
Vol. 33 (2002) ACTA PHYSICA POLONICA B No 9
CLIFFORD ALGEBRA IMPLYING THREEFERMION GENERATIONS REVISITED�Wojieh KrólikowskiInstitute of Theoretial Physis, Warsaw UniversityHo»a 69, 00-681 Warszawa, Poland(Reeived April 19, 2002)Dediated to Stefan Pokorski on his 60th birthdayThe author's idea of algebrai ompositeness of fundamental partiles,allowing to understand the existene in Nature of three fermion generations,is revisited. It is based on two postulates. Primo, for all fundamental par-tiles of matter the Dira square-root proedure pp2 ! � (N) � p works,leading to a sequene N = 1; 2; 3; : : : of Dira-type equations, where fourDira-type matries � (N)� are embedded into a Cli�ord algebra via a Jaobide�nition introduing four �entre-of-mass� and (N � 1)�four �relative�Dira-type matries. These de�ne one �entre-of-mass� and N � 1 �rela-tive� Dira bispinor indies. Seundo, the �entre-of-mass� Dira bispinorindex is oupled to the Standard Model gauge �elds, while N � 1 �relative�Dira bispinor indies are all free indistinguishable physial objets obey-ing Fermi statistis along with the Pauli priniple whih requires the fullantisymmetry with respet to �relative� Dira indies. This allows only forthree Dira-type equations with N = 1; 3; 5 in the ase of N odd, and twowith N = 2; 4 in the ase of N even. The �rst of these results implies un-avoidably the existene of three and only three generations of fundamentalfermions, namely leptons and quarks, as labelled by the Standard Modelsignature. At the end, a omment is added on the possible shape of Dira3�3 mass matries for four sorts of spin-1/2 fundamental fermions appear-ing in three generations. For harged leptons a predition is m� = 1776:80MeV, when the input of experimental me and m� is used.PACS numbers: 12.50.Ch, 12.90.+b, 12.10.Dm
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2560 W. KrólikowskiOne of the most important theoretial ahievements in the history ofphysis was Dira's algebrai disovery of the partile's spin 1/2, inherentlyonneted with the linearisation of relativisti wave equation through hisfamous square-root proedure pp2 !  � p [1℄. As a result, some physialpartiles, alled later on spin-1/2 fermions, got � in addition to their spatialoordinates ~r � new algebrai degrees of freedom, desribed with the useof Dira bispinor index � = 1; 2; 3; 4. This was ated on by the 4� 4 Diramatries, in partiular, by the spin-1/2 matrix 12~� whih supplemented theorbital angular momentum operator ~r� ~p to the operator of partile's totalangular momentum. Thus, through an at of abstration from the partile'sspatial properties, its spin 1/2 was reognised as an algebrai analogue ofits spatial, orbital angular momentum, satisfying the same rotation-groupommutation relations.The starting point of the author's idea of algebrai ompositeness [2℄was a proposal of a new at of abstration from the partile's spatial prop-erties, where a wave funtion  (N)�1�2:::�N (~r) of several Dira bispinor in-dies �1; �2; : : : ; �N (as representing N physial objets orrelated withone material point of spatial oordinates ~r) was introdued in an analogywith the wave funtion  (N)(~r1; ~r2; : : : ; ~rN ) of several spatial oordinates~r1; ~r2; : : : ; ~rN (as representing N physial objets being, this time, materialpoints).In order to onstrut these several Dira bispinor indies the observationwas made [2℄ that, generially, the Dira algebran� (N)� ; � (N)� o = 2g�� (1)an be realized through Dira-type matries of the form� (N)� � 1pN NXi=1 (N)i� (2)built up linearly from N elements of the Cli�ord algebran(N)i� ; (N)j� o = 2Æijg�� ; (3)where N = 1; 2; 3; : : : ; i; j = 1; 2; : : : ; N and �; � = 0; 1; 2; 3. Then, theDira square-root proedure pp2 ! � (N) � p leads in the interation-freease to the sequene N = 1; 2; 3; : : : of Dira-type equations�� (N) � p�M (N)� (N)(x) = 0 (4)with  (N)(x) � � (N)�1�2:::�N (x)�, where the meaning of Dira bispinor in-dies is explained as in Eq. (12) later on. Here, eah �i = 1; 2; 3; 4 (i =



Cli�ord Algebra Implying Three Fermion Generations Revisited 25611; 2; : : : ; N). The mass M (N) is independent of � (N)� . In general, the massM (N) should be replaed by a mass matrix of elementsM (N;N 0) whih wouldouple  (N)(x) with all appropriate  (N 0)(x), and it might be natural to as-sume for N 6= N 0 that (N)i� and (N 0)j� ommute, and so do � (N)� and � (N 0)� .For N = 1, Eq. (4) is evidently the usual Dira equation and for N = 2it is known as the Dira form [3℄ of Kähler equation [4℄, while for N � 3Eqs. (4) give us new Dira-type equations [2℄. They desribe some spin-hal�nteger or spin-integer partiles for N odd or N even, respetively.The Dira-type matries � (N)� for any N an be embedded into the newCli�ord algebra n� (N)i� ; � (N)j� o = 2Æijg�� ; (5)isomorphi with the Cli�ord algebra (3) of (N)i� , if � (N)i� are de�ned by theproperly normalised Jaobi linear ombinations of (N)i� :� (N)1� � � (N)� � 1pN �(N)1� + : : :+ (N)N� � ;� (N)i� � 1pi(i� 1) h(N)1� + : : :+ (N)i�1 � � (i� 1)(N)i� i (6)for i = 1 and i = 2; : : : ; N , respetively. So, � (N)1� and � (N)2� ; : : : ; � (N)N� ,respetively, present the �entre-of-mass� and �relative� Dira-type matri-es. Note that the Dira-type equation (4) for any N does not involve the�relative� Dira-type matries � (N)2� ; : : : ; � (N)N� , inluding solely the �entre-of-mass� Dira-type matrix � (N)1� � � (N)� . Sine � (N)i� = PNj=1Oij(N)j� ,where O = (Oij) is an orthogonal N �N matrix (OT = O�1), we obtain forthe total spin tensor the equalityNXi=1 �(N)i�� = NXi=1 �(N)i�� ; (7)where �(N)j�� � i2 h(N)j� ; (N)j� i ; �(N)j�� � i2 h� (N)j� ; � (N)j� i : (8)The total spin tensor (7) is the generator of Lorentz transformations for (N)(x).In plae of the hiral representations for individual (N)j = �(N)j� �, where(N)j5 � i(N)j0 (N)j1 (N)j2 (N)j3 ; �(N)j3 � �(N)j12 (9)



2562 W. Królikowskiare diagonal, it is onvenient to use for any N the hiral representations ofJaobi � (N)j = �� (N)j� �, where now� (N)j5 � i� (N)j0 � (N)j1 � (N)j2 � (N)j3 ; �(N)j3 � �(N)j12 (10)are diagonal (all matries (9) and similarly (10) ommute simultaneously,both with equal and di�erent j).When using the Jaobi hiral representations, the �entre-of-mass� Dira-type matries � (N)1� � � (N)� and � (N)15 � � (N)5 � i� (N)0 � (N)1 � (N)2 � (N)3 an betaken in the redued forms� (N)� = � 
 1
 � � � 
 1| {z }N�1 times ; � (N)5 = 5 
 1
 � � � 
 1| {z }N�1 times ; (11)where �, 5 � i0123 and 1 are the usual 4� 4 Dira matries.Then, the Dira-type equation (4) for any N an be rewritten in theredued form � � p�M (N)��1�1  (N)�1�2:::�N (x) = 0 ; (12)where �1 and �2 ; : : : ; �N are the �entre-of-mass� and �relative� Dirabispinor indies, respetively (�i = 1; 2; 3; 4 for any i = 1; 2; : : : ; N). Notethat in the Dira-type equation (12) for any N > 1 there appear the �rela-tive� Dira indies �2 ; : : : ; �N whih are free from any oupling, but stillare subjets of Lorentz transformations.The Standard Model gauge interations an be introdued to the Dira-type equations (12) by means of the minimal substitution p ! p � gA(x),where p plays the role of the �entre-of-mass� four-momentum, and so, x �the �entre-of-mass� four-position. Then,n � [p� gA(x)℄ �M (N)o�1�1  (N)�1�2:::�N (x) = 0 ; (13)where g � A(x) symbolises the Standard Model gauge oupling that in-volves within A(x) the familiar weak-isospin and olour matries, the weak-hyperharge dependene as well as the usual Dira hiral matrix 5. Thelast arises from the �entre-of-mass� Dira-type hiral matrix � (N)5 , whena generi g� (N) � A(x) is redued to g � A(x) in Eqs. (13) [see Eq. (11)℄.Note that then A�(x) � A�(x; 5) � A�(x; 0) +A0�(x; 0)5 depends linearlyon 5.In Eqs. (13) the Standard Model gauge �elds interat only with the�entre-of-mass� index �1 that, therefore, is distinguished from the physi-ally unobserved �relative� indies �2; : : : ; �N . This was the reason, whysome time ago we onjetured that the �relative� Dira bispinor indies



Cli�ord Algebra Implying Three Fermion Generations Revisited 2563�2; : : : ; �N are all indistinguishable physial objets obeying Fermi statis-tis along with the Pauli priniple requiring the full antisymmetry of wavefuntion  (N)�1�2:::�N (x) with respet to �2; : : : ; �N [2℄. Hene, due to this�intrinsi Pauli priniple�, only �ve values of N satisfying the onditionN � 1 � 4 are allowed, namely N = 1; 3; 5 for N odd and N = 2; 4 forN even. Then, from the postulate of relativity and the probabilisti inter-pretation of  (N)(x) � � (N)�1�2:::�N (x)� we were able to infer that these Nodd and N even orrespond to states with total spin 1/2 and total spin 0,respetively [2℄.Thus, the Dira-type equation (13), jointly with the �intrinsi Pauli prin-iple�, if onsidered on a fundamental level, justi�es the existene in Natureof three and only three generations of spin-1/2 fundamental fermions ou-pled to the Standard Model gauge bosons (they are identi�ed with leptonsand quarks). In addition, there should exist two and only two generationsof spin-0 fundamental bosons also oupled to the Standard Model gaugebosons (they are not identi�ed yet). Note that one annot hope here fora onstrution of the full supersymmetry. At most, there might appear apartial supersymmetry: two to two, broken by the absene of one bosongeneration (the question is of whih).The wave funtions or �elds of spin-1/2 fundamental fermions (leptonsand quarks) of three generations N = 1; 3; 5 an be presented in terms of (N)�1�2:::�N (x) as follows: (f1)�1 (x) =  (1)�1 (x) ; (f3)�1 (x) = 14 �C�15��2�3  (3)�1�2�3(x) =  (3)�112(x) =  (3)�134(x) ; (f5)�1 (x) = 124"�2�3�4�5 (5)�1�2�3�4�5(x) =  (5)�11234(x) ; (14)where  (N)�1�2:::�N (x) arries also the Standard Model (omposite) label, sup-pressed in our notation, and C denotes the usual 4 � 4 harge-onjugationmatrix. Here, writing expliitly, f1 = �e ; e� ; u ; d ; f3 = �� ; �� ;  ; s andf5 = �� ; �� ; t ; b, thus eah fN orresponds to the same suppressed Stan-dard Model (omposite) label. We an see that, due to the full antisymmetryin �i indies for i � 2, the wave funtions or �elds N = 1; 3 and 5 appear(up to the sign) with the multipliities 1, 4 and 24, respetively. Thus, forthem, there is de�ned the weighting matrix�1=2 = 1p29 0� 1 0 00 p4 00 0 p24 1A ; (15)where Tr � = 1.



2564 W. KrólikowskiFor eah bispinor wave funtion or �eld  (fN )�1 (x) (N = 1; 3; 5) de�nedin Eqs. (14), the Dira-type equation (13) an be redued to the usual Diraequation n � [p� gA(x)℄ �M (N)o�1�1  (fN )�1 (x) = 0 : (16)This gives in turn the relativisti ovariant onserved urrent of the usualDira form j(fN )�D (x) �  (fN )��1 (x) (0�)�1�1  (fN )�1 (x) : (17)In fat, ��j(fN )�D (x) = 0 sine Ay�(x) = A�(x) where y5 = 5.Conluding the �rst part of this note, we would like to point out thatour algebrai onstrution of three and only three generations of leptons andquarks may be interpreted either as ingenuously algebrai (muh like thefamous Dira's algebrai disovery of spin 1/2), or as a summit of an ie-berg of really omposite states of N spatial partons with spin 1/2 whoseDira bispinor indies manifest themselves as our Dira bispinor indies�1; �2; : : : ; �N (N = 1; 3; 5) whih thus may be alled �algebrai partons�,as being algebrai building bloks for leptons and quarks. Among all N �al-gebrai partons� in any generation N of leptons and quarks, there are one�entre-of-mass algebrai parton� (�1) and N�1 �relative algebrai partons�(�2; : : : ; �N ), the latter undistinguishable from eah other and so, obeyingour �intrinsi Pauli priniple�.Now, we pass to some more formal disussion. It is not di�ult to seethat both for N odd and N even the Dira-type equation (13) implies theloal onservation of the following relativisti ovariant struture:j(N)��2:::�N ;�2:::�N (x) �  (N)��1�2:::�N (x) (0�)�1�1  (N)�1�2:::�N (x) : (18)In fat, ��j��2:::�N ;�2:::�N (x) = 0 beause Ay�(x) = A�(x). The loal onser-vation of the urrents (17) for N = 1; 3; 5 follows immediately from Eq. (18),sine j(f1)�D (x) = j(1)� (x) ;j(f3)�D (x) = 14 �C�15���2�3 j(3)��2�3;�2�3(x)14 �C�15��2�3 ;j(f5)�D (x) = 124"�2�3�4�5j(5)��2�3�4�5;�2�3�4�5(x) 124"�2�3�4�5 : (19)In general, the relativisti ovariant Dira-type urrents both for N oddand N even must have the formj(N)�D (x) �  (N)��1�2:::�N (x)�(N)��� (N)10 � (N)20 : : : � (N)N0 � (N)1� ��1�2:::�N ;�1�2:::�N  (N)�1�2:::�N (x) ; (20)



Cli�ord Algebra Implying Three Fermion Generations Revisited 2565where � (N)i� are the Dira-type matries in their Jaobi version, introdued inEqs. (6), while �(N) is a phase fator making Hermitian the N �N bispinormatrix appearing in this urrent. For N even this de�nition is trivial, asthen the Dira-type urrent vanishes. In the ase of N odd, we are going toshow that j(N)�D (x) = j(N)��2:::�N ;�2:::�N (x)(0)�2�2 : : : (0)�N�N : (21)Thus, ��j(N)�D (x) = 0 for N odd.To prove Eq. (21), we observe that the Dira-type matries � (N)i� (i =1; 2; : : : ; N), satisfying the antiommutation relations of Cli�ord algebra (5),an be represented in terms of the usual 4� 4 Dira matries as follows:� (N)1� = � 
 1 
 1 
 1 
: : :
 1
 1| {z }N�1 times ;� (N)2� = 5 
i�5
 1
 1
: : :
 1
 1 ;� (N)3� = 5 
 5 
 � 
 1
 : : :
 1
 1 ;: : : : : : : : : : : : : : : : : : : : : :� (N)N� = 5 
 5 
 5 
 5 
 : : :
 5| {z }N�1 times 
� � for N oddi�5 for N even ; (22)what is an extension of the representation (11) for � (N)1� � � (N)� leading tothe form (13) of Dira-type equation for any N . Forming their produt for� = 0,� (N)10 � (N)20 : : : � (N)N0 = 8<: iN�12 0 
 0 
 : : : 
 0 for N odd(�i)N2 i05
i05
: : :
i05 for N even ;(23)and multiplying from the right by � (N)1� , we obtain� (N)10 � (N)20 : : : � (N)N0 � (N)1� = 8<: iN�12 0 � 
 0 
 : : :
 0 for N odd(�i)N�22 05�
i05
: : :
i05 forN even:(24)



2566 W. KrólikowskiHene, we an de�ne the phase fators in Eq. (20) as follows:�(N) =8<: (�i)N�12 for N odd(�i)N�22 for N even: (25)Thus, in the ase of N odd we an represent the Dira-type urrent (20) inthe formj(N)�D (x) =  (N)��1�2:::�N (x)(0�)�1 �1(0)�2 �2 : : : (0)�N �N (N)�1�2:::�N (x) : (26)From Eqs. (18) and (26) the relationship (21) follows.For N odd, the Dira-type urrent (20) or (26) is loally onserved,but suh is also the relativisti nonovariant struture j(N)��2:::�N ;�2:::�N (x)alulated from the de�nition (18) by summing over �2 = �2; : : : ; �N = �N .It follows that the Hermitian, not expliitly ovariant N�N bispinor matrix�(N)� (N)20 : : : � (N)N0 = 1
 0 
 0 
 : : : 
 0| {z }N�1 times = (Æ�1�1(0)�2�2 : : : (0)�N�N )(27)is a onstant of motion. This matrix may be alled the total �relative� inter-nal parity. Imposing on  (N)(x) � � (N)�1�2:::�N (x)� the stationary onstraintin the form of the eigenvalue equation�(N)� (N)20 : : : � (N)N0  (N)(x) =  (N)(x) ; (28)requiring that the eigenvalue of total �relative� internal parity must be al-ways equal to +1, we simplify the relativisti ovariant Dira-type urrent(20) or (26) to the formj(N)�D =  (N)��1�2:::�N (x)�� (N)10 � (N)1� ��1�2:::�N ;�1�2:::�N  (N)�1�2:::�N (x)=  (N)��1�2:::�N (x) (0�)�1�1  (N)�1�2:::�N (x) (29)that is not expliitly ovariant in the world of �relative� Dira degrees offreedom. The form (29) leads to the positive-de�niteness of  (N)(x),j(N)0D (x) =  (N)��1�2:::�N (x) (N)�1�2:::�N (x) > 0 ; (30)whih is a natural requirement for  (N)(x).



Cli�ord Algebra Implying Three Fermion Generations Revisited 2567It is not di�ult to demonstrate that wave funtions or �elds of spin-1/2fundamental fermions,  (fN )�1 (x) (N = 1; 3; 5) de�ned in Eqs. (14), satisfy theonstraint (28). In fat, writing (3)�1�2�3(x) = (5C)�3�2 (f3)�1 (x) ;  (5)�1�2�3�4�5(x) = "�2�3�4�5 (f5)�1 (x) ;(31)we hek that Æ�1�1(0)�2�2(0)�3�3 (3)�1�2�3(x) =  (3)�1�2�3(x) (32)andÆ�1�1(0)�2�2(0)�3�3(0)�4�4(0)�5�5 (5)�1�2�3�4�5(x) =  (5)�1�2�3�4�5(x) ;(33)where in the hiral representation5 = 0BB� 1 0 0 00 1 0 00 0 �1 00 0 0 �1 1CCA ; C = 0BB� 0 �1 0 01 0 0 00 0 0 10 0 �1 0 1CCA ;0 = 0BB� 0 0 1 00 0 0 11 0 0 00 1 0 0 1CCA : (34)Here, (5C)T = �5C.In onlusion, we would like to emphasise that the phenomenon of exis-tene in Nature of three generations of fundamental fermions (leptons andquarks) an be understood in a satisfatory way on the base of two postu-lates:(i) For all fundamental partiles of matter the Dira square-root proe-dure pp2 ! � (N) � p works, leading in the interation-free ase tothe sequene N = 1; 2; 3; : : : of Dira-type equations (4), satis�ed bythe sequene N = 1; 2; 3; : : : of wave funtions or �elds  (N)(x) �� (N)�1�2:::�N (x)�, where �1 is a �entre-of-mass� Dira bispinor indexand �2; : : : ; �N are �relative� Dira bispinor indies.(ii) The �entre-of-mass� Dira bispinor index �1 is oupled to the Stan-dard Model gauge �elds through the term g�1�1 � A(x) in the Dira-type equation (13), while the �relative� Dira bispinor indies �2; : : : ;



2568 W. Królikowski�N are all free indistinguishable physial objets obeying Fermi statis-tis along with the Pauli priniple (alled then �intrinsi Pauli prini-ple�) whih requires the full antisymmetry of  (N)�1�2:::�N (x) with respetto �2; : : : ; �N .This antisymmetry allows only for three N = 1; 3; 5 in the ase of N odd,and for two N = 2; 4 in the ase of N even. Hene, unavoidably, therefollow three and only three generations of fundamental fermions (leptonsand quarks) and two and only two generations of some fundamental bosons(not reognised yet). The former arry spin 1/2 and the latter spin 0 (as wasargued in Ref. [2℄). All possess a onventional Standard Model signature,suppressed in our notation.The Dira-type matries � (N)� , appearing in the square-root proedurepp2 ! � (N) �p, are here onstruted by means of the Cli�ord algebra (3) ofmatries (N)i� , and then embedded into of the Cli�ord algebra (5) of matries� (N)i� via a Jaobi de�nition (6), where � (N)1� � � (N)� and � (N)2� ; : : : ; � (N)N� playthe role of �entre-of-mass� and �relative� Dira-type matries, respetively,de�ning one �entre-of-mass� and N�1 �relative� Dira bispinor indies (�1and �2; : : : ; �N ).Finally, a few words about a possible shape of the Dira 3 � 3 massmatries M (f) = �M (f)N N 0� (N;N 0 = 1; 3; 5) for four sorts of spin-1/2 funda-mental fermions f = � ; e ; u ; d (leptons and quarks). Their three genera-tions fN = �N ; eN ; uN ; dN (N = 1; 3; 5) are desribed in our formalism bythe wave funtions or �elds (14) appearing with the weighting matrix (15).Some time ago, we introdued a simple spei� ansatzM (f) = �1=2h(f)�1=2 ; (35)where �1=2 is the weighting matrix given in Eq. (15) andh(f) = �(f) hN2 � (1� "(f))N�2i+ �(f)(a+ ay) (36)with �(f) > 0 and "(f) > 0 being parameters. Here, the matrixN = 0� 1 0 00 3 00 0 5 1A = 1 + 2n (37)desribes the number of all �i indies with i = 1; 2; : : : ; N (all �algebraipartons�) present in any of three fermion generations N = 1; 3; 5, whilea = 0� 0 1 00 0 p20 0 0 1A ; ay = 0� 0 0 01 0 00 p2 0 1A (38)



Cli�ord Algebra Implying Three Fermion Generations Revisited 2569play the role of �trunated� annihilation and reation matries for pairs of�relative� indies �i�j with (i; j) = (2; 3); : : : ; (N � 1; N) (pairs of �relativealgebrai partons�):[a ; n℄ = a ; [ay ; n℄ = �ay ; n = aya = 0� 0 0 00 1 00 0 2 1A ; (39)where the �trunation� ondition a3 = 0 = ay 3 is satis�ed (implying thatN = 1; 3; 5 or n = 0; 1; 2 only). The formulae (35) and (36) lead to thespei� form of Dira mass matries:M (f) = 129 0� �(f)"(f) 2�(f) 02�(f) 4�(f)(80 + "(f))=9 8p3�(f)0 8p3�(f) 24�(f)(624 + "(f))=25 1A :(40)In partiular for harged leptons (f = e), if in this ase �(e) an benegleted, the mass matrix (40) gives the following masses of eletron, muonand tauon (orresponding to N = 1; 3 and 5, respetively):me = �(e)29 "(e) ; m� = �(e)29 49 �80 + "(e)� ; m� = �(e)29 2425 �624 + "(e)� :(41)Taking as an input the experimental values of me and m�, one determinesfrom Eqs. (41) that [2℄�(e) = 85:9924 MeV ; "(e) = 0:172329 ; m� = 1776:80 MeV ; (42)the last predition being really lose to the experimental value mexp� =1777:03+0:30�0:26 MeV [5℄. Correting Eqs. (41) by means of the lowest pertur-bation with respet to �(e), one gets from the mass matrix M (e) as given inEq. (40) the experimental value mexp� by putting ��(e)=�(e)�2 = 0:023+0:029�0:025(not inonsistently with zero).The above impressive predition for m� from the experimental me andm� seems to justify some speulations about the physial origin of theansatz (36). In the kernel (36) of the Dira mass matrix (35), the �rstterm �(f)N2 may be intuitively interpreted as oming from an interationof all N �algebrai partons� treated on equal footing, while the seond term��(f)(1 � "(f))N�2 may be onsidered as being a orreting term ausedby the fat that there is one �entre-of-mass algebrai parton� distinguished(due to its external oupling to the Standard Model gauge �elds) among allN �algebrai partons� of whih N � 1 are �relative algebrai partons�, indis-tinguishable from eah other. This distinguished �algebrai parton� appears,



2570 W. Królikowskitherefore, with the probability [N !=(N � 1)!℄�1 = N�1 that, when squared,leads to the additional term �(f)(1 � "(f))N�2 [with an, in priniple, inde-pendent oe�ient �(f)(1 � "(f))℄ whih should be subtrated in the kernel(36) from the former term in order to obtain a small mass matrix elementM (f)11 = �(f)"(f)=29, tending to the zeroth lowest mass mf1 if �(f) ! 0 and"(f) ! 0. Eventually, the third term �(f)(a + ay) in the kernel (36) annihi-lates and reates pairs of �relative algebrai partons� and so, is responsiblein a natural way for mixing of three fermion generations in the Dira massmatrix M (f). REFERENCES[1℄ Cf. P.A.M. Dira, Priniples of Quantum Mehanis, 4th edition, Oxford Uni-versity Press 1958, �67.[2℄ W. Królikowski, Ata Phys. Pol. B21, 871 (1990); Phys. Rev. D45, 3222(1992); D46, 5188 (1992); in Spinors, Twistors, Cli�ord Algebras and Quan-tum Deformations (Pro. 2nd Max Born Symposium 1992), eds. Z. Oziewizet al., Kluwer Aad. Press, 1993; Ata Phys. Pol. B24, 1149 (1993); B27,2121 (1996); f. also Appendies in Ata Phys. Pol. B32, 2961 (2001) andhep-ph/0201004v2.[3℄ T. Banks, Y. Dothan, D. Horn, Phys. Lett. B117, 413 (1982).[4℄ E. Kähler, Rendionti di Matematia 21, 425 (1962); f. also D. Ivanenko,L. Landau, Z. Phys. 48, 341 (1928).[5℄ The Partile Data Group, Eur. Phys. J. C15, 1 (2000).


