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UNIFIED DESCRIPTION OF A CLASS OF MODELSFOR BOSE�EINSTEIN CORRELATIONIN MULTIPLE PARTICLE PRODUCTION PROCESSES�K. ZalewskiM. Smoluhowski Institute of Physis, Jagellonian UniversityReymonta 4, 30-059 Kraków, PolandandH. Niewodniza«ski Institute of Nulear PhysisRadzikowskiego 152, 31-342 Kraków, Polande-mail: zalewski�thris.if.uj.edu.pl(Reeived June 3, 2002)Dediated to Stefan Pokorski on his 60th birthdayNumerous models have been proposed to desribe the Bose�Einsteinorrelations in multiple partile prodution proess. In the present paper wedesribe a generalization, whih inludes many previous models as speialases and, therefore, an be useful for work of omparison. We apply thepowerful methods of eigenfuntion expansions and generating funtionals,whih often make the alulations muh shorter than in the original papers.PACS numbers: 13.65.+i 1. IntrodutionBose�Einstein orrelations in multiple partile prodution proesses athigh energy are now muh disussed. The reviews [1�3℄ ontain hundreds ofreferenes and many more an be found in the papers quoted there. There isa variety of models often based on very di�erent physial pitures of the pro-dution proess. In the present paper we stress that many of these modelsdi�er only in their hoie of a single partile density matrix, further alledinput single partile density matrix. One this hoie has been made, thealulations beome model independent. Following the approah from [4, 5℄we desribe a general model with a free funtion, whih ontains all thesemodels as speial ases. Then we show that the further alulations an be� Partially supported by the Polish State Committee for Sienti� Researh (KBN)under grant no 2P03B09322. (2643)



2644 K. Zalewskigreatly simpli�ed, if one uses eigenfuntion expansions for the input singlepartile density matries and suitable generating funtionals to summarizethe information about the distributions, whih an be ompared with experi-ment. This paper is essentially a desription from the point of view presentedin [4, 5℄ of a lass of models inluding all the multipartile symmetrizatione�ets. 2. Models with fatorizationMany models of Bose�Einstein orrelations in multiple partile produ-tion proesses an be redued to the following four steps, whih we list herepostponing their disussion to the following setions.1. Guess an input single partile density matrix �(0)1 (~p; ~p0).2. Construt the n-partile density matrix for distinguishable partiles�0n(~p1; : : : ; ~pn; ~p01; : : : ; ~p0n) = nYk=1 �(0)1 (~pk; ~p0k) : (1)3. Symmetrize this density matrix in order to obtain a density matrix forindistinguishable partiles. The diagonal elements, whih are enoughto alulate all the momentum distributions, are�n(~p1; : : : ; ~pn) = 1n!X�;� �(0)n (~p�1; : : : ; ~p�n; ~p�1; : : : ; ~p�n) ; (2)where eah of the summations over � and � extends over all the n!permutations of the set of indies 1; : : : ; n. The normalization is suhthat alulating the trae one integrates over the momentum spaewithout introduing the fator 1n! .4. Build the diagonal elements of the overall density matrix aording tothe formula � = 1Xn=1 p(0)(n)�n : (3)The oe�ients are usually hosen Poissonian with some average �:p(0)(n) = �nn! e�� : (4)Further, models built aording to this reipe will be alled models withfatorization. Let us now disuss the four steps.



Uni�ed Desription of a Class of Models for Bose�Einstein : : : 26453. Step 1 � hoie of the input single partile density matrixThe supersript of the funtion �(0)1 indiates that this is not the ob-served one-partile density matrix, but an input funtion neessary for theonstrution of the true density matrix. It may be interpreted as the singlepartile density matrix for the unphysial ase, when the partiles are pro-dued independently and there is no Bose�Einstein symmetrization. Thedi�erent models di�er in the inspirations used to guess this funtion. Theshortest way is, of ourse, to guess diretly the input density matrix �(0)1 ,however, a longer way making use of a model may be easier. Let us quotesome examples.One an guess a soure funtion S(X;K) and alulate the density ma-trix �(0)1 from the formula�(0)1 (~p; ~p0) = Z d4Xe�iqXS(X;K) ; (5)where K = 12(p+ p0) ; (6)q = p� p0 (7)are four-vetors with the four-vetors p; p0 being on shell partile momenta.The advantage of this approah is that the soure funtion re�ets the spae-time and momentum distribution of the soures of partiles. Thus, there areintuitions what it should look like [1, 6, 7℄.Another approah is to assume that the partiles originate from a largenumber N of independent, inoherent soures. In order to produe a rea-sonable number of partiles, eah of the soures must be weak. A formulafor the �total soure� [8, 9℄ with a good high N limit isJ(~p;N; �; �) = 1pN NXk=1 ei�keipxkj0(�kp) ; (8)where � = f�1; : : : ; �Ng is a set of random phases, � = fx1; ~v1; : : : ; xN ; ~vNgis a set of parameters haraterizing the N soures and �k are Lorentztransformations with veloities ~vk, ating on the momentum fourvetor p.The �total soure� is not a soure in the sense of quantum �eld theory. Itis rather a kind of single-partile wave funtion with the ondition that theomponents labeled by di�erent indies k are not allowed to interfere. Thisis implemented by the random phases �k. An objet of this kind an bereplaed by a single partile density matrix�01(~p; ~p0; �) = 1N NXk=1 eixk(p�p0)j0(�kp)j�0(�kp0) : (9)



2646 K. ZalewskiThere are two ways of proeeding further. One an assume that the densitymatrix �01 is an average of this density matrix over the sets �k = fxk; ~vkgand obtain [9℄�(0)1 (~p; ~p0) = Z d�k�(�k)eixk(p�p0)j0(�kp)j�0(�kp0) : (10)In the approah of Ref. [9℄ there are additional fators dependent on thenumber of soures N , whih for N large drop out from the �nal result. Weabsorb the N -dependent fator into the density �(�k) so that it does notappear expliitly in the formulae. In this approah one has to guess thespetrum of a single soure at rest j0(p) and the distribution of soures�(�k). The resulting single partile input density matrix does not depend onthe unmeasurable parameters any more.Alternatively one an postpone the averaging over the unmeasurableparameters as done in Ref. [8℄ (further quoted GKW) and hoose the purestate input single partile density matrix�(0)1 (~p; ~p0) = 1n(N; �; �)J(~p;N; �; �)J�(~p0; N; �; �) ; (11)where n(N; �; �) = Z d3kjJ(~k;N; �; �)j2 (12)is a normalizing onstant. It is natural to assume in suh models that alsothe input multipliity distribution p(0)(n) depends on the unmeasurable pa-rameters. Models of this kind do not belong to the lass of models disussedin the present paper, unless simplifying assumptions are made. We will dis-uss only the simplest ase, when the unmeasurable parameters are �xed orabsent, and onsequently no averaging is neessary. This model (f. [4℄) willbe alled pure state model, beause for it the input single partile densitymatrix, whih an be written in the form�(0)1 (~p; ~p0) =  (~p) �(~p0) ; (13)orresponds to a pure state. There are two reasons to onsider this grosslyoversimpli�ed model: it is one of the very few models, where multipartilee�ets an be inluded analytially and it is a good starting point for thedisussion of the muh more important GKW model.Still another strategy is to guess a set of single partile wave pakets j�iand the distribution of suh pakets �(�) [10, 11℄. Then�(0)1 (~p; ~p0) = Z d�h~pj�i�(�)h�j~p0i : (14)



Uni�ed Desription of a Class of Models for Bose�Einstein : : : 2647Let us note for further referene that if the states j�i form an orthonormalset, they are the eigenvetors orresponding to the eigenvalues �(�) of thematrix �(0)1 (~p; ~p0). Then, usually, the integration gets replaed by a summa-tion.Whatever the starting point, very often one �nally obtains a Gaussian(f. e.g. [6, 9, 10℄)�(0)1 (~p; ~p0) = Yi=x;y;z 1q2��2i exp �� K2i2�2i � R2i q2i2 � : (15)In order not to ontradit the Heisenberg unertainty priniple, one musthave �iRi � 12 : (16)In the wave paket approah the parameters Ri and �i are expressed interms of other parameters in suh a way that this ondition is automatiallyful�lled. In other approahes one must impose it as a onstraint.One ould inlude in the exponent a term is~q � ~K [12℄, where s is a realonstant and the fator i is required by the hermitiity of the density matrix.Sine, however, ~K � ~q = (p21 � p22)=2, this addition does not a�et (in themomentum representation) the density matrix elements we are interestedin [9℄. It does a�et the dedued size of the interation region, but thisproblem is not disussed in the present paper.Let us make some remarks about normalization. It is often onvenientto use the normalization Z d3p�(0)1 (~p; ~p) = 1 : (17)In other ases an invariant normalization may be preferableZ d3pEp �(0)inv1(~p; ~p) = 1 ; (18)where Ep =pm2 + ~p2. The relation between the two density matries is�(0)inv1(~p; ~p0) =pEpEp0�(0)1 (~p ; ~p0) (19)and an be used at any time to go from one normalization to the other. Forde�niteness we will use the matrix �(0)1 normalized aording to (17).The alulation of multipartile e�ets an be greatly simpli�ed, whenfor the input density matrix �(0)1 its eigenfuntions  n(~p) and its eigenvalues�n are known. These are de�ned by the equationZ d3p0�(0)1 (~p; ~p0) n(~p0) = �n n(~p) ; (20)



2648 K. ZalewskiThe eigenfuntions and the eigenvalues are known both for the pure statemodel (13) and for the Gaussian model (15). For the pure state modelobviously  0(~p) =  (~p) and �n = Æn;0 : (21)with the remaining eigenfuntions onstrained only by the ondition thatthey are orthogonal to  0 and to eah other. For the Gaussian model in onedimension [4, 13℄ n(p) = r �p�2nn! exp ���2p22 �Hn(�p) ; (22)�n = (1� z)zn ; (23)where n = 0; 1; : : :, � =rR� ; z = 2R�� 12R�+ 1 : (24)In the three-dimensional ase the index n beomes the set fnx; ny; nzg. Theeigenfuntions and the eigenvalues are n(~p) =  nx(px) ny(py) nz(pz); �n = �nx�ny�nz : (25)In terms of its eigenfuntions and eigenvalues the input density matrix is�(0)1 (~p; ~p0) =Xn �n n(~p) �n(~p0) : (26)The normalization ondition implies thatXn �n = 1 : (27)4. Step 2 � independent partiles stageThe density matrix �(0)n is also an auxiliary onstrut and does not orre-spond to an existing physial system. It desribes a system of n independent,distinguishable partiles. The partiles are independent in the sense that theaverage of the produt of any two single partile operators ating on di�erentpartiles is equal to the orresponding produt of averageshÔ1(~p1)Ô2(~p2)in = hÔ1(~p1)inhÔ1(~p1)in ; (28)where the averages are de�ned by the standard formulahÔin = Tr h�̂(0)n Ôi : (29)



Uni�ed Desription of a Class of Models for Bose�Einstein : : : 2649One ould ask what is the relation between the physial assumption thatpions are emitted independently and the fatorization of the weight funtionin the de�nition of the density matrix. E.g. in the wave paket piture does�n(p1; : : : ; pn) = X�1;:::;�n j�1; : : : ; �ni�n(�1; : : : ; �n)h�1; : : : ; �nj ; (30)�n(�1; : : : ; �n) = nYk=1 �1(�k) ; (31)imply that the emission is independent? As easily heked from de�nition(28) the answer is a�rmative, if the wave funtions h~p1; : : : ~pnj�1; : : : ; �niare produts of single partile wave funtions h~pkj�ki. This is the ase instep two of the present model. If the n-partile wave funtion orrespondsto orrelated partiles, the fatorizability of the weight funtion �n does nothelp. This is the ase after the wave funtions are symmetrized, sine thenthe Bose�Einstein orrelations appear. It is a matter of taste, whether theseorrelations are asribed to the symmetrization of the states j�1; : : : ; �ni,whih are part of the density operator, or to the symmetrization to theexternal states j~p1; : : : ; ~pni. The �rst hoie was made e.g. by Zimányi andCsörgö [10℄ and the seond e.g. in the lassial paper of the Goldhabers, Leeand Pais [14℄. This is not a physial distintion, however, beause the salarprodut de�ning the n partile wave funtion does not depend on whetherthe �rst fator, the seond fator, or both fators got symmetrized.Thus, the model is an independent emission model [4, 5, 9℄ in a well-de�ned though somewhat formal sense. When �(0)1 depends on unobservableparameters, independene holds for �xed values of these parameters andwould be destroyed, if one averaged over them.One ould de�ne for distinguishable partiles, in analogy to step 4, adensity matrix, whih involves all the multipliities�(0) = 1Xn=0 �nn! e���(0)n : (32)It is easy to hek that also this matrix orresponds to independent partileprodution. A di�erent hoie of the probabilities p(0)(n) would orrespondto orrelated prodution even at the stage when the partiles are onsid-ered distinguishable [9℄. Of ourse, introduing orrelations by modifyingthe input multipliity distribution only, without modifying the independentprodution assumption for eah given multipliity, is not the most generalway of introduing orrelations.



2650 K. Zalewski5. Step 3 � exlusive momentum distributionsThe diagonal elements of the symmetrized n-partile density matrix ob-tained in step 3 yield the momentum distribution for n idential partiles,when no more partiles of this kind have been produed. There are no on-straints on the prodution of partiles of other kinds. Thus, stritly speaking,this is a semiinlusive distribution. Sine, however, in this paper partiles ofother kinds are ignored and ould just as well be assumed to be absent, wehave alled this distribution exlusive. It is in general not normalized, evenwhen the single partile density matrix �(0)1 is normalized. We will use thenotation [4℄: W0 = 1 and for n > 0Wn = Tr �n = 1n!X�;� Z nYk=1 �(0)1 (~p�1k; ~p�k)d3pk : (33)Using the matrix �(0)inv1 instead of �(0)1 one an make this formula invariant.The same remark applies to our further formulae and we will not repeatit. For further use it is onvenient to de�ne the generating funtional [4, 5℄:W0[u℄ = 1 and for n > 0Wn[u℄ = Z �n(p1; : : : ; pn) nYk=1u(~pk)d3pk : (34)For u(~p) � 1 one reovers the parameters Wn: Wn �Wn[1℄.Sine eah permutation an be deomposed into yles, the parametersWn for n > 0 an be expressed in terms of the simpler parameters Ck de�nedfor k > 0 byCk = Tr [�(0)1 ℄k = Z �(0)1 (~p1; ~p2)�(0)1 (~p2; ~p3) : : : �(0)1 (~pk; ~p1) nYj=1 d3pj : (35)If the input matrix �(0)1 is normalized by (17), C1 = 1. The orrespondingfuntional isCk[u℄ = Z �(0)1 (~p1; ~p2)�(0)1 (~p2; ~p3) : : : �(0)1 (~pk; ~p1) nYj=1u(~pj)d3pj (36)with Ck[1℄ = Ck.The funtional Wn[u℄ for n > 0 an be expressed in terms of the fun-tionals Ck[u℄ aording to the formulaWn[u℄ = n! Xn1;:::;nn nYk=1 (Ck[u℄=k)nknk! : (37)



Uni�ed Desription of a Class of Models for Bose�Einstein : : : 2651The sum is over all the sets of nonnegative integers fn1; : : : ; nng satisfyingthe relation Pnk=1 knk = n, or equivalently over all the deompositions ofthe set of permutations of n objets into yles, so that there are nk ylesof length k. Note that Tr �(0)n = Cn1 is equal to the term nk = nÆk;1 of thissum. Thus, all the further terms in Wn[u℄ an be interpreted as orretionsdue to symmetrization.At this point one an write down the normalized n-partile exlusivemomentum distributionP (~p1; : : : ; ~pn) = 1Wn�n(~p1; : : : ~pn) : (38)The distribution is here normalized to unity, but a hange of this onventionwould be trivial.Using representation (26) for the input single partile density matrix,one an write the parameters Ck in the formCk =Xn �kn : (39)For the pure state model (13)Ck[u℄ = �Z d3pj (~p)j2u(~p�k ; k = 1; 2; : : : ; (40)whih implies for eah k: Ck = 1 and Wk[u℄ = k!Ck[u℄.For the Gaussian model in three dimensions, after summing three geo-metrial progressions, Ck = 3Yi=x;y;z (1� zi)k1� zki : (41)Two limits are here of interest [9,10℄. When the phase spae per partileis minimal, for i = x; y; z: 2�iRi ! 1 and zi ! 0. Consequently, Ck ! 1for all k > 0. The state beomes pure as it should, when due to Einstein'sondensation pratially all the partile are in the single partile state or-responding to the eigenvalues �0i. When the phase spae is large, for eah i:�iRi !1 and zi ! 1. Consequently, Ck ! Æk;1. In this limit multipartilee�ets beome negligible.Let us note that in order to alulate momentum distributions one usesonly the diagonal elements of the density matrix. Therefore, for this alula-tion any density matrix an be replaed by a diagonal matrix with the samediagonal elements. For instane, the density operator proposed in Refs. [8,9℄:�̂ = e�n exp �iZ dpJ(~p)ay~p� j0ih0j exp ��iZ dpJ�(~p)a~p� ; (42)



2652 K. Zalewskiwhere a~p; ay~p are annihilation and reation operators for partiles with mo-mentum ~p, yields a density matrix nondiagonal in n. All that matters for thealulation of momentum distributions, however, are the diagonal elementsand in our notation one �nds for eah subspae of n-partile statesp(0)(n)h~p1; : : : ; ~pnj�̂nj~p1; : : : ; ~pni = e�nn! nYk=1 jJ(~pk)j2 : (43)Thus hoosing p(0)(n) = exp(�n)nn=(n!)2 one an replae the density op-erator (42) by the muh simpler density operator of the pure state ase.For given multipliity the probability distribution for the partile momentais a produt of single partile momentum distributions. Therefore, parti-le momenta are unorrelated. In partiular, no Bose�Einstein orrelationsare seen in the distributions of relative momenta. This orresponds to theoherent ase of the GKW model [8℄. If, on the other hand, the unobserv-able parameters have not been averaged out, the (unnormalized) exlusivemomentum distribution ishp(0)(n)�n(~(p1; : : : ; ~pn)i = *e�n nYk=1 jJ(~pk)j2+ ; (44)where h: : :i denotes averaging over the unobservable parameters. This dis-tribution is not a produt of single partile distributions any more and on-sequently orrelations among the partiles are present. It orresponds to thehaoti ase of the GKW model.6. Step 4 � multipliity distributionLet us note �rst that, sine in general Wn = Tr �n 6= 1, the oe�ientsp(0)(n) are not the probabilities for produing n partiles. These (unnor-malized) probabilities are p(n) = p(0)n Wn : (45)Substituting the Poisson formula for p(0)(n) and formula (37) with u � 1 forTr �n one �nds Xn p(n) = e�� exp" 1Xk=1 Ckk �k# : (46)For non-Poissonian input multipliity distributions the orresponding sum-mation usually must be done numerially [9℄. In the following we limit ourdisussion to the Poissonian ase. The probability distribution p(n) an be



Uni�ed Desription of a Class of Models for Bose�Einstein : : : 2653normalized, if and only if the series in the exponent in (46) onverges. Thisis the ase if � limk!1 kpCk = ��0 < 1 ; (47)where �0 is the largest eigenvalue of the input single partile density matrix.The series diverges when � > ��10 . This happens for the pure state modelwhen � > 1 ; (48)and for the Gaussian model, when� > �0 = Yi=x;y;z�12 +�iRi� : (49)In the terminology of thermodynamis � = �0 orresponds to a singularityof the (grand)partition funtion, i.e. (usually, see below) to a phase transi-tion. We show further that this is Einstein's ondensation. Note that wehave given here a omplete derivation of the formula for �0 in the Gaussianase. Without using the representation of the input density matrix in termsof its eigenvalues, this alulation would have taken many pages ( [10℄ andreferenes given there). As Zimányi and Csörgö put it [10℄ �these solutionsare not easily obtained� � and they worked for simpliity with the spheri-ally symmetri ase, where �i and Ri do not depend on i. For � < �0 thenormalized probability distribution for �nding n partiles isP (n) = �nn!Wn exp "� 1Xk=1 Ckk �k# : (50)When � tends to �0 from below, the sum in the exponent of the normalizingfator tends to in�nity and the probability of �nding n < n0 partiles forany �nite n0 tends to zero. This e�et disappears, when the eigenvalue �0and the orresponding eigenstate  0 are removed from the density matrix(26). Thus, the surplus of partiles ondenses in the state  0 � Einstein'sondensation ours. Sine in the pure state model all the partiles are inone pure state anyway, there is no Einstein ondensation in this model for� ! 1.For omparison with experiment one needs the multipliity distribution,its moments, umulants et., as well as inlusive single partile, two partileet. distributions. All this information is onveniently summarized in the



2654 K. Zalewskigenerating funtional1�[u℄ = 1Xn=0 p(0)(n)Wn[u℄ = exp" 1Xk=1 Ck[u℄k �k � �# : (51)This formula di�ers from the orresponding formula in Ref. [5℄ by a momen-tum independent fator, whih does not a�et the logarithmi derivatives ofinterest. For the pure state model�[u℄ = e��1� � R d3pj (~p)j2u(~p) : (52)In order to alulate the moments and/or umulants of the multipliitydistribution, one hooses the funtion u onstant. Let us denote this onstantby z. Then Wn[z℄ = znWn ; (53)Ck[z℄ = zkCk : (54)Let us alulate for examplehni = �� log�[z℄�z �z=1 = 1Xk=1 �kCk ; (55)hn2i � hni2 = ��2 log�[z℄�z2 �z=1 + hni = 1Xk=1 �kkCk = � dd� hni : (56)These formulae an be simpli�ed by using the eigenvalue expansion. Forinstane, assuming that the geometrial series onverge, one �ndshni = 1Xn=0 ��n1� ��n : (57)For given �(0)1 , i.e. for given eigenvalues �k, the parameter � should behosen so as to reprodue the observed value of hni. With inreasing hnithe parameter � inreases. For hni ! 1, ��0 ! 1. Eah term in the sum(57), exept for the �rst one, tends to a �nite limit. Let us assume thatthe sum of these limits is non zero and �nite. Then, with hni inreasing tolarge values, only the �rst term keeps growing signi�antly. The k-th termin the sum gives the average population of the k-th eigenstate of the density1 Many of the steps below beome obvious, when one translates the argument into thelanguage of thermodynamis [15℄.



Uni�ed Desription of a Class of Models for Bose�Einstein : : : 2655operator. Thus for hni large and growing, almost all the additional partilesdue to the inrease of � land in one state (j 0i) � Einstein's ondensationours. The formula for the dispersion of the multipliity distribution anbe rewritten as hn2i � hni2 = 1Xn=0 ��n(1� ��n)2 : (58)In the pure state model, where eah of the oe�ients Ck equals one,the series for hni onverges only if � < 1 and thenhni = �1� � for � < 1 : (59)For this model symmetrization from step 3 redues to a multipliation of thedensity matrix by n!. The unnormalized probability for produing n partilesp(n) = e���n ; (60)whih explains the singularity in hni for � ! 1.As seen from these examples, when the eigenvalues �n are known, thenumerial evaluation of the moments of the partile multipliity distributionis easy. 7. Step 4 � inlusive distribution of momentaWhen alulating the inlusive distribution of momenta it is onvenientto use the funtions L(~p; ~p0) = 1Xk=1 �k h�(0)1 ik (~p; ~p0) ; (61)whereh�(0)1 ik (~p; ~p0) = Z d3p1 : : : d3pn�(0)1 (~p; ~p1)�(0)1 (~p1; ~p2) : : : �(0)1 (~pk; ~p0) ; (62)or equivalently h�(0)1 ik (~p; ~p0) =Xn  n(~p)�kn �n(~p0) : (63)Using the latter notationL(~p; ~p0) =Xn  n(~p) �n(~p0) ��n1� ��n : (64)



2656 K. ZalewskiAs seen from this formula L�(~p; ~p0) = L(~p0; ~p) : (65)Atually, L(~p; ~p0) is the symmetrized single partile inlusive density matrix(see below).The various inlusive distributions of momenta an be evaluated as fun-tional derivatives of the generating funtional �[u℄ at u = 1. Thus, the singlepartile distribution and the two partile orrelation funtion areP1(~p) = � ÆÆu(~p) ln�[u℄�u=1 = L(~p; ~p) ; (66)P2(~p1; ~p2)� P (~p1)P (~p2) = � Æ2Æu(~p1)Æu(~p2) ln�[u℄�u=1= jL(~p1; ~p2)j2 : (67)For the pure state model L(~p; ~p0) = �(0)1 (~p; ~p0) and there are no sym-metrization e�ets in the inlusive distribution of momenta. For the Gaus-sian model, using the formulae from Setion 3, one an obtain the funtionL(~p; ~p0) as a power series in �. The oe�ients of this series are expliitlyknown Gaussians. 8. ConlusionsLet us summarize our onlusions and add a few omments.� Many models used for the desription of Bose�Einstein orrelations inhigh energy mutiple-partile-prodution proesses belong to the lassof fatorizable models desribed in the present paper. As example ofa model whih does not, let us quote the string model developed byAndersson and ollaborators [16�18℄. This model is based on a verydi�erent piture of the partile prodution proess, though it has beensuggested [19℄ that numerially its preditions might be very lose tothe preditions of a suitably hosen fatorizable model. In pratiethe models are often supplemented with orretions for resonane pro-dution, �nal state strong interations, Coulomb interations et. Wehave not disussed these problems here.� The input onsists of an input multipliity distribution (usually Pois-sonian) and an input single partile density matrix in the momentumrepresentation. There is a great variety of physial pitures used tosuggests these inputs, but there is no onsensus on whih is the best.
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