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In k-deformed relativistic framework we consider three different defini-
tions of k-deformed velocities and introduce corresponding addition laws.
We show that one of the velocities has classical relativistic addition law.
The relation of velocity formulae with the coproduct for fourmomenta and
noncommutative space-time structure is exhibited.

PACS numbers: 03.30.+p, 04.60.+m

1. Introduction

Recently due to increasing interest in deformed relativistic space-time
framework (see e.g. [1-6]) it is important to understand the deformation of
Einsteinian relativistic kinematics. In particular the problems occur if the
classical Poincaré symmetries are replaced by quantum ones, with modifica-
tion of classical Abelian addition law for the momenta. Here we shall con-
sider as distinguished example the so—called k-deformed quantum Poincaré
symmetries (see e.g. [7-11]), which recently were also used as possible frame-
work for describing the quantum gravity effects (see e.g. [12-16]).

The k-deformed relativistic Hopf algebra framework in bicrossproduct
basis is characterized by classical Lorentz algebra of O(3,1) generators
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M,, = (M;,N;), commuting fourmomenta P, = (P;,Pp = FE/c) and
k-deformed commutation relations of threemomenta P; with boost gener-
ators N;:
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All remaining Poincaré algebra relations remain classical. The mass square

Casimir M? for k-deformed Poincaré algebra in bicrossproduct basis looks
as follows [3,8,9]
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One can consider the formula (2) as describing the deformation of classi-
cal energy-momentum dispersion relation w(p) = (52 + mac?)'/? for free
particles [3|
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where the value M? is related with the rest mass of particle as follows [15]
M? = 2k%(cosh 22 — 1), (4)
K

The quantum group structure of x-deformed Poincaré algebra is provided
by nonprimitive coproducts, which for threemomenta P; and energy FE take
the following form

AP, = B@1+eFIr) g B,
AE = E®1+1QE. (5)

The k-deformed relativistic framework is described by dual pair of Hopf
algebras describing k-deformed Poincaré algebra and k-deformed Poincaré
group [17-19]. Considering noncommutative translations z, of x-deformed
Poincaré group as describing noncommutative space-time coordinates one

can show that "
~ A ZLPN ~
(@0, 2] = ——Zi,  [2i,7;]=0. (6)
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The relations (6) describe k-deformed Minkowski space [17,9,3]. Further,
by considering semidirect product of k-deformed Poincaré algebra and k-
Poincaré group (so-called Heisenberg double [18]) one obtains k-deformed
generalized phase space [18-19].

The aim of this note is to consider the possible definitions of k-deformed
velocities and study their addition law. Due to non-primitive coproduct (5)
one can introduce three different velocity formulae:

()

(i)

The one following from classical Hamilton equation

X, = v = 2D ©

opi
By considering x-deformed phase space in bicrossproduct basis (see e.g.
[18-20]) one confirms that the symplectic form defining Hamiltonian
equations (7) are not deformed.

Two other types of velocities are linked with non-Abelian addition law
of three-momenta. By considering P; ® 1 = p;, 1 ® P; = §"p; one can
write , ,

P+ eCEm by — Fy o= dtp = FE/)gp, (8)

We define the left-covariant velocity as follows:

E.(p+ 6p) — E(P)

L e 1
VZ 6112?20 (5Lpi
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Ip;
Using the assignment P, ® 1 = 6Rpi, 1 ® P; = p; one obtains
O+ eOPIN G = o = = g+ (1 - e 0P/
1 .o
= <1 + —2;5VE) op, (10)
KC

where assuming that momenta and velocities are parallel, i.e. || V=
VE(p) we used the relation

PVE - of;) = (5 VE)p: . (11)
Using (10) one can introduce right-covariant velocity

Bo(5 + 05) — B(p) :< 1 *)laEn@ (12)

Op;

VR = lim

1+ —p7
¢ opi—0 Rp; + Hcgp
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The velocities (7) have been introduced in standard basis still in 1992
by Bacry [21] (in bicrossproduct basis see [22]). The velocities Vi were
introduced in [23,24] and both velocities (9) and (12) for massless case
in [24] as left and right group velocities.

We shall show that the most interesting with its properties is the velocity
VZ-R — it has classical velocity addition law, which for parallel velocities
(0,0, V%), (0,0, VoR) looks as follows

ViE 4+ VR
VE= % (13)
1+ 1022

We shall discuss below all the three velocities described by formulae (7), (9)
and (12) for arbitrary value of mass parameter M (see also (4)).

2. Three velocities — general properties

Three velocities (7), (9) and (12) are related with each other by the
following formulae

Vil = e(—Em(ﬁ)/F»CQ)V%’ (14a)
Vi
R i
Vit = 1T L (14b)

where from (7) and (1)—(2) follows that!

R > Fa(E/kc?)
V= K Ep 2 72 - [ h(z) — (—E/HCQ)] ) (15)
§<1_e(72 /nc)_W) K [cosh(™0) — e
One can calculate that!
V2 = 262E/re) | _ SinhQ(%) (16)
(cosh(™e) — e(—E/f-”~02))2
and one obtains
lim V =o00. (17)

E—oo

In the interval M < E < oo the function (16) increases monotonically.

! Further we denote V = |V|, E = E,(j) and p* = 2.
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From the formulae (14) and (15) one gets

. o(~E/rc?) > =

p p
Vi = = . (18)
5 (1—et2mine) — ) cosh(52) — o]
and after simple algebraic manipulation
. 5 7 o(E/rc?)
VR frd p . o = (E/che) h mo (].9)
5 (1 _ o(~2E/ke?) 4 5%2) K [e — cosh(™2)]
We get
_ 2 me
V2 = 2 |1- s (B0 (20)
(cosh(Ze) — e(—F/ke?))

R\2 _ 2 _ Sinhg(%)
V7=t (cosh(Ze) —e(E/KCQ))Q ' )

One can show:
i) for all energies (V)2 < ¢? and (VR)2 < ¢2;
g
1) for M < E < oo we get d(vy > 0 and d(v ) > 0, i.e. both functions
S dE dE
(20) and (21) are monotonic;

(i4i) if M = 0 (equivalent to mg = 0) both velocities V;* and V;® have
classical absolute value i.e. (V)2 = (VR)2 =¢? 2.

3. Right group velocity — addition formula
Let us write the formula (19) as follows:
7= rB(mo, E)VT, (22)

where m ,
B(mg,E) =1— cosh(?o) e(~F/re) (23)

% The observation (#ii) has been made also in [24].
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The function B(my, F) enters into the xk-deformed Lorentz transformations
determined by the boost parameter & = ai (7 2 = 1) [25,16]

E(a) = E+ kS InW(E,fip ;a), (24a)
pla) = W YE,7p ;o) {p+ [(7p)(cosha — 1)
—kcB(myg, E)sinh o] i} , (24b)

where
1
W(E,np ;a) =1 — —(fip) sinh @ + B(mg, E)(cosha — 1). (25)
KC

The function (25) satisfies the relation

B(mo,E) -1

W5 = Bomg, b)) 1

(26)

Let us define the velocity W® as the velocity (22) in the frame Lorentz-
transformed by the boost parameter & = af.
Using (22) we have the formula

F@) = kB(mo, E(a))W . (27)
From (27) and (24b) one gets

W}R _ B(m07E)
- W(E,iip ;o) + B(mg, E) — 1

X {VR +17 [(ﬁvR)(cosha — 1) — ¢sinh oz] } , (28)

and further we obtain

PR _ VR 4 fi[(#ti0) (cosh @ — 1) — ¢sinh o]

(
cosh [l — 1(7i) tanh o] (29)

Introducing the relative velocity @ of two k-deformed Lorentz frames, one
at rest (¢ = 0) and second described by boost parameter @& = 7«

—

i = —cfitanh v, (30)

the relation (29) can be written in the form (see e.g. [26])
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The formula (31) describes the general Einsteinian composition law of two
arbitrary three-velocities VR, @, which for parallel velocities VRHU reduces
to the formula (13).

It should be stressed that basic ingredient in the derivation of classical
addition law (31) is the relation (22). If we use other two formulae (15) or
(18) for deformed velocities, analogous reasoning leads to the deformation
of classical addition formulae (13) and (31).

To complete the argument we shall show that the definition (30) is equiv-
alent to the relation (22). Indeed, let us solve the relation p(a) = 0 describ-
ing the transformation from the moving system with nonvanishing momen-
tum p(a = 0) to the rest system with p = 0 (« # 0). From (24b) one
gets

+u

pla) =0 = p+ (1p)(cosha — 1) — ke B(my, F)sinha =0. (32)
Further if 7i||p’ one obtains (p = |p])
pcosha — ke B(mg, E)sinha = 0. (33)

We see that inserting in (33) the velocity u from formula (30) (u = ctanh «)
we obtain the relation (22) (p = kB(my, E)u).

4. Velocity and noncommutative space-time

In order to describe velocity formula in noncommutative space-time one
should use the corresponding deformed Hamiltonian formalism. For k-de-
formed relativistic phase space such a framework has been proposed in [3]?

The x-deformed noncommutative phase space kinematics is determined
by basic Poisson brackets of relativistic phase space variables Y4 = (z,,p,)
given in bicrossproduct basis by the following relations [18,19]:

{pi,zj} = 6ij,
{p()amO} = _17
{pOaxi} = Oa

3 See formulae (1.5)-(1.10) and (4.2) in [3].
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T
{IO’J;’L.} = Iﬂ)_;’_
{IOap’i} = _I{_ZC’
{p;upu} = 0. (34)

Writing down (34) in compact form

{Ya,Yp} = wﬁﬁ);»(xap)-

we obtain the x-deformed Hamilton equations describing evolution with re-
spect to the parameter s

dYs (s OH®
ds =Wyp aYB . (35)
where H(®) = H®)(z, p) determines the dynamics. Assuming translational
invariance one should take one-particle Hamiltonian as H(®) = H*)(po, )
and explicitely from (35) one gets

dxz; IH %)

& - o (36a)
drg 1 OH®  oH®

T P on * am (360

and %“ = 0 i.e. p, are s-independent.

The physical interpretation of the parameter s depends on the choice of
the Hamiltonian H(*). We can consider the following two basic cases:

(i) The Hamiltonian H" describes the energy dispersion relation E =
E,.(p) by means of the formula H*) = H"(pg, p) = cpo—FE,(p). In such
a case if K — oo (standard relativistic framework) i.e. H*(pg,p) =
cpo — c(p? + m%cQ)l/2 one can identify the parameter s with time
variable (‘?—50 =1 ¢— zy = s + const.) and one obtains the standard
velocity formula
da; i
dzy P2+ m302)1/2 ’ (37)

If k # 0 such identification is not possible, because from (36b) it follows

that
dIO 1 BH"”"

0 _ oo L2 38
ds ¢ ﬁcpzapi’ (38)
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and further we get

dz; da; — i
vt _ds _ op; (39)
dog o (1 ann)’
ds C\l — w@Pigp

i.e. after using (7) we obtain our favored velocity formula (14b).

(ii) One can use also as the Hamiltonian H %) the s-invariant mass Casimir
by assuming that H*) = M2¢*. In classical relativistic case H(*®) =
E? —cp? =¢2 (pg - 2) the parameter s corresponds to Poincaré-
invariant length parameter. One gets
2 — 962, =9 40
75 =i T = 2P (40)
and on the mass-shell ( #(°) = m2c' = const.) we obtain the formula
(37). In general case (k < oo) the deformed mass shell condition (2)
can be written as identity H") (E, (p), p) = M?c* where E,.(p) is given
by (3). One obtains

oM™ OB, oMK OH ) oM™k
dpo  Opi Opi opi " dpo (4D
After inserting (41) into (36a)—(36b) one gets
dz; OH™  dxg 1 oM™
s = Vi “ope ds <1 + Epl‘/;) “ope (42)

and we obtain again the formula (14b).
5. Final remarks

Following the philosophy advocated firstly by Majid [27] quantum-de-
formed space-time kinematics describes generalized symmetries and non-
commutative geometries at ultra-short Planck scales. The real challenge is
to find observable physical effects caused by such modification of short dis-
tance behavior of quantum phenomena. The study presented here has much
more modest aim: it provides a contribution to the description of kinematics
obtained in the framework of deformed quantum theories.

It should be pointed out that such a kinematical framework requires
still several problems to be solved, in particular understanding the relation
between k-deformed kinematics and description of macroscopic bodies. The
basic question is to understand how the k-effects cancel if we consider very
large sum of elementary objects described by deformed k-kinematics. We
would like to stress that in such a case we should obtain for macroscopic
bodies the classical relativistic kinematics.
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