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CLIFFORD ALGEBRA IMPLYING THREEFERMION GENERATIONS REVISITED�Woj
ie
h KrólikowskiInstitute of Theoreti
al Physi
s, Warsaw UniversityHo»a 69, 00-681 Warszawa, Poland(Re
eived April 19, 2002)Dedi
ated to Stefan Pokorski on his 60th birthdayThe author's idea of algebrai
 
ompositeness of fundamental parti
les,allowing to understand the existen
e in Nature of three fermion generations,is revisited. It is based on two postulates. Primo, for all fundamental par-ti
les of matter the Dira
 square-root pro
edure pp2 ! � (N) � p works,leading to a sequen
e N = 1; 2; 3; : : : of Dira
-type equations, where fourDira
-type matri
es � (N)� are embedded into a Cli�ord algebra via a Ja
obide�nition introdu
ing four �
entre-of-mass� and (N � 1)�four �relative�Dira
-type matri
es. These de�ne one �
entre-of-mass� and N � 1 �rela-tive� Dira
 bispinor indi
es. Se
undo, the �
entre-of-mass� Dira
 bispinorindex is 
oupled to the Standard Model gauge �elds, while N � 1 �relative�Dira
 bispinor indi
es are all free indistinguishable physi
al obje
ts obey-ing Fermi statisti
s along with the Pauli prin
iple whi
h requires the fullantisymmetry with respe
t to �relative� Dira
 indi
es. This allows only forthree Dira
-type equations with N = 1; 3; 5 in the 
ase of N odd, and twowith N = 2; 4 in the 
ase of N even. The �rst of these results implies un-avoidably the existen
e of three and only three generations of fundamentalfermions, namely leptons and quarks, as labelled by the Standard Modelsignature. At the end, a 
omment is added on the possible shape of Dira
3�3 mass matri
es for four sorts of spin-1/2 fundamental fermions appear-ing in three generations. For 
harged leptons a predi
tion is m� = 1776:80MeV, when the input of experimental me and m� is used.PACS numbers: 12.50.Ch, 12.90.+b, 12.10.Dm
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2560 W. KrólikowskiOne of the most important theoreti
al a
hievements in the history ofphysi
s was Dira
's algebrai
 dis
overy of the parti
le's spin 1/2, inherently
onne
ted with the linearisation of relativisti
 wave equation through hisfamous square-root pro
edure pp2 ! 
 � p [1℄. As a result, some physi
alparti
les, 
alled later on spin-1/2 fermions, got � in addition to their spatial
oordinates ~r � new algebrai
 degrees of freedom, des
ribed with the useof Dira
 bispinor index � = 1; 2; 3; 4. This was a
ted on by the 4� 4 Dira
matri
es, in parti
ular, by the spin-1/2 matrix 12~� whi
h supplemented theorbital angular momentum operator ~r� ~p to the operator of parti
le's totalangular momentum. Thus, through an a
t of abstra
tion from the parti
le'sspatial properties, its spin 1/2 was re
ognised as an algebrai
 analogue ofits spatial, orbital angular momentum, satisfying the same rotation-group
ommutation relations.The starting point of the author's idea of algebrai
 
ompositeness [2℄was a proposal of a new a
t of abstra
tion from the parti
le's spatial prop-erties, where a wave fun
tion  (N)�1�2:::�N (~r) of several Dira
 bispinor in-di
es �1; �2; : : : ; �N (as representing N physi
al obje
ts 
orrelated withone material point of spatial 
oordinates ~r) was introdu
ed in an analogywith the wave fun
tion  (N)(~r1; ~r2; : : : ; ~rN ) of several spatial 
oordinates~r1; ~r2; : : : ; ~rN (as representing N physi
al obje
ts being, this time, materialpoints).In order to 
onstru
t these several Dira
 bispinor indi
es the observationwas made [2℄ that, generi
ally, the Dira
 algebran� (N)� ; � (N)� o = 2g�� (1)
an be realized through Dira
-type matri
es of the form� (N)� � 1pN NXi=1 
(N)i� (2)built up linearly from N elements of the Cli�ord algebran
(N)i� ; 
(N)j� o = 2Æijg�� ; (3)where N = 1; 2; 3; : : : ; i; j = 1; 2; : : : ; N and �; � = 0; 1; 2; 3. Then, theDira
 square-root pro
edure pp2 ! � (N) � p leads in the intera
tion-free
ase to the sequen
e N = 1; 2; 3; : : : of Dira
-type equations�� (N) � p�M (N)� (N)(x) = 0 (4)with  (N)(x) � � (N)�1�2:::�N (x)�, where the meaning of Dira
 bispinor in-di
es is explained as in Eq. (12) later on. Here, ea
h �i = 1; 2; 3; 4 (i =



Cli�ord Algebra Implying Three Fermion Generations Revisited 25611; 2; : : : ; N). The mass M (N) is independent of � (N)� . In general, the massM (N) should be repla
ed by a mass matrix of elementsM (N;N 0) whi
h would
ouple  (N)(x) with all appropriate  (N 0)(x), and it might be natural to as-sume for N 6= N 0 that 
(N)i� and 
(N 0)j� 
ommute, and so do � (N)� and � (N 0)� .For N = 1, Eq. (4) is evidently the usual Dira
 equation and for N = 2it is known as the Dira
 form [3℄ of Kähler equation [4℄, while for N � 3Eqs. (4) give us new Dira
-type equations [2℄. They des
ribe some spin-hal�nteger or spin-integer parti
les for N odd or N even, respe
tively.The Dira
-type matri
es � (N)� for any N 
an be embedded into the newCli�ord algebra n� (N)i� ; � (N)j� o = 2Æijg�� ; (5)isomorphi
 with the Cli�ord algebra (3) of 
(N)i� , if � (N)i� are de�ned by theproperly normalised Ja
obi linear 
ombinations of 
(N)i� :� (N)1� � � (N)� � 1pN �
(N)1� + : : :+ 
(N)N� � ;� (N)i� � 1pi(i� 1) h
(N)1� + : : :+ 
(N)i�1 � � (i� 1)
(N)i� i (6)for i = 1 and i = 2; : : : ; N , respe
tively. So, � (N)1� and � (N)2� ; : : : ; � (N)N� ,respe
tively, present the �
entre-of-mass� and �relative� Dira
-type matri-
es. Note that the Dira
-type equation (4) for any N does not involve the�relative� Dira
-type matri
es � (N)2� ; : : : ; � (N)N� , in
luding solely the �
entre-of-mass� Dira
-type matrix � (N)1� � � (N)� . Sin
e � (N)i� = PNj=1Oij
(N)j� ,where O = (Oij) is an orthogonal N �N matrix (OT = O�1), we obtain forthe total spin tensor the equalityNXi=1 �(N)i�� = NXi=1 �(N)i�� ; (7)where �(N)j�� � i2 h
(N)j� ; 
(N)j� i ; �(N)j�� � i2 h� (N)j� ; � (N)j� i : (8)The total spin tensor (7) is the generator of Lorentz transformations for (N)(x).In pla
e of the 
hiral representations for individual 
(N)j = �
(N)j� �, where
(N)j5 � i
(N)j0 
(N)j1 
(N)j2 
(N)j3 ; �(N)j3 � �(N)j12 (9)



2562 W. Królikowskiare diagonal, it is 
onvenient to use for any N the 
hiral representations ofJa
obi � (N)j = �� (N)j� �, where now� (N)j5 � i� (N)j0 � (N)j1 � (N)j2 � (N)j3 ; �(N)j3 � �(N)j12 (10)are diagonal (all matri
es (9) and similarly (10) 
ommute simultaneously,both with equal and di�erent j).When using the Ja
obi 
hiral representations, the �
entre-of-mass� Dira
-type matri
es � (N)1� � � (N)� and � (N)15 � � (N)5 � i� (N)0 � (N)1 � (N)2 � (N)3 
an betaken in the redu
ed forms� (N)� = 
� 
 1
 � � � 
 1| {z }N�1 times ; � (N)5 = 
5 
 1
 � � � 
 1| {z }N�1 times ; (11)where 
�, 
5 � i
0
1
2
3 and 1 are the usual 4� 4 Dira
 matri
es.Then, the Dira
-type equation (4) for any N 
an be rewritten in theredu
ed form �
 � p�M (N)��1�1  (N)�1�2:::�N (x) = 0 ; (12)where �1 and �2 ; : : : ; �N are the �
entre-of-mass� and �relative� Dira
bispinor indi
es, respe
tively (�i = 1; 2; 3; 4 for any i = 1; 2; : : : ; N). Notethat in the Dira
-type equation (12) for any N > 1 there appear the �rela-tive� Dira
 indi
es �2 ; : : : ; �N whi
h are free from any 
oupling, but stillare subje
ts of Lorentz transformations.The Standard Model gauge intera
tions 
an be introdu
ed to the Dira
-type equations (12) by means of the minimal substitution p ! p � gA(x),where p plays the role of the �
entre-of-mass� four-momentum, and so, x �the �
entre-of-mass� four-position. Then,n
 � [p� gA(x)℄ �M (N)o�1�1  (N)�1�2:::�N (x) = 0 ; (13)where g
 � A(x) symbolises the Standard Model gauge 
oupling that in-volves within A(x) the familiar weak-isospin and 
olour matri
es, the weak-hyper
harge dependen
e as well as the usual Dira
 
hiral matrix 
5. Thelast arises from the �
entre-of-mass� Dira
-type 
hiral matrix � (N)5 , whena generi
 g� (N) � A(x) is redu
ed to g
 � A(x) in Eqs. (13) [see Eq. (11)℄.Note that then A�(x) � A�(x; 
5) � A�(x; 0) +A0�(x; 0)
5 depends linearlyon 
5.In Eqs. (13) the Standard Model gauge �elds intera
t only with the�
entre-of-mass� index �1 that, therefore, is distinguished from the physi-
ally unobserved �relative� indi
es �2; : : : ; �N . This was the reason, whysome time ago we 
onje
tured that the �relative� Dira
 bispinor indi
es



Cli�ord Algebra Implying Three Fermion Generations Revisited 2563�2; : : : ; �N are all indistinguishable physi
al obje
ts obeying Fermi statis-ti
s along with the Pauli prin
iple requiring the full antisymmetry of wavefun
tion  (N)�1�2:::�N (x) with respe
t to �2; : : : ; �N [2℄. Hen
e, due to this�intrinsi
 Pauli prin
iple�, only �ve values of N satisfying the 
onditionN � 1 � 4 are allowed, namely N = 1; 3; 5 for N odd and N = 2; 4 forN even. Then, from the postulate of relativity and the probabilisti
 inter-pretation of  (N)(x) � � (N)�1�2:::�N (x)� we were able to infer that these Nodd and N even 
orrespond to states with total spin 1/2 and total spin 0,respe
tively [2℄.Thus, the Dira
-type equation (13), jointly with the �intrinsi
 Pauli prin-
iple�, if 
onsidered on a fundamental level, justi�es the existen
e in Natureof three and only three generations of spin-1/2 fundamental fermions 
ou-pled to the Standard Model gauge bosons (they are identi�ed with leptonsand quarks). In addition, there should exist two and only two generationsof spin-0 fundamental bosons also 
oupled to the Standard Model gaugebosons (they are not identi�ed yet). Note that one 
annot hope here fora 
onstru
tion of the full supersymmetry. At most, there might appear apartial supersymmetry: two to two, broken by the absen
e of one bosongeneration (the question is of whi
h).The wave fun
tions or �elds of spin-1/2 fundamental fermions (leptonsand quarks) of three generations N = 1; 3; 5 
an be presented in terms of (N)�1�2:::�N (x) as follows: (f1)�1 (x) =  (1)�1 (x) ; (f3)�1 (x) = 14 �C�1
5��2�3  (3)�1�2�3(x) =  (3)�112(x) =  (3)�134(x) ; (f5)�1 (x) = 124"�2�3�4�5 (5)�1�2�3�4�5(x) =  (5)�11234(x) ; (14)where  (N)�1�2:::�N (x) 
arries also the Standard Model (
omposite) label, sup-pressed in our notation, and C denotes the usual 4 � 4 
harge-
onjugationmatrix. Here, writing expli
itly, f1 = �e ; e� ; u ; d ; f3 = �� ; �� ; 
 ; s andf5 = �� ; �� ; t ; b, thus ea
h fN 
orresponds to the same suppressed Stan-dard Model (
omposite) label. We 
an see that, due to the full antisymmetryin �i indi
es for i � 2, the wave fun
tions or �elds N = 1; 3 and 5 appear(up to the sign) with the multipli
ities 1, 4 and 24, respe
tively. Thus, forthem, there is de�ned the weighting matrix�1=2 = 1p29 0� 1 0 00 p4 00 0 p24 1A ; (15)where Tr � = 1.



2564 W. KrólikowskiFor ea
h bispinor wave fun
tion or �eld  (fN )�1 (x) (N = 1; 3; 5) de�nedin Eqs. (14), the Dira
-type equation (13) 
an be redu
ed to the usual Dira
equation n
 � [p� gA(x)℄ �M (N)o�1�1  (fN )�1 (x) = 0 : (16)This gives in turn the relativisti
 
ovariant 
onserved 
urrent of the usualDira
 form j(fN )�D (x) �  (fN )��1 (x) (
0
�)�1�1  (fN )�1 (x) : (17)In fa
t, ��j(fN )�D (x) = 0 sin
e Ay�(x) = A�(x) where 
y5 = 
5.Con
luding the �rst part of this note, we would like to point out thatour algebrai
 
onstru
tion of three and only three generations of leptons andquarks may be interpreted either as ingenuously algebrai
 (mu
h like thefamous Dira
's algebrai
 dis
overy of spin 1/2), or as a summit of an i
e-berg of really 
omposite states of N spatial partons with spin 1/2 whoseDira
 bispinor indi
es manifest themselves as our Dira
 bispinor indi
es�1; �2; : : : ; �N (N = 1; 3; 5) whi
h thus may be 
alled �algebrai
 partons�,as being algebrai
 building blo
ks for leptons and quarks. Among all N �al-gebrai
 partons� in any generation N of leptons and quarks, there are one�
entre-of-mass algebrai
 parton� (�1) and N�1 �relative algebrai
 partons�(�2; : : : ; �N ), the latter undistinguishable from ea
h other and so, obeyingour �intrinsi
 Pauli prin
iple�.Now, we pass to some more formal dis
ussion. It is not di�
ult to seethat both for N odd and N even the Dira
-type equation (13) implies thelo
al 
onservation of the following relativisti
 
ovariant stru
ture:j(N)��2:::�N ;�2:::�N (x) �  (N)��1�2:::�N (x) (
0
�)�1�1  (N)�1�2:::�N (x) : (18)In fa
t, ��j��2:::�N ;�2:::�N (x) = 0 be
ause Ay�(x) = A�(x). The lo
al 
onser-vation of the 
urrents (17) for N = 1; 3; 5 follows immediately from Eq. (18),sin
e j(f1)�D (x) = j(1)� (x) ;j(f3)�D (x) = 14 �C�1
5���2�3 j(3)��2�3;�2�3(x)14 �C�1
5��2�3 ;j(f5)�D (x) = 124"�2�3�4�5j(5)��2�3�4�5;�2�3�4�5(x) 124"�2�3�4�5 : (19)In general, the relativisti
 
ovariant Dira
-type 
urrents both for N oddand N even must have the formj(N)�D (x) �  (N)��1�2:::�N (x)�(N)��� (N)10 � (N)20 : : : � (N)N0 � (N)1� ��1�2:::�N ;�1�2:::�N  (N)�1�2:::�N (x) ; (20)



Cli�ord Algebra Implying Three Fermion Generations Revisited 2565where � (N)i� are the Dira
-type matri
es in their Ja
obi version, introdu
ed inEqs. (6), while �(N) is a phase fa
tor making Hermitian the N �N bispinormatrix appearing in this 
urrent. For N even this de�nition is trivial, asthen the Dira
-type 
urrent vanishes. In the 
ase of N odd, we are going toshow that j(N)�D (x) = j(N)��2:::�N ;�2:::�N (x)(
0)�2�2 : : : (
0)�N�N : (21)Thus, ��j(N)�D (x) = 0 for N odd.To prove Eq. (21), we observe that the Dira
-type matri
es � (N)i� (i =1; 2; : : : ; N), satisfying the anti
ommutation relations of Cli�ord algebra (5),
an be represented in terms of the usual 4� 4 Dira
 matri
es as follows:� (N)1� = 
� 
 1 
 1 
 1 
: : :
 1
 1| {z }N�1 times ;� (N)2� = 
5 
i
�
5
 1
 1
: : :
 1
 1 ;� (N)3� = 
5 
 
5 
 
� 
 1
 : : :
 1
 1 ;: : : : : : : : : : : : : : : : : : : : : :� (N)N� = 
5 
 
5 
 
5 
 
5 
 : : :
 
5| {z }N�1 times 
� 
� for N oddi
�
5 for N even ; (22)what is an extension of the representation (11) for � (N)1� � � (N)� leading tothe form (13) of Dira
-type equation for any N . Forming their produ
t for� = 0,� (N)10 � (N)20 : : : � (N)N0 = 8<: iN�12 
0 
 
0 
 : : : 
 
0 for N odd(�i)N2 i
0
5
i
0
5
: : :
i
0
5 for N even ;(23)and multiplying from the right by � (N)1� , we obtain� (N)10 � (N)20 : : : � (N)N0 � (N)1� = 8<: iN�12 
0 
� 
 
0 
 : : :
 
0 for N odd(�i)N�22 
0
5
�
i
0
5
: : :
i
0
5 forN even:(24)



2566 W. KrólikowskiHen
e, we 
an de�ne the phase fa
tors in Eq. (20) as follows:�(N) =8<: (�i)N�12 for N odd(�i)N�22 for N even: (25)Thus, in the 
ase of N odd we 
an represent the Dira
-type 
urrent (20) inthe formj(N)�D (x) =  (N)��1�2:::�N (x)(
0
�)�1 �1(
0)�2 �2 : : : (
0)�N �N (N)�1�2:::�N (x) : (26)From Eqs. (18) and (26) the relationship (21) follows.For N odd, the Dira
-type 
urrent (20) or (26) is lo
ally 
onserved,but su
h is also the relativisti
 non
ovariant stru
ture j(N)��2:::�N ;�2:::�N (x)
al
ulated from the de�nition (18) by summing over �2 = �2; : : : ; �N = �N .It follows that the Hermitian, not expli
itly 
ovariant N�N bispinor matrix�(N)� (N)20 : : : � (N)N0 = 1
 
0 
 
0 
 : : : 
 
0| {z }N�1 times = (Æ�1�1(
0)�2�2 : : : (
0)�N�N )(27)is a 
onstant of motion. This matrix may be 
alled the total �relative� inter-nal parity. Imposing on  (N)(x) � � (N)�1�2:::�N (x)� the stationary 
onstraintin the form of the eigenvalue equation�(N)� (N)20 : : : � (N)N0  (N)(x) =  (N)(x) ; (28)requiring that the eigenvalue of total �relative� internal parity must be al-ways equal to +1, we simplify the relativisti
 
ovariant Dira
-type 
urrent(20) or (26) to the formj(N)�D =  (N)��1�2:::�N (x)�� (N)10 � (N)1� ��1�2:::�N ;�1�2:::�N  (N)�1�2:::�N (x)=  (N)��1�2:::�N (x) (
0
�)�1�1  (N)�1�2:::�N (x) (29)that is not expli
itly 
ovariant in the world of �relative� Dira
 degrees offreedom. The form (29) leads to the positive-de�niteness of  (N)(x),j(N)0D (x) =  (N)��1�2:::�N (x) (N)�1�2:::�N (x) > 0 ; (30)whi
h is a natural requirement for  (N)(x).



Cli�ord Algebra Implying Three Fermion Generations Revisited 2567It is not di�
ult to demonstrate that wave fun
tions or �elds of spin-1/2fundamental fermions,  (fN )�1 (x) (N = 1; 3; 5) de�ned in Eqs. (14), satisfy the
onstraint (28). In fa
t, writing (3)�1�2�3(x) = (
5C)�3�2 (f3)�1 (x) ;  (5)�1�2�3�4�5(x) = "�2�3�4�5 (f5)�1 (x) ;(31)we 
he
k that Æ�1�1(
0)�2�2(
0)�3�3 (3)�1�2�3(x) =  (3)�1�2�3(x) (32)andÆ�1�1(
0)�2�2(
0)�3�3(
0)�4�4(
0)�5�5 (5)�1�2�3�4�5(x) =  (5)�1�2�3�4�5(x) ;(33)where in the 
hiral representation
5 = 0BB� 1 0 0 00 1 0 00 0 �1 00 0 0 �1 1CCA ; C = 0BB� 0 �1 0 01 0 0 00 0 0 10 0 �1 0 1CCA ;
0 = 0BB� 0 0 1 00 0 0 11 0 0 00 1 0 0 1CCA : (34)Here, (
5C)T = �
5C.In 
on
lusion, we would like to emphasise that the phenomenon of exis-ten
e in Nature of three generations of fundamental fermions (leptons andquarks) 
an be understood in a satisfa
tory way on the base of two postu-lates:(i) For all fundamental parti
les of matter the Dira
 square-root pro
e-dure pp2 ! � (N) � p works, leading in the intera
tion-free 
ase tothe sequen
e N = 1; 2; 3; : : : of Dira
-type equations (4), satis�ed bythe sequen
e N = 1; 2; 3; : : : of wave fun
tions or �elds  (N)(x) �� (N)�1�2:::�N (x)�, where �1 is a �
entre-of-mass� Dira
 bispinor indexand �2; : : : ; �N are �relative� Dira
 bispinor indi
es.(ii) The �
entre-of-mass� Dira
 bispinor index �1 is 
oupled to the Stan-dard Model gauge �elds through the term g
�1�1 � A(x) in the Dira
-type equation (13), while the �relative� Dira
 bispinor indi
es �2; : : : ;



2568 W. Królikowski�N are all free indistinguishable physi
al obje
ts obeying Fermi statis-ti
s along with the Pauli prin
iple (
alled then �intrinsi
 Pauli prin
i-ple�) whi
h requires the full antisymmetry of  (N)�1�2:::�N (x) with respe
tto �2; : : : ; �N .This antisymmetry allows only for three N = 1; 3; 5 in the 
ase of N odd,and for two N = 2; 4 in the 
ase of N even. Hen
e, unavoidably, therefollow three and only three generations of fundamental fermions (leptonsand quarks) and two and only two generations of some fundamental bosons(not re
ognised yet). The former 
arry spin 1/2 and the latter spin 0 (as wasargued in Ref. [2℄). All possess a 
onventional Standard Model signature,suppressed in our notation.The Dira
-type matri
es � (N)� , appearing in the square-root pro
edurepp2 ! � (N) �p, are here 
onstru
ted by means of the Cli�ord algebra (3) ofmatri
es 
(N)i� , and then embedded into of the Cli�ord algebra (5) of matri
es� (N)i� via a Ja
obi de�nition (6), where � (N)1� � � (N)� and � (N)2� ; : : : ; � (N)N� playthe role of �
entre-of-mass� and �relative� Dira
-type matri
es, respe
tively,de�ning one �
entre-of-mass� and N�1 �relative� Dira
 bispinor indi
es (�1and �2; : : : ; �N ).Finally, a few words about a possible shape of the Dira
 3 � 3 massmatri
es M (f) = �M (f)N N 0� (N;N 0 = 1; 3; 5) for four sorts of spin-1/2 funda-mental fermions f = � ; e ; u ; d (leptons and quarks). Their three genera-tions fN = �N ; eN ; uN ; dN (N = 1; 3; 5) are des
ribed in our formalism bythe wave fun
tions or �elds (14) appearing with the weighting matrix (15).Some time ago, we introdu
ed a simple spe
i�
 ansatzM (f) = �1=2h(f)�1=2 ; (35)where �1=2 is the weighting matrix given in Eq. (15) andh(f) = �(f) hN2 � (1� "(f))N�2i+ �(f)(a+ ay) (36)with �(f) > 0 and "(f) > 0 being parameters. Here, the matrixN = 0� 1 0 00 3 00 0 5 1A = 1 + 2n (37)des
ribes the number of all �i indi
es with i = 1; 2; : : : ; N (all �algebrai
partons�) present in any of three fermion generations N = 1; 3; 5, whilea = 0� 0 1 00 0 p20 0 0 1A ; ay = 0� 0 0 01 0 00 p2 0 1A (38)
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ated� annihilation and 
reation matri
es for pairs of�relative� indi
es �i�j with (i; j) = (2; 3); : : : ; (N � 1; N) (pairs of �relativealgebrai
 partons�):[a ; n℄ = a ; [ay ; n℄ = �ay ; n = aya = 0� 0 0 00 1 00 0 2 1A ; (39)where the �trun
ation� 
ondition a3 = 0 = ay 3 is satis�ed (implying thatN = 1; 3; 5 or n = 0; 1; 2 only). The formulae (35) and (36) lead to thespe
i�
 form of Dira
 mass matri
es:M (f) = 129 0� �(f)"(f) 2�(f) 02�(f) 4�(f)(80 + "(f))=9 8p3�(f)0 8p3�(f) 24�(f)(624 + "(f))=25 1A :(40)In parti
ular for 
harged leptons (f = e), if in this 
ase �(e) 
an benegle
ted, the mass matrix (40) gives the following masses of ele
tron, muonand tauon (
orresponding to N = 1; 3 and 5, respe
tively):me = �(e)29 "(e) ; m� = �(e)29 49 �80 + "(e)� ; m� = �(e)29 2425 �624 + "(e)� :(41)Taking as an input the experimental values of me and m�, one determinesfrom Eqs. (41) that [2℄�(e) = 85:9924 MeV ; "(e) = 0:172329 ; m� = 1776:80 MeV ; (42)the last predi
tion being really 
lose to the experimental value mexp� =1777:03+0:30�0:26 MeV [5℄. Corre
ting Eqs. (41) by means of the lowest pertur-bation with respe
t to �(e), one gets from the mass matrix M (e) as given inEq. (40) the experimental value mexp� by putting ��(e)=�(e)�2 = 0:023+0:029�0:025(not in
onsistently with zero).The above impressive predi
tion for m� from the experimental me andm� seems to justify some spe
ulations about the physi
al origin of theansatz (36). In the kernel (36) of the Dira
 mass matrix (35), the �rstterm �(f)N2 may be intuitively interpreted as 
oming from an intera
tionof all N �algebrai
 partons� treated on equal footing, while the se
ond term��(f)(1 � "(f))N�2 may be 
onsidered as being a 
orre
ting term 
ausedby the fa
t that there is one �
entre-of-mass algebrai
 parton� distinguished(due to its external 
oupling to the Standard Model gauge �elds) among allN �algebrai
 partons� of whi
h N � 1 are �relative algebrai
 partons�, indis-tinguishable from ea
h other. This distinguished �algebrai
 parton� appears,



2570 W. Królikowskitherefore, with the probability [N !=(N � 1)!℄�1 = N�1 that, when squared,leads to the additional term �(f)(1 � "(f))N�2 [with an, in prin
iple, inde-pendent 
oe�
ient �(f)(1 � "(f))℄ whi
h should be subtra
ted in the kernel(36) from the former term in order to obtain a small mass matrix elementM (f)11 = �(f)"(f)=29, tending to the zeroth lowest mass mf1 if �(f) ! 0 and"(f) ! 0. Eventually, the third term �(f)(a + ay) in the kernel (36) annihi-lates and 
reates pairs of �relative algebrai
 partons� and so, is responsiblein a natural way for mixing of three fermion generations in the Dira
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