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The author’s idea of algebraic compositeness of fundamental particles,
allowing to understand the existence in Nature of three fermion generations,
is revisited. It is based on two postulates. Primo, for all fundamental par-
ticles of matter the Dirac square-root procedure \/P — I'™) . p works,
leading to a sequence N = 1,2,3,... of Dirac-type equations, where four
Dirac-type matrices FLSN) are embedded into a Clifford algebra via a Jacobi
definition introducing four “centre-of-mass” and (N — 1)xfour “relative”
Dirac-type matrices. These define one “centre-of-mass” and N — 1 “rela-
tive” Dirac bispinor indices. Secundo, the “centre-of-mass” Dirac bispinor
index is coupled to the Standard Model gauge fields, while NV —1 “relative”
Dirac bispinor indices are all free indistinguishable physical objects obey-
ing Fermi statistics along with the Pauli principle which requires the full
antisymmetry with respect to ‘“relative” Dirac indices. This allows only for
three Dirac-type equations with NV = 1,3,5 in the case of N odd, and two
with N = 2,4 in the case of NV even. The first of these results implies un-
avoidably the existence of three and only three generations of fundamental
fermions, namely leptons and quarks, as labelled by the Standard Model
signature. At the end, a comment is added on the possible shape of Dirac
3 x 3 mass matrices for four sorts of spin-1/2 fundamental fermions appear-
ing in three generations. For charged leptons a prediction is m, = 1776.80
MeV, when the input of experimental m. and m,, is used.
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One of the most important theoretical achievements in the history of
physics was Dirac’s algebraic discovery of the particle’s spin 1/2, inherently
connected with the linearisation of relativistic wave equation through his
famous square-root procedure \/]? — v-p [1]. As a result, some physical
particles, called later on spin-1/2 fermions, got — in addition to their spatial
coordinates ¥ — new algebraic degrees of freedom, described with the use
of Dirac bispinor index a = 1,2, 3,4. This was acted on by the 4 x 4 Dirac
matrices, in particular, by the spin-1/2 matrix %6’ which supplemented the
orbital angular momentum operator 7 X p' to the operator of particle’s total
angular momentum. Thus, through an act of abstraction from the particle’s
spatial properties, its spin 1/2 was recognised as an algebraic analogue of
its spatial, orbital angular momentum, satisfying the same rotation-group
commutation relations.

The starting point of the author’s idea of algebraic compositeness [2]
was a proposal of a new act of abstraction from the particle’s spatial prop-
erties, where a wave function 1/1&?22,,,&]\, () of several Dirac bispinor in-
dices aq,a9,...,an (as representing N physical objects correlated with
one material point of spatial coordinates 7) was introduced in an analogy
with the wave function () (71, 7,...,7n) of several spatial coordinates
71,79,...,7n (as representing N physical objects being, this time, material
points).

In order to construct these several Dirac bispinor indices the observation
was made [2] that, generically, the Dirac algebra

{FISN) ’ FV(N)} = 20, (1)

can be realized through Dirac-type matrices of the form

N
_ 1 (N)
v = —NE Vi (2)
=1

built up linearly from N elements of the Clifford algebra

N N
{7§u ) s ](‘y )} = 25ijg;u/a (3)
where N = 1,2,3,..., 4,5 = 1,2,...,N and p,v = 0,1,2,3. Then, the
Dirac square-root procedure /p? — I'™) . p leads in the interaction-free
case to the sequence N = 1,2,3,... of Dirac-type equations
( ., M(N)) ™ (z) =0 (4)

with QlJ(N) (z) = (¢&]¥3¢2...QN (m)), where the meaning of Dirac bispinor in-

dices is explained as in Eq. (12) later on. Here, each o; = 1,2,3,4 (i =
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1,2,...,N). The mass M®W) is independent of F;SN). In general, the mass
MW should be replaced by a mass matnx of elements M V:N") which would
couple (V) (z) with all appropriate 1/1 )(z), and it might be natural to as-

sume for N # N’ that 72(# ) and 7(V ) commute, and so do F( ) and FV(N’).

For N =1, Eq. (4) is ev1dent1y the usual Dirac equation and for N = 2
it is known as the Dirac form [3] of Kéhler equation [4], while for N > 3
Egs. (4) give us new Dirac-type equations [2]. They describe some spin-
halfinteger or spin-integer particles for N odd or N even, respectively.

The Dirac-type matrices F;SN)
Clifford algebra

for any N can be embedded into the new

N N
{FZ(# ) s Fj(y )} = 25ijgluja (5)

isomorphic with the Clifford algebra (3) of yz(liv), if Q&LN) are defined by the
(V).

properly normalised Jacobi linear combinations of -y; e

N 1 N N
Fl(“) = FISN) = —N <7§“) +...+7](Vu)) ,
(N) _ 1 (V) (N) . (V)
™ = T [m T R (R o } (6)

for i = 1 and ¢ = 2,..., N, respectively. So, Fl(,]j) and F2(u)’ ..,F](VJZ),

respectively, present the “centre-of-mass” and “relative” Dirac-type matri-
ces. Note that the Dirac-type equation (4) for any N does not involve the

“relative” Dirac-type matrices FQ(IJLV) ) e ’FJ(V]Z)’ including solely the “centre-
of-mass” Dirac-type matrix Fl(,]j) = F;SN). Since FZ.(HN) = Z;vzl Oij'y](.l]:]),

where O = (O;;) is an orthogonal N x N matrix (O7 = O~'), we obtain for
the total spin tensor the equality

Z Uzp,u Z Zzp,u ) (7)

where

(N) _ L[ (N) _(N) (N) _ & [H(N) (V)
Tjur = 5 A 2 =3 i (8)

The total spin tensor (7) is the generator of Lorentz transformations for
P ().
In place of the chiral representations for individual WJ(.N) = (75?) , where

N) _ . (N) (N) (N) (N N N
73('5 )= Wg(‘o )’Y]('l )’Y](‘Q )’Y](‘s ) ; Ug(‘3 ) = 03('12) 9)



2562 W. KROLIKOWSKI

are diagonal, it is convenient to use for any N the chiral representations of
Jacobi Fj(N) = (F -(N)>, where now

Jn
r) =ir ey, o0 = £ (10)

are diagonal (all matrices (9) and similarly (10) commute simultaneously,
both with equal and different j).

When using the Jacobi chiral representations, the “centre-of-mass” Dirac-
type matrices Fl(iv) = F&N) and Fl(év) = FéN) = iFéN)Fl(N)FQ(N)FéN) can be
taken in the reduced forms

N — 19---01. '™ = 1®---®1 11
M =y,010 01, V=310 01, (11)
N—1 times N—1 times

where v, v5 = iy0y17273 and 1 are the usual 4 x 4 Dirac matrices.
Then, the Dirac-type equation (4) for any N can be rewritten in the

reduced form N

(7 p— M(N))mﬁl ngli%m (z) =0, (12)
where a7 and as, ..., ay are the “centre-of-mass” and “relative” Dirac
bispinor indices, respectively (a; = 1,2,3,4 for any i = 1,2,..., N). Note
that in the Dirac-type equation (12) for any N > 1 there appear the “rela-
tive” Dirac indices asg, ..., ay which are free from any coupling, but still
are subjects of Lorentz transformations.

The Standard Model gauge interactions can be introduced to the Dirac-
type equations (12) by means of the minimal substitution p — p — gA(z),
where p plays the role of the “centre-of-mass” four-momentum, and so, x —
the “centre-of-mass” four-position. Then,

{v-Ip-gA@] - MM} Y @) =0, (13)

a1

where g - A(z) symbolises the Standard Model gauge coupling that in-
volves within A(z) the familiar weak-isospin and colour matrices, the weak-
hypercharge dependence as well as the usual Dirac chiral matrix 5. The
last arises from the “centre-of-mass” Dirac-type chiral matrix F5(N), when
a generic gI'™) . A(z) is reduced to gy - A(x) in Egs. (13) [see Eq. (11)].
Note that then A, (x) = Au(z,v5) = Au(z,0) + A}, (,0)vs depends linearly
on 5.

In Egs. (13) the Standard Model gauge fields interact only with the
“centre-of-mass” index «y that, therefore, is distinguished from the physi-
cally unobserved “relative” indices «a9,...,ay. This was the reason, why
some time ago we conjectured that the “relative” Dirac bispinor indices
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aa,...,ay are all indistinguishable physical objects obeying Fermi statis-
tics along with the Pauli principle requiring the full antisymmetry of wave

function 1/)&122___&]\, (z) with respect to ao,...,an [2]. Hence, due to this
“intrinsic Pauli principle”, only five values of N satisfying the condition
N — 1 < 4 are allowed, namely N = 1,3,5 for N odd and N = 2,4 for
N even. Then, from the postulate of relativity and the probabilistic inter-

pretation of (M) (z) = (Q/J((IJY(;Q___QN (m)) we were able to infer that these N

odd and N even correspond to states with total spin 1/2 and total spin 0,
respectively [2].

Thus, the Dirac-type equation (13), jointly with the “intrinsic Pauli prin-
ciple”, if considered on a fundamental level, justifies the existence in Nature
of three and only three generations of spin-1/2 fundamental fermions cou-
pled to the Standard Model gauge bosons (they are identified with leptons
and quarks). In addition, there should exist two and only two generations
of spin-0 fundamental bosons also coupled to the Standard Model gauge
bosons (they are not identified yet). Note that one cannot hope here for
a construction of the full supersymmetry. At most, there might appear a
partial supersymmetry: two to two, broken by the absence of one boson
generation (the question is of which).

The wave functions or fields of spin-1/2 fundamental fermions (leptons
and quarks) of three generations N = 1,3,5 can be presented in terms of

QIJ&ZEQ,,@N (z) as follows:
() = (),
Ql}‘(ljig)(m) = i (0_175)a2a3 Q1}1(3?1)00113 ("E) = ,‘»bgi)l? ("E) = 1»&&?)1)34(1‘) )

Ql}((JL{S)( ) = %6062053044045111((151)0203(14&5 ("L‘) = d}gi)l??)ﬁl(x) ’ (14)

8

where 1/)&7&2,,,& ~ (z) carries also the Standard Model (composite) label, sup-
pressed in our notation, and C denotes the usual 4 x 4 charge-conjugation
matrix. Here, writing explicitly, fi = ve, e ,u,d, f3=v,, p ,c, s and
fs =v,, 77, t,b, thus each fn corresponds to the same suppressed Stan-
dard Model (composite) label. We can see that, due to the full antisymmetry
in «; indices for 4 > 2, the wave functions or fields N = 1,3 and 5 appear
(up to the sign) with the multiplicities 1, 4 and 24, respectively. Thus, for
them, there is defined the weighting matrix

1 1 0 0
plP=—10 vi 0 |, (15)
0

where Tr p = 1.
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For each bispinor wave function or field ng{N )(x) (N = 1,3,5) defined
in Egs. (14), the Dirac-type equation (13) can be reduced to the usual Dirac
equation

{7 -] - MM}y =0. (16)

This gives in turn the relativistic covariant conserved current of the usual
Dirac form

I (@) = g (@) (Vo) ay 5, ¥5 (@) (17)

In fact, Bﬂj(JBV)(x) = 0 since AL(:E) = A, (z) where 7;[ = 5.

Conclucﬁng the first part of this note, we would like to point out that
our algebraic construction of three and only three generations of leptons and
quarks may be interpreted either as ingenuously algebraic (much like the
famous Dirac’s algebraic discovery of spin 1/2), or as a summit of an ice-
berg of really composite states of N spatial partons with spin 1/2 whose
Dirac bispinor indices manifest themselves as our Dirac bispinor indices
a1, ay,...,ay (N = 1,3,5) which thus may be called “algebraic partons”,
as being algebraic building blocks for leptons and quarks. Among all N “al-
gebraic partons” in any generation N of leptons and quarks, there are one
“centre-of-mass algebraic parton” (aq) and N —1 “relative algebraic partons”
(ag,...,an), the latter undistinguishable from each other and so, obeying
our “intrinsic Pauli principle”.

Now, we pass to some more formal discussion. It is not difficult to see
that both for N odd and N even the Dirac-type equation (13) implies the
local conservation of the following relativistic covariant structure:

(N « N
Tt 5.5 (T) = 00y (2) 0Ny 5, Wi, () (18)
In fact, 0"juay...ay,ba...0n (7) = 0 because AL(m) = A, (z). The local conser-

vation of the currents (17) for N = 1,3, 5 follows immediately from Eq. (18),
since

i@ = i),

(f3) 1 _1 * .(3) 1 -1

]u]g (z) = 1 (C 75)0@:13 ]lta2043ﬁ2ﬂ3(x)z (C 75)5253 ’
Jup T 21 €asazauastuasazasas,BaBsBafs \ L) 24€B2BsB4Bs -

In general, the relativistic covariant Dirac-type currents both for N odd
and N even must have the form

i () = Oy ()€™
x (ri ) r Y ) (), (20)

N0 Tp >a1a2...aN,B1B2.../3N Vouta..0n
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where FZ-(HN) are the Dirac-type matrices in their Jacobi version, introduced in

Eqs. (6), while ¢(™) is a phase factor making Hermitian the N x N bispinor
matrix appearing in this current. For N even this definition is trivial, as
then the Dirac-type current vanishes. In the case of N odd, we are going to
show that

(AN (AN
i @) =30 a5 (@) (0)ass - (H0)asy - (21)

Thus, 9§ (x) = 0 for N odd.

To prove Eq. (21), we observe that the Dirac-type matrices FZ.(MN) (i =
1,2,...,N), satisfying the anticommutation relations of Clifford algebra (5),
can be represented in terms of the usual 4 x 4 Dirac matrices as follows:

' = 3,0191016...0181,

1p
N—1 times
Fg(,iv) = BRKBR1R1R...0111,

Y for N odd
iy,ys for N even,

N
Fz(v#) = \75®75®75®’Y5®...®75/®{ (22)

N —1 times

what is an extension of the representation (11) for Fl(,]j) = F!SN) leading to
the form (13) of Dirac-type equation for any N. Forming their product for
p =0,

N-1
(N) +(N) (N) 12 Y% ® Y ®...8 7 for Nodd
Iy’ Iy’ .. Iy = N . '
(=) 2 iy QiYY5 ®. . . ®iygys for N even,
(23)
and multiplying from the right by I 1(5), we obtain
(N) () (N) (M) i %Y ® Y% ®...8 v for N odd

Iy ' Iog "o Iyg Iy, =

N-2

(_i)T’YO'YSm ®1Y07V5R. . . ®ivpys for N even.
(24)
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Hence, we can define the phase factors in Eq. (20) as follows:

() _ (—=i) = for N odd (25)

(—i)"z  for N even.

Thus, in the case of N odd we can represent the Dirac-type current (20) in
the form

i @) = 80 @) (0T 51 (W0)as o - (V0)an By ¥ ..y (2) - (26)

From Eqs. (18) and (26) the relationship (21) follows.
For N odd, the Dirac-type current (20) or (26) is locally conserved,

but such is also the relativistic noncovariant structure j;(ﬁz) an,az.ay (T)
calculated from the definition (18) by summing over ag = f32,...,an = ON.
It follows that the Hermitian, not explicitly covariant N X N bispinor matrix

N N
eEMI .. T{) =10 % ®70® ... ®7 = (Bars: (W0)ashs - -- (W0)an )
Nf;rﬁmes

(27)
is a constant of motion. This matrix may be called the total “relative” inter-
nal parity. Imposing on 4N (z) = (1/1((1];22,,,@]\, (x)) the stationary constraint
in the form of the eigenvalue equation

éN " T ™M (@) = ) (@), (28)
requiring that the eigenvalue of total “relative” internal parity must be al-

ways equal to +1, we simplify the relativistic covariant Dirac-type current
(20) or (26) to the form

(N) _(N)* (N) () (N)
I’ = Paras...ay (%) (FIO Iy, >a1a2...aN,/31/32.--BN Vs (%)
= P () (W0, 5, Py (@) (29)

that is not explicitly covariant in the world of “relative” Dirac degrees of
freedom. The form (29) leads to the positive-definiteness of 1) (z),

i @) = g0 o @) (@) >0, (30)

which is a natural requirement for (™ (z).
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It is not difficult to demonstrate that wave functions or fields of spin-1/2

fundamental fermions, Ql)t(ljiN) (z) (N =1,3,5) defined in Eqgs. (14), satisfy the
constraint (28). In fact, writing

"/)zgi)agag (*’I;) = (’750)&3&27/}((1{3)(55) ) 1/}((151)(12&3&4&5 (*’I;) = 5&2&3&4&57/)&{5)(55)(5;1)
we check that

S (10)aza (W0 assa 0 (©) = B s () (32)

and

8ars i (70) asfia (70)aafa (10)ass (Y0)as8s DS 5,51 s (7) = Y mpapanans (2)

(33)
where in the chiral representation
1 0 0 0 0 -1 0 0
_ 0 1 0 0 C = 1 0 0 0
=100 -1 o)]°""fo o o 1]
0 0 0 -1 0 0 -1 0
0 01 0
0 0 0 1
0 1 0 0

Here, (75C)" = —C.

In conclusion, we would like to emphasise that the phenomenon of exis-
tence in Nature of three generations of fundamental fermions (leptons and
quarks) can be understood in a satisfactory way on the base of two postu-
lates:

(i) For all fundamental particles of matter the Dirac square-root proce-
dure /p2 — I'™) . p works, leading in the interaction-free case to
the sequence N = 1,2,3,... of Dirac-type equations (4), satisfied by
the sequence N = 1,2,3,... of wave functions or fields ¢(N)(x) =
(1/1&]1\22,,,0”\, (m)), where «a; is a “centre-of-mass” Dirac bispinor index

and ao,...,ay are “relative” Dirac bispinor indices.

(7) The “centre-of-mass” Dirac bispinor index «; is coupled to the Stan-
dard Model gauge fields through the term gv,,, - A(z) in the Dirac-
type equation (13), while the “relative” Dirac bispinor indices ao, ...,
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ay are all free indistinguishable physical objects obeying Fermi statis-
tics along with the Pauli principle (called then “intrinsic Pauli princi-

ple”) which requires the full antisymmetry of 1/1&]1\22,,,05 ~ (z) with respect
to ag,...,apN.

This antisymmetry allows only for three N = 1,3,5 in the case of N odd,
and for two N = 2,4 in the case of N even. Hence, unavoidably, there
follow three and only three generations of fundamental fermions (leptons
and quarks) and two and only two generations of some fundamental bosons
(not recognised yet). The former carry spin 1/2 and the latter spin 0 (as was
argued in Ref. [2]). All possess a conventional Standard Model signature,
suppressed in our notation.

(N)

The Dirac-type matrices I}, ’, appearing in the square-root procedure
/P2 = I'™).p_are here constructed by means of the Clifford algebra (3) of

matrices 'yi(iv), and then embedded into of the Clifford algebra (5) of matrices

FZ-(HN) via a Jacobi definition (6), where Fl(iv) ( ) and FQ(M ), .. ’FJ(V]Z) play
the role of “centre-of-mass” and “relative” D1rac type matrices, respectively,
defining one “centre-of-mass” and N —1 “relative” Dirac bispinor indices (o
and ag,...,aN).

Finally, a few words about a possible shape of the Dirac 3 x 3 mass
matrices M) = (M](\ﬂv,) (N,N' =1,3,5) for four sorts of spin-1/2 funda-

mental fermions f = v, e, u, d (leptons and quarks). Their three genera-
tions fy =vn, en, un, dy (N =1,3,5) are described in our formalism by
the wave functions or fields (14) appearing with the weighting matrix (15).
Some time ago, we introduced a simple specific ansatz

M) = pl2p(D 12 (35)
where p'/? is the weighting matrix given in Eq. (15) and

W) = D [N2 = (1 = W) Nﬁ] + oD (a+ah (36)
with £) > 0 and (/) > 0 being parameters. Here, the matrix
1 0 0
N=| 0 3 0 |=1+2n (37)
0 0 5

N (all “algebraic

describes the number of all «; indices with ¢ = 1,2, . (
, 3,9, while

7
partons”) present in any of three fermion generations N =

1

0 1 0 0

a=10 0 V2 |,a = 1 0 0 (38)
0 0 0 0 vV2 0
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play the role of “truncated” annihilation and creation matrices for pairs of

“relative” indices oya; with (4,75) = (2,3),..., (N — 1, N) (pairs of “relative
algebraic partons”):

0 0
10 |, (39)
0 2

)
=,
I
S
2
=,
I
|
2

2,
3
I
2
2,
S
I
coo

where the “truncation” condition a3 = 0 = a3 is satisfied (implying that
N =1,3,5 0orn = 0,1,2 only). The formulae (35) and (36) lead to the
specific form of Dirac mass matrices:

L[ BDeD 20 0
M = 5 200 4 (80 + () /9 8v3 alf)
0 8v/3 alf) 24D (624 + &) /25

(40)

In particular for charged leptons (f = e), if in this case a(®) can be

neglected, the mass matrix (40) gives the following masses of electron, muon
and tauon (corresponding to N = 1,3 and 5, respectively):

(e) 4 (e) 24
(o) _ A2 (e) Y s (e)
e | m, 299(80+5 ),mT o (624+5 )(.41)

Taking as an input the experimental values of m, and m,, one determines
from Eqs. (41) that [2]

1) =85.9924 MeV , (¢ = 0.172329, m, = 1776.80 MeV , (42)

the last prediction being really close to the experimental value msy "’ =

1777037032 MeV [5]. Correcting Eqs. (41) by means of the lowest pertur-
bation with respect to a(®), one gets from the mass matrix M(®) as given in
Eq. (40) the experimental value ms ™ by putting (oz(e)/,u(e))2 = 0.0231502
(not inconsistently with zero).

The above impressive prediction for m, from the experimental m, and
m, seems to justify some speculations about the physical origin of the
ansatz (36). In the kernel (36) of the Dirac mass matrix (35), the first
term p/) N2 may be intuitively interpreted as coming from an interaction
of all N “algebraic partons” treated on equal footing, while the second term
—u(f)(l — (e(f))N*2 may be considered as being a correcting term caused
by the fact that there is one “centre-of-mass algebraic parton” distinguished
(due to its external coupling to the Standard Model gauge fields) among all
N “algebraic partons” of which IV —1 are “relative algebraic partons”, indis-
tinguishable from each other. This distinguished “algebraic parton” appears,
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therefore, with the probability [N!/(N — 1)!]]7! = N! that, when squared,
leads to the additional term p()(1 — e(/))N~2 [with an, in principle, inde-
pendent coefficient u(f)(1 — (/)] which should be subtracted in the kernel
(36) from the former term in order to obtain a small mass matrix element
Ml({) = u(f)s(f)/29, tending to the zeroth lowest mass my, if o) = 0 and
(/) = 0. Eventually, the third term a{/)(a 4 a') in the kernel (36) annihi-
lates and creates pairs of “relative algebraic partons” and so, is responsible
in a natural way for mixing of three fermion generations in the Dirac mass
matrix M),
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