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Bose-Einstein correlations (BEC) observed between identical bosons
produced in high energy multiparticle collisions are regarded as very im-
portant tool in investigations of multiparticle production processes. We
present here their stochastic feature stressing the fact that they can be re-
garded as a reflection of correlations of fluctuations present in hadronizing
system. We show in particular that such approach allows for simple model-
ing of BEC in numerical event generators used to describe the multiparticle
production processes at high energy collisions.
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1. Introduction

Bose-Einstein Correlations (BEC) between identical bosons are since
long time recognized as very important tool in searching for dynamics of
multiparticle production processes because of their ability to provide the
space—time information about them [1]. This is particularly important for
heavy ion collisions which are expected to provide us with the new state
of matter, the Quark Gluon Plasma (QGP) [2]. However, because of their
complexity, all these processes can be investigated only by numerical model-
ing methods using different sorts of Monte Carlo (MC) event generators [3].
Their a priori probabilistic structure prevents occurring of genuine BEC
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which are of purely quantum statistical origin. The best one can do is to
model BEC by changing the outputs of these generators in such a way as
to reproduce the characteristic signals of BEC obtained experimentally. In
the most widely investigated case of 2-particle BEC it is the fact that two-
particle correlation function

Co(Q = |pi — pj|) = % W

defined as ratio of the two-particle distributions to the product of single-
particle distributions increases towards Co = 2 when ) approaches zero.

2. More about BEC

2.1. BEC — space—time approach

There are two possible approaches towards BEC. The first stresses their
space—time features and is based on the symmetrization of the respective
multiparticle wave function [1] expressed by plain waves!, et*®  represent-
ing the produced particles. After symmetrization (and squaring) one gets
the respective many-particle production rates depending on combination of
variables of the type: (k; — k;)(z; — ;). To get Cy as given by Eq. (1),
one has to integrate them, with some assumed weight function p(z1,z2,...),
over unmeasured space—time positions {z;} of the production points. The
distribution p(x1,xs,...,) is customarily assumed to be separable in terms
of single particle distributions p;(z;) = p(z) and in this way the information
on the space—time distribution of points of production of finally observed
particles enters here. It can be then show that, under some assumptions [1],

2

C(Q) =1+ \ [ drotwree] =141 5@ 1, @

i.e., C9(Q) can be regarded as a (kind of) Fourier transform of the space-
time dimensions of the emitting source?. So far this approach is dominating
in what concerns description of BEC.

! This is idealization neglecting both the possible final state and Coulomb interactions
inclusion of which is possible by a suitable modifications of these plane waves. We
shall not discuss it here.

2 Actually, after closer inspection [4] it turns out that one rather gets in this way
a Fourier transform of the distributions of two-particle separations (or correlation
lengths [1]).
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2.2. BEC — quantum-statistical approach

The second approach is based on observation that one encounters similar
correlations in quantum optics [5] where they are known as the so called
HBT effect. They are described there as arising because of correlations of
some specific fluctuations present in physical systems considered (known as
photon bunching effect [5]). Following [4,6] one can apply such possibility to
description of hadronizing sources as well. Because

(nin2) = (n1)(n2)+((n1 — (n1)) (n2 — (n2))) = (n1)(n2)+po(ni)o(nz) (3)

(where o(n) is dispersion of the multiplicity distribution P(n) and p is the
correlation coefficient depending on the type of particles produced: p =
+1,—1,0 for bosons, fermions and Boltzmann statistics, respectively) one
can write two-particle correlation function (1) in terms of the above covari-
ances (3) stressing therefore its stochastic character:

ooy o Lni (i) ng (pg)) o(ni) o(ny)
@ =Ipi =2 = S o)~ e m ). P

It means therefore that C9(Q) can be regarded as being a measure of cor-
relation of fluctuations. This fact has been used for numerical modeling
of BEC in [7] where a special MC generator, based on application of in-
formation theory, was constructed for this purpose. In it the identical pi-
ons produced in a given event were bunched on a maximal possible way
(restricted only by conservation laws constraints) in a limited number of
elementary emitting cells of phase space according to Bose-Einstein distri-
bution, P(E;) ~ exp [n; (@ — F;) /T] (n; is their multiplicity and E; are their
energies)®, with size (in rapidity, as only one dimensional phase space was
considered) given by parameter dy. It turns out that in this approach one
gets at the same time both the correct BEC pattern (i.e., correlations) and
fluctuations (as characterized by the observed intermittency pattern) [7].
This is very strong advantage of this model, which is so far the only ex-
ample of hadronization model, in which Bose-Finstein statistics is not only
included from the very beginning on a single event level, but it is also prop-
erly used in getting the final secondaries. In all other approaches [9-12] at
least one of the above elements is missing. The shortcoming of method [7] are
numerical difficulties to keep the energy-momentum conservation as exact
as possible and its limitation to the specific event generator only.

3 Values of two Lagrange multipliers, T and p, were fixed by the energy-momentum
and charge conservation constraints, respectively. Such distribution represents typical
example of nonstatistical fluctuations present in the hadronizing source. Similar
concept of elementary emitting cells has been also proposed in [8].
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2.8. Ezisting methods of numerical modeling of BEC

In all other approaches the effect of BEC is obtained by a suitable chang-
ing the original output of MC generators used and introducing this way
(more or less artificially) desired bunching in the phase-space of the finally
produced identical particles [9,10]*. This is achieved either by (a) shifting
(in each event) momenta of adjacent like-charged particles in such a way
as to get desired C2(Q) [9] (one has to correct afterwards for the energy-
momentum imbalance introduced this way), or by (b) screening all events
obtained from a particular MC generator against the possible amount of
bunching they are already showing and counting them as many times as
necessary to get desirable Cy(Q) [10]°. The original energy-momentum bal-
ance remains in this case intact whereas the original single particle distri-
butions are changed (this fact can be corrected by running again generator
with suitably modified input parameters). In both cases one uses specific
weights constructed from the assumed shape of p(z) functions. However,
the size parameters occurring there bear no direct resemblance to the size
parameter R obtained by directly fitting data on Co(Q) in Eq. (1) using
simple Gaussian or exponential forms. They rather represent instead the
corresponding correlation lengths between the like particles [1].

3. Numerical modeling of BEC understood
as correlations of fluctuations

Recently we have proposed [13] a new method of numerical modeling
of BEC understood as manifestation of correlations of fluctuations, which
applies already on a single event level, does not violate any conservation
laws and can be applied to data provided by essentially any event generator
modeling multiparticle production. Here we would like to present physical
ideas underlying our approach in more detail.

Let us start with very simple example of what we are aiming at. Suppose
that our MC event generator provides us with a number N(+), N(—) and
N(0) of positively and negatively charged particles and neutral ones located
in phase space, c¢f. Fig. 1, left panel. They are all uniformly distributed
and show no BEC pattern. Suppose now that the same particles (i.e., lo-
cated at the same space-time points and possessing the same momenta as
before, with the same N(+), N(—) and N(0)) have now different alloca-
tion of charges, namely the one shown in the right panel of Fig. 1. The like
charges are in visible (albeit strongly exaggerated) way bunched (correlated)

4 The specific approaches proposed for LUND model [11] and the afterburner method
discussed in [12], which we shall not discussed here, also belong here.

% Technically this is realized by multiplying each event by a special weight calculated
using the output provided by event generator used.
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together leading to signal of BEC. What we have done in this example is
the following: (a) we have resigned from the (not directly measurable) part
of the information provided by event generator concerning the charge al-
location to produced particles, and (b) we have allocated charges anew in
such a way as to keep the like charges as near in phase space as possible
(keeping also the total charge of any kind the same as the original one). It
is interesting to note that this can be regarded as introduction of quantum
mechanical element of uncertainty to the otherwise classical scheme of MC
generator used (however, it differs completely from the usual attempts to
introduce quantum mechanical effects discussed in [14]).

That such simple scheme really works can be seen in Fig. 2, which shows
the C5(Q) for one dimensional lattice of N pions (positive, negative and
neutral) with momenta p; = —pmax + (4 — 1) - Ap where spacing Ap =
2Pmax/N). When their charges are assigned in a purely random way (what
corresponds to the situation shown at the left part of Fig. 1) it can be shown
that the corresponding Cy(Q) = 1. However, assigning charges in a specific
way (following prescription used in [13]) one gets strong enhancement of
C5(Q) which normally is attributed to BEC. The procedure used is very
simple. First one of the particles (from N;) is selected and some charge
(out of (+,—,0)) is randomly allocated to it. After that the same charge
is allocated to as many particles located nearby in phase space as possible
in some prescribe way forming a cell in phase-space occupied by particles
of the same charge only (¢f. right part of Fig. 1). This process is then
repeated until all particles are used. The important point is to ensure that
the above selection is done in such way as to get geometrical (Bose-Einstein)
distribution of particles in a given cell. This can be achieved by selecting
each next particle with some fixed probability P till the first failure, after
which the new cell is formed. In this case 0 = (n) = P/(1 — P) and
second term in the Eq. (4) is now maximal. We refer to [13] for details
of the algorithm used. The characteristic pattern emerging here is that
the so called “radius parameter” R (in the usual fitting formula for C2(Q) =
v[1+exp(—R-Q)]) increases with number of particles allocated to our lattice
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(i.e., with decreasing of their momentum separation Ap, ¢f. Fig. 2(b) (in
terms of the number of particles considered it is the same, see Fig. 2(a)).
On the other hand it decreases with the number of particles one can allocate
to a given cell (¢f. Fig. 2(c)).

20 20 3.0
e N=25 C C P=09,N=100
C,(n) o Nz Q) 2(9) Wiiragos
* N=100 o-N =4
J @ ax
188 1810 2508 10
(a) : —o—N_, =20
2 * N_ = unlimitted
16+ 4 1.6H Aé
14y
]

12

10} 10f

RYEO0000000mn00

L

S %9 909 o
[ . oS 08 : : — 9-e-e
0 5 10 15 20 25 30 35 40 45 50 o 1 2 3 4 5

n Q [GeV] Q [GeV]

Fig.2. Example of C5 occurring for a pionic lattice in (one-dimensional) momentum
space, Q@ = |pi — p;j| = 2pmax|i — j|/N = 2pmn/N: (a) as a function of n; (b) as
a function of @; (c) as a function of ¢ but for limitation of cell occupancy to
i < Nmax- In all cases pmax = 10 GeV. In (a) and (b) P = 0.5 whereas in (c)
P = 0.9 (to allow for large cells).

We shall illustrate now action of our algorithm on simple cascade model
of hadronization (CAS) (in its one-dimensional versions and assuming, for
simplicity, that only direct pions are produced) [15] and on equally simple
model based on application of information theory [16] (cf. Fig. 3). In CAS the
initial mass M hadronizes by series of well defined (albeit random) branch-
ings (M — M; + Ms, with M; 9 = r19M such that r + rp < 1) and is
endowed with a simple spatio-temporal pattern. It shows no traces of Bose—
Einstein statistics whatsoever. In MaxEnt particles occur instantaneously in
all phase space with distribution given by the thermal-like formula obtained
by maximalization of the accordingly defined information entropy. In both
cases the masses and multiplicities were kept the same. There is no BEC
here either. However, as can be seen in Fig. 3, when endowed with charge
selection provided by our algorithm, a clear BEC pattern emerges in Cy(Q)
(and is very similar in both cases considered here). Two kind of choices of
probabilities are shown in Fig. 3. First is constant P = 0.75 and P = 0.5.
The other is what we call the “minimal” weight constructed from the output
information provided by CAS (Py) or MaxEnt (Pyg) event generators:

51'2]' (p)
2Ty

N C)

Pe(id) = exp | ~50%0) - 830)| or Punlid) = exo
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where 6;;(z) = |z; — z;], d;j(p) = |pi — p;| and T; is the corresponding
“temperature” (with p being mass of the produced particles). In this way
one connects P with details of hadronization process by introducing to it
a kind of overlap between particles as a measure of probability of their
bunching in a given emitting cell.
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Fig.3. Examples of BEC patterns obtained for M = 10, 40 and 100 GeV for
constant weights P = 0.75 (stars) and P = 0.5 (full symbols) and for the weight
given by Eq. (5) (open symbols). Upper panels are for CAS, lower for MaxEnt (see
text for details).

It turns out that BEC effect shown in Fig. 3 depends only on the (mean)
number of particles of the same charge in phase-space cell and on the (mean)
numbers of such cells. This depends on P, the bigger P the more particles
and bigger Co(Q = 0); smaller P leads to the increasing number of cells,
which, in turn, results in decreasing Co(Q = 0), as already noticed in [8].
For small energies the number of cells decreases in natural way while their
occupation remains the same (because P is the same), therefore the corre-
sponding C5(0) is bigger, as seen in Fig. 3. The fact that there is tendency
to have Cy(0) > 2 for larger P means that one has in this case more cells
with more than 2 particles allocated to them, i.e., it is caused by the in-
fluence of higher order BEC. Therefore, the “sizes” R obtained from the
exponential fits to results in Fig. 3 (like C2(Q) ~ 1+ X - exp(—Q - R) where
A being usually called chaoticity parameter [1]) correspond to the sizes of
the respective elementary cells rather than to sizes of the whole hadronizing
sources itself. For P = 0.5 the “size” R varies weakly between 0.66 to 0.87
fm from M = 10 to 100 GeV whereas for the “minimal” weight (5) it varies
from 0.64 to 0.44 fm.

So far we were considering only single sources. Suppose now that source
of mass M consists of a number (n; = 2¥) of subsources hadronizing inde-
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pendently. It turns out that the resulting Cs’s are very sensitive to whether
in this case one applies our algorithm of assigning charges to all particles
from subsources taken together (“Split” type of sources) or to each of the sub-
source independently (“Indep” type of sources), c¢f. Fig. 4. Whereas the later
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Fig.4. Examples of BEC for CAS model with P = 0.5 calculated for different
number of subsources (n; = 2%, k = 1,2, 3 existing in the source M = 100 GeV for
(a) “Split” and (b) “Indep” types of sources, as discussed in text. In (¢) we show
examples of BEC pattern for 2 “Split” type of sources moving apart with constant
momentum difference ép = 0, 10 and 60 GeV /c (achieved by assuming in CAS first
rank cascade parameters r1 = 79 = 0.5, 0.4975 and 0.4, respectively).

case (in which particles remember from which source they have originated)
results in the similar “sizes” R (defined as before) with Cy(Q =0) —1 = A
falling dramatically with increasing k& (roughly like 1/2%, i.e., inversely with
the number of subsources, n;, as expected from [8]), the former case (in which
particle loose memory of which subsource they are coming from) leads to
roughly the same C5(Q = 0) but the “size” R is now increasing substan-
tially. This is again entirely due to the fact that in the “Split” type of
source one has higher concentration of particles in the elementary emitting
cells rather then bigger number of such cells. This results in smaller average
@, and this in turn leads to bigger R. A special type of “Split” source is
shown in Fig. 3(c). In it two initial sources (of equal masses) have from
the beginning a well defined difference in momenta, dp (corresponding to
branching parameter 71 = ro = 24/1 — (6p/M)? ), modeling in this way
a possible influence of some collective flow existing in the system (the to-
tal energy remains always the same and equal to M, here M = 100 GeV).

6 Tt is equal to, respectively, 0.87 fm, 1.29 fm, 1.99 fm and 3.35 fm for P = 0.5 and
0.57 fm, 3.26 fm, 4.01 and 5.59 fm for the “minimal” weight Pc given by (5).
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Notice that, contrary to the normal expectations, the bigger is the “fHow”
the smaller is “radius” parameter R obtained from the typical exponential
fit mentioned above. This is because “flow” results in our case in smaller
number of particles in the elementary emitting cells.

Actually dependence on the expected BEC pattern on the number and
type of subsources formed in the process of hadronization is very important
and interesting feature of our model. It allows to understand the increase of
the extracted “size” parameter R with the nuclear number A in nuclear col-
lisions. That is because with increasing A the number of collided nucleons,
which somehow must correspond to the number of sources in our case, also
increases. If they turn out to be of the “Split” type, the increase of R follows
then naturally. On the contrary, for the independently treated sources the
density of particles subjected to our algorithm does not change, hence the
average () and R remain essentially the same. However, because in this case
the influence of pairs of particles from different subsources increases, the
effective A = C5(0) — 1 now decreases substantially (as was already observed
in [8]). Our “Indep” type sources can therefore be used as a possible expla-
nation of the so called inter-W BEC problem, i.e., the fact that essentially
no BEC is being observed between pions originating from a different W in
fully W+W ™ final states [17]. This phenomenon can be understood in our
model by assuming that produced W’s should be treated as “Indep” type
sources for which A falls dramatically.

It also allows to attempt to fit (even using such unsophisticated hadroni-
zation model as CAS) some experimental data. As example we present
in Fig. 5 our “best fit” to the eTe™ annihilation data on BEC by DEL-
PHI Collaboration [18] for M = 91.3 GeV. It turns out that such fit can
be obtained only for two or more subsources [13]. A the same figure we
show also intermittency pattern (with moments F, and My, defined as
in [19]) obtained together with the BEC after application of our algorithm
and the examples of the expected charge fluctuations in different rapidity

windows (defined as D = AN 6Q [20]). This is done for two sets of parameters

(P and number of sources) one leading to the best possible (which turns
out very good) fit to Co(Q) (Fig. 5(a)) and one leading to the best possible
intermittency patter (actually only 2-nd moment Fj can be fitted, all other
moments remain still below data indicating that intermittency connected
with BEC and provided by our algorithm as a kind of by-product, is still
not the whole effect seen in data [19])".

" The charge fluctuations D are actually important for heavy ion collisions [20] and are
shown here just for illustration of predictive power of our algorithm.
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Fig. 5. Examples of results for eTe™ annihilation at M = 91.3 GeV obtained using
CAS with two subsources: (a) best fit (full symbols) to data BEC [18] by DELPHI
(open symbols) obtained with P = 0.23; (b) and (c) the resulting intermittency
and charge fluctuations patterns, respectively. Lower panels contain in (e) the
best possible fit (full symbols) to the data on intermittency [19] (open symbols,
only second moment can be reproduced, both here and in (b) only F» to Fy are
displayed) obtained with P = 0.5 and resulting BEC (d) and charge fluctuations
patterns (f) (here and in (¢) P = 0 corresponds in this case to results of CAS
without BEC).

4. Summary and conclusions

To summarize: we propose a new way of looking on the BEC phe-
nomenon observed in high energy multiparticle production processes of all
kind. Instead of cumbersome and practically very difficult (if not outright
impossible) symmetrization of the corresponding multiparticle wave function
we propose, following ideas developed in [4,5,7], to look at this phenomenon
as originating due to correlations of some specific fluctuations present in
such stochastic systems as blob of hadronizing matter. As result we get new
and simple method of numerical modeling of BEC. It is based on reassign-
ing charges of produced particles in such a way as to make them look like
particles satisfying Bose statistics, conserves the energy-momenta and does
not alter the spatio-temporal pattern of events or any single particle inclu-
sive distribution (but it can change the distributions of, separately, charged
and neutral particles leaving, however, the total distribution intact). It is
intended to generalize algorithm presented in [7] in such a way as to make
it applicable to essentially any event generator in which such reassignment
of charges is possible. It amounts, however, to some specific changes taking
place in physical picture of the original generator. The example of CAS is
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very illustrative in this respect. In it, at each branching vertex one has,
in addition to the energy-momentum conservation, imposed strict charge
conservation and one assumes that only (0) — (+-), (+) — (4+0) and
(=) — (—0) transitions are possible. It means that there are no multi-
charged vertices (i.e., vertices with multiple charges of the same sign) in
the model. However, after applying to the finally produced particles our
charge reassignment algorithm one finds, when working the branching tree
“backwards”, that precisely such vertices occur now (with charges “(++)”,
or “(— —)”, for example). The total charge is, however, still conserved as
are the charges in decaying vertices (i.e., no spurious charge is being pro-
duced because of action of our algorithm). It is plausible therefore that to
numerically get BEC pattern in an event generator it is enough to allow in
it for accumulation of charges of the same sign at some points of hadroniza-
tion procedure modeled by this generator. This would lead, however, to
extremely difficult numerical problem with ending such algorithms without
producing spurious multicharged particles not observed in nature®. So far
only direct pions were considered but short living resonances can easily be
included as well. The same (at least in principle) is true in what concerns
any kind of final state interactions, not mentioned here.

GW wants to mention that his interest in multiparticle production which
resulted in this presentation dates back to the seminal paper by Pokorski and
Van Hove [22], which spurred formulation of the so called Interacting Gluon
Model [23|, a simple but powerful description of high energy processes in
terms of gluonic component of hadrons. It is used (albeit in an appropriately
modified form) even at present [24]. He is grateful to Professor Pokorski for
his constant interest and encouragement in this kind of research. The partial
support of the Polish State Committee for Scientific Research (KBN) grants
2P03B 011 18 and 621/ E-78/ SPUB/CERN /P-03/DZ4/99 is acknowledged.

8 Tt should be noted that possibility of using multi(like)charged resonances or clusters as
possible source of BEC has been recently mentioned in [21]. There remains problem of
their modeling, which although clearly visible in CAS model, as discussed here, is not
so straightforward in other approaches. However, at least in the string-type models of
hadronization, one can imagine that it could proceed through the formation of charged
(instead of neutral) color dipoles, i.e., by allowing formation of multi(like)charged
systems of opposite signs out of vacuum when breaking the string. Because only a
tiny fraction of such processes seems to be enough in getting BEC in the case of
CAS model, it would probably be quite acceptable modification in the string model
approach [11]. We are indebted to late B. Andersson for very inspiring discussion at
this point at the last ISMD2001 meeting at Datong, China.
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