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BOSE�EINSTEIN CORRELATIONS AS REFLECTIONOF CORRELATIONS OF FLUCTUATIONSO.V. Utyuzh, G. WilkAndrzej Soªtan Institute for Nulear StudiesHo»a 69, 00-681 Warsaw, PolandandZ. WªodarzykInstitute of Physis, �wi�tokrzyska Aademy�wi�tokrzyska 15, 25-405 Kiele, Poland(Reeived May 16, 2002)Dediated to Stefan Pokorski on his 60th birthdayBose�Einstein orrelations (BEC) observed between idential bosonsprodued in high energy multipartile ollisions are regarded as very im-portant tool in investigations of multipartile prodution proesses. Wepresent here their stohasti feature stressing the fat that they an be re-garded as a re�etion of orrelations of �utuations present in hadronizingsystem. We show in partiular that suh approah allows for simple model-ing of BEC in numerial event generators used to desribe the multipartileprodution proesses at high energy ollisions.PACS numbers: 25.75.Gz, 12.40.Ee, 03.65.�w1. IntrodutionBose�Einstein Correlations (BEC) between idential bosons are sinelong time reognized as very important tool in searhing for dynamis ofmultipartile prodution proesses beause of their ability to provide thespae�time information about them [1℄. This is partiularly important forheavy ion ollisions whih are expeted to provide us with the new stateof matter, the Quark Gluon Plasma (QGP) [2℄. However, beause of theiromplexity, all these proesses an be investigated only by numerial model-ing methods using di�erent sorts of Monte Carlo (MC) event generators [3℄.Their a priori probabilisti struture prevents ourring of genuine BEC(2681)



2682 O.V. Utyuzh, G. Wilk, Z. Wªodarzykwhih are of purely quantum statistial origin. The best one an do is tomodel BEC by hanging the outputs of these generators in suh a way asto reprodue the harateristi signals of BEC obtained experimentally. Inthe most widely investigated ase of 2-partile BEC it is the fat that two-partile orrelation funtionC2(Q = jpi � pjj) = N2(pi; pj)N1(pi)N1(pj) (1)de�ned as ratio of the two-partile distributions to the produt of single-partile distributions inreases towards C2 = 2 when Q approahes zero.2. More about BEC2.1. BEC � spae�time approahThere are two possible approahes towards BEC. The �rst stresses theirspae�time features and is based on the symmetrization of the respetivemultipartile wave funtion [1℄ expressed by plain waves1, e�ikx, represent-ing the produed partiles. After symmetrization (and squaring) one getsthe respetive many-partile prodution rates depending on ombination ofvariables of the type: (ki � kj)(xi � xj). To get C2 as given by Eq. (1),one has to integrate them, with some assumed weight funtion �(x1; x2; : : :),over unmeasured spae�time positions fxig of the prodution points. Thedistribution �(x1; x2; : : : ; ) is ustomarily assumed to be separable in termsof single partile distributions �i(xi) = �(x) and in this way the informationon the spae�time distribution of points of prodution of �nally observedpartiles enters here. It an be then show that, under some assumptions [1℄,C2(Q) = 1 + ����Z dx�(x)eiQx����2 = 1+ j ~�(Q) j2 ; (2)i.e., C2(Q) an be regarded as a (kind of) Fourier transform of the spae�time dimensions of the emitting soure2. So far this approah is dominatingin what onerns desription of BEC.1 This is idealization negleting both the possible �nal state and Coulomb interationsinlusion of whih is possible by a suitable modi�ations of these plane waves. Weshall not disuss it here.2 Atually, after loser inspetion [4℄ it turns out that one rather gets in this waya Fourier transform of the distributions of two-partile separations (or orrelationlengths [1℄).



Bose�Einstein Correlations as Re�etion of Correlations of Flutuations 26832.2. BEC � quantum-statistial approahThe seond approah is based on observation that one enounters similarorrelations in quantum optis [5℄ where they are known as the so alledHBT e�et. They are desribed there as arising beause of orrelations ofsome spei� �utuations present in physial systems onsidered (known asphoton bunhing e�et [5℄). Following [4,6℄ one an apply suh possibility todesription of hadronizing soures as well. Beausehn1n2i = hn1ihn2i+h(n1 � hn1i) (n2 � hn2i)i = hn1ihn2i+��(n1)�(n2) (3)(where �(n) is dispersion of the multipliity distribution P (n) and � is theorrelation oe�ient depending on the type of partiles produed: � =+1;�1; 0 for bosons, fermions and Boltzmann statistis, respetively) onean write two-partile orrelation funtion (1) in terms of the above ovari-anes (3) stressing therefore its stohasti harater:C2(Q = jpi � pjj) = hni (pi)nj (pj)ihni (pi)ihnj (pj)i = 1 + � � (ni)hni (pi)i � (nj)hnj (pj)i : (4)It means therefore that C2(Q) an be regarded as being a measure of or-relation of �utuations. This fat has been used for numerial modelingof BEC in [7℄ where a speial MC generator, based on appliation of in-formation theory, was onstruted for this purpose. In it the idential pi-ons produed in a given event were bunhed on a maximal possible way(restrited only by onservation laws onstraints) in a limited number ofelementary emitting ells of phase spae aording to Bose�Einstein distri-bution, P (Ei) � exp [ni (��Ei) =T ℄ (ni is their multipliity and Ei are theirenergies)3, with size (in rapidity, as only one dimensional phase spae wasonsidered) given by parameter Æy. It turns out that in this approah onegets at the same time both the orret BEC pattern (i.e., orrelations) and�utuations (as haraterized by the observed intermitteny pattern) [7℄.This is very strong advantage of this model, whih is so far the only ex-ample of hadronization model, in whih Bose�Einstein statistis is not onlyinluded from the very beginning on a single event level, but it is also prop-erly used in getting the �nal seondaries. In all other approahes [9�12℄ atleast one of the above elements is missing. The shortoming of method [7℄ arenumerial di�ulties to keep the energy-momentum onservation as exatas possible and its limitation to the spei� event generator only.3 Values of two Lagrange multipliers, T and �, were �xed by the energy-momentumand harge onservation onstraints, respetively. Suh distribution represents typialexample of nonstatistial �utuations present in the hadronizing soure. Similaronept of elementary emitting ells has been also proposed in [8℄.



2684 O.V. Utyuzh, G. Wilk, Z. Wªodarzyk2.3. Existing methods of numerial modeling of BECIn all other approahes the e�et of BEC is obtained by a suitable hang-ing the original output of MC generators used and introduing this way(more or less arti�ially) desired bunhing in the phase-spae of the �nallyprodued idential partiles [9, 10℄4. This is ahieved either by (a) shifting(in eah event) momenta of adjaent like-harged partiles in suh a wayas to get desired C2(Q) [9℄ (one has to orret afterwards for the energy-momentum imbalane introdued this way), or by (b) sreening all eventsobtained from a partiular MC generator against the possible amount ofbunhing they are already showing and ounting them as many times asneessary to get desirable C2(Q) [10℄5. The original energy-momentum bal-ane remains in this ase intat whereas the original single partile distri-butions are hanged (this fat an be orreted by running again generatorwith suitably modi�ed input parameters). In both ases one uses spei�weights onstruted from the assumed shape of �(x) funtions. However,the size parameters ourring there bear no diret resemblane to the sizeparameter R obtained by diretly �tting data on C2(Q) in Eq. (1) usingsimple Gaussian or exponential forms. They rather represent instead theorresponding orrelation lengths between the like partiles [1℄.3. Numerial modeling of BEC understoodas orrelations of �utuationsReently we have proposed [13℄ a new method of numerial modelingof BEC understood as manifestation of orrelations of �utuations, whihapplies already on a single event level, does not violate any onservationlaws and an be applied to data provided by essentially any event generatormodeling multipartile prodution. Here we would like to present physialideas underlying our approah in more detail.Let us start with very simple example of what we are aiming at. Supposethat our MC event generator provides us with a number N(+), N(�) andN(0) of positively and negatively harged partiles and neutral ones loatedin phase spae, f. Fig. 1, left panel. They are all uniformly distributedand show no BEC pattern. Suppose now that the same partiles (i.e., lo-ated at the same spae�time points and possessing the same momenta asbefore, with the same N(+), N(�) and N(0)) have now di�erent alloa-tion of harges, namely the one shown in the right panel of Fig. 1. The likeharges are in visible (albeit strongly exaggerated) way bunhed (orrelated)4 The spei� approahes proposed for LUND model [11℄ and the afterburner methoddisussed in [12℄, whih we shall not disussed here, also belong here.5 Tehnially this is realized by multiplying eah event by a speial weight alulatedusing the output provided by event generator used.
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Fig. 1.together leading to signal of BEC. What we have done in this example isthe following: (a) we have resigned from the (not diretly measurable) partof the information provided by event generator onerning the harge al-loation to produed partiles, and (b) we have alloated harges anew insuh a way as to keep the like harges as near in phase spae as possible(keeping also the total harge of any kind the same as the original one). Itis interesting to note that this an be regarded as introdution of quantummehanial element of unertainty to the otherwise lassial sheme of MCgenerator used (however, it di�ers ompletely from the usual attempts tointrodue quantum mehanial e�ets disussed in [14℄).That suh simple sheme really works an be seen in Fig. 2, whih showsthe C2(Q) for one dimensional lattie of N pions (positive, negative andneutral) with momenta pi = �pmax + (i � 1) � �p where spaing �p =2pmax=N). When their harges are assigned in a purely random way (whatorresponds to the situation shown at the left part of Fig. 1) it an be shownthat the orresponding C2(Q) = 1. However, assigning harges in a spei�way (following presription used in [13℄) one gets strong enhanement ofC2(Q) whih normally is attributed to BEC. The proedure used is verysimple. First one of the partiles (from N�) is seleted and some harge(out of (+;�; 0)) is randomly alloated to it. After that the same hargeis alloated to as many partiles loated nearby in phase spae as possiblein some presribe way forming a ell in phase-spae oupied by partilesof the same harge only (f. right part of Fig. 1). This proess is thenrepeated until all partiles are used. The important point is to ensure thatthe above seletion is done in suh way as to get geometrial (Bose�Einstein)distribution of partiles in a given ell. This an be ahieved by seletingeah next partile with some �xed probability P till the �rst failure, afterwhih the new ell is formed. In this ase � = hni = P=(1 � P ) andseond term in the Eq. (4) is now maximal. We refer to [13℄ for detailsof the algorithm used. The harateristi pattern emerging here is thatthe so alled �radius parameter� R (in the usual �tting formula for C2(Q) =[1+exp(�R�Q)℄) inreases with number of partiles alloated to our lattie



2686 O.V. Utyuzh, G. Wilk, Z. Wªodarzyk(i.e., with dereasing of their momentum separation �p, f. Fig. 2(b) (interms of the number of partiles onsidered it is the same, see Fig. 2(a)).On the other hand it dereases with the number of partiles one an alloateto a given ell (f. Fig. 2()).
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Fig. 2. Example of C2 ourring for a pioni lattie in (one-dimensional) momentumspae, Q = jpi � pj j = 2pmaxji � jj=N = 2pmn=N : (a) as a funtion of n; (b) asa funtion of Q; () as a funtion of Q but for limitation of ell oupany toi < Nmax. In all ases pmax = 10 GeV. In (a) and (b) P = 0:5 whereas in ()P = 0:9 (to allow for large ells).We shall illustrate now ation of our algorithm on simple asade modelof hadronization (CAS) (in its one-dimensional versions and assuming, forsimpliity, that only diret pions are produed) [15℄ and on equally simplemodel based on appliation of information theory [16℄ (f. Fig. 3). In CAS theinitial mass M hadronizes by series of well de�ned (albeit random) branh-ings (M ! M1 + M2, with M1;2 = r1;2M suh that r1 + r2 < 1) and isendowed with a simple spatio-temporal pattern. It shows no traes of Bose�Einstein statistis whatsoever. In MaxEnt partiles our instantaneously inall phase spae with distribution given by the thermal-like formula obtainedby maximalization of the aordingly de�ned information entropy. In bothases the masses and multipliities were kept the same. There is no BEChere either. However, as an be seen in Fig. 3, when endowed with hargeseletion provided by our algorithm, a lear BEC pattern emerges in C2(Q)(and is very similar in both ases onsidered here). Two kind of hoies ofprobabilities are shown in Fig. 3. First is onstant P = 0:75 and P = 0:5.The other is what we all the �minimal� weight onstruted from the outputinformation provided by CAS (PM) or MaxEnt (PME) event generators:PC(ij) = exp ��12Æ2ij(x) � Æ2ij(p)� or PME(ij) = exp"�Æ2ij(p)2�iTl # ; (5)



Bose�Einstein Correlations as Re�etion of Correlations of Flutuations 2687where Æij(x) = jxi � xjj, Æij(p) = jpi � pjj and Tl is the orresponding�temperature� (with � being mass of the produed partiles). In this wayone onnets P with details of hadronization proess by introduing to ita kind of overlap between partiles as a measure of probability of theirbunhing in a given emitting ell.
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Fig. 3. Examples of BEC patterns obtained for M = 10, 40 and 100 GeV foronstant weights P = 0:75 (stars) and P = 0:5 (full symbols) and for the weightgiven by Eq. (5) (open symbols). Upper panels are for CAS, lower for MaxEnt (seetext for details).It turns out that BEC e�et shown in Fig. 3 depends only on the (mean)number of partiles of the same harge in phase-spae ell and on the (mean)numbers of suh ells. This depends on P , the bigger P the more partilesand bigger C2(Q = 0); smaller P leads to the inreasing number of ells,whih, in turn, results in dereasing C2(Q = 0), as already notied in [8℄.For small energies the number of ells dereases in natural way while theiroupation remains the same (beause P is the same), therefore the orre-sponding C2(0) is bigger, as seen in Fig. 3. The fat that there is tendenyto have C2(0) > 2 for larger P means that one has in this ase more ellswith more than 2 partiles alloated to them, i.e., it is aused by the in-�uene of higher order BEC. Therefore, the �sizes� R obtained from theexponential �ts to results in Fig. 3 (like C2(Q) � 1 + � � exp(�Q �R) where� being usually alled haotiity parameter [1℄) orrespond to the sizes ofthe respetive elementary ells rather than to sizes of the whole hadronizingsoures itself. For P = 0:5 the �size� R varies weakly between 0:66 to 0:87fm from M = 10 to 100 GeV whereas for the �minimal� weight (5) it variesfrom 0:64 to 0:44 fm.So far we were onsidering only single soures. Suppose now that soureof mass M onsists of a number (nl = 2k) of subsoures hadronizing inde-



2688 O.V. Utyuzh, G. Wilk, Z. Wªodarzykpendently. It turns out that the resulting C2's are very sensitive to whetherin this ase one applies our algorithm of assigning harges to all partilesfrom subsoures taken together (�Split� type of soures) or to eah of the sub-soure independently (�Indep� type of soures), f. Fig. 4. Whereas the later
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Fig. 4. Examples of BEC for CAS model with P = 0:5 alulated for di�erentnumber of subsoures (nl = 2k, k = 1; 2; 3 existing in the soure M = 100 GeV for(a) �Split� and (b) �Indep� types of soures, as disussed in text. In () we showexamples of BEC pattern for 2 �Split� type of soures moving apart with onstantmomentum di�erene Æp = 0, 10 and 60 GeV/ (ahieved by assuming in CAS �rstrank asade parameters r1 = r2 = 0:5, 0:4975 and 0:4, respetively).ase (in whih partiles remember from whih soure they have originated)results in the similar �sizes� R (de�ned as before) with C2(Q = 0) � 1 = �falling dramatially with inreasing k (roughly like 1=2k, i.e., inversely withthe number of subsoures, nl, as expeted from [8℄), the former ase (in whihpartile loose memory of whih subsoure they are oming from) leads toroughly the same C2(Q = 0) but the �size� R is now inreasing substan-tially6. This is again entirely due to the fat that in the �Split� type ofsoure one has higher onentration of partiles in the elementary emittingells rather then bigger number of suh ells. This results in smaller averageQ, and this in turn leads to bigger R. A speial type of �Split� soure isshown in Fig. 3(). In it two initial soures (of equal masses) have fromthe beginning a well de�ned di�erene in momenta, Æp (orresponding tobranhing parameter r1 = r2 = 12p1� (Æp=M)2 ), modeling in this waya possible in�uene of some olletive �ow existing in the system (the to-tal energy remains always the same and equal to M , here M = 100 GeV).6 It is equal to, respetively, 0:87 fm, 1:29 fm, 1:99 fm and 3:35 fm for P = 0:5 and0:57 fm, 3:26 fm, 4:01 and 5:59 fm for the �minimal� weight PC given by (5).



Bose�Einstein Correlations as Re�etion of Correlations of Flutuations 2689Notie that, ontrary to the normal expetations, the bigger is the ��ow�the smaller is �radius� parameter R obtained from the typial exponential�t mentioned above. This is beause ��ow� results in our ase in smallernumber of partiles in the elementary emitting ells.Atually dependene on the expeted BEC pattern on the number andtype of subsoures formed in the proess of hadronization is very importantand interesting feature of our model. It allows to understand the inrease ofthe extrated �size� parameter R with the nulear number A in nulear ol-lisions. That is beause with inreasing A the number of ollided nuleons,whih somehow must orrespond to the number of soures in our ase, alsoinreases. If they turn out to be of the �Split� type, the inrease of R followsthen naturally. On the ontrary, for the independently treated soures thedensity of partiles subjeted to our algorithm does not hange, hene theaverage Q and R remain essentially the same. However, beause in this asethe in�uene of pairs of partiles from di�erent subsoures inreases, thee�etive � = C2(0)�1 now dereases substantially (as was already observedin [8℄). Our �Indep� type soures an therefore be used as a possible expla-nation of the so alled inter-W BEC problem, i.e., the fat that essentiallyno BEC is being observed between pions originating from a di�erent W infully W+W� �nal states [17℄. This phenomenon an be understood in ourmodel by assuming that produed W 's should be treated as �Indep� typesoures for whih � falls dramatially.It also allows to attempt to �t (even using suh unsophistiated hadroni-zation model as CAS) some experimental data. As example we presentin Fig. 5 our �best �t� to the e+e� annihilation data on BEC by DEL-PHI Collaboration [18℄ for M = 91:3 GeV. It turns out that suh �t anbe obtained only for two or more subsoures [13℄. A the same �gure weshow also intermitteny pattern (with moments Fq and Mbin de�ned asin [19℄) obtained together with the BEC after appliation of our algorithmand the examples of the expeted harge �utuations in di�erent rapiditywindows (de�ned asD = 4 hÆQ2ihNhi [20℄). This is done for two sets of parameters(P and number of soures): one leading to the best possible (whih turnsout very good) �t to C2(Q) (Fig. 5(a)) and one leading to the best possibleintermitteny patter (atually only 2-nd moment F2 an be �tted, all othermoments remain still below data indiating that intermitteny onnetedwith BEC and provided by our algorithm as a kind of by-produt, is stillnot the whole e�et seen in data [19℄)7.7 The harge �utuations D are atually important for heavy ion ollisions [20℄ and areshown here just for illustration of preditive power of our algorithm.
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Fig. 5. Examples of results for e+e� annihilation at M = 91:3 GeV obtained usingCAS with two subsoures: (a) best �t (full symbols) to data BEC [18℄ by DELPHI(open symbols) obtained with P = 0:23; (b) and () the resulting intermittenyand harge �utuations patterns, respetively. Lower panels ontain in (e) thebest possible �t (full symbols) to the data on intermitteny [19℄ (open symbols,only seond moment an be reprodued, both here and in (b) only F2 to F4 aredisplayed) obtained with P = 0:5 and resulting BEC (d) and harge �utuationspatterns (f) (here and in () P = 0 orresponds in this ase to results of CASwithout BEC). 4. Summary and onlusionsTo summarize: we propose a new way of looking on the BEC phe-nomenon observed in high energy multipartile prodution proesses of allkind. Instead of umbersome and pratially very di�ult (if not outrightimpossible) symmetrization of the orresponding multipartile wave funtionwe propose, following ideas developed in [4,5,7℄, to look at this phenomenonas originating due to orrelations of some spei� �utuations present insuh stohasti systems as blob of hadronizing matter. As result we get newand simple method of numerial modeling of BEC. It is based on reassign-ing harges of produed partiles in suh a way as to make them look likepartiles satisfying Bose statistis, onserves the energy-momenta and doesnot alter the spatio-temporal pattern of events or any single partile inlu-sive distribution (but it an hange the distributions of, separately, hargedand neutral partiles leaving, however, the total distribution intat). It isintended to generalize algorithm presented in [7℄ in suh a way as to makeit appliable to essentially any event generator in whih suh reassignmentof harges is possible. It amounts, however, to some spei� hanges takingplae in physial piture of the original generator. The example of CAS is



Bose�Einstein Correlations as Re�etion of Correlations of Flutuations 2691very illustrative in this respet. In it, at eah branhing vertex one has,in addition to the energy-momentum onservation, imposed strit hargeonservation and one assumes that only (0) ! (+�), (+) ! (+0) and(�) ! (�0) transitions are possible. It means that there are no multi-harged verties (i.e., verties with multiple harges of the same sign) inthe model. However, after applying to the �nally produed partiles ourharge reassignment algorithm one �nds, when working the branhing tree�bakwards�, that preisely suh verties our now (with harges �(++)�,or �(� �)�, for example). The total harge is, however, still onserved asare the harges in deaying verties (i.e., no spurious harge is being pro-dued beause of ation of our algorithm). It is plausible therefore that tonumerially get BEC pattern in an event generator it is enough to allow init for aumulation of harges of the same sign at some points of hadroniza-tion proedure modeled by this generator. This would lead, however, toextremely di�ult numerial problem with ending suh algorithms withoutproduing spurious multiharged partiles not observed in nature8. So faronly diret pions were onsidered but short living resonanes an easily beinluded as well. The same (at least in priniple) is true in what onernsany kind of �nal state interations, not mentioned here.GW wants to mention that his interest in multipartile prodution whihresulted in this presentation dates bak to the seminal paper by Pokorski andVan Hove [22℄, whih spurred formulation of the so alled Interating GluonModel [23℄, a simple but powerful desription of high energy proesses interms of gluoni omponent of hadrons. It is used (albeit in an appropriatelymodi�ed form) even at present [24℄. He is grateful to Professor Pokorski forhis onstant interest and enouragement in this kind of researh. The partialsupport of the Polish State Committee for Sienti� Researh (KBN) grants2P03B 011 18 and 621/ E-78/ SPUB/CERN/P-03/DZ4/99 is aknowledged.
8 It should be noted that possibility of using multi(like)harged resonanes or lusters aspossible soure of BEC has been reently mentioned in [21℄. There remains problem oftheir modeling, whih although learly visible in CAS model, as disussed here, is notso straightforward in other approahes. However, at least in the string-type models ofhadronization, one an imagine that it ould proeed through the formation of harged(instead of neutral) olor dipoles, i.e., by allowing formation of multi(like)hargedsystems of opposite signs out of vauum when breaking the string. Beause only atiny fration of suh proesses seems to be enough in getting BEC in the ase ofCAS model, it would probably be quite aeptable modi�ation in the string modelapproah [11℄. We are indebted to late B. Andersson for very inspiring disussion atthis point at the last ISMD2001 meeting at Datong, China.



2692 O.V. Utyuzh, G. Wilk, Z. WªodarzykREFERENCES[1℄ R.M. Weiner, Phys. Rep. 327, 249 (2000), Bose�Einstein Correlations in Par-tile and Nulear Physis (olletion of seleted artiles), J.Wiley 1997 andIntrodution to BEC and Subatomi Interferometry, Wiley 1999; U.A. Wiede-mann, U. Heinz, Phys. Rep. 319, 145 (1999); T. Csörg®, in Partile ProdutionSpanning MeV and TeV Energies, eds. W. Kittel et al., NATO Siene Se-ries C, Vol. 554, Kluwer Aad. Pub., 2000, p. 203 (see also: hep-ph/0001233);G. Baym, Ata Phys. Pol. B29, 1839 (1998); W. Kittel, Ata Phys. Pol. B32,3927 (2001); K. Zalewski, Ata Phys. Pol. B32, 3973 (2001).[2℄ Cf. proeedings of any Quark Matter onferene and referenes therein, forexample QM01, eds. T.J. Hallman et al., Nul. Phys. A698 (2002).[3℄ K.J. Eskola, Nul. Phys. A698, 78 (2002).[4℄ W.A. Zaj, A Pedestrian's Guide to Interferometry, in Partile Prodution inHighly Exited Matter, eds. H.H. Gutbrod and J. Rafelski, Plenum Press, NewYork 1993, p. 435.[5℄ See, for example, R. Loudon, The Quantum Theory of Light (IInd ed.) Claren-don Press, Oxford 1983 or J.W. Goodman, Statistial Optis, John Wiley &Sons, 1985.[6℄ K. Fiaªkowski, in Pro. of the XXX ISMD, Tihany, Hungary, 9-13 Otober2000, Eds. T.Csörg® et al., World Sienti� 2001, p. 357; M. Stephanov, Phys.Rev. D65, 096008 (2002).[7℄ T. Osada, M. Maruyama, F. Takagi, Phys. Rev. D59, 014024 (1999).[8℄ M. Biyajima, N. Suzuki, G. Wilk, Z. Wªodarzyk, Phys. Lett. B386, 297(1996).[9℄ L. Lönnblad, T. Sjöstrand, Eur. Phys. J. C2, 165 (1998).[10℄ A. Biaªas, A. Krzywiki, Phys. Lett. B354, 134 (1995); K. Fiaªkowski, R. Wit,Eur. Phys. J. C2, 691 (1998); K. Fiaªkowski, R. Wit, J. Wosiek, Phys. Rev.D58, 094013 (1998); T. Wibig, Phys. Rev. D53, 3586 (1996).[11℄ B. Andersson, Ata Phys. Pol. B29, 1885 (1998) and referenes therein.[12℄ J.P. Sullivan et al., Phys. Rev. Lett. 70, 3000 (1993); K. Geiger, J. Ellis,U. Heinz, U.A. Wiedemann, Phys. Rev. D61, 054002 (2000).[13℄ O.V. Utyuzh, G. Wilk, Z. Wªodarzyk, Phys. Lett. B522, 273 (2001); f. also:O.V. Utyuzh, PhD Thesis, available athttp://www.fuw.edu.pl/ smolan/p8phd.html[14℄ H. Merlitz, D. Pelte, Z. Phys. A351, 187 (1995) and Z. Phys. A357, 175(1997); U.A. Wiedemann et al., Phys. Rev. C56, R614 (1997); T. Csörg®,J. Zimányi, Phys. Rev. Lett. 80, 916 (1998) and Heavy Ion Phys. 9, 241 (1999).[15℄ O.V. Utyuzh, G. Wilk, Z. Wªodarzyk, Phys. Rev. D61, 034007 (2000) andCzeh J. Phys. 50/S2, 132 (2000).[16℄ G. Wilk, Z. Wªodarzyk, Phys. Rev. D43 (1991) 794.[17℄ Cf. �. Todorova-Nová, Ata Phys. Pol. B32, 3973 (2001).[18℄ P. Abreu et al. (DELPHI Collab.), Phys. Lett. B286, 201 (1992).



Bose�Einstein Correlations as Re�etion of Correlations of Flutuations 2693[19℄ P. Abreu et al., (DELPHI Collab.), Phys. Lett. B247, 137 (1990).[20℄ A. Biaªas, Phys. Lett. B532, 249 (2002) and referenes therein.[21℄ B. Bushbek, H.C. Eggers, Nul. Phys. B (Pro. Suppl.) 92, 235 (2001).[22℄ S. Pokorski, L. Van Hove, Ata Phys. Pol. B5, 229 (1974) and Nul. Phys.B86, 243 (1975).[23℄ G.N. Fowler et al., Phys. Rev. C40, 1219 (1989).[24℄ F.O. Durães, F.S. Navarra, G.Wilk, Phys. Rev. D58, 094034 (1998).


