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UNIFIED DESCRIPTION OF A CLASS OF MODELSFOR BOSE�EINSTEIN CORRELATIONIN MULTIPLE PARTICLE PRODUCTION PROCESSES�K. ZalewskiM. Smolu
howski Institute of Physi
s, Jagellonian UniversityReymonta 4, 30-059 Kraków, PolandandH. Niewodni
za«ski Institute of Nu
lear Physi
sRadzikowskiego 152, 31-342 Kraków, Polande-mail: zalewski�thris
.if.uj.edu.pl(Re
eived June 3, 2002)Dedi
ated to Stefan Pokorski on his 60th birthdayNumerous models have been proposed to des
ribe the Bose�Einstein
orrelations in multiple parti
le produ
tion pro
ess. In the present paper wedes
ribe a generalization, whi
h in
ludes many previous models as spe
ial
ases and, therefore, 
an be useful for work of 
omparison. We apply thepowerful methods of eigenfun
tion expansions and generating fun
tionals,whi
h often make the 
al
ulations mu
h shorter than in the original papers.PACS numbers: 13.65.+i 1. Introdu
tionBose�Einstein 
orrelations in multiple parti
le produ
tion pro
esses athigh energy are now mu
h dis
ussed. The reviews [1�3℄ 
ontain hundreds ofreferen
es and many more 
an be found in the papers quoted there. There isa variety of models often based on very di�erent physi
al pi
tures of the pro-du
tion pro
ess. In the present paper we stress that many of these modelsdi�er only in their 
hoi
e of a single parti
le density matrix, further 
alledinput single parti
le density matrix. On
e this 
hoi
e has been made, the
al
ulations be
ome model independent. Following the approa
h from [4, 5℄we des
ribe a general model with a free fun
tion, whi
h 
ontains all thesemodels as spe
ial 
ases. Then we show that the further 
al
ulations 
an be� Partially supported by the Polish State Committee for S
ienti�
 Resear
h (KBN)under grant no 2P03B09322. (2643)



2644 K. Zalewskigreatly simpli�ed, if one uses eigenfun
tion expansions for the input singleparti
le density matri
es and suitable generating fun
tionals to summarizethe information about the distributions, whi
h 
an be 
ompared with experi-ment. This paper is essentially a des
ription from the point of view presentedin [4, 5℄ of a 
lass of models in
luding all the multiparti
le symmetrizatione�e
ts. 2. Models with fa
torizationMany models of Bose�Einstein 
orrelations in multiple parti
le produ
-tion pro
esses 
an be redu
ed to the following four steps, whi
h we list herepostponing their dis
ussion to the following se
tions.1. Guess an input single parti
le density matrix �(0)1 (~p; ~p0).2. Constru
t the n-parti
le density matrix for distinguishable parti
les�0n(~p1; : : : ; ~pn; ~p01; : : : ; ~p0n) = nYk=1 �(0)1 (~pk; ~p0k) : (1)3. Symmetrize this density matrix in order to obtain a density matrix forindistinguishable parti
les. The diagonal elements, whi
h are enoughto 
al
ulate all the momentum distributions, are�n(~p1; : : : ; ~pn) = 1n!X�;� �(0)n (~p�1; : : : ; ~p�n; ~p�1; : : : ; ~p�n) ; (2)where ea
h of the summations over � and � extends over all the n!permutations of the set of indi
es 1; : : : ; n. The normalization is su
hthat 
al
ulating the tra
e one integrates over the momentum spa
ewithout introdu
ing the fa
tor 1n! .4. Build the diagonal elements of the overall density matrix a

ording tothe formula � = 1Xn=1 p(0)(n)�n : (3)The 
oe�
ients are usually 
hosen Poissonian with some average �:p(0)(n) = �nn! e�� : (4)Further, models built a

ording to this re
ipe will be 
alled models withfa
torization. Let us now dis
uss the four steps.
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hoi
e of the input single parti
le density matrixThe supers
ript of the fun
tion �(0)1 indi
ates that this is not the ob-served one-parti
le density matrix, but an input fun
tion ne
essary for the
onstru
tion of the true density matrix. It may be interpreted as the singleparti
le density matrix for the unphysi
al 
ase, when the parti
les are pro-du
ed independently and there is no Bose�Einstein symmetrization. Thedi�erent models di�er in the inspirations used to guess this fun
tion. Theshortest way is, of 
ourse, to guess dire
tly the input density matrix �(0)1 ,however, a longer way making use of a model may be easier. Let us quotesome examples.One 
an guess a sour
e fun
tion S(X;K) and 
al
ulate the density ma-trix �(0)1 from the formula�(0)1 (~p; ~p0) = Z d4Xe�iqXS(X;K) ; (5)where K = 12(p+ p0) ; (6)q = p� p0 (7)are four-ve
tors with the four-ve
tors p; p0 being on shell parti
le momenta.The advantage of this approa
h is that the sour
e fun
tion re�e
ts the spa
e-time and momentum distribution of the sour
es of parti
les. Thus, there areintuitions what it should look like [1, 6, 7℄.Another approa
h is to assume that the parti
les originate from a largenumber N of independent, in
oherent sour
es. In order to produ
e a rea-sonable number of parti
les, ea
h of the sour
es must be weak. A formulafor the �total sour
e� [8, 9℄ with a good high N limit isJ(~p;N; �; �) = 1pN NXk=1 ei�keipxkj0(�kp) ; (8)where � = f�1; : : : ; �Ng is a set of random phases, � = fx1; ~v1; : : : ; xN ; ~vNgis a set of parameters 
hara
terizing the N sour
es and �k are Lorentztransformations with velo
ities ~vk, a
ting on the momentum fourve
tor p.The �total sour
e� is not a sour
e in the sense of quantum �eld theory. Itis rather a kind of single-parti
le wave fun
tion with the 
ondition that the
omponents labeled by di�erent indi
es k are not allowed to interfere. Thisis implemented by the random phases �k. An obje
t of this kind 
an berepla
ed by a single parti
le density matrix�01(~p; ~p0; �) = 1N NXk=1 eixk(p�p0)j0(�kp)j�0(�kp0) : (9)



2646 K. ZalewskiThere are two ways of pro
eeding further. One 
an assume that the densitymatrix �01 is an average of this density matrix over the sets �k = fxk; ~vkgand obtain [9℄�(0)1 (~p; ~p0) = Z d�k�(�k)eixk(p�p0)j0(�kp)j�0(�kp0) : (10)In the approa
h of Ref. [9℄ there are additional fa
tors dependent on thenumber of sour
es N , whi
h for N large drop out from the �nal result. Weabsorb the N -dependent fa
tor into the density �(�k) so that it does notappear expli
itly in the formulae. In this approa
h one has to guess thespe
trum of a single sour
e at rest j0(p) and the distribution of sour
es�(�k). The resulting single parti
le input density matrix does not depend onthe unmeasurable parameters any more.Alternatively one 
an postpone the averaging over the unmeasurableparameters as done in Ref. [8℄ (further quoted GKW) and 
hoose the purestate input single parti
le density matrix�(0)1 (~p; ~p0) = 1n(N; �; �)J(~p;N; �; �)J�(~p0; N; �; �) ; (11)where n(N; �; �) = Z d3kjJ(~k;N; �; �)j2 (12)is a normalizing 
onstant. It is natural to assume in su
h models that alsothe input multipli
ity distribution p(0)(n) depends on the unmeasurable pa-rameters. Models of this kind do not belong to the 
lass of models dis
ussedin the present paper, unless simplifying assumptions are made. We will dis-
uss only the simplest 
ase, when the unmeasurable parameters are �xed orabsent, and 
onsequently no averaging is ne
essary. This model (
f. [4℄) willbe 
alled pure state model, be
ause for it the input single parti
le densitymatrix, whi
h 
an be written in the form�(0)1 (~p; ~p0) =  (~p) �(~p0) ; (13)
orresponds to a pure state. There are two reasons to 
onsider this grosslyoversimpli�ed model: it is one of the very few models, where multiparti
lee�e
ts 
an be in
luded analyti
ally and it is a good starting point for thedis
ussion of the mu
h more important GKW model.Still another strategy is to guess a set of single parti
le wave pa
kets j�iand the distribution of su
h pa
kets �(�) [10, 11℄. Then�(0)1 (~p; ~p0) = Z d�h~pj�i�(�)h�j~p0i : (14)



Uni�ed Des
ription of a Class of Models for Bose�Einstein : : : 2647Let us note for further referen
e that if the states j�i form an orthonormalset, they are the eigenve
tors 
orresponding to the eigenvalues �(�) of thematrix �(0)1 (~p; ~p0). Then, usually, the integration gets repla
ed by a summa-tion.Whatever the starting point, very often one �nally obtains a Gaussian(
f. e.g. [6, 9, 10℄)�(0)1 (~p; ~p0) = Yi=x;y;z 1q2��2i exp �� K2i2�2i � R2i q2i2 � : (15)In order not to 
ontradi
t the Heisenberg un
ertainty prin
iple, one musthave �iRi � 12 : (16)In the wave pa
ket approa
h the parameters Ri and �i are expressed interms of other parameters in su
h a way that this 
ondition is automati
allyful�lled. In other approa
hes one must impose it as a 
onstraint.One 
ould in
lude in the exponent a term is~q � ~K [12℄, where s is a real
onstant and the fa
tor i is required by the hermiti
ity of the density matrix.Sin
e, however, ~K � ~q = (p21 � p22)=2, this addition does not a�e
t (in themomentum representation) the density matrix elements we are interestedin [9℄. It does a�e
t the dedu
ed size of the intera
tion region, but thisproblem is not dis
ussed in the present paper.Let us make some remarks about normalization. It is often 
onvenientto use the normalization Z d3p�(0)1 (~p; ~p) = 1 : (17)In other 
ases an invariant normalization may be preferableZ d3pEp �(0)inv1(~p; ~p) = 1 ; (18)where Ep =pm2 + ~p2. The relation between the two density matri
es is�(0)inv1(~p; ~p0) =pEpEp0�(0)1 (~p ; ~p0) (19)and 
an be used at any time to go from one normalization to the other. Forde�niteness we will use the matrix �(0)1 normalized a

ording to (17).The 
al
ulation of multiparti
le e�e
ts 
an be greatly simpli�ed, whenfor the input density matrix �(0)1 its eigenfun
tions  n(~p) and its eigenvalues�n are known. These are de�ned by the equationZ d3p0�(0)1 (~p; ~p0) n(~p0) = �n n(~p) ; (20)



2648 K. ZalewskiThe eigenfun
tions and the eigenvalues are known both for the pure statemodel (13) and for the Gaussian model (15). For the pure state modelobviously  0(~p) =  (~p) and �n = Æn;0 : (21)with the remaining eigenfun
tions 
onstrained only by the 
ondition thatthey are orthogonal to  0 and to ea
h other. For the Gaussian model in onedimension [4, 13℄ n(p) = r �p�2nn! exp ���2p22 �Hn(�p) ; (22)�n = (1� z)zn ; (23)where n = 0; 1; : : :, � =rR� ; z = 2R�� 12R�+ 1 : (24)In the three-dimensional 
ase the index n be
omes the set fnx; ny; nzg. Theeigenfun
tions and the eigenvalues are n(~p) =  nx(px) ny(py) nz(pz); �n = �nx�ny�nz : (25)In terms of its eigenfun
tions and eigenvalues the input density matrix is�(0)1 (~p; ~p0) =Xn �n n(~p) �n(~p0) : (26)The normalization 
ondition implies thatXn �n = 1 : (27)4. Step 2 � independent parti
les stageThe density matrix �(0)n is also an auxiliary 
onstru
t and does not 
orre-spond to an existing physi
al system. It des
ribes a system of n independent,distinguishable parti
les. The parti
les are independent in the sense that theaverage of the produ
t of any two single parti
le operators a
ting on di�erentparti
les is equal to the 
orresponding produ
t of averageshÔ1(~p1)Ô2(~p2)in = hÔ1(~p1)inhÔ1(~p1)in ; (28)where the averages are de�ned by the standard formulahÔin = Tr h�̂(0)n Ôi : (29)
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ription of a Class of Models for Bose�Einstein : : : 2649One 
ould ask what is the relation between the physi
al assumption thatpions are emitted independently and the fa
torization of the weight fun
tionin the de�nition of the density matrix. E.g. in the wave pa
ket pi
ture does�n(p1; : : : ; pn) = X�1;:::;�n j�1; : : : ; �ni�n(�1; : : : ; �n)h�1; : : : ; �nj ; (30)�n(�1; : : : ; �n) = nYk=1 �1(�k) ; (31)imply that the emission is independent? As easily 
he
ked from de�nition(28) the answer is a�rmative, if the wave fun
tions h~p1; : : : ~pnj�1; : : : ; �niare produ
ts of single parti
le wave fun
tions h~pkj�ki. This is the 
ase instep two of the present model. If the n-parti
le wave fun
tion 
orrespondsto 
orrelated parti
les, the fa
torizability of the weight fun
tion �n does nothelp. This is the 
ase after the wave fun
tions are symmetrized, sin
e thenthe Bose�Einstein 
orrelations appear. It is a matter of taste, whether these
orrelations are as
ribed to the symmetrization of the states j�1; : : : ; �ni,whi
h are part of the density operator, or to the symmetrization to theexternal states j~p1; : : : ; ~pni. The �rst 
hoi
e was made e.g. by Zimányi andCsörgö [10℄ and the se
ond e.g. in the 
lassi
al paper of the Goldhabers, Leeand Pais [14℄. This is not a physi
al distin
tion, however, be
ause the s
alarprodu
t de�ning the n parti
le wave fun
tion does not depend on whetherthe �rst fa
tor, the se
ond fa
tor, or both fa
tors got symmetrized.Thus, the model is an independent emission model [4, 5, 9℄ in a well-de�ned though somewhat formal sense. When �(0)1 depends on unobservableparameters, independen
e holds for �xed values of these parameters andwould be destroyed, if one averaged over them.One 
ould de�ne for distinguishable parti
les, in analogy to step 4, adensity matrix, whi
h involves all the multipli
ities�(0) = 1Xn=0 �nn! e���(0)n : (32)It is easy to 
he
k that also this matrix 
orresponds to independent parti
leprodu
tion. A di�erent 
hoi
e of the probabilities p(0)(n) would 
orrespondto 
orrelated produ
tion even at the stage when the parti
les are 
onsid-ered distinguishable [9℄. Of 
ourse, introdu
ing 
orrelations by modifyingthe input multipli
ity distribution only, without modifying the independentprodu
tion assumption for ea
h given multipli
ity, is not the most generalway of introdu
ing 
orrelations.



2650 K. Zalewski5. Step 3 � ex
lusive momentum distributionsThe diagonal elements of the symmetrized n-parti
le density matrix ob-tained in step 3 yield the momentum distribution for n identi
al parti
les,when no more parti
les of this kind have been produ
ed. There are no 
on-straints on the produ
tion of parti
les of other kinds. Thus, stri
tly speaking,this is a semiin
lusive distribution. Sin
e, however, in this paper parti
les ofother kinds are ignored and 
ould just as well be assumed to be absent, wehave 
alled this distribution ex
lusive. It is in general not normalized, evenwhen the single parti
le density matrix �(0)1 is normalized. We will use thenotation [4℄: W0 = 1 and for n > 0Wn = Tr �n = 1n!X�;� Z nYk=1 �(0)1 (~p�1k; ~p�k)d3pk : (33)Using the matrix �(0)inv1 instead of �(0)1 one 
an make this formula invariant.The same remark applies to our further formulae and we will not repeatit. For further use it is 
onvenient to de�ne the generating fun
tional [4, 5℄:W0[u℄ = 1 and for n > 0Wn[u℄ = Z �n(p1; : : : ; pn) nYk=1u(~pk)d3pk : (34)For u(~p) � 1 one re
overs the parameters Wn: Wn �Wn[1℄.Sin
e ea
h permutation 
an be de
omposed into 
y
les, the parametersWn for n > 0 
an be expressed in terms of the simpler parameters Ck de�nedfor k > 0 byCk = Tr [�(0)1 ℄k = Z �(0)1 (~p1; ~p2)�(0)1 (~p2; ~p3) : : : �(0)1 (~pk; ~p1) nYj=1 d3pj : (35)If the input matrix �(0)1 is normalized by (17), C1 = 1. The 
orrespondingfun
tional isCk[u℄ = Z �(0)1 (~p1; ~p2)�(0)1 (~p2; ~p3) : : : �(0)1 (~pk; ~p1) nYj=1u(~pj)d3pj (36)with Ck[1℄ = Ck.The fun
tional Wn[u℄ for n > 0 
an be expressed in terms of the fun
-tionals Ck[u℄ a

ording to the formulaWn[u℄ = n! Xn1;:::;nn nYk=1 (Ck[u℄=k)nknk! : (37)
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ription of a Class of Models for Bose�Einstein : : : 2651The sum is over all the sets of nonnegative integers fn1; : : : ; nng satisfyingthe relation Pnk=1 knk = n, or equivalently over all the de
ompositions ofthe set of permutations of n obje
ts into 
y
les, so that there are nk 
y
lesof length k. Note that Tr �(0)n = Cn1 is equal to the term nk = nÆk;1 of thissum. Thus, all the further terms in Wn[u℄ 
an be interpreted as 
orre
tionsdue to symmetrization.At this point one 
an write down the normalized n-parti
le ex
lusivemomentum distributionP (~p1; : : : ; ~pn) = 1Wn�n(~p1; : : : ~pn) : (38)The distribution is here normalized to unity, but a 
hange of this 
onventionwould be trivial.Using representation (26) for the input single parti
le density matrix,one 
an write the parameters Ck in the formCk =Xn �kn : (39)For the pure state model (13)Ck[u℄ = �Z d3pj (~p)j2u(~p�k ; k = 1; 2; : : : ; (40)whi
h implies for ea
h k: Ck = 1 and Wk[u℄ = k!Ck[u℄.For the Gaussian model in three dimensions, after summing three geo-metri
al progressions, Ck = 3Yi=x;y;z (1� zi)k1� zki : (41)Two limits are here of interest [9,10℄. When the phase spa
e per parti
leis minimal, for i = x; y; z: 2�iRi ! 1 and zi ! 0. Consequently, Ck ! 1for all k > 0. The state be
omes pure as it should, when due to Einstein's
ondensation pra
ti
ally all the parti
le are in the single parti
le state 
or-responding to the eigenvalues �0i. When the phase spa
e is large, for ea
h i:�iRi !1 and zi ! 1. Consequently, Ck ! Æk;1. In this limit multiparti
lee�e
ts be
ome negligible.Let us note that in order to 
al
ulate momentum distributions one usesonly the diagonal elements of the density matrix. Therefore, for this 
al
ula-tion any density matrix 
an be repla
ed by a diagonal matrix with the samediagonal elements. For instan
e, the density operator proposed in Refs. [8,9℄:�̂ = e�n exp �iZ dpJ(~p)ay~p� j0ih0j exp ��iZ dpJ�(~p)a~p� ; (42)



2652 K. Zalewskiwhere a~p; ay~p are annihilation and 
reation operators for parti
les with mo-mentum ~p, yields a density matrix nondiagonal in n. All that matters for the
al
ulation of momentum distributions, however, are the diagonal elementsand in our notation one �nds for ea
h subspa
e of n-parti
le statesp(0)(n)h~p1; : : : ; ~pnj�̂nj~p1; : : : ; ~pni = e�nn! nYk=1 jJ(~pk)j2 : (43)Thus 
hoosing p(0)(n) = exp(�n)nn=(n!)2 one 
an repla
e the density op-erator (42) by the mu
h simpler density operator of the pure state 
ase.For given multipli
ity the probability distribution for the parti
le momentais a produ
t of single parti
le momentum distributions. Therefore, parti-
le momenta are un
orrelated. In parti
ular, no Bose�Einstein 
orrelationsare seen in the distributions of relative momenta. This 
orresponds to the
oherent 
ase of the GKW model [8℄. If, on the other hand, the unobserv-able parameters have not been averaged out, the (unnormalized) ex
lusivemomentum distribution ishp(0)(n)�n(~(p1; : : : ; ~pn)i = *e�n nYk=1 jJ(~pk)j2+ ; (44)where h: : :i denotes averaging over the unobservable parameters. This dis-tribution is not a produ
t of single parti
le distributions any more and 
on-sequently 
orrelations among the parti
les are present. It 
orresponds to the
haoti
 
ase of the GKW model.6. Step 4 � multipli
ity distributionLet us note �rst that, sin
e in general Wn = Tr �n 6= 1, the 
oe�
ientsp(0)(n) are not the probabilities for produ
ing n parti
les. These (unnor-malized) probabilities are p(n) = p(0)n Wn : (45)Substituting the Poisson formula for p(0)(n) and formula (37) with u � 1 forTr �n one �nds Xn p(n) = e�� exp" 1Xk=1 Ckk �k# : (46)For non-Poissonian input multipli
ity distributions the 
orresponding sum-mation usually must be done numeri
ally [9℄. In the following we limit ourdis
ussion to the Poissonian 
ase. The probability distribution p(n) 
an be
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ription of a Class of Models for Bose�Einstein : : : 2653normalized, if and only if the series in the exponent in (46) 
onverges. Thisis the 
ase if � limk!1 kpCk = ��0 < 1 ; (47)where �0 is the largest eigenvalue of the input single parti
le density matrix.The series diverges when � > ��10 . This happens for the pure state modelwhen � > 1 ; (48)and for the Gaussian model, when� > �0 = Yi=x;y;z�12 +�iRi� : (49)In the terminology of thermodynami
s � = �0 
orresponds to a singularityof the (grand)partition fun
tion, i.e. (usually, see below) to a phase transi-tion. We show further that this is Einstein's 
ondensation. Note that wehave given here a 
omplete derivation of the formula for �0 in the Gaussian
ase. Without using the representation of the input density matrix in termsof its eigenvalues, this 
al
ulation would have taken many pages ( [10℄ andreferen
es given there). As Zimányi and Csörgö put it [10℄ �these solutionsare not easily obtained� � and they worked for simpli
ity with the spheri-
ally symmetri
 
ase, where �i and Ri do not depend on i. For � < �0 thenormalized probability distribution for �nding n parti
les isP (n) = �nn!Wn exp "� 1Xk=1 Ckk �k# : (50)When � tends to �0 from below, the sum in the exponent of the normalizingfa
tor tends to in�nity and the probability of �nding n < n0 parti
les forany �nite n0 tends to zero. This e�e
t disappears, when the eigenvalue �0and the 
orresponding eigenstate  0 are removed from the density matrix(26). Thus, the surplus of parti
les 
ondenses in the state  0 � Einstein's
ondensation o

urs. Sin
e in the pure state model all the parti
les are inone pure state anyway, there is no Einstein 
ondensation in this model for� ! 1.For 
omparison with experiment one needs the multipli
ity distribution,its moments, 
umulants et
., as well as in
lusive single parti
le, two parti
leet
. distributions. All this information is 
onveniently summarized in the



2654 K. Zalewskigenerating fun
tional1�[u℄ = 1Xn=0 p(0)(n)Wn[u℄ = exp" 1Xk=1 Ck[u℄k �k � �# : (51)This formula di�ers from the 
orresponding formula in Ref. [5℄ by a momen-tum independent fa
tor, whi
h does not a�e
t the logarithmi
 derivatives ofinterest. For the pure state model�[u℄ = e��1� � R d3pj (~p)j2u(~p) : (52)In order to 
al
ulate the moments and/or 
umulants of the multipli
itydistribution, one 
hooses the fun
tion u 
onstant. Let us denote this 
onstantby z. Then Wn[z℄ = znWn ; (53)Ck[z℄ = zkCk : (54)Let us 
al
ulate for examplehni = �� log�[z℄�z �z=1 = 1Xk=1 �kCk ; (55)hn2i � hni2 = ��2 log�[z℄�z2 �z=1 + hni = 1Xk=1 �kkCk = � dd� hni : (56)These formulae 
an be simpli�ed by using the eigenvalue expansion. Forinstan
e, assuming that the geometri
al series 
onverge, one �ndshni = 1Xn=0 ��n1� ��n : (57)For given �(0)1 , i.e. for given eigenvalues �k, the parameter � should be
hosen so as to reprodu
e the observed value of hni. With in
reasing hnithe parameter � in
reases. For hni ! 1, ��0 ! 1. Ea
h term in the sum(57), ex
ept for the �rst one, tends to a �nite limit. Let us assume thatthe sum of these limits is non zero and �nite. Then, with hni in
reasing tolarge values, only the �rst term keeps growing signi�
antly. The k-th termin the sum gives the average population of the k-th eigenstate of the density1 Many of the steps below be
ome obvious, when one translates the argument into thelanguage of thermodynami
s [15℄.
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ription of a Class of Models for Bose�Einstein : : : 2655operator. Thus for hni large and growing, almost all the additional parti
lesdue to the in
rease of � land in one state (j 0i) � Einstein's 
ondensationo

urs. The formula for the dispersion of the multipli
ity distribution 
anbe rewritten as hn2i � hni2 = 1Xn=0 ��n(1� ��n)2 : (58)In the pure state model, where ea
h of the 
oe�
ients Ck equals one,the series for hni 
onverges only if � < 1 and thenhni = �1� � for � < 1 : (59)For this model symmetrization from step 3 redu
es to a multipli
ation of thedensity matrix by n!. The unnormalized probability for produ
ing n parti
lesp(n) = e���n ; (60)whi
h explains the singularity in hni for � ! 1.As seen from these examples, when the eigenvalues �n are known, thenumeri
al evaluation of the moments of the parti
le multipli
ity distributionis easy. 7. Step 4 � in
lusive distribution of momentaWhen 
al
ulating the in
lusive distribution of momenta it is 
onvenientto use the fun
tions L(~p; ~p0) = 1Xk=1 �k h�(0)1 ik (~p; ~p0) ; (61)whereh�(0)1 ik (~p; ~p0) = Z d3p1 : : : d3pn�(0)1 (~p; ~p1)�(0)1 (~p1; ~p2) : : : �(0)1 (~pk; ~p0) ; (62)or equivalently h�(0)1 ik (~p; ~p0) =Xn  n(~p)�kn �n(~p0) : (63)Using the latter notationL(~p; ~p0) =Xn  n(~p) �n(~p0) ��n1� ��n : (64)



2656 K. ZalewskiAs seen from this formula L�(~p; ~p0) = L(~p0; ~p) : (65)A
tually, L(~p; ~p0) is the symmetrized single parti
le in
lusive density matrix(see below).The various in
lusive distributions of momenta 
an be evaluated as fun
-tional derivatives of the generating fun
tional �[u℄ at u = 1. Thus, the singleparti
le distribution and the two parti
le 
orrelation fun
tion areP1(~p) = � ÆÆu(~p) ln�[u℄�u=1 = L(~p; ~p) ; (66)P2(~p1; ~p2)� P (~p1)P (~p2) = � Æ2Æu(~p1)Æu(~p2) ln�[u℄�u=1= jL(~p1; ~p2)j2 : (67)For the pure state model L(~p; ~p0) = �(0)1 (~p; ~p0) and there are no sym-metrization e�e
ts in the in
lusive distribution of momenta. For the Gaus-sian model, using the formulae from Se
tion 3, one 
an obtain the fun
tionL(~p; ~p0) as a power series in �. The 
oe�
ients of this series are expli
itlyknown Gaussians. 8. Con
lusionsLet us summarize our 
on
lusions and add a few 
omments.� Many models used for the des
ription of Bose�Einstein 
orrelations inhigh energy mutiple-parti
le-produ
tion pro
esses belong to the 
lassof fa
torizable models des
ribed in the present paper. As example ofa model whi
h does not, let us quote the string model developed byAndersson and 
ollaborators [16�18℄. This model is based on a verydi�erent pi
ture of the parti
le produ
tion pro
ess, though it has beensuggested [19℄ that numeri
ally its predi
tions might be very 
lose tothe predi
tions of a suitably 
hosen fa
torizable model. In pra
ti
ethe models are often supplemented with 
orre
tions for resonan
e pro-du
tion, �nal state strong intera
tions, Coulomb intera
tions et
. Wehave not dis
ussed these problems here.� The input 
onsists of an input multipli
ity distribution (usually Pois-sonian) and an input single parti
le density matrix in the momentumrepresentation. There is a great variety of physi
al pi
tures used tosuggests these inputs, but there is no 
onsensus on whi
h is the best.



Uni�ed Des
ription of a Class of Models for Bose�Einstein : : : 2657� On
e the input has been 
hosen, there are standard pro
edure to de-rive general formulae for the in
lusive and ex
lusive distributions ofmomenta, multipli
ity distributions and various 
orrelation fun
tionsand 
oe�
ients. In pra
ti
e, however, it is usually di�
ult to use theseformulae beyond the few parti
le distributions un
orre
ted for multipleparti
le e�e
ts.� The multiparti
le e�e
ts 
an be more easily in
luded, when the eigen-fun
tions and eigenvalues of the input single parti
le density matrixare known. Examples are the two 
ases, where exa
t solutions areknown, i.e. the Gaussian model and the pure state model. In general,Einstein's 
ondensation o

urs, when the model is not the pure statemodel and the parameter � of the input Poissonian multipli
ity dis-tribution is equal to the inverse of the largest eigenvalue of the inputsingle parti
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