (52)
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When the first term in (51) vanishes the monopole solution is said to satisfy
the Bogomol’nyi bound and such monopoles are called BPS monopoles. In
fact, the general 't Hooft—Polyakov monopole solution reduces to a BPS
monopole in the limit that the Higgs potential for the adjoint scalar vanishes.
Hence our monopole strings are in fact BPS monopole strings and their mass
is given by M .
m w
My = e a  2aR’ (53)

where @ = e?/4r is the dimensionless fine structure constant at the scale
1/R, and R is the orbifold radius.

It is also important to express the equations for the BPS condition and
the monopole energy density in an explicitly gauge invariant and 5D covari-
ant form. The BPS condition is

Fij = *eijiFys (54)
and the energy density is given by

1 1
H== 9% k6zngf(Fzg Dy®) = i kgzngf(E]sz))

1
= :|:—260NPQR'I‘I‘ (FNP FQR) . (55)
8ezk

Note it is then clear that the five dimensional Hamiltonian density is the
time component of a five vector given by

1
P = o VPO (Fyp For) = oK™ (56)
5
with 1
€5

Hence PM satisfies the topological conservation law BMPM =0.

As a final note we can also consider the monopole solution in the gauge
with vanishing background gauge field, i.e. (A5) = 0. We find (for
0<y<mR)

As ~ F(r)—-1 . =
— = ¢=—(r-T
e 2Re (- 1), o
- G(r) -1 Y
A = " (T x 7); cos o
—l—M(Ti—f'i(%-f))Slni—l—l(qx;ﬁ)i- (59)

T 2R
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Then for —mR < y < 0 we obtain, by explicitly gauge transforming the fields
in Eqs. (44) and (45), As(—y) = —A5(y) and A;(—y) = A;(y) as expected
from “naive” parity, Egs. (15) and (16).

4. Conclusions

In this letter we discussed Wilson loop symmetry breaking on orbifolds
in five dimensions. We have also cleared up the mathematical correspon-
dence between two apparently distinct orbifolds considered in the literature,
namely S'/Z, with a background gauge field and S'/(Z, x Z}). In fact
they are identical upon rescaling the radius by a factor of 2. Although our
analysis has been in non-supersymmetric gauge theories, it should be easy to
extend to the case of orbifold symmetry breaking in supersymmetric gauge
theories.

We have constructed monopole string solutions for an SO(3) gauge group;
valid when SO(3) is broken to U(1). Our construction can be extended to any
SU(N) gauge group on an M x S'/Z, orbifold with background gauge field.
Such monopole strings may have interesting phenomenological consequences
for grand unified scenarios with large extra dimensions [1]. They would be
expected to have mass of order 1/2aR, with a compactification scale 1/R as
small as a few TeV. Note that a GUT monopole string can lead to catalysis
of baryon number violating processes [16].

Another interesting example would be in the case of the SU(3) elec-
troweak unification model recently discussed in the literature [5]. It is easy
to show that this model also contains monopole strings when the symmetry
is broken to either SU(2) x U(1)y or directly to U(1)gy with the addition
of a Higgs multiplet in the triplet representation. Such a monopole string
will have mass of order 60/R.

Clearly in light of the results presented here, it will be interesting to
study monopole string production at high energy accelerators and at finite
temperatures in the early universe.

I would like to take this opportunity to congratulate S. Pokorski on the
occasion of his 60" birthday. I would like to thank him for his valued friend-
ship and also for the many fruitful discussions we have had over the years.
Partial support for this work came from DOE contract DOE/ER /01545.
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Consider a background field gauge with Ay; = B + apr where By is the
background value of the gauge field and aps are the small fluctuations. The
background covariant derivative is given by Dys = On +1i[Bur, |. If we use the
covariant gauge fixing condition DMay; = 0, then the gauge field equations
of motion are given by DM Dyran + 3i[Byar,a™] = 0. Note, for a constant
background gauge field By = 0.

For any finite r, the field A;(y) is discontinuous in y at the point y = 7 R. This
results in some singular behavior for F;; at y = wR. This may be a serious
problem for the construction of monopoles on orbifolds or there may be a
simple way of removing the singularity. At any rate, this problem is presently
under investigation.



