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CLASSICAL RADIATIONOF A FINITE NUMBER OF PHOTONSL. StodolskyMax-Plan
k-Institut für Physik, Werner-Heisenberg-InstitutFöhringer Ring 6, 80805 Mün
hen, Germanye-mail: les�mppmu.mpg.de(Re
eived June 3, 2002)Dedi
ated to Stefan Pokorski on his 60th birthdayUnder 
ertain 
onditions the number of photons radiated 
lassi
ally bya 
harged parti
le following a pres
ribed traje
tory 
an be �nite. An inter-esting formula for this number is presented and dis
ussed.PACS numbers: 11.15.K
, 13.40.�f1. Finite number of photons and their formulaIn the 
lassi
al theory of radiation by a 
harged parti
le one 
al
ulatesthe energy radiated into the ele
tromagneti
 �eld. Indeed from the purely
lassi
al point of view the energy is pra
ti
ally the only quantity there isto 
al
ulate. However, in 
ertain problems [2℄ one may 
ome upon the ideaof �nding the number of photons radiated by a 
harged parti
le followinga given traje
tory. Although the photon is a quantum 
on
ept and so thequestion of �nding the number might be thought to involve quantum me-
hani
s, it does so only in the most minimal way. Given the energy radiatedinto a given mode of the �eld, it is only ne
essary to use Plan
k's relation anddivide by the frequen
y ! to �nd the number n; thus the problem remainsan essentially 
lassi
al one.It might be obje
ted that n 
an be in�nite while the energy is �nite, asin the well-known �infrared 
atastrophe�. True, but as we shall see, there isan interesting 
lass of 
ases where this is not the 
ase. In parti
ular whenthe traje
tory of a 
harged parti
le begins and ends with the same ve
torvelo
ity v, n is generally �nite. This is be
ause the �infrared 
atastrophe�results from the di�eren
e in the long �ight paths for the in-and-outgoingparti
les, and when they are the same, the �
atastrophe� is averted.(2659)



2660 L. StodolskyOn the other hand, bremsstrahlung 
al
ulations often have an �ultravio-let� or high frequen
y divergen
e, due to the sudden appearan
e or de�e
tionof a 
harge [4℄. Evidently one 
annot emit an in�nite number of �nite en-ergy photons, so this divergen
e must be an artifa
t of the 
al
ulation. Thisdi�
ulty 
an have either a quantum or 
lassi
al resolution. In the quantumsolution, as in the Feynman graph te
hnique, one takes into a

ount theenergy-momentum 
onservation usually negle
ted at the 
lassi
al level, anda suppression results for high energy photons. However, and more of interestto us here, there 
an also be a 
lassi
al resolution: the ultraviolet divergen
eresults from abrupt 
hanges in the traje
tory, and if the velo
ity 
hanges ora

elerations are su�
iently smooth, there is no divergen
e.Therefore, we have the interesting situation that for a smooth traje
-tory, beginning and ending with the same velo
ities, the number of photonsn radiated a

ording to a 
lassi
al 
al
ulation should be �nite. But n isa dimensionless, Lorentz-invariant quantity. Thus there ought to be somesimple formula for it, a relation mapping the path of a parti
le in spa
e-timeto the real number, n.This relation is n = �� Z Z dx� 1S2i" dx0� : (1)In this formula x and x0 are four-dimensional 
oordinates, referring to pointson the spa
e-time path of the 
harged parti
le, so that dx� is a 4-ve
torialelement of the path (Fig. 1). One may introdu
e the proper time or in-variant path length � and the four-velo
ity u� = dx�=d� to also write theexpression asn = �� Z Z dx�d� 1S2i" dx�d� 0 d�d� 0 = �� Z Z u�(�) 1S2i" u�(� 0) d�d� 0 : (2)Si" is the four-distan
e between the points x; x0 in the following wayS2i" = (t� t0 + i")2 � (x� x0)2 : (3)As we shall explain shortly the i" is ne
essary to make sense of and toproperly de�ne Eq. (1).It is interesting that the Sommerfeld �ne stru
ture 
onstant � = e2=~
 �1=137, involving Plan
k's quantum 
onstant, appears. It arises, however, notas a 
oupling 
onstant, but rather from the 
onversion of the 
lassi
al energyto quanta, where we �nally must divide by ~!. The expression is a non-perturbative. If the parti
le is multiply 
harged with Q ele
tron 
harges,the formula should be multiplied by Q2. Observe that by inter
hanging t



Classi
al Radiation of a Finite Number of Photons 2661and t0 in the integrations one 
an reverse the sign of i" to show that n isreal. The expression is not an integer sin
e it represents the average orexpe
tation value of the number of parti
les radiated.
t
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Fig. 1. Path in spa
e-time.2. DerivationWe 
an derive Eq. (1) from the standard treatments of 
lassi
al radiationtheory [4,5℄ where one 
al
ulates j(k), the Fourier 
omponents of the three-ve
tor 
urrent, and then �nds the energy radiation rate � jjj2 sin2 �, where� is the angle between k and j. Dividing by ! (units ~ = 1) gives n.To obtain the total number, we sum over all modes k of the radiation�eld n � Z sin2 � jj(k)j2 1! d3k : (4)One 
ould try to perform the integrations for every parti
ular traje
tory,but we would like to �nd a general formula in terms of the path itself. Thuswe attempt to perform the d3k integration �rst, before the Fourier transform.This gives at �rst a not well-de�ned expression, whi
h leads to the need tointrodu
e the i".To see how this 
omes about, we observe that for smooth paths x(t) theFourier transform j(k) is strongly 
onvergent at large !. When we introdu
ethe 
urrent density for our 
lassi
al point parti
le asj(t;x) = ev(t)Æ3(x� x(t)) (5)



2662 L. Stodolskywe have j(k) = e R dtv ei(kx(t)�!t) for the Fourier transform. Sin
e the pathof the parti
le is time�like the exponent 
an never be
ome zero, and if x orv = dx=dt have no jumps or kinks the integral vanishes rapidly for large !.Eq. (4) 
an be rewritten in a more 
ovariant way using sin2 � = 1 � 
os2 �and noting the 
urrent 
onservation relation !j0 = ! 
os �jjj, so that Eq. (4)is essentially the integral of the four-ve
tor squared j2 � j20 = �j2�. Usingdt v = dx one has a 
ompa
t line integral expression for j�, namelyj�(k) = eZ dx�eikx ; (6)where kx is the four dimensional s
alar produ
t k�x� = k0t � kx(t), withk0 = ! = jkj :Squaring Eq. (6) and writing in the 
onstants [5℄ we get for the integralof �j2�(k) over all modes of the radiation �eld:n = � �4�2 Z d3k 1! Z Z dx�dx0�eik(x�x0) : (7)Firm in the belief that we a
tually have a well de�ned, 
onvergent expres-sion, we allow ourselves to do the d3k integral �rst and to use some i"manipulations in dealing with seemingly ill-de�ned expressions.After a few steps we get to the expression R10 !d!ei!((t�t0)�R 
os �), whereR = jx� x0j and where here � is the angle between k and the ve
tor(x� x0). Now, sin
e we believe that our expressions are rapidly vanishingat large ! and ! is always positive, it should not hurt to add an i" in theexponent [6℄, to make the repla
ement (t� t0)! (t� t0 + i"). The integralis then 
onvergent, and integrating over d 
os � and keeping tra
k of the i",this leads to R d3k(1=!)eik(x�x0) = �4�(1=S2i") and so Eq. (1).Although these manipulations are similar to those with the invariantD fun
tions in quantum �eld theory, and our fun
tion 1=S2 resembles a Dfun
tion, our assumption of smooth paths has lead us to an �i" pres
ription�in position rather than in momentum spa
e.3. Elimination of "The di�
ult job now be
omes the evaluation of the i" in Eq. (1). Welook for guidan
e to the theory of generalized fun
tions [6℄ where one hasthe relation +1Z�1 f(t)(t+ i")2 dt = +1Z�1 f(t)� f(0)t2 dt ; (8)where we have spe
ialized to the 
ase of an even fun
tion f(t) = f(�t).



Classi
al Radiation of a Finite Number of Photons 2663One way of understanding this relation is to note that, for " non-zero,+1Z�1 1(t+ i")2 dt = 0 ; (9)whi
h just follows from expli
it integration. Thus we have simply subtra
tedzero in Eq. (8), and have 
hosen the 
oe�
ient of this zero term in su
h a wayas to 
an
el the singularity of the integrand. With f even, f(t)� f(0) � t2,and the expression is indeed �nite at the singularity.Can we apply the same idea here? That is, by examining the neighbor-hood of the singularity for small but non-zero " we see that our expressionis �nite and " independent. We would thus like to subtra
t something whi
his zero for �nite " and whi
h will regulate the singularity at t = t0 in Eq. (1),enabling us to �nally dispense with " altogether. The problem, however,would seem to be mu
h more di�
ult than in Eq. (8). There we simplyhad to adjust one 
onstant, namely f(0). Here we need a fun
tion f(t; t0),su
h that when it is integrated over 1=S2(t; t0) gives zero and then 
an beadjusted to 
an
el the numerator dx�dx0� when we make the repla
ementdx�dx0� ! dx�dx0�(1� f). Furthermore it should do this for any path x(t)we 
are to put in the formula.This last requirement rules out, for example, the at �rst likely-looking
andidate repla
ement dx�dx0� = u�u0�d�d� 0 ! (u�u0� � 1)d�d� 0. Sin
eu�u0� ! 1 for � ! � 0 this would regulate the singularity and looks promising.But it doesn't work, R R d�d� 0 1=S2(�; � 0) is obviously path dependent and
annot be zero for all paths.This, however, suggests a solution. If we 
an �nd something for f whi
his a total derivative and so 
an be integrated, it would depend only on theend points of the path and not on the path itself. To this end, note thefollowing useful relation. Let G be some fun
tion of S2(�; � 0) = �2� where�� = x�(�)� x�(� 0), then���� 0G(S2) = �G004���dx�d� ���� dx�d� 0 �� 2G0 dx�d� dx�d� 0 ; (10)where G0 and G00 refer to �rst and se
ond derivatives with respe
t to S2.Sin
e the expression is a total derivative and its integral is independentof the path and is to be interpreted as zero, we may look for some 
hoi
e forG that leads to � 1=S2 for � ! � 0 and so might 
an
el the singularity. Thiso

urs, in fa
t, if we 
onsider G = lnS2. The above equation be
omes���� 0 ln(S2) = + 4S4 ���dx�d� ���� dx�d� 0 �� 2S2 dx�d� dx�d� 0 : (11)



2664 L. StodolskySin
e ��=S ! dx�=d� for � ! � 0 the expression � 1=S2 at the singularity.Now we want to add this to Eq. (2), that is to R dx�=d� dx�=d� 0(1=S2) d�d� 0,with some weight su
h that the singularity at � = � 0 is 
an
eled. To deter-mine this weight note that sin
e the four velo
ity satis�es (dx�=d� )2 = 1 therhs of Eq. (11) goes to +2=S2 for � ! � 0. Hen
e we must subtra
t 1=2 ofEq. (11) from Eq. (2) to remove the singularity. Doing this we end up withthe following ni
e relationZ Z dx�d� 1S2i" dx�d� 0 d�d� 0 = 2Z Z dx�d� Æ�� � �����S2 �S2 dx�d� 0 d�d� 0 (12)or alternativelyZ Z dx� 1S2i"dx0� = 2Z Z dx� Æ�� � �����S2 �S2 dx0� : (13)The notation is meant to indi
ate that while the i" is in S2 on the left, it isnot needed on the right.We 
an rewrite these equations in an interesting way by noting that��=S is like an average 4-velo
ity 
onne
ting the points �; � 0, whi
h wemight 
all U� in analogy to the instantaneous 4-velo
ity u� = dx�=d�U�(�; � 0) = ��S = x�(�)� x�(� 0)S : (14)Then we 
an writen = �� 2Z Z u� Æ�� � �����S2 �S2 u� d�d� 0= �� 2Z Z u(�) u(� 0)� (U u(�))(U u(� 0))S2 d�d� 0 : (15)We 
an now introdu
e the notion of a �transverse ve
tor� uT asso
iatedwith the points x; x0 at �; � 0. This is the ve
tor u with the �longitudinal�part, that is the 
omponent along U , removeduT� (�; � 0) = u�(�)� U�(U u(�)) ;uT� (� 0; �) = u�(� 0)� U�(U u(� 0)) : (16)



Classi
al Radiation of a Finite Number of Photons 2665With these de�nitions, uT� (x; x0)uT� (x0; x) = u�(x) (Æ�� � U�U�)u�(x0),whi
h is the numerator in Eq. (15) and we 
an write the above equations interms of produ
ts of �transverse ve
tors�n = �� 2Z Z uT� (�; � 0) 1S2 uT� (� 0; �) d�d� 0 : (17)Hen
e we 
an say that our integral for n represents the �intera
tion�of pairs of transverse ve
tors along the path of the 
harge. The possiblesingularity at S = 0 is absent be
ause uT(�; � 0) vanishes for two points very
lose together. 4. Properties of the quantitiesWe summarize some properties of these quantities: U and u are unitve
tors, u2 = U2 = 1. From their de�nitions U and uT are orthogonaluT� (�; � 0)U� = uT� (� 0; �)U� = 0. Note for straight line motion or more gener-ally for any smooth path as � ! � 0U� ! u� : (18)Unlike u and U , uT is a spa
e-like (or zero) ve
tor. This follows from thefa
t that there is a frame where the time 
omponent of uT vanishes, namelythe rest-frame of the time-like U .We note a point 
on
erning the de�nition of U in Eq. (14). This pointis irrelevant in all those expressions where S or U appears quadrati
ally,but we mention it for 
onsisten
y. Namely, we would like U to resemble thevelo
ity. Therefore, it must be understood that S(�; � 0) = pS2 is �dire
ted�;an odd fun
tion, positive for � > � 0 and negative for � < � 0, like (� � � 0).It implies a de�nition of U su
h that U(�; � 0) = U(� 0; �) and that U is�forward pointing�, i.e. U0 is always positive.An interesting expression for uT follows from the de�nition of U inEq. (14), re�e
ting the fa
t that the derivative of a unit ve
tor is trans-verse to itself 1S uT� (�; � 0) = ��U�(�; � 0) ;� 1S uT� (� 0; �) = �� 0U�(�; � 0) : (19)With this, we 
an also write Eq. (17) in some di�erent looking waysn = ��� 2Z Z ��U�(�; � 0)�� 0U�(�; � 0) d�d� 0 : (20)



2666 L. StodolskyOr, sin
e U2 = 1 and so ���� 0(U�U�) = 0 we 
an also writen = �� 2Z Z U�(�; � 0) �� �� 0U�(�; � 0) d�d� 0 : (21)Another variant results if we note that Eq. (20) looks like the 
ross termsof a quadrati
 expression: 2��U�� 0U = 12 [(��U + �� 0U)2 � (��U � �� 0U)2℄ :Introdu
ing the sum and di�eren
e variables �+= 12(�+� 0) and ��= 12(� 0� �)n = �� Z Z [(���U)2 � (��+U)2℄ d�+d�� ; (22)where be
ause of the rotation of the 
oordinates in the �; � 0 plane, the inte-gration boundaries, in the 
ase if �nite limits, would now have the form ofa diamond instead of a square.5. Infrared behaviorThe i" takes 
are of the high frequen
y or ultraviolet behavior, but theremight be questions 
on
erning the infrared region. We see this very simply ifwe 
onsider the stationary parti
le with v = 0, for whi
h n of 
ourse shouldbe zero. Eq. (1) leads ton = +1Z�1 +1Z�1 dtdt0 1(t� t0 + i")2 : (23)There are two kinds of limits implied here " ! 0, and some upper/lowerlimit of the integration L ! 1, and the integral 
an depend on how thelimits are taken. If we simply apply Eq. (9) we get of 
ourse zero, as desired.On the other hand if we interpret the limits at �1 by, say, integrating oversome test fun
tion whi
h is 
onstant up to some large number L and thendrops o�, we 
an get an answer involving "L, whi
h depends on the orderin whi
h we take " ! 0, L ! 1. The problem originates in the fa
t thatwe are turning o� the 
harge at some L, violating 
harge 
onservation andin the pro
ess produ
ing some photons. We are thus to handle this limit byremembering that " is to be kept �nite to the very end, and so we �rst mean"L ! 1. Alternatively one 
an subtra
t the integral for the stationaryparti
le, as in Eq. (23) to regularize the infrared behavior.Naturally if we use the form without the i", say from Eq. (15) we immedi-ately get zero for the stationary parti
le. More generally, we 
an investigatethe 
ontribution of the �nal and initial long straight paths for a moving par-ti
le in Eq. (15). The dangerous regions for the infrared behavior are large



Classi
al Radiation of a Finite Number of Photons 2667�; � 0 as the parti
le 
omes from or goes to in�nity. For both � 's very large orboth very small, we have in view of Eq. (18) and u2 = 1 that the numeratorbe
omes u2 � u2u2 = 0. Similarly if one � is at very early times and theother a very late times and the velo
ities at these times are the same, thereis the analogy to Eq. (18)U�(�; � 0) = u� +O� T� � � 0� ; (24)where T is the �nite time period where the 
harge was not in uniform motion.For large (� � � 0), U ! u and the numerator will again tend to zero, as longas the initial and �nal velo
ities are the same. It is interesting that theelimination of both the long and short distan
e singularities 
an in a sensebe attributed to the same relation, Eq. (18).6. Non-relativisti
 limitConsider that 
lass of paths whose tangents are roughly parallel to somestraight line on Fig. (1), meaning that the ordinary velo
ity v is always 
loseto some typi
al or average velo
ity. By making a Lorentz transformation(under whi
h n is invariant) so that this typi
al velo
ity is zero, we haveas a �rst approximation in the ordinary velo
ity the non-relativisti
 limit,leading to expressions quadrati
 in velo
ities.We 
ould make a stab at the non-relativisti
 limit by taking our basi
expression Eq. (1) and just naively expanding it for small velo
ities. Weintrodu
e V , the average velo
ity ve
tor 
onne
ting two points on the 
urveV = x(t)� x(t0)t� t0 ; (25)V is a symmetri
 quantity V (t; t0) = V (t0; t), in parallel with our earlierde�nition of U and be
omes equal to v when t! t0. V plays a role analogousto U ex
ept that it does not have a �xed length and so V 2 has non-zero timederivatives. Expanding in Eq. (1) we 
an try to write1S2i" � 1(t� t0 + i")2 �1 + V 2i"(t; t0) + V 4i"(t; t0) + :::� ; (26)where V i" = (x�x0)(t�t0+i") so thatn = ��Z Z dx� 1S2i"dx0�� ��Z Z dtdt0(1�v(t)v(t0)) 1(t�t0+i")2 �1+V 2i"(t; t0)+V 4i"(t; t0)+:::� :(27)



2668 L. StodolskyNow, using Eq. (9) the �1� term vanishes and we haven = �� Z Z dtdt0 1(t� t0)2 [V 2 � v(t)v(t0)℄ (non� rel: limit) : (28)We have dropped the i" sin
e the expression is non-singular with V ! v ast! t0.This is a not unreasonable-looking expression. Indeed, if we expand itfor t � t0 we get �V 2 � v(t)v(t0)� � 14a2(t� t0)2 : : : ; (29)showing that the singularity is 
an
eled and that the leading terms of theexpression are positive and exhibit the familiar 
onne
tion between a

el-eration squared and radiation. The (. . . ) in
ludes terms involving timederivatives of the a

eleration a (a = dv=dt) as well as higher order termsin (t� t0)2.One might have some qualms about the 
arefree i" manipulations, andwe indi
ate how to arrive at Eq. (28) by straightforward appli
ation of ourmore 
onventional formulas.First note that U 
an be written in terms of V in the usual way relatinga three-velo
ity and a four-velo
ity, U0 = 1=p1�V 2; U = V =p1�V 2 withthe non-relativisti
 limits U0 � 1� 1=2V 2; U � V . We �nd from eitherEq. (20) or Eq. (21) to leading order in Vn = �� 2Z Z dtdt0 �tV (t; t0) �t0V (t; t0) (non� rel: limit) : (30)Now in analogy to Eq. (19) we have from the de�nition of V�tV (t; t0) = v(t)� Vt� t0 ;�t0V (t; t0) = �v(t0)� Vt� t0 (31)and Eq. (30) be
omesn = �� 2Z Z dtdt0 ��v(t)v(t0) + (v(t) + v(t0))V � V 2� 1(t� t0)2 :(non� rel: limit) : (32)



Classi
al Radiation of a Finite Number of Photons 2669One 
ould be satis�ed with this formula as it is, but to bring it intothe perhaps simpler form Eq. (28), note the following identity: 12�t�t0V 2 =[�v(t)v(t0)+2(v(t)+v(t0))V �3V 2℄(t� t0)�2, whi
h follows from di�erenti-ating V 2 = (x�x0)2(t�t0)�2 twi
e. We split this into two parts: 12�t�t0V 2 =[�v(t)v(t0)+(v(t)+v(t0))V �V 2℄(t�t0)�2+[(v(t)+v(t0))V )�2V 2℄(t�t0)�2,where we make the split so that the �rst part 
orresponds to Eq. (32). Now�t�t0V 2 is a total derivative whose integral may be set to zero. Therefore,the integral of the �rst and se
ond parts represents the same quantity withopposite signs and we 
an writen = �� 2Z Z dtdt0[�v(t)v(t0) + (v(t) + v(t0))V � V 2℄ 1(t� t0)2= ��� 2Z Z dtdt0[(v(t) + v(t0))V )� 2V 2℄ 1(t� t0)2(non� rel: limit) : (33)Taking the one-half the sum of the two forms we �nally obtain, aftermu
h labor, Eq. (28). The 
avalier i" manipulations were 
ertainly a lotqui
ker!Despite the familiar a

eleration squared in Eq. (29), we shouldn't ex-pe
t that n 
an be represented simply by an integral of some lo
al quantityalong the path. There is the (. . . ), and all our expressions are bi-lo
al inthe time. The photon is a non-lo
al 
on
ept and a 
ertain spa
e-time in-terval is ne
essary to de�ne it. This 
orresponds to the distin
tive propertyof relativisti
 lo
al �eld theory that while one has lo
al 
onstru
tions forquantities like 
harge density or energy density, there is in fa
t no lo
alquantity for parti
le number or photon density. Indeed, the need to havesome spa
e-time interval to de�ne a parti
le, leads to the 
on
ept of the�formation zone� [3℄, whi
h 
an be used to understand 
ertain phenomenalike the absen
e of �
as
ading� for parti
le produ
tion on nu
lear targets.7. Simple 
asesWith the simple Eq. (28) in hand we 
an pro
eed to 
al
ulate a 
oupleof 
on
rete examples.Dipole radiation: We �rst take the 
lassi
 problem of dipole radiation. Leta 
harged parti
le be os
illating in one dimension a

ording to x = x0 sin
t,so v = x0
 
os
t. Changing variables 
t! t and similarly for t0, Eq. (28)be
omesn = �� (x0
)2 Z Z dtdt0 �(sin t� sin t0)2(t� t0 + i")4 � 
os t 
os t0(t� t0 + i")2 � : (34)



2670 L. StodolskyAlthough the i" is not ne
essary sin
e the 
ombination of the two terms givessomething non-singular, it is 
onvenient to keep it sin
e it allows us to handleea
h term separately. Carrying out, say, the t integral �rst and using rela-tions of the type R dt 
os t=(t� t0 + i")2 = 2�e�it0 or R dt sin t=(t� t0 + i")4 =�(i=6)e�it0 and R dt 
os t0=(t� t0 + i")2 = 0, we arrive atn = �� (x0
)2 Z dt0 ��i�3 sin t0 � (��) 
os t0� e�it0= �(x0
)2T
3 ; (35)where T is the length of time the parti
le is in motion. The number ofphotons generated in
reases linearly with time, as was to be expe
ted. Wehave negle
ted a 
ontribution, not proportional to T , 
onne
ted with turningthe motion on and o�. If we now multiply by 
 to �nd the energy anddivide by T to get the power, we obtain Power = �13 (x0
)2
2, whi
h isthe 
lassi
al formula for dipole radiation averaged over a 
y
le [4, 5℄. Notsurprisingly we re
over the 
lassi
al result, as was our starting point.Note, however, that in general the energy radiated and the number ofphotons do not stand in dire
t relation sin
e the os
illating 
harge produ
eshigher harmoni
s in addition to the fundamental at frequen
y 
 [4℄. How-ever, in the nonrelativisti
 limit v=
 ! 0 these higher harmoni
s be
omenegligible (sin
e they are a retardation e�e
t), and we expe
t the energyradiation to be simply proportional to n.This example shows that despite our requirement that the initial and�nal velo
ities be equal, the method need not be of purely a
ademi
 interestfor pra
ti
al 
al
ulations. If the e�e
ts 
onne
ted with turning the motionon and o� are negligible 
ompared to some main e�e
t, we 
an always returnthe parti
le to, say, zero velo
ity, while retaining the main e�e
t.Smooth de�e
tion: Instead of an os
illator whi
h is on for a long timewe 
an 
onsider a 
harge undergoing a smooth de�e
tion, for examplex = x0=(1 + (t=t0)2) so that v = �2(x0=t0) (t=t0) 1=(1 + (t=t0)2). Thisleads to n = �� Z Z dt dt0 1(t� t0 + i")2 [V 2 � v(t)v(t0)℄= �� �x0t0 �2��18 �2 � �38 �2� = ��4 �x0t0 �2 : (36)



Classi
al Radiation of a Finite Number of Photons 26718. Further questionsEq. (1) should have some general symmetry properties with respe
t to
hanging the path. There are the evident invarian
es under Lorentz transfor-mations, translation, 3D rotation, re�e
tion, and time-reversal. Sin
e thereare no dimensional quantities ex
ept the path itself involved, there is alsoan invarian
e under res
aling of all 4-
oordinates simultaneously, x� ! �x�.That is to say, if the path is expanded in spa
e and time proportionallyso that the velo
ities remain un
hanged, n is un
hanged, as we see in theexamples. It would be interesting to know if there are further invarian
esand what the full invarian
e group is.Also, we might 
onsider the problem for gravitons instead of photons.Presumably one will �nd, in analogy to Eq. (2), and in view of the tensorial
hara
ter of the sour
e of gravitonsn � Gm2 Z Z u�(�)u�(�) 1S2i"u�(� 0)��(� 0) d�d� 0 ;where G is the gravitational 
onstant and m the mass of the radiating par-ti
le (re
all ~; 
 = 1, so Gm2 = (m=Mpl)2), but it would be interesting toinvestigate this more 
losely.Finally, a number of interesting mathemati
al problems suggest them-selves. Our n gives an invariant 
hara
terization of the �wiggly-ness� ofa 
urve. There appears to be no reason why it should not be also used inEu
lidean spa
e where S2(�; � 0) = �(xi(�) � xi(� 0))2. The main di�eren
ewould seem to be that the 
urve 
an now go �ba
kwards�, opening the pos-sibility of 
losed 
urves. As well, there is the possibility of new singularitieswhen two parts of the 
urve, with remote values of � , 
ome 
lose together.For a 
losed plane 
urve it is plausible that the minimum value of nobtains for the 
ir
le. Then de�ning n = �2 R R 1S2uTu0Td�d� 0 ( we useEq. (17), leave away �=�, and the natural sign is now minus), we thus
onje
ture that the minimum value of n for any plane 
urve is 2�2, whi
h iswhat we obtain for the 
ir
le.Also, there may be a �topologi
al� aspe
t to n, 
onne
ted with knots. Foran open path the minimum value of n, namely zero, is rea
hed for a straightline. If the path has a knot, however, it 
annot be 
ontinuously deformedto a straight line, and must go �ba
kwards� somewhere, suggesting that theminimum value of n 
ontinuously attainable is related to the presen
e ofknots.I am grateful to Y. Frishman, D. Maison and V. Zakharov for many andhelpful dis
ussions.
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