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UNINTEGRATED GLUON DISTRIBUTIONSIN A PHOTON FROM THE CCFM EQUATIONIN THE SINGLE LOOP APPROXIMATIONAgnieszka Gawron and Jan Kwie
i«skiH. Niewodni
za«ski Institute of Nu
lear Physi
sRadzikowskiego 152, 31-342 Kraków, Poland(Re
eived July 25, 2002)The system of CCFM equations for unintegrated parton distributionsin a photon is 
onsidered in the single loop approximation. We in
ludequarks and non-singular parts of the splitting fun
tions in the 
orrespond-ing evolution equations. We solve the system of CCFM equations utilisingthe transverse 
oordinate representation whi
h diagonalises these equationsin the single loop approximation. The results for the unintegrated gluondistributions in a photon are presented and 
onfronted with the approxi-mate form expressing those distributions in terms of the integrated gluonand quark distributions and a suitably de�ned Sudakov-like form fa
tor.PACS numbers: 12.38.�t, 14.70.Bh, 14.70.Dj1. Introdu
tionIn
lusive quantities des
ribing the hard pro
esses are 
ontrolled in theQCD improved parton model by the s
ale dependent quark and gluon distri-butions whi
h depend upon the longitudinal momentum fra
tion x and uponthe hard s
ale Q2. In order to des
ribe less in
lusive quantities whi
h are sen-sitive to the transverse momentum of the parton it is, however, ne
essary to
onsider the distributions unintegrated over the transverse momentum of theparton [1�8℄. Those unintegrated distributions are des
ribed in perturbativeQCD by the Ciafaloni�Catani�Fiorani�Mar
hesini (CCFM) equation [9,10℄based upon quantum 
oheren
e whi
h implies angular ordering [11℄. It em-bodies in a uni�ed way the (LO) DGLAP evolution and BFKL dynami
s atlow x.Existing analyses of the CCFM equation 
on
ern predominantly partondistributions in a nu
leon [8℄, [12�20℄. The purpose of this paper is to ex-tend this analysis to the 
ase of the unintegrated parton distributions ina photon. We limit ourselves to the so 
alled �single loop� approximation in(133)
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i«skiwhi
h the CCFM equation is equivalent to the LO DGLAP evolution [12,13℄.We shall utilise the fa
t that in this approximation the CCFM equation isdiagonalised by the Fourier�Bessel transform and so one 
an explore thetransverse 
oordinate representation of this equation [21℄. The transverse
oordinate representation 
onjugate to the transverse momentum of the par-ton has proved to be very useful in studying pt distributions within theDGLAP framework and it has been widely explored in the analysis of thesoft gluon resummation e�e
ts in e+e� 
ollisions [22, 23℄, in the pt distri-bution of Drell�Yan pairs [24℄ et
. The formalism of transverse 
oordinaterepresentation adopted in our analysis of the CCFM equation is similar tothat used in those studies.The single-loop approximation of the CCFM equation whi
h we shall usenegle
ts important small x e�e
ts and so it may not be reliable at (very)small x. It should, however, be
ome an adequate approximation at moder-ately small values of x (i.e. x > 0:01 or so) whi
h is relevant phenomenolog-i
ally e.g. for the des
ription of the heavy quark produ
tion in 

 
ollisionsat presently available energies [25℄.The CCFM equation is usually 
onsidered only for the gluoni
 se
torand, in prin
iple, with only the singular parts of the g ! gg splitting fun
-tions in
luded in the evolution. In order to have a formalism whi
h is phe-nomenologi
ally relevant at large and moderately small values of x one hasto in
orporate also the quark distributions and the 
omplete splitting fun
-tions. This is straightforward in the �single loop� approximation whi
h, afterintegration over the transverse momentum of the partons, should redu
e theCCFM equations to the 
onventional DGLAP evolution equations.The 
ontent of our paper is as follows: In the next se
tion we introdu
ethe system of CCFM equations in the single loop approximation for theunintegrated parton distributions in a photon. In Se
. 3 we dis
uss thetransverse 
oordinate representation whi
h partially diagonalises the systemof CCFM equations. In Se
. 4 we present results of the numeri
al solution ofthe CCFM equation(s) for the unintegrated gluon distributions in a photon.We do also dis
uss approximate treatment of these equations whi
h allowsto relate the unintegrated gluon distributions in a photon to the integratedgluon and quark distributions and the suitably de�ned Sudakov-like formfa
tor. Finally, in Se
. 5, we summarise our main results and give our
on
lusions.2. The CCFM equation in the single loop approximationfor the parton distributions in a photonIn this se
tion we introdu
e the system of CCFM equations for the un-integrated parton distributions in a photon. We extend the CCFM frame-work by in
luding the quark distributions and the non-singular parts of the
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tions. We limit ourselves to the single-loop approximationwhi
h should be adequate in the region of moderately small values of x.The original Catani, Ciafaloni, Fiorani, Mar
hesini (CCFM) equation [9℄for the unintegrated, s
ale dependent gluon distribution fg(x;Qt; Q) whi
his generated by the sum of ladder diagrams with angular ordering along the
hain has the following formfg(x;Qt; Q) = ~f0g (x;Qt; Q)+Z d2q�q2 1Zx dzz �(Q�qz)�(q�q0)�s2��s(Q; q; z)� �2N
�NS(Qt; q; z)+ 2N
z(1�z)f�xz ; jQt+(1�z)qj; q�� ; (2.1)where �S(Q; q; z) and �NS(Qt; q; z) are the Sudakov and non-Sudakov formfa
tors. They are given by the following expressions:�S(Q; q; z) = exp264� Q2Z(qz)2 dp2p2 �s2� Z 1�q0=p0 dzzPgg(z)375 ; (2.2)�NS(Qt; q; z) = exp264� 1Zz dz0z0 Q2tZ(qz0)2 dp2p2 2N
�s2� 375 : (2.3)The variables x;Qt; Q denote the longitudinal momentum fra
tion, trans-verse momentum of the gluon and the hard s
ale, respe
tively. The latteris de�ned in terms of the maximal emission angle [8, 9℄. The 
onstraint�(Q � qz) in equation (2.1) re�e
ts the angular ordering and the inhomo-geneous term ~f0(x;Qt; Q) is related to the input non-perturbative gluondistribution. It also 
ontains e�e
ts of both the Sudakov and non-Sudakovform fa
tors [15℄.In order to make the CCFM formalism realisti
 in the region of largeand moderately small values of x we should introdu
e, besides the uninte-grated gluon distribution fg(x;Qt; Q) also the unintegrated quark distribu-tions fqi(x;Qt; Q), where i numerates the quark �avour, and in
lude theq ! gq, (�q ! g�q) and g ! �qq transitions along the 
hain. In order to getexa
t 
orresponden
e with the 
omplete LO DGLAP evolution one shouldalso use 
omplete splitting fun
tions and not only their singular 
omponents.In the region of large and moderately small values of x one 
an introdu
ethe �single loop� approximation whi
h 
orresponds to the repla
ement ofthe angular ordering 
onstraint �(Q � qz) by �(Q � q) and to setting thenon-Sudakov form fa
tor �NS equal to unity [12, 13℄.
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i«skiIt is 
onvenient to 
onsider the unintegrated singlet (S) and non-singlet(NS) quark distributionsfS(x;Qt; Q) = 2 fXi=1 fqi(x; ;Qt; Q) ; (2.4)fNS(x;Qt; Q) = 2 fXi=1 e2i fqi(x; ;Qt; Q)� he2ifS(x;Qt; Q) ; (2.5)where heki = 1f fXi=1 eki ; (2.6)with ei denoting the 
harge of the quark of the �avour i and f being equalto the number of a
tive �avours.It is also 
onvenient to �unfold� the Sudakov form fa
tor(s) so that thevirtual 
orre
tions and real emission terms appear on equal footing in thekernels of the 
orresponding system of integral equations. The unfolded sys-tem of CCFM equations in the single loop approximation takes the followingformfNS(x;Qt; Q) = �em2� k0NS(x)Q2t + f0NS(x;Qt)+ 1Z0 dz Z d2q�q2 �s(q2)2� � �q2 � q20��(Q� q)Pqq(z)� h�(z � x)fNS �xz ;Q0t; q�� fNS(x;Qt; q)i ; (2.7)fS(x;Qt; Q) = �em2� k0S(x)Q2t + f0S(x;Qt)+ 1Z0 dz Z d2q�q2 �s(q2)2� � �q2 � q20��(Q� q)���(z�x) hPqq(z)fS �xz ;Q0t; q�+Pqg(z)fg �xz ;Q0t; q�i�Pqq(z)fS(x;Qt; q)� ; (2.8)



Unintegrated Gluon Distributions in a Photon from . . . 137fg(x;Qt; Q) = f0g (x;Qt) + 1Z0 dz Z d2q�q2 �s(q2)2� � �q2 � q20��(Q� q)���(z � x) hPgq(z)fS �xz ;Q0t; q�+ Pgg(z)fg �xz ;Q0t; q�i� �zPgg(z) + zPqg(z)�fg(x;Qt; q)� ; (2.9)where Q0t = Qt + (1� z)q : (2.10)The fun
tions k0NS(x) and k0S(x) are de�ned as below:k0NS(x) = 2N
f(he4i � he2i2)x [x2 + (1� x)2℄ ; (2.11)k0S(x) = 2N
fhe2ix [x2 + (1� x)2℄ ; (2.12)with N
 denoting the number of 
olours. The inhomogeneous terms propor-tional to k0NS(x) and k0S(x) in equations (2.7) and (2.8), respe
tively, re�e
tthe point 
oupling of the photon to quarks and antiquarks. The fun
tionsf0NS(x;Qt); f0S (x;Qt); f0g (x;Qt) denote the non-perturbative �hadroni
� 
om-ponents of the unintegrated non-singlet, singlet and gluon distributions, re-spe
tively. The parameter q0 is the infrared 
ut-o�. The splitting fun
tionsPab(z) are the LO splitting fun
tions, i.e.Pqq(z) = 43 1 + z21� z ;Pqg(z) = f [z2 + (1� z)2℄ ;Pgq(z) = 43 1 + (1� z)2z ;Pgg(z) = 2N
 � z1� z + 1� zz + z(1� z)� : (2.13)3. CCFM equation in the transverse 
oordinate representationIt 
an easily be observed that the system of CCFM equations in thesingle loop approximation (2.7)�(2.9) 
an be diagonalised by the Fourier�Bessel transform [21℄:fk(x;Qt; Q) = 1Z0 dbbJ0(Qtb) �fk(x; b;Q) ; (3.14)
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i«ski�fk(x; b;Q) = 1Z0 dQtQtJ0(Qtb)fk(x;Qt; Q) ; (3.15)where k = NS;S; g and J0(u) is the Bessel fun
tion. The 
orrespondingsystem of CCFM equations for �fNS(x; b;Q); �fS(x; b;Q) and �fg(x; b;Q) whi
hfollows from equations (2.7)�(2.9) reads�fNS(x; b;Q) = �em2� k0NS(x) �f0pt(b;Q) + �f0NS(x; b)+ 1Z0 dz Z dq2q2 �s(q2)2� � �q2 � q20��(Q� q)Pqq(z)� h�(z � x)J0�(1� z)qb� �fNS �xz ; b; q�� �fNS(x; b; q)i ; (3.16)�fS(x; b;Q) = �em2� k0S(x) �f0pt(b;Q) + �f0S(x; b)+ 1Z0 dz Z dq2q2 �s(q2)2� � �q2 � q20��(Q� q)���(z�x)J0�(1�z)qb�hPqq(z) �fS �xz ; b; q�+Pqg(z) �fg �xz ; b; q�i� Pqq(z) �fS(x; b; q)� ; (3.17)�fg(x; b;Q) = �f0g (x; b) + 1Z0 dz Z dq2q2 �s(q2)2� � �q2 � q20��(Q� q)���(z�x)J0�(1�z)qb� hPgq(z) �fS �xz ; b; q�+Pgg(z) �fg �xz ; b; q�i� �zPgg(z) + zPqg(z)� �fg(x; b; q)� : (3.18)The fun
tion �f0pt(b;Q) 
ontrolling the inhomogeneous term originatingfrom the point-like intera
tion is de�ned as�f0pt(b;Q) = QZq0 dQtQtJ0(bQt)Q2t : (3.19)In the de�nition of the inhomogeneous term 
orresponding to the pointintera
tion of the photon we have introdu
ed upper limit 
ut-o� equal to



Unintegrated Gluon Distributions in a Photon from . . . 139Q in the integration over dQt in equation (3.19). This is ne
essary formaking the CCFM formalism 
ompatible with the DGLAP evolution forthe integrated parton distributions f inti (x;Q2)xf inti (x;Q2) = 1Z0 dQ2tfi(x;Qt; Q) : (3.20)The integrated distributions f inti (x;Q2) are given by the distributions�fi(x; b;Q) at b = 0 i.e.xf inti (x;Q2) = 2 �fi(x; b = 0; Q) : (3.21)Equations (3.16)�(3.18) are equivalent to the following system of inho-mogeneous di�erential equationsQ2 � �fNS(x; b;Q)�Q2 = �em2� k0NS(x)J0(bQ)2 + �s(Q2)2� 1Z0 dzPqq(z)� h�(z�x)J0�(1�z)Qb� �fNS �xz ; b;Q�� �fNS(x; b;Q)i ;(3.22)Q2 � �fS(x; b;Q)�Q2 = �em2� k0S(x)J0(bQ)2 + �s(Q2)2� 1Z0 dz��(z � x)J0�(1� z)Qb�� hPqq(z) �fS �xz ; b;Q�+ Pqg(z) �fg �xz ; b;Q�i�Pqq(z) �fS(x; b;Q)� ; (3.23)Q2 � �fg(x; b;Q)�Q2 = �s(Q2)2� 1Z0 dz��(z � x)J0�(1� z)Qb�� hPgq(z) �fS �xz ; b;Q�+ Pgg(z) �fg �xz ; b;Q�i� �zPgg(z) + zPqg(z)� �fg(x; b;Q)� ; (3.24)with the initial 
onditions �fi(x; b; q0) = �f0i (x; b) ; (3.25)
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i«skiwhere i 
orresponds to NS, S and g. In 
omplete analogy to the integratedparton distributions in a photon we 
an introdu
e 
onventional de
ompo-sition of the distributions �fi(x; b;Q) into their point-like �fpi (x; b;Q) andhadroni
 �fhi (x; b;Q) 
omponents i.e.�fi(x; b;Q) = �fpi (x; b;Q) + �fhi (x; b;Q) : (3.26)The point-like 
omponents �fpi (x; b;Q) are the solutions of inhomogeneousequations (3.22)�(3.24) with the initial 
onditions�fi(x; b; q0) = 0 : (3.27)The hadroni
 
omponents �fhi (x; b;Q) are the solutions of the homogeneousequations 
orresponding to Eqs. (3.22)�(3.24) with inhomogeneous termsset equal to zero. The initial 
onditions for the hadroni
 
omponents aregiven by equation (3.25). 4. Numeri
al resultsIn this se
tion we present results of the numeri
al analysis of the CCFMequation in the single loop approximation for the gluon distribution in a pro-ton. To this aim we solved equations (3.23) and (3.24) following the LODGLAP analysis performed at [26℄. The unintegrated gluon distributionsare then 
al
ulated from equation (3.14). We have assumed the followinginitial 
onditions for the distributions fS(x; b;Q) and fg(x; b;Q) at Q = q0,where q20 = 0:26GeV2 fS(x; b; q0) = 12x� �x; q20�F (b) ; (4.28)fg(x; b; q0) = 12xg �x; q20�F (b) ; (4.29)where the form fa
tor F (b) was assumed to have the following formF (b) = exp��b2b20� ; (4.30)with b20 = 4GeV�2. The fun
tions � �x; q20� and g �x; q20�, whi
h are theintegrated singlet and gluon distributions in the photon at the referen
e s
alewere taken from Refs. [26℄ and [27℄. To be pre
ise the parton distributions ina photon at the referen
e s
ale Q = q0 were obtained in [26℄ from the VMDmodel with the parton distributions in ve
tor mesons assumed to be givenby those in a pion and taken from [27℄. The singlet and gluon distributions
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orresponding distributions in the pionx� �x; q20� = �em �G2� +G2!� �xq�v �x; q20�+ 4x�q� �x; q20�� ; (4.31)xg �x; q20� = �em �G2� +G2!�xg� �x; q20� ; (4.32)with G2� = 0:5 and G2! = 0:043. The valen
e quark, antiquark and gluondistributions in a pion for Q2 = q20 were parametrised as below [27℄xq�v �x; q20� = 1:129(1 + 0:153px)x0:504(1� x)0:349 ; (4.33)x�q� �x; q20� = 0:522(1 � 3:243px+ 5:206x)x0:16(1� x)5:2 ; (4.34)xg� �x; q20� = 7:326(1 � 1:919px+ 1:524x)x1:433(1� x)1:326 : (4.35)Results of our 
al
ulations 
on
erning unintegrated gluon distributionsin the photon are presented in Figs. 1 and 2. We plot in these �guresQ2tfg(x;Qt; Q)=�em as the fun
tion of Qt at Q = 10GeV for two values of

Fig. 1. The fun
tion Q2tfg(x;Qt; Q)=�em, where fg(x;Qt; Q) is the unintegratedgluon distribution in a photon plotted as the fun
tion of the transverse momentumQt of the gluon for x = 0:01 and Q= 10GeV. The solid and dashed lines 
orrespondto the exa
t solution of the system of the CCFM equations in the single loopapproximation and to the approximate expression (4.36), respe
tively.
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i«ski

Fig. 2. The fun
tion Q2tfg(x;Qt; Q)=�em, where fg(x;Qt; Q) is the unintegratedgluon distribution in a photon plotted as the fun
tion of the transverse momentumQt of the gluon for x = 0:1 and Q = 10GeV. The solid and dashed lines 
orrespondto the exa
t solution of the system of the CCFM equations in the single loopapproximation and to the approximate expression (4.36), respe
tively.x, i.e. for x = 0:01 (Fig. 1) and x = 0:1 (Fig. 2). We 
ompare our resultwith the approximate expression for Q2tfg(x;Qt; Q)=�emQ2tfg(x;Qt; Q) ' �s �Q2t �Tg(Qt; Q)2��em� 1�Qt=QZx dz hPgg(z)xz g �xz ;Q2t�+ Pgq(z)xz� �xz ;Q2t�i ;(4.36)where the Sudakov-like form fa
tor is given byTg(Qt; Q) = exp8><>:� Q2ZQ2t dq2q2 �s(q2)2� 1�Qt=qZ0 dz0�z0Pgg(z0)+ z0Pqg(z0)�9>=>; :(4.37)Derivation of approximate relation (4.36), whi
h is similar to that dis
ussedin [2℄ is given in the Appendix. We see that the approximate expression(4.36) reprodu
es reasonably well exa
t solution of the CCFM equation forunintegrated gluon distributions in a photon. In Figs. 3 and 4 we showde
omposition of the unintegrated gluon distributions into their hadroni
and point-like 
omponents. The point-like 
omponent is found to be
omein
reasingly important in the region of large Qt. The relative 
ontributionof this 
omponent does also in
rease with in
reasing x.
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Fig. 3. The point-like (solid line) and hadroni
 (dashed line) 
omponents of theunintegrated gluon distribution in a photon plotted as fun
tions of the transversemomentum Qt of the gluon for x = 0:01 and Q = 10GeV.

Fig. 4. The point-like (solid line) and hadroni
 (dashed line) 
omponents of theunintegrated gluon distribution in a photon plotted as fun
tions of the transversemomentum Qt of the gluon for x = 0:1 and Q = 10GeV.5. Summary and 
on
lusionsWe have 
onsidered in this paper the system of CCFM equations inthe single loop approximation for the unintegrated parton distributions ina photon. We have extended the 
onventional CCFM formalism by in
ludingquarks and the 
omplete splitting fun
tions. We have utilised the fa
t thatthe CCFM equation(s) in the single loop approximation 
an be diagonalisedby the Fourier�Bessel transform. We have found that the unintegrated gluon
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i«skidistributions in a photon obtained from the exa
t solution of the system ofCCFM equations in the single loop approximation 
an be well representedby the approximate expressions 
onne
ting those distributions with the in-tegrated (gluon and quark) distributions and the Sudakov-like form fa
tor.The novel feature of the CCFM equation for the parton distributionsin a photon, when 
ompared with the hadroni
 
ase is the presen
e of thepoint-like 
omponents. Those 
omponents be
ome in
reasingly importantat large values of x. They have also been found to play important role atlarge values of the transverse momentum Qt of the gluon for moderatelysmall values of x.The unintegrated gluon distributions whi
h des
ribe the x and Qt dis-tributions are needed in the des
ription of the pro
esses whi
h are sensitiveto the transverse momentum of the gluon. Their knowledge is in parti
ularne
essary for the des
ription of heavy quark produ
tion in 
 
 
ollisionswithin the kt fa
torisation. Results obtained in our paper may, therefore,be used for the theoreti
al analysis of this pro
ess.This resear
h was partially supported by the EU Fourth Framework Pro-gramme �Training and Mobility of Resear
hers�, Network �Quantum Chro-modynami
s and the Deep Stru
ture of Elementary Parti
les�, 
ontra
tFMRX-CT98-0194 and by the Polish State Committee for S
ienti�
 Re-sear
h (KBN) grants no. 2P03B 05119 and 5P03B 14420.Appendix ALet us make the following approximation:J(u) ' �(1� u) : (A.1)It is 
lear that in this approximation solution of equations (3.17), (3.18) isindependent of b for Q < 1=b, provided we negle
t the b dependen
e of the�hadroni
� input that is justi�ed at small b. From (3.15), (A.1) we also getfk(x;Qt; Q) ' 2 � �fk(x; b = 1=Qt; Q)�Q2t : (A.2)It is useful to rearrange equations (3.17), (3.18) as below�fS(x; b;Q) = �em2� k0S(x) �f0pt(b;Q)+ �f0S(x; b)+ 1Z0 dzZ dq2q2 �s(q2)2� � �q2�q20��(Q�q)��J0�(1�z)qb�h�(z�x)�Pqq(z) �fS �xz ; b; q�+Pqg(z) �fg �xz ; b; q���Pqq(z) �fS(x; b; q)i+Pqq(z)�1�J0[(1� z)qb℄� �fS(x; b; q)� ; (A.3)



Unintegrated Gluon Distributions in a Photon from . . . 145�fg(x; b;Q) = �f0g (x; b)+ 1Z0 dz Z dq2q2 �s(q2)2� � �q2 � q20��(Q�q)��J0�(1�z)qb�h�(z�x)�Pgg(z) �fg �xz ; b; q�+Pgq(z) �fS �xz ; b; q����zPgg(z) + zPqg(z)� �fg(x; b; q)i� �zPgg(z) + zPqg(z)���1� J0[(1� z)qb℄� �fg(x; b; q)� : (A.4)Di�erentiating this equation with respe
t to �Q2t for b2 = 1=Q2t andusing equations (A.1), (A.2) we getfS(x;Qt; Q) ' �em2� k0S(x)Q2t + f0S(x;Qt) + 1Z0 dz Z dq2q2 �s(q2)2� � �q2 � q20��(Q� q)��Æ�q2 � Q2t(1� z)2� �(z � x)2Q2t hPqq(z) �fS �xz ; b; q�+ Pqg(z) �fg �xz ; b; q�i�Pqq(z) �1���q2 � Q2t(1� z)2�� fS(x;Qt; q)� ; (A.5)fg(x;Qt; Q) = f0g (x;Qt) + 1Z0 dz Z dq2q2 �s(q2)2� � �q2 � q20��(Q� q)��Æ�q2 � Q2t(1� z)2� �(z � x)2Q2t hPgg(z) �fg �xz ; b; q�+ Pgq(z) �fS �xz ; b; q�i� �zPgg(z) + zPqg(z)� �1��� Q2t(1� z)2 � q2�� fg(x;Qt; q)� : (A.6)In equations (A.5), (A.6) we have negle
ted integrals with the integrands
ontaining the terms like:�[Qt � (1� z)q℄ "Pgg(z)�(z � x)� �fg �xz ; b = 1=Q2t ; q��Q2t� (zPgg(z) + zPqg(z))� �fg(x; b = 1=Q2t ; q)�Q2t # : (A.7)Negle
ting those terms is justi�ed, sin
e in the region q < Qt=(1�z) � Qt�fg(x; b = 1=Q2t ; q) is independent of b and so its derivative with respe
t to�Q2t vanishes. We next identify2 �fs �xz ; b = 1=Qt; q = Qt=(1� z� ' xz� �xz ;Q2t� ; (A.8)
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i«ski2 �fg �xz ; b = 1=Qt; q = Qt=(1� z)� ' xz g �xz ;Q2t� : (A.9)Substituting (A.8), (A.9) into equations (A.5), (A.6) we getfS(x;Qt; Q) ' �em2� k0S(x))Q2t + f0S(x;Qt)+ �s(Q2t )2�Q2t 1�Qt=QZx dz hPqq(z)xz � �xz ;Q2t�+ Pqg(z)xz g �xz ;Q2t�i� Q2Zq20 dq2q2 �s(q2)2� 1Z0 dzPqq(z) �1��� Q2t(1�z)2�q2�� fS(x;Qt; q) ; (A.10)fg(x;Qt; Q) ' f0g (x;Qt)+ �s(Q2t )2�Q2t 1�Qt=QZx dz hPgg(z)xz g �xz ;Q2t�+ Pgq(z)xz� �xz ;Q2t�i� Q2Zq20 dq2q2 �s(q2)2� 1Z0 dz�zPgg(z)+zPqg(z)�� �1��� Q2t(1�z)2 � q2�� fg(x;Qt; q) : (A.11)Let us now de�ne the Sudakov-like form fa
tor TgTg(Qt; Q) = exp8><>:� Q2ZQ2t dq2q2 �s(q2)2� 1�Qt=qZ0 dz�zPgg(z)+zPqg(z)�9>=>; :(A.12)From equation (A.11) we get the following approximate expression forthe unintegrated gluon distributionfg(x;Qt; Q) ' Tg(Qt; Q)�s(Q2t )2�Q2t 1�Qt=QZx dzT�1g (Qt; Qt=(1� z))� hPgg(z)xz g �xz ;Q2t�+ Pgq(z)xz � �xz ;Q2t�i : (A.13)
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e thatTg(Qt; Q)T�1g (Qt; Qt=(1� z)) =exp8><>:� Q2ZQ2t=(1�z)2 dq2q2 �s(q2)2� 1�Qt=qZ0 dz0�z0Pgg(z0) + z0Pqg(z0)�9>=>; : (A.14)Repla
ing the lower integration limit Q2t=(1�z)2 by Q2t in the integral in theargument of the exponent in equation (A.14) we get from equations (A.13)and (A.14) equation (4.36) in Se
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