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CLASSICAL RADIATIONOF A FINITE NUMBER OF PHOTONSL. StodolskyMax-Plank-Institut für Physik, Werner-Heisenberg-InstitutFöhringer Ring 6, 80805 Münhen, Germanye-mail: les�mppmu.mpg.de(Reeived June 3, 2002)Dediated to Stefan Pokorski on his 60th birthdayUnder ertain onditions the number of photons radiated lassially bya harged partile following a presribed trajetory an be �nite. An inter-esting formula for this number is presented and disussed.PACS numbers: 11.15.K, 13.40.�f1. Finite number of photons and their formulaIn the lassial theory of radiation by a harged partile one alulatesthe energy radiated into the eletromagneti �eld. Indeed from the purelylassial point of view the energy is pratially the only quantity there isto alulate. However, in ertain problems [2℄ one may ome upon the ideaof �nding the number of photons radiated by a harged partile followinga given trajetory. Although the photon is a quantum onept and so thequestion of �nding the number might be thought to involve quantum me-hanis, it does so only in the most minimal way. Given the energy radiatedinto a given mode of the �eld, it is only neessary to use Plank's relation anddivide by the frequeny ! to �nd the number n; thus the problem remainsan essentially lassial one.It might be objeted that n an be in�nite while the energy is �nite, asin the well-known �infrared atastrophe�. True, but as we shall see, there isan interesting lass of ases where this is not the ase. In partiular whenthe trajetory of a harged partile begins and ends with the same vetorveloity v, n is generally �nite. This is beause the �infrared atastrophe�results from the di�erene in the long �ight paths for the in-and-outgoingpartiles, and when they are the same, the �atastrophe� is averted.(2659)



2660 L. StodolskyOn the other hand, bremsstrahlung alulations often have an �ultravio-let� or high frequeny divergene, due to the sudden appearane or de�etionof a harge [4℄. Evidently one annot emit an in�nite number of �nite en-ergy photons, so this divergene must be an artifat of the alulation. Thisdi�ulty an have either a quantum or lassial resolution. In the quantumsolution, as in the Feynman graph tehnique, one takes into aount theenergy-momentum onservation usually negleted at the lassial level, anda suppression results for high energy photons. However, and more of interestto us here, there an also be a lassial resolution: the ultraviolet divergeneresults from abrupt hanges in the trajetory, and if the veloity hanges oraelerations are su�iently smooth, there is no divergene.Therefore, we have the interesting situation that for a smooth traje-tory, beginning and ending with the same veloities, the number of photonsn radiated aording to a lassial alulation should be �nite. But n isa dimensionless, Lorentz-invariant quantity. Thus there ought to be somesimple formula for it, a relation mapping the path of a partile in spae-timeto the real number, n.This relation is n = �� Z Z dx� 1S2i" dx0� : (1)In this formula x and x0 are four-dimensional oordinates, referring to pointson the spae-time path of the harged partile, so that dx� is a 4-vetorialelement of the path (Fig. 1). One may introdue the proper time or in-variant path length � and the four-veloity u� = dx�=d� to also write theexpression asn = �� Z Z dx�d� 1S2i" dx�d� 0 d�d� 0 = �� Z Z u�(�) 1S2i" u�(� 0) d�d� 0 : (2)Si" is the four-distane between the points x; x0 in the following wayS2i" = (t� t0 + i")2 � (x� x0)2 : (3)As we shall explain shortly the i" is neessary to make sense of and toproperly de�ne Eq. (1).It is interesting that the Sommerfeld �ne struture onstant � = e2=~ �1=137, involving Plank's quantum onstant, appears. It arises, however, notas a oupling onstant, but rather from the onversion of the lassial energyto quanta, where we �nally must divide by ~!. The expression is a non-perturbative. If the partile is multiply harged with Q eletron harges,the formula should be multiplied by Q2. Observe that by interhanging t



Classial Radiation of a Finite Number of Photons 2661and t0 in the integrations one an reverse the sign of i" to show that n isreal. The expression is not an integer sine it represents the average orexpetation value of the number of partiles radiated.
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Fig. 1. Path in spae-time.2. DerivationWe an derive Eq. (1) from the standard treatments of lassial radiationtheory [4,5℄ where one alulates j(k), the Fourier omponents of the three-vetor urrent, and then �nds the energy radiation rate � jjj2 sin2 �, where� is the angle between k and j. Dividing by ! (units ~ = 1) gives n.To obtain the total number, we sum over all modes k of the radiation�eld n � Z sin2 � jj(k)j2 1! d3k : (4)One ould try to perform the integrations for every partiular trajetory,but we would like to �nd a general formula in terms of the path itself. Thuswe attempt to perform the d3k integration �rst, before the Fourier transform.This gives at �rst a not well-de�ned expression, whih leads to the need tointrodue the i".To see how this omes about, we observe that for smooth paths x(t) theFourier transform j(k) is strongly onvergent at large !. When we introduethe urrent density for our lassial point partile asj(t;x) = ev(t)Æ3(x� x(t)) (5)



2662 L. Stodolskywe have j(k) = e R dtv ei(kx(t)�!t) for the Fourier transform. Sine the pathof the partile is time�like the exponent an never beome zero, and if x orv = dx=dt have no jumps or kinks the integral vanishes rapidly for large !.Eq. (4) an be rewritten in a more ovariant way using sin2 � = 1 � os2 �and noting the urrent onservation relation !j0 = ! os �jjj, so that Eq. (4)is essentially the integral of the four-vetor squared j2 � j20 = �j2�. Usingdt v = dx one has a ompat line integral expression for j�, namelyj�(k) = eZ dx�eikx ; (6)where kx is the four dimensional salar produt k�x� = k0t � kx(t), withk0 = ! = jkj :Squaring Eq. (6) and writing in the onstants [5℄ we get for the integralof �j2�(k) over all modes of the radiation �eld:n = � �4�2 Z d3k 1! Z Z dx�dx0�eik(x�x0) : (7)Firm in the belief that we atually have a well de�ned, onvergent expres-sion, we allow ourselves to do the d3k integral �rst and to use some i"manipulations in dealing with seemingly ill-de�ned expressions.After a few steps we get to the expression R10 !d!ei!((t�t0)�R os �), whereR = jx� x0j and where here � is the angle between k and the vetor(x� x0). Now, sine we believe that our expressions are rapidly vanishingat large ! and ! is always positive, it should not hurt to add an i" in theexponent [6℄, to make the replaement (t� t0)! (t� t0 + i"). The integralis then onvergent, and integrating over d os � and keeping trak of the i",this leads to R d3k(1=!)eik(x�x0) = �4�(1=S2i") and so Eq. (1).Although these manipulations are similar to those with the invariantD funtions in quantum �eld theory, and our funtion 1=S2 resembles a Dfuntion, our assumption of smooth paths has lead us to an �i" presription�in position rather than in momentum spae.3. Elimination of "The di�ult job now beomes the evaluation of the i" in Eq. (1). Welook for guidane to the theory of generalized funtions [6℄ where one hasthe relation +1Z�1 f(t)(t+ i")2 dt = +1Z�1 f(t)� f(0)t2 dt ; (8)where we have speialized to the ase of an even funtion f(t) = f(�t).



Classial Radiation of a Finite Number of Photons 2663One way of understanding this relation is to note that, for " non-zero,+1Z�1 1(t+ i")2 dt = 0 ; (9)whih just follows from expliit integration. Thus we have simply subtratedzero in Eq. (8), and have hosen the oe�ient of this zero term in suh a wayas to anel the singularity of the integrand. With f even, f(t)� f(0) � t2,and the expression is indeed �nite at the singularity.Can we apply the same idea here? That is, by examining the neighbor-hood of the singularity for small but non-zero " we see that our expressionis �nite and " independent. We would thus like to subtrat something whihis zero for �nite " and whih will regulate the singularity at t = t0 in Eq. (1),enabling us to �nally dispense with " altogether. The problem, however,would seem to be muh more di�ult than in Eq. (8). There we simplyhad to adjust one onstant, namely f(0). Here we need a funtion f(t; t0),suh that when it is integrated over 1=S2(t; t0) gives zero and then an beadjusted to anel the numerator dx�dx0� when we make the replaementdx�dx0� ! dx�dx0�(1� f). Furthermore it should do this for any path x(t)we are to put in the formula.This last requirement rules out, for example, the at �rst likely-lookingandidate replaement dx�dx0� = u�u0�d�d� 0 ! (u�u0� � 1)d�d� 0. Sineu�u0� ! 1 for � ! � 0 this would regulate the singularity and looks promising.But it doesn't work, R R d�d� 0 1=S2(�; � 0) is obviously path dependent andannot be zero for all paths.This, however, suggests a solution. If we an �nd something for f whihis a total derivative and so an be integrated, it would depend only on theend points of the path and not on the path itself. To this end, note thefollowing useful relation. Let G be some funtion of S2(�; � 0) = �2� where�� = x�(�)� x�(� 0), then���� 0G(S2) = �G004���dx�d� ���� dx�d� 0 �� 2G0 dx�d� dx�d� 0 ; (10)where G0 and G00 refer to �rst and seond derivatives with respet to S2.Sine the expression is a total derivative and its integral is independentof the path and is to be interpreted as zero, we may look for some hoie forG that leads to � 1=S2 for � ! � 0 and so might anel the singularity. Thisours, in fat, if we onsider G = lnS2. The above equation beomes���� 0 ln(S2) = + 4S4 ���dx�d� ���� dx�d� 0 �� 2S2 dx�d� dx�d� 0 : (11)



2664 L. StodolskySine ��=S ! dx�=d� for � ! � 0 the expression � 1=S2 at the singularity.Now we want to add this to Eq. (2), that is to R dx�=d� dx�=d� 0(1=S2) d�d� 0,with some weight suh that the singularity at � = � 0 is aneled. To deter-mine this weight note that sine the four veloity satis�es (dx�=d� )2 = 1 therhs of Eq. (11) goes to +2=S2 for � ! � 0. Hene we must subtrat 1=2 ofEq. (11) from Eq. (2) to remove the singularity. Doing this we end up withthe following nie relationZ Z dx�d� 1S2i" dx�d� 0 d�d� 0 = 2Z Z dx�d� Æ�� � �����S2 �S2 dx�d� 0 d�d� 0 (12)or alternativelyZ Z dx� 1S2i"dx0� = 2Z Z dx� Æ�� � �����S2 �S2 dx0� : (13)The notation is meant to indiate that while the i" is in S2 on the left, it isnot needed on the right.We an rewrite these equations in an interesting way by noting that��=S is like an average 4-veloity onneting the points �; � 0, whih wemight all U� in analogy to the instantaneous 4-veloity u� = dx�=d�U�(�; � 0) = ��S = x�(�)� x�(� 0)S : (14)Then we an writen = �� 2Z Z u� Æ�� � �����S2 �S2 u� d�d� 0= �� 2Z Z u(�) u(� 0)� (U u(�))(U u(� 0))S2 d�d� 0 : (15)We an now introdue the notion of a �transverse vetor� uT assoiatedwith the points x; x0 at �; � 0. This is the vetor u with the �longitudinal�part, that is the omponent along U , removeduT� (�; � 0) = u�(�)� U�(U u(�)) ;uT� (� 0; �) = u�(� 0)� U�(U u(� 0)) : (16)



Classial Radiation of a Finite Number of Photons 2665With these de�nitions, uT� (x; x0)uT� (x0; x) = u�(x) (Æ�� � U�U�)u�(x0),whih is the numerator in Eq. (15) and we an write the above equations interms of produts of �transverse vetors�n = �� 2Z Z uT� (�; � 0) 1S2 uT� (� 0; �) d�d� 0 : (17)Hene we an say that our integral for n represents the �interation�of pairs of transverse vetors along the path of the harge. The possiblesingularity at S = 0 is absent beause uT(�; � 0) vanishes for two points verylose together. 4. Properties of the quantitiesWe summarize some properties of these quantities: U and u are unitvetors, u2 = U2 = 1. From their de�nitions U and uT are orthogonaluT� (�; � 0)U� = uT� (� 0; �)U� = 0. Note for straight line motion or more gener-ally for any smooth path as � ! � 0U� ! u� : (18)Unlike u and U , uT is a spae-like (or zero) vetor. This follows from thefat that there is a frame where the time omponent of uT vanishes, namelythe rest-frame of the time-like U .We note a point onerning the de�nition of U in Eq. (14). This pointis irrelevant in all those expressions where S or U appears quadratially,but we mention it for onsisteny. Namely, we would like U to resemble theveloity. Therefore, it must be understood that S(�; � 0) = pS2 is �direted�;an odd funtion, positive for � > � 0 and negative for � < � 0, like (� � � 0).It implies a de�nition of U suh that U(�; � 0) = U(� 0; �) and that U is�forward pointing�, i.e. U0 is always positive.An interesting expression for uT follows from the de�nition of U inEq. (14), re�eting the fat that the derivative of a unit vetor is trans-verse to itself 1S uT� (�; � 0) = ��U�(�; � 0) ;� 1S uT� (� 0; �) = �� 0U�(�; � 0) : (19)With this, we an also write Eq. (17) in some di�erent looking waysn = ��� 2Z Z ��U�(�; � 0)�� 0U�(�; � 0) d�d� 0 : (20)



2666 L. StodolskyOr, sine U2 = 1 and so ���� 0(U�U�) = 0 we an also writen = �� 2Z Z U�(�; � 0) �� �� 0U�(�; � 0) d�d� 0 : (21)Another variant results if we note that Eq. (20) looks like the ross termsof a quadrati expression: 2��U�� 0U = 12 [(��U + �� 0U)2 � (��U � �� 0U)2℄ :Introduing the sum and di�erene variables �+= 12(�+� 0) and ��= 12(� 0� �)n = �� Z Z [(���U)2 � (��+U)2℄ d�+d�� ; (22)where beause of the rotation of the oordinates in the �; � 0 plane, the inte-gration boundaries, in the ase if �nite limits, would now have the form ofa diamond instead of a square.5. Infrared behaviorThe i" takes are of the high frequeny or ultraviolet behavior, but theremight be questions onerning the infrared region. We see this very simply ifwe onsider the stationary partile with v = 0, for whih n of ourse shouldbe zero. Eq. (1) leads ton = +1Z�1 +1Z�1 dtdt0 1(t� t0 + i")2 : (23)There are two kinds of limits implied here " ! 0, and some upper/lowerlimit of the integration L ! 1, and the integral an depend on how thelimits are taken. If we simply apply Eq. (9) we get of ourse zero, as desired.On the other hand if we interpret the limits at �1 by, say, integrating oversome test funtion whih is onstant up to some large number L and thendrops o�, we an get an answer involving "L, whih depends on the orderin whih we take " ! 0, L ! 1. The problem originates in the fat thatwe are turning o� the harge at some L, violating harge onservation andin the proess produing some photons. We are thus to handle this limit byremembering that " is to be kept �nite to the very end, and so we �rst mean"L ! 1. Alternatively one an subtrat the integral for the stationarypartile, as in Eq. (23) to regularize the infrared behavior.Naturally if we use the form without the i", say from Eq. (15) we immedi-ately get zero for the stationary partile. More generally, we an investigatethe ontribution of the �nal and initial long straight paths for a moving par-tile in Eq. (15). The dangerous regions for the infrared behavior are large



Classial Radiation of a Finite Number of Photons 2667�; � 0 as the partile omes from or goes to in�nity. For both � 's very large orboth very small, we have in view of Eq. (18) and u2 = 1 that the numeratorbeomes u2 � u2u2 = 0. Similarly if one � is at very early times and theother a very late times and the veloities at these times are the same, thereis the analogy to Eq. (18)U�(�; � 0) = u� +O� T� � � 0� ; (24)where T is the �nite time period where the harge was not in uniform motion.For large (� � � 0), U ! u and the numerator will again tend to zero, as longas the initial and �nal veloities are the same. It is interesting that theelimination of both the long and short distane singularities an in a sensebe attributed to the same relation, Eq. (18).6. Non-relativisti limitConsider that lass of paths whose tangents are roughly parallel to somestraight line on Fig. (1), meaning that the ordinary veloity v is always loseto some typial or average veloity. By making a Lorentz transformation(under whih n is invariant) so that this typial veloity is zero, we haveas a �rst approximation in the ordinary veloity the non-relativisti limit,leading to expressions quadrati in veloities.We ould make a stab at the non-relativisti limit by taking our basiexpression Eq. (1) and just naively expanding it for small veloities. Weintrodue V , the average veloity vetor onneting two points on the urveV = x(t)� x(t0)t� t0 ; (25)V is a symmetri quantity V (t; t0) = V (t0; t), in parallel with our earlierde�nition of U and beomes equal to v when t! t0. V plays a role analogousto U exept that it does not have a �xed length and so V 2 has non-zero timederivatives. Expanding in Eq. (1) we an try to write1S2i" � 1(t� t0 + i")2 �1 + V 2i"(t; t0) + V 4i"(t; t0) + :::� ; (26)where V i" = (x�x0)(t�t0+i") so thatn = ��Z Z dx� 1S2i"dx0�� ��Z Z dtdt0(1�v(t)v(t0)) 1(t�t0+i")2 �1+V 2i"(t; t0)+V 4i"(t; t0)+:::� :(27)



2668 L. StodolskyNow, using Eq. (9) the �1� term vanishes and we haven = �� Z Z dtdt0 1(t� t0)2 [V 2 � v(t)v(t0)℄ (non� rel: limit) : (28)We have dropped the i" sine the expression is non-singular with V ! v ast! t0.This is a not unreasonable-looking expression. Indeed, if we expand itfor t � t0 we get �V 2 � v(t)v(t0)� � 14a2(t� t0)2 : : : ; (29)showing that the singularity is aneled and that the leading terms of theexpression are positive and exhibit the familiar onnetion between ael-eration squared and radiation. The (. . . ) inludes terms involving timederivatives of the aeleration a (a = dv=dt) as well as higher order termsin (t� t0)2.One might have some qualms about the arefree i" manipulations, andwe indiate how to arrive at Eq. (28) by straightforward appliation of ourmore onventional formulas.First note that U an be written in terms of V in the usual way relatinga three-veloity and a four-veloity, U0 = 1=p1�V 2; U = V =p1�V 2 withthe non-relativisti limits U0 � 1� 1=2V 2; U � V . We �nd from eitherEq. (20) or Eq. (21) to leading order in Vn = �� 2Z Z dtdt0 �tV (t; t0) �t0V (t; t0) (non� rel: limit) : (30)Now in analogy to Eq. (19) we have from the de�nition of V�tV (t; t0) = v(t)� Vt� t0 ;�t0V (t; t0) = �v(t0)� Vt� t0 (31)and Eq. (30) beomesn = �� 2Z Z dtdt0 ��v(t)v(t0) + (v(t) + v(t0))V � V 2� 1(t� t0)2 :(non� rel: limit) : (32)



Classial Radiation of a Finite Number of Photons 2669One ould be satis�ed with this formula as it is, but to bring it intothe perhaps simpler form Eq. (28), note the following identity: 12�t�t0V 2 =[�v(t)v(t0)+2(v(t)+v(t0))V �3V 2℄(t� t0)�2, whih follows from di�erenti-ating V 2 = (x�x0)2(t�t0)�2 twie. We split this into two parts: 12�t�t0V 2 =[�v(t)v(t0)+(v(t)+v(t0))V �V 2℄(t�t0)�2+[(v(t)+v(t0))V )�2V 2℄(t�t0)�2,where we make the split so that the �rst part orresponds to Eq. (32). Now�t�t0V 2 is a total derivative whose integral may be set to zero. Therefore,the integral of the �rst and seond parts represents the same quantity withopposite signs and we an writen = �� 2Z Z dtdt0[�v(t)v(t0) + (v(t) + v(t0))V � V 2℄ 1(t� t0)2= ��� 2Z Z dtdt0[(v(t) + v(t0))V )� 2V 2℄ 1(t� t0)2(non� rel: limit) : (33)Taking the one-half the sum of the two forms we �nally obtain, aftermuh labor, Eq. (28). The avalier i" manipulations were ertainly a lotquiker!Despite the familiar aeleration squared in Eq. (29), we shouldn't ex-pet that n an be represented simply by an integral of some loal quantityalong the path. There is the (. . . ), and all our expressions are bi-loal inthe time. The photon is a non-loal onept and a ertain spae-time in-terval is neessary to de�ne it. This orresponds to the distintive propertyof relativisti loal �eld theory that while one has loal onstrutions forquantities like harge density or energy density, there is in fat no loalquantity for partile number or photon density. Indeed, the need to havesome spae-time interval to de�ne a partile, leads to the onept of the�formation zone� [3℄, whih an be used to understand ertain phenomenalike the absene of �asading� for partile prodution on nulear targets.7. Simple asesWith the simple Eq. (28) in hand we an proeed to alulate a oupleof onrete examples.Dipole radiation: We �rst take the lassi problem of dipole radiation. Leta harged partile be osillating in one dimension aording to x = x0 sin
t,so v = x0
 os
t. Changing variables 
t! t and similarly for t0, Eq. (28)beomesn = �� (x0
)2 Z Z dtdt0 �(sin t� sin t0)2(t� t0 + i")4 � os t os t0(t� t0 + i")2 � : (34)



2670 L. StodolskyAlthough the i" is not neessary sine the ombination of the two terms givessomething non-singular, it is onvenient to keep it sine it allows us to handleeah term separately. Carrying out, say, the t integral �rst and using rela-tions of the type R dt os t=(t� t0 + i")2 = 2�e�it0 or R dt sin t=(t� t0 + i")4 =�(i=6)e�it0 and R dt os t0=(t� t0 + i")2 = 0, we arrive atn = �� (x0
)2 Z dt0 ��i�3 sin t0 � (��) os t0� e�it0= �(x0
)2T
3 ; (35)where T is the length of time the partile is in motion. The number ofphotons generated inreases linearly with time, as was to be expeted. Wehave negleted a ontribution, not proportional to T , onneted with turningthe motion on and o�. If we now multiply by 
 to �nd the energy anddivide by T to get the power, we obtain Power = �13 (x0
)2
2, whih isthe lassial formula for dipole radiation averaged over a yle [4, 5℄. Notsurprisingly we reover the lassial result, as was our starting point.Note, however, that in general the energy radiated and the number ofphotons do not stand in diret relation sine the osillating harge produeshigher harmonis in addition to the fundamental at frequeny 
 [4℄. How-ever, in the nonrelativisti limit v= ! 0 these higher harmonis beomenegligible (sine they are a retardation e�et), and we expet the energyradiation to be simply proportional to n.This example shows that despite our requirement that the initial and�nal veloities be equal, the method need not be of purely aademi interestfor pratial alulations. If the e�ets onneted with turning the motionon and o� are negligible ompared to some main e�et, we an always returnthe partile to, say, zero veloity, while retaining the main e�et.Smooth de�etion: Instead of an osillator whih is on for a long timewe an onsider a harge undergoing a smooth de�etion, for examplex = x0=(1 + (t=t0)2) so that v = �2(x0=t0) (t=t0) 1=(1 + (t=t0)2). Thisleads to n = �� Z Z dt dt0 1(t� t0 + i")2 [V 2 � v(t)v(t0)℄= �� �x0t0 �2��18 �2 � �38 �2� = ��4 �x0t0 �2 : (36)



Classial Radiation of a Finite Number of Photons 26718. Further questionsEq. (1) should have some general symmetry properties with respet tohanging the path. There are the evident invarianes under Lorentz transfor-mations, translation, 3D rotation, re�etion, and time-reversal. Sine thereare no dimensional quantities exept the path itself involved, there is alsoan invariane under resaling of all 4-oordinates simultaneously, x� ! �x�.That is to say, if the path is expanded in spae and time proportionallyso that the veloities remain unhanged, n is unhanged, as we see in theexamples. It would be interesting to know if there are further invarianesand what the full invariane group is.Also, we might onsider the problem for gravitons instead of photons.Presumably one will �nd, in analogy to Eq. (2), and in view of the tensorialharater of the soure of gravitonsn � Gm2 Z Z u�(�)u�(�) 1S2i"u�(� 0)��(� 0) d�d� 0 ;where G is the gravitational onstant and m the mass of the radiating par-tile (reall ~;  = 1, so Gm2 = (m=Mpl)2), but it would be interesting toinvestigate this more losely.Finally, a number of interesting mathematial problems suggest them-selves. Our n gives an invariant haraterization of the �wiggly-ness� ofa urve. There appears to be no reason why it should not be also used inEulidean spae where S2(�; � 0) = �(xi(�) � xi(� 0))2. The main di�erenewould seem to be that the urve an now go �bakwards�, opening the pos-sibility of losed urves. As well, there is the possibility of new singularitieswhen two parts of the urve, with remote values of � , ome lose together.For a losed plane urve it is plausible that the minimum value of nobtains for the irle. Then de�ning n = �2 R R 1S2uTu0Td�d� 0 ( we useEq. (17), leave away �=�, and the natural sign is now minus), we thusonjeture that the minimum value of n for any plane urve is 2�2, whih iswhat we obtain for the irle.Also, there may be a �topologial� aspet to n, onneted with knots. Foran open path the minimum value of n, namely zero, is reahed for a straightline. If the path has a knot, however, it annot be ontinuously deformedto a straight line, and must go �bakwards� somewhere, suggesting that theminimum value of n ontinuously attainable is related to the presene ofknots.I am grateful to Y. Frishman, D. Maison and V. Zakharov for many andhelpful disussions.



2672 L. StodolskyREFERENCES[1℄ We use a notation where in the 4-vetor produt suh as dx�dx0� the timeomponent is positive: dx�dx0� = dtdt0 � dxdx0, where boldfae stands for3-vetors.[2℄ L. Stodolsky, Deoherene in the Radiation Field, in preparation.[3℄ L. Stodolsky, Formation Zone Desription in Multiprodution, Pro. 7th Int.Colloquium on Multipartile Reations, Oxford, 1974. The onept was �rstintrodued by L. Landau, I. Pomeranhuk, Doklady Akademi Nauk SSR 92,535 (1953); Doklady Akademi Nauk SSR 92, 735 (1953).[4℄ J.D. Jakson, Classial Eletrodynamis, John Wiley & Sons, 1965.[5℄ See L.D. Landau, E M. Lifshitz, The Classial Theory of Fields, PergamonPress, 1962. For the manipulations leading to Eq. (7) see the problem at theend of Setion 66.[6℄ The introdution of the i" amounts to the use of the !+ funtion of the theoryof generalized funtions. Indeed it would be the same relation were we tomake the non-relativisti approximation S2 � (t � t0)2. See VerallgemeinerteFunktionen vol. I, by I.M. Gelfand and G.E. Shilow, VEB Deutsher Verlagder Wissenshaften, Berlin 1967. See Setion 4, and in partiular the formula1R0 d!!ei�! = � 2(�+i")2 , (appendix, table of Fourier transforms, no. 21 ).


