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UNINTEGRATED GLUON DISTRIBUTIONSIN A PHOTON FROM THE CCFM EQUATIONIN THE SINGLE LOOP APPROXIMATIONAgnieszka Gawron and Jan Kwiei«skiH. Niewodniza«ski Institute of Nulear PhysisRadzikowskiego 152, 31-342 Kraków, Poland(Reeived July 25, 2002)The system of CCFM equations for unintegrated parton distributionsin a photon is onsidered in the single loop approximation. We inludequarks and non-singular parts of the splitting funtions in the orrespond-ing evolution equations. We solve the system of CCFM equations utilisingthe transverse oordinate representation whih diagonalises these equationsin the single loop approximation. The results for the unintegrated gluondistributions in a photon are presented and onfronted with the approxi-mate form expressing those distributions in terms of the integrated gluonand quark distributions and a suitably de�ned Sudakov-like form fator.PACS numbers: 12.38.�t, 14.70.Bh, 14.70.Dj1. IntrodutionInlusive quantities desribing the hard proesses are ontrolled in theQCD improved parton model by the sale dependent quark and gluon distri-butions whih depend upon the longitudinal momentum fration x and uponthe hard sale Q2. In order to desribe less inlusive quantities whih are sen-sitive to the transverse momentum of the parton it is, however, neessary toonsider the distributions unintegrated over the transverse momentum of theparton [1�8℄. Those unintegrated distributions are desribed in perturbativeQCD by the Ciafaloni�Catani�Fiorani�Marhesini (CCFM) equation [9,10℄based upon quantum oherene whih implies angular ordering [11℄. It em-bodies in a uni�ed way the (LO) DGLAP evolution and BFKL dynamis atlow x.Existing analyses of the CCFM equation onern predominantly partondistributions in a nuleon [8℄, [12�20℄. The purpose of this paper is to ex-tend this analysis to the ase of the unintegrated parton distributions ina photon. We limit ourselves to the so alled �single loop� approximation in(133)



134 A. Gawron, J. Kwiei«skiwhih the CCFM equation is equivalent to the LO DGLAP evolution [12,13℄.We shall utilise the fat that in this approximation the CCFM equation isdiagonalised by the Fourier�Bessel transform and so one an explore thetransverse oordinate representation of this equation [21℄. The transverseoordinate representation onjugate to the transverse momentum of the par-ton has proved to be very useful in studying pt distributions within theDGLAP framework and it has been widely explored in the analysis of thesoft gluon resummation e�ets in e+e� ollisions [22, 23℄, in the pt distri-bution of Drell�Yan pairs [24℄ et. The formalism of transverse oordinaterepresentation adopted in our analysis of the CCFM equation is similar tothat used in those studies.The single-loop approximation of the CCFM equation whih we shall useneglets important small x e�ets and so it may not be reliable at (very)small x. It should, however, beome an adequate approximation at moder-ately small values of x (i.e. x > 0:01 or so) whih is relevant phenomenolog-ially e.g. for the desription of the heavy quark prodution in  ollisionsat presently available energies [25℄.The CCFM equation is usually onsidered only for the gluoni setorand, in priniple, with only the singular parts of the g ! gg splitting fun-tions inluded in the evolution. In order to have a formalism whih is phe-nomenologially relevant at large and moderately small values of x one hasto inorporate also the quark distributions and the omplete splitting fun-tions. This is straightforward in the �single loop� approximation whih, afterintegration over the transverse momentum of the partons, should redue theCCFM equations to the onventional DGLAP evolution equations.The ontent of our paper is as follows: In the next setion we introduethe system of CCFM equations in the single loop approximation for theunintegrated parton distributions in a photon. In Se. 3 we disuss thetransverse oordinate representation whih partially diagonalises the systemof CCFM equations. In Se. 4 we present results of the numerial solution ofthe CCFM equation(s) for the unintegrated gluon distributions in a photon.We do also disuss approximate treatment of these equations whih allowsto relate the unintegrated gluon distributions in a photon to the integratedgluon and quark distributions and the suitably de�ned Sudakov-like formfator. Finally, in Se. 5, we summarise our main results and give ouronlusions.2. The CCFM equation in the single loop approximationfor the parton distributions in a photonIn this setion we introdue the system of CCFM equations for the un-integrated parton distributions in a photon. We extend the CCFM frame-work by inluding the quark distributions and the non-singular parts of the



Unintegrated Gluon Distributions in a Photon from . . . 135splitting funtions. We limit ourselves to the single-loop approximationwhih should be adequate in the region of moderately small values of x.The original Catani, Ciafaloni, Fiorani, Marhesini (CCFM) equation [9℄for the unintegrated, sale dependent gluon distribution fg(x;Qt; Q) whihis generated by the sum of ladder diagrams with angular ordering along thehain has the following formfg(x;Qt; Q) = ~f0g (x;Qt; Q)+Z d2q�q2 1Zx dzz �(Q�qz)�(q�q0)�s2��s(Q; q; z)� �2N�NS(Qt; q; z)+ 2Nz(1�z)f�xz ; jQt+(1�z)qj; q�� ; (2.1)where �S(Q; q; z) and �NS(Qt; q; z) are the Sudakov and non-Sudakov formfators. They are given by the following expressions:�S(Q; q; z) = exp264� Q2Z(qz)2 dp2p2 �s2� Z 1�q0=p0 dzzPgg(z)375 ; (2.2)�NS(Qt; q; z) = exp264� 1Zz dz0z0 Q2tZ(qz0)2 dp2p2 2N�s2� 375 : (2.3)The variables x;Qt; Q denote the longitudinal momentum fration, trans-verse momentum of the gluon and the hard sale, respetively. The latteris de�ned in terms of the maximal emission angle [8, 9℄. The onstraint�(Q � qz) in equation (2.1) re�ets the angular ordering and the inhomo-geneous term ~f0(x;Qt; Q) is related to the input non-perturbative gluondistribution. It also ontains e�ets of both the Sudakov and non-Sudakovform fators [15℄.In order to make the CCFM formalism realisti in the region of largeand moderately small values of x we should introdue, besides the uninte-grated gluon distribution fg(x;Qt; Q) also the unintegrated quark distribu-tions fqi(x;Qt; Q), where i numerates the quark �avour, and inlude theq ! gq, (�q ! g�q) and g ! �qq transitions along the hain. In order to getexat orrespondene with the omplete LO DGLAP evolution one shouldalso use omplete splitting funtions and not only their singular omponents.In the region of large and moderately small values of x one an introduethe �single loop� approximation whih orresponds to the replaement ofthe angular ordering onstraint �(Q � qz) by �(Q � q) and to setting thenon-Sudakov form fator �NS equal to unity [12, 13℄.



136 A. Gawron, J. Kwiei«skiIt is onvenient to onsider the unintegrated singlet (S) and non-singlet(NS) quark distributionsfS(x;Qt; Q) = 2 fXi=1 fqi(x; ;Qt; Q) ; (2.4)fNS(x;Qt; Q) = 2 fXi=1 e2i fqi(x; ;Qt; Q)� he2ifS(x;Qt; Q) ; (2.5)where heki = 1f fXi=1 eki ; (2.6)with ei denoting the harge of the quark of the �avour i and f being equalto the number of ative �avours.It is also onvenient to �unfold� the Sudakov form fator(s) so that thevirtual orretions and real emission terms appear on equal footing in thekernels of the orresponding system of integral equations. The unfolded sys-tem of CCFM equations in the single loop approximation takes the followingformfNS(x;Qt; Q) = �em2� k0NS(x)Q2t + f0NS(x;Qt)+ 1Z0 dz Z d2q�q2 �s(q2)2� � �q2 � q20��(Q� q)Pqq(z)� h�(z � x)fNS �xz ;Q0t; q�� fNS(x;Qt; q)i ; (2.7)fS(x;Qt; Q) = �em2� k0S(x)Q2t + f0S(x;Qt)+ 1Z0 dz Z d2q�q2 �s(q2)2� � �q2 � q20��(Q� q)���(z�x) hPqq(z)fS �xz ;Q0t; q�+Pqg(z)fg �xz ;Q0t; q�i�Pqq(z)fS(x;Qt; q)� ; (2.8)



Unintegrated Gluon Distributions in a Photon from . . . 137fg(x;Qt; Q) = f0g (x;Qt) + 1Z0 dz Z d2q�q2 �s(q2)2� � �q2 � q20��(Q� q)���(z � x) hPgq(z)fS �xz ;Q0t; q�+ Pgg(z)fg �xz ;Q0t; q�i� �zPgg(z) + zPqg(z)�fg(x;Qt; q)� ; (2.9)where Q0t = Qt + (1� z)q : (2.10)The funtions k0NS(x) and k0S(x) are de�ned as below:k0NS(x) = 2Nf(he4i � he2i2)x [x2 + (1� x)2℄ ; (2.11)k0S(x) = 2Nfhe2ix [x2 + (1� x)2℄ ; (2.12)with N denoting the number of olours. The inhomogeneous terms propor-tional to k0NS(x) and k0S(x) in equations (2.7) and (2.8), respetively, re�etthe point oupling of the photon to quarks and antiquarks. The funtionsf0NS(x;Qt); f0S (x;Qt); f0g (x;Qt) denote the non-perturbative �hadroni� om-ponents of the unintegrated non-singlet, singlet and gluon distributions, re-spetively. The parameter q0 is the infrared ut-o�. The splitting funtionsPab(z) are the LO splitting funtions, i.e.Pqq(z) = 43 1 + z21� z ;Pqg(z) = f [z2 + (1� z)2℄ ;Pgq(z) = 43 1 + (1� z)2z ;Pgg(z) = 2N � z1� z + 1� zz + z(1� z)� : (2.13)3. CCFM equation in the transverse oordinate representationIt an easily be observed that the system of CCFM equations in thesingle loop approximation (2.7)�(2.9) an be diagonalised by the Fourier�Bessel transform [21℄:fk(x;Qt; Q) = 1Z0 dbbJ0(Qtb) �fk(x; b;Q) ; (3.14)



138 A. Gawron, J. Kwiei«ski�fk(x; b;Q) = 1Z0 dQtQtJ0(Qtb)fk(x;Qt; Q) ; (3.15)where k = NS;S; g and J0(u) is the Bessel funtion. The orrespondingsystem of CCFM equations for �fNS(x; b;Q); �fS(x; b;Q) and �fg(x; b;Q) whihfollows from equations (2.7)�(2.9) reads�fNS(x; b;Q) = �em2� k0NS(x) �f0pt(b;Q) + �f0NS(x; b)+ 1Z0 dz Z dq2q2 �s(q2)2� � �q2 � q20��(Q� q)Pqq(z)� h�(z � x)J0�(1� z)qb� �fNS �xz ; b; q�� �fNS(x; b; q)i ; (3.16)�fS(x; b;Q) = �em2� k0S(x) �f0pt(b;Q) + �f0S(x; b)+ 1Z0 dz Z dq2q2 �s(q2)2� � �q2 � q20��(Q� q)���(z�x)J0�(1�z)qb�hPqq(z) �fS �xz ; b; q�+Pqg(z) �fg �xz ; b; q�i� Pqq(z) �fS(x; b; q)� ; (3.17)�fg(x; b;Q) = �f0g (x; b) + 1Z0 dz Z dq2q2 �s(q2)2� � �q2 � q20��(Q� q)���(z�x)J0�(1�z)qb� hPgq(z) �fS �xz ; b; q�+Pgg(z) �fg �xz ; b; q�i� �zPgg(z) + zPqg(z)� �fg(x; b; q)� : (3.18)The funtion �f0pt(b;Q) ontrolling the inhomogeneous term originatingfrom the point-like interation is de�ned as�f0pt(b;Q) = QZq0 dQtQtJ0(bQt)Q2t : (3.19)In the de�nition of the inhomogeneous term orresponding to the pointinteration of the photon we have introdued upper limit ut-o� equal to



Unintegrated Gluon Distributions in a Photon from . . . 139Q in the integration over dQt in equation (3.19). This is neessary formaking the CCFM formalism ompatible with the DGLAP evolution forthe integrated parton distributions f inti (x;Q2)xf inti (x;Q2) = 1Z0 dQ2tfi(x;Qt; Q) : (3.20)The integrated distributions f inti (x;Q2) are given by the distributions�fi(x; b;Q) at b = 0 i.e.xf inti (x;Q2) = 2 �fi(x; b = 0; Q) : (3.21)Equations (3.16)�(3.18) are equivalent to the following system of inho-mogeneous di�erential equationsQ2 � �fNS(x; b;Q)�Q2 = �em2� k0NS(x)J0(bQ)2 + �s(Q2)2� 1Z0 dzPqq(z)� h�(z�x)J0�(1�z)Qb� �fNS �xz ; b;Q�� �fNS(x; b;Q)i ;(3.22)Q2 � �fS(x; b;Q)�Q2 = �em2� k0S(x)J0(bQ)2 + �s(Q2)2� 1Z0 dz��(z � x)J0�(1� z)Qb�� hPqq(z) �fS �xz ; b;Q�+ Pqg(z) �fg �xz ; b;Q�i�Pqq(z) �fS(x; b;Q)� ; (3.23)Q2 � �fg(x; b;Q)�Q2 = �s(Q2)2� 1Z0 dz��(z � x)J0�(1� z)Qb�� hPgq(z) �fS �xz ; b;Q�+ Pgg(z) �fg �xz ; b;Q�i� �zPgg(z) + zPqg(z)� �fg(x; b;Q)� ; (3.24)with the initial onditions �fi(x; b; q0) = �f0i (x; b) ; (3.25)



140 A. Gawron, J. Kwiei«skiwhere i orresponds to NS, S and g. In omplete analogy to the integratedparton distributions in a photon we an introdue onventional deompo-sition of the distributions �fi(x; b;Q) into their point-like �fpi (x; b;Q) andhadroni �fhi (x; b;Q) omponents i.e.�fi(x; b;Q) = �fpi (x; b;Q) + �fhi (x; b;Q) : (3.26)The point-like omponents �fpi (x; b;Q) are the solutions of inhomogeneousequations (3.22)�(3.24) with the initial onditions�fi(x; b; q0) = 0 : (3.27)The hadroni omponents �fhi (x; b;Q) are the solutions of the homogeneousequations orresponding to Eqs. (3.22)�(3.24) with inhomogeneous termsset equal to zero. The initial onditions for the hadroni omponents aregiven by equation (3.25). 4. Numerial resultsIn this setion we present results of the numerial analysis of the CCFMequation in the single loop approximation for the gluon distribution in a pro-ton. To this aim we solved equations (3.23) and (3.24) following the LODGLAP analysis performed at [26℄. The unintegrated gluon distributionsare then alulated from equation (3.14). We have assumed the followinginitial onditions for the distributions fS(x; b;Q) and fg(x; b;Q) at Q = q0,where q20 = 0:26GeV2 fS(x; b; q0) = 12x� �x; q20�F (b) ; (4.28)fg(x; b; q0) = 12xg �x; q20�F (b) ; (4.29)where the form fator F (b) was assumed to have the following formF (b) = exp��b2b20� ; (4.30)with b20 = 4GeV�2. The funtions � �x; q20� and g �x; q20�, whih are theintegrated singlet and gluon distributions in the photon at the referene salewere taken from Refs. [26℄ and [27℄. To be preise the parton distributions ina photon at the referene sale Q = q0 were obtained in [26℄ from the VMDmodel with the parton distributions in vetor mesons assumed to be givenby those in a pion and taken from [27℄. The singlet and gluon distributions



Unintegrated Gluon Distributions in a Photon from . . . 141in the photon at Q2 = q20 are expressed in the following way in terms of theorresponding distributions in the pionx� �x; q20� = �em �G2� +G2!� �xq�v �x; q20�+ 4x�q� �x; q20�� ; (4.31)xg �x; q20� = �em �G2� +G2!�xg� �x; q20� ; (4.32)with G2� = 0:5 and G2! = 0:043. The valene quark, antiquark and gluondistributions in a pion for Q2 = q20 were parametrised as below [27℄xq�v �x; q20� = 1:129(1 + 0:153px)x0:504(1� x)0:349 ; (4.33)x�q� �x; q20� = 0:522(1 � 3:243px+ 5:206x)x0:16(1� x)5:2 ; (4.34)xg� �x; q20� = 7:326(1 � 1:919px+ 1:524x)x1:433(1� x)1:326 : (4.35)Results of our alulations onerning unintegrated gluon distributionsin the photon are presented in Figs. 1 and 2. We plot in these �guresQ2tfg(x;Qt; Q)=�em as the funtion of Qt at Q = 10GeV for two values of

Fig. 1. The funtion Q2tfg(x;Qt; Q)=�em, where fg(x;Qt; Q) is the unintegratedgluon distribution in a photon plotted as the funtion of the transverse momentumQt of the gluon for x = 0:01 and Q= 10GeV. The solid and dashed lines orrespondto the exat solution of the system of the CCFM equations in the single loopapproximation and to the approximate expression (4.36), respetively.



142 A. Gawron, J. Kwiei«ski

Fig. 2. The funtion Q2tfg(x;Qt; Q)=�em, where fg(x;Qt; Q) is the unintegratedgluon distribution in a photon plotted as the funtion of the transverse momentumQt of the gluon for x = 0:1 and Q = 10GeV. The solid and dashed lines orrespondto the exat solution of the system of the CCFM equations in the single loopapproximation and to the approximate expression (4.36), respetively.x, i.e. for x = 0:01 (Fig. 1) and x = 0:1 (Fig. 2). We ompare our resultwith the approximate expression for Q2tfg(x;Qt; Q)=�emQ2tfg(x;Qt; Q) ' �s �Q2t �Tg(Qt; Q)2��em� 1�Qt=QZx dz hPgg(z)xz g �xz ;Q2t�+ Pgq(z)xz� �xz ;Q2t�i ;(4.36)where the Sudakov-like form fator is given byTg(Qt; Q) = exp8><>:� Q2ZQ2t dq2q2 �s(q2)2� 1�Qt=qZ0 dz0�z0Pgg(z0)+ z0Pqg(z0)�9>=>; :(4.37)Derivation of approximate relation (4.36), whih is similar to that disussedin [2℄ is given in the Appendix. We see that the approximate expression(4.36) reprodues reasonably well exat solution of the CCFM equation forunintegrated gluon distributions in a photon. In Figs. 3 and 4 we showdeomposition of the unintegrated gluon distributions into their hadroniand point-like omponents. The point-like omponent is found to beomeinreasingly important in the region of large Qt. The relative ontributionof this omponent does also inrease with inreasing x.



Unintegrated Gluon Distributions in a Photon from . . . 143

Fig. 3. The point-like (solid line) and hadroni (dashed line) omponents of theunintegrated gluon distribution in a photon plotted as funtions of the transversemomentum Qt of the gluon for x = 0:01 and Q = 10GeV.

Fig. 4. The point-like (solid line) and hadroni (dashed line) omponents of theunintegrated gluon distribution in a photon plotted as funtions of the transversemomentum Qt of the gluon for x = 0:1 and Q = 10GeV.5. Summary and onlusionsWe have onsidered in this paper the system of CCFM equations inthe single loop approximation for the unintegrated parton distributions ina photon. We have extended the onventional CCFM formalism by inludingquarks and the omplete splitting funtions. We have utilised the fat thatthe CCFM equation(s) in the single loop approximation an be diagonalisedby the Fourier�Bessel transform. We have found that the unintegrated gluon



144 A. Gawron, J. Kwiei«skidistributions in a photon obtained from the exat solution of the system ofCCFM equations in the single loop approximation an be well representedby the approximate expressions onneting those distributions with the in-tegrated (gluon and quark) distributions and the Sudakov-like form fator.The novel feature of the CCFM equation for the parton distributionsin a photon, when ompared with the hadroni ase is the presene of thepoint-like omponents. Those omponents beome inreasingly importantat large values of x. They have also been found to play important role atlarge values of the transverse momentum Qt of the gluon for moderatelysmall values of x.The unintegrated gluon distributions whih desribe the x and Qt dis-tributions are needed in the desription of the proesses whih are sensitiveto the transverse momentum of the gluon. Their knowledge is in partiularneessary for the desription of heavy quark prodution in   ollisionswithin the kt fatorisation. Results obtained in our paper may, therefore,be used for the theoretial analysis of this proess.This researh was partially supported by the EU Fourth Framework Pro-gramme �Training and Mobility of Researhers�, Network �Quantum Chro-modynamis and the Deep Struture of Elementary Partiles�, ontratFMRX-CT98-0194 and by the Polish State Committee for Sienti� Re-searh (KBN) grants no. 2P03B 05119 and 5P03B 14420.Appendix ALet us make the following approximation:J(u) ' �(1� u) : (A.1)It is lear that in this approximation solution of equations (3.17), (3.18) isindependent of b for Q < 1=b, provided we neglet the b dependene of the�hadroni� input that is justi�ed at small b. From (3.15), (A.1) we also getfk(x;Qt; Q) ' 2 � �fk(x; b = 1=Qt; Q)�Q2t : (A.2)It is useful to rearrange equations (3.17), (3.18) as below�fS(x; b;Q) = �em2� k0S(x) �f0pt(b;Q)+ �f0S(x; b)+ 1Z0 dzZ dq2q2 �s(q2)2� � �q2�q20��(Q�q)��J0�(1�z)qb�h�(z�x)�Pqq(z) �fS �xz ; b; q�+Pqg(z) �fg �xz ; b; q���Pqq(z) �fS(x; b; q)i+Pqq(z)�1�J0[(1� z)qb℄� �fS(x; b; q)� ; (A.3)



Unintegrated Gluon Distributions in a Photon from . . . 145�fg(x; b;Q) = �f0g (x; b)+ 1Z0 dz Z dq2q2 �s(q2)2� � �q2 � q20��(Q�q)��J0�(1�z)qb�h�(z�x)�Pgg(z) �fg �xz ; b; q�+Pgq(z) �fS �xz ; b; q����zPgg(z) + zPqg(z)� �fg(x; b; q)i� �zPgg(z) + zPqg(z)���1� J0[(1� z)qb℄� �fg(x; b; q)� : (A.4)Di�erentiating this equation with respet to �Q2t for b2 = 1=Q2t andusing equations (A.1), (A.2) we getfS(x;Qt; Q) ' �em2� k0S(x)Q2t + f0S(x;Qt) + 1Z0 dz Z dq2q2 �s(q2)2� � �q2 � q20��(Q� q)��Æ�q2 � Q2t(1� z)2� �(z � x)2Q2t hPqq(z) �fS �xz ; b; q�+ Pqg(z) �fg �xz ; b; q�i�Pqq(z) �1���q2 � Q2t(1� z)2�� fS(x;Qt; q)� ; (A.5)fg(x;Qt; Q) = f0g (x;Qt) + 1Z0 dz Z dq2q2 �s(q2)2� � �q2 � q20��(Q� q)��Æ�q2 � Q2t(1� z)2� �(z � x)2Q2t hPgg(z) �fg �xz ; b; q�+ Pgq(z) �fS �xz ; b; q�i� �zPgg(z) + zPqg(z)� �1��� Q2t(1� z)2 � q2�� fg(x;Qt; q)� : (A.6)In equations (A.5), (A.6) we have negleted integrals with the integrandsontaining the terms like:�[Qt � (1� z)q℄ "Pgg(z)�(z � x)� �fg �xz ; b = 1=Q2t ; q��Q2t� (zPgg(z) + zPqg(z))� �fg(x; b = 1=Q2t ; q)�Q2t # : (A.7)Negleting those terms is justi�ed, sine in the region q < Qt=(1�z) � Qt�fg(x; b = 1=Q2t ; q) is independent of b and so its derivative with respet to�Q2t vanishes. We next identify2 �fs �xz ; b = 1=Qt; q = Qt=(1� z� ' xz� �xz ;Q2t� ; (A.8)



146 A. Gawron, J. Kwiei«ski2 �fg �xz ; b = 1=Qt; q = Qt=(1� z)� ' xz g �xz ;Q2t� : (A.9)Substituting (A.8), (A.9) into equations (A.5), (A.6) we getfS(x;Qt; Q) ' �em2� k0S(x))Q2t + f0S(x;Qt)+ �s(Q2t )2�Q2t 1�Qt=QZx dz hPqq(z)xz � �xz ;Q2t�+ Pqg(z)xz g �xz ;Q2t�i� Q2Zq20 dq2q2 �s(q2)2� 1Z0 dzPqq(z) �1��� Q2t(1�z)2�q2�� fS(x;Qt; q) ; (A.10)fg(x;Qt; Q) ' f0g (x;Qt)+ �s(Q2t )2�Q2t 1�Qt=QZx dz hPgg(z)xz g �xz ;Q2t�+ Pgq(z)xz� �xz ;Q2t�i� Q2Zq20 dq2q2 �s(q2)2� 1Z0 dz�zPgg(z)+zPqg(z)�� �1��� Q2t(1�z)2 � q2�� fg(x;Qt; q) : (A.11)Let us now de�ne the Sudakov-like form fator TgTg(Qt; Q) = exp8><>:� Q2ZQ2t dq2q2 �s(q2)2� 1�Qt=qZ0 dz�zPgg(z)+zPqg(z)�9>=>; :(A.12)From equation (A.11) we get the following approximate expression forthe unintegrated gluon distributionfg(x;Qt; Q) ' Tg(Qt; Q)�s(Q2t )2�Q2t 1�Qt=QZx dzT�1g (Qt; Qt=(1� z))� hPgg(z)xz g �xz ;Q2t�+ Pgq(z)xz � �xz ;Q2t�i : (A.13)
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