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The system of CCFM equations for unintegrated parton distributions
in a photon is considered in the single loop approximation. We include
quarks and non-singular parts of the splitting functions in the correspond-
ing evolution equations. We solve the system of CCFM equations utilising
the transverse coordinate representation which diagonalises these equations
in the single loop approximation. The results for the unintegrated gluon
distributions in a photon are presented and confronted with the approxi-
mate form expressing those distributions in terms of the integrated gluon
and quark distributions and a suitably defined Sudakov-like form factor.

PACS numbers: 12.38.—t, 14.70.Bh, 14.70.Dj

1. Introduction

Inclusive quantities describing the hard processes are controlled in the
QCD improved parton model by the scale dependent quark and gluon distri-
butions which depend upon the longitudinal momentum fraction z and upon
the hard scale Q2. In order to describe less inclusive quantities which are sen-
sitive to the transverse momentum of the parton it is, however, necessary to
consider the distributions unintegrated over the transverse momentum of the
parton [1-8]. Those unintegrated distributions are described in perturbative
QCD by the Ciafaloni-Catani-Fiorani-Marchesini (CCFM) equation [9,10]
based upon quantum coherence which implies angular ordering [11]. It em-
bodies in a unified way the (LO) DGLAP evolution and BFKL dynamics at
low z.

Existing analyses of the CCFM equation concern predominantly parton
distributions in a nucleon [8], [12-20]. The purpose of this paper is to ex-
tend this analysis to the case of the unintegrated parton distributions in
a photon. We limit ourselves to the so called “single loop” approximation in
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which the CCFM equation is equivalent to the LO DGLAP evolution [12,13].
We shall utilise the fact that in this approximation the CCFM equation is
diagonalised by the Fourier—Bessel transform and so one can explore the
transverse coordinate representation of this equation [21]. The transverse
coordinate representation conjugate to the transverse momentum of the par-
ton has proved to be very useful in studying p; distributions within the
DGLAP framework and it has been widely explored in the analysis of the
soft gluon resummation effects in ete™ collisions [22,23], in the p; distri-
bution of Drell-Yan pairs [24] etc. The formalism of transverse coordinate
representation adopted in our analysis of the CCFM equation is similar to
that used in those studies.

The single-loop approximation of the CCFM equation which we shall use
neglects important small z effects and so it may not be reliable at (very)
small z. It should, however, become an adequate approximation at moder-
ately small values of z (i.e. z > 0.01 or so) which is relevant phenomenolog-
ically e.g. for the description of the heavy quark production in ~7y collisions
at presently available energies [25].

The CCFM equation is usually considered only for the gluonic sector
and, in principle, with only the singular parts of the g — gg splitting func-
tions included in the evolution. In order to have a formalism which is phe-
nomenologically relevant at large and moderately small values of « one has
to incorporate also the quark distributions and the complete splitting func-
tions. This is straightforward in the “single loop” approximation which, after
integration over the transverse momentum of the partons, should reduce the
CCFM equations to the conventional DGLAP evolution equations.

The content of our paper is as follows: In the next section we introduce
the system of CCFM equations in the single loop approximation for the
unintegrated parton distributions in a photon. In Sec. 3 we discuss the
transverse coordinate representation which partially diagonalises the system
of CCFM equations. In Sec. 4 we present results of the numerical solution of
the CCFM equation(s) for the unintegrated gluon distributions in a photon.
We do also discuss approximate treatment of these equations which allows
to relate the unintegrated gluon distributions in a photon to the integrated
gluon and quark distributions and the suitably defined Sudakov-like form
factor. Finally, in Sec. 5, we summarise our main results and give our
conclusions.

2. The CCFM equation in the single loop approximation
for the parton distributions in a photon

In this section we introduce the system of CCFM equations for the un-
integrated parton distributions in a photon. We extend the CCFM frame-
work by including the quark distributions and the non-singular parts of the
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splitting functions. We limit ourselves to the single-loop approximation
which should be adequate in the region of moderately small values of z.

The original Catani, Ciafaloni, Fiorani, Marchesini (CCFM) equation [9]
for the unintegrated, scale dependent gluon distribution fy(z, Qs, Q) which
is generated by the sum of ladder diagrams with angular ordering along the
chain has the following form

1
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-

where Ag(Q, ¢, z) and Axg(Q4, g, 2) are the Sudakov and non-Sudakov form
factors. They are given by the following expressions:
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The variables z, Q¢, @ denote the longitudinal momentum fraction, trans-
verse momentum of the gluon and the hard scale, respectively. The latter
is defined in terms of the maximal emission angle [8,9]. The constraint
O(Q — qz) in equation (2.1) reflects the angular ordering and the inhomo-
geneous term fo(x,Qt,Q) is related to the input non-perturbative gluon
distribution. It also contains effects of both the Sudakov and non-Sudakov
form factors [15].

In order to make the CCFM formalism realistic in the region of large
and moderately small values of  we should introduce, besides the uninte-
grated gluon distribution fy(z, Qs, Q) also the unintegrated quark distribu-
tions fg,(z, Qt, Q), where ¢ numerates the quark flavour, and include the
q — 9q, (7 = gq) and g — {q transitions along the chain. In order to get
exact correspondence with the complete LO DGLAP evolution one should
also use complete splitting functions and not only their singular components.
In the region of large and moderately small values of  one can introduce
the “single loop” approximation which corresponds to the replacement of
the angular ordering constraint ©(Q — ¢gz) by ©(Q — q) and to setting the
non-Sudakov form factor Axg equal to unity [12,13].
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It is convenient to consider the unintegrated singlet (S) and non-singlet
(NS) quark distributions

f
fs(2,Q0,Q) = 23 fo(2,,Q1, Q) (24)
i=1
!
fNS(maQtaQ) = QZezzfqi(antaQ) - <62>f5($aQtaQ)a (25)
i=1
where
1 f
== e, (2.6)
f =1

with e; denoting the charge of the quark of the flavour 4 and f being equal
to the number of active flavours.

It is also convenient to “unfold” the Sudakov form factor(s) so that the
virtual corrections and real emission terms appear on equal footing in the
kernels of the corresponding system of integral equations. The unfolded sys-
tem of CCFM equations in the single loop approximation takes the following
form

0
fNS(maQtaQ) = ae—mkNS(m) +f1(\)TS($’Qt)

2t Q7
1
d?q oy
+ 0/d /qua27T )Q(QQ—qg) Q(Q—Q)qu(z)
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0
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2r Q7

™
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0
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— Pyq(2) fs (@, Qs )}, (2.8)
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- [ZPQQ(Z)+2qu(z):|fg(maQt7Q)}7 (29)
where
Qi =Q,+(1-2)q. (2.10)
The functions k% (z) and k2(z) are defined as below:
ks(z) = 2Nef((e') = (*)?) 2 [o? + (1 - 2)7], (2.11)
E(z) = 2N f(e?)z[2® + (1 —2)Y], (2.12)

with N, denoting the number of colours. The inhomogeneous terms propor-
tional to k%¢(z) and k3(z) in equations (2.7) and (2.8), respectively, reflect
the point coupling of the photon to quarks and antiquarks. The functions
I2s(2, Q) (2, Qy), fg(x, Q) denote the non-perturbative “hadronic” com-
ponents of the unintegrated non-singlet, singlet and gluon distributions, re-
spectively. The parameter ¢q is the infrared cut-off. The splitting functions
P,,(z) are the LO splitting functions, i.e.

1+ 22
1—2

4
qu(z) = 3

?

qu(z) = f[22 + (1 - 2)2]7

4 1+ (1-2)?
PQLI(Z) = § 2 )
1—
Pyy(2) = 2N, 1fz+ zz+z(1—z) . (2.13)

3. CCFM equation in the transverse coordinate representation

It can easily be observed that the system of CCFM equations in the
single loop approximation (2.7)-(2.9) can be diagonalised by the Fourier—
Bessel transform [21]:

Jele, Qu Q) = / dbbJo (Qub) fi (.5, Q) (3.14)
0
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Fulw0,Q) = / 4Q: Qi To(Qb) fu(z, Qs Q). (3.15)
0

where £ = NS,S,g and Jy(u) is the Bessel function. The corresponding
system of CCFM equations for fxs(z,b, Q), fs(z,b,Q) and f,(z,b, Q) which
follows from equations (2.7)-(2.9) reads

Fs(@.b,Q) = a;mstu ((6.Q) + Rs(w,b)

/ /dq e 7> — q3) O(Q — q) Py (2)

x [@(z — ) Jo[(1 = 2)ab] fus (Z.b.4) = Frs(ab.0)] (3.16)

fs(@0.Q) = TER@ [ 0,Q) + f(a.b)

+/1d2/dq il )@((f—qg)@(Q—Q)

0
x{ OG- n1-2)at] [Pra(2)fs (20.0)+ Pra(215, (2.0.0)]

_ P2 fs(m,b,q)} : (3.17)

1

2 2
feQ) = B+ [d [ L2 @ e
0

x{@(z—m)Jo [(l—z)qb] [qu(z)fs (%,b,q)-l—ng(z)fg (%,b,q)]

— [2Pyg(2) + 2Py (2)] fy (2, b, q)} : (3.18)

The function fgt(b, Q) controlling the inhomogeneous term originating
from the point-like interaction is defined as

Q
0.0 = [ Qo). (3.19)

q0

In the definition of the inhomogeneous term corresponding to the point
interaction of the photon we have introduced upper limit cut-off equal to
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@ in the integration over d@; in equation (3.19). This is necessary for
making the CCFM formalism compatible with the DGLAP evolution for
the integrated parton distributions f'*(z, Q?)

o0

oM. @) = [ 4@ (.G Q). (3.20)

0

The integrated distributions fiint(x,Q2) are given by the distributions
fi(x,b,Q) at b= 0 i.e.

2f™ (2,Q%) = 2fi(0,b = 0,Q). (3.21)

Equations (3.16)—(3.18) are equivalent to the following system of inho-
mogeneous differential equations

Q2

1
67 b em J b S 2
fNSa(g2 Q) _ O;W K04 (2) O(QQ) L@ ;g )/dquq(z)

x [0(-2)Js [(1-2)Q8) fxs (£,5,Q) - fs(@:5,Q)] |

(3.22)
Qzaf_sggg,@ - O;e:kg(m) 4 2l QZ /1d { z—x)Jo[(1 - 2)Q0]
0
X [qu(z)fs (;,b;Q) + qu(z)fg (;’baQ)]
Pu@)fe(e0.0)}.
(3.23)
Q2 8fgng,127,Q) _ as;fry) jdz{@(z _ w)Jo[(l _ z)Qb]
X [qu(z)fs (gab;Q) + ng(z)fg (;b’Q)]
- [ngg(z) + Zqu(Z)]fg(ma b, Q)} )
(3.24)

with the initial conditions

fi("L‘a b, QO) = fTZO(I, b) ) (325)
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where 4 corresponds to NS, S and g. In complete analogy to the integrated
parton distributions in a photon we can introduce conventional decompo-
sition of the distributions fi(z,b,Q) into their point-like fF(z,b,Q) and
hadronic f!'(z,b,Q) components i.e.

fi(x,0,Q) = fP(2,b,Q) + fl2,b,Q). (3.26)

The point-like components fzp (z,b,Q) are the solutions of inhomogeneous
equations (3.22)-(3.24) with the initial conditions

The hadronic components f—zh(x, b, Q) are the solutions of the homogeneous
equations corresponding to Egs. (3.22)-(3.24) with inhomogeneous terms
set equal to zero. The initial conditions for the hadronic components are
given by equation (3.25).

4. Numerical results

In this section we present results of the numerical analysis of the CCFM
equation in the single loop approximation for the gluon distribution in a pro-
ton. To this aim we solved equations (3.23) and (3.24) following the LO
DGLAP analysis performed at [26]. The unintegrated gluon distributions
are then calculated from equation (3.14). We have assumed the following
initial conditions for the distributions fg(z,b, Q) and f4(z,b,Q) at Q = qo,
where ¢ = 0.26 GeV?

fs(e,ba0) = 505 (2, 68) F(B) (4.28)
folesb.0) = g (. 68) F(0). (4.29)

where the form factor F'(b) was assumed to have the following form

F(b) = exp <—%) , (4.30)

with B2 = 4GeV~2. The functions ¥ (x,qg) and g (x,q%), which are the
integrated singlet and gluon distributions in the photon at the reference scale
were taken from Refs. [26] and [27]. To be precise the parton distributions in
a photon at the reference scale Q = go were obtained in [26] from the VMD
model with the parton distributions in vector mesons assumed to be given
by those in a pion and taken from [27]. The singlet and gluon distributions
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in the photon at Q% = ¢2 are expressed in the following way in terms of the
corresponding distributions in the pion

X (x, qg) = Glem (Gz + GZ,) [xq;r (x,qg) + 4xq" (x, qg)] , (4.31)

29 (2, 63) = aem (G + G2) 29" (2, 45) , (4.32)

with Gf, = 0.5 and G? = 0.043. The valence quark, antiquark and gluon
distributions in a pion for Q? = qg were parametrised as below [27]

zqt (2,q3) = 1.129(1 + 0.153/z) x50 (1 — 2)0349 (4.33)

2q" (z,q5) = 0.522(1 — 3.243/7 + 5.2062)z% ' (1 — z)>2, (4.34)

zg™ (z,q3) = 7.326(1 — 1.919v/z + 1.524x)x"** (1 — 2)'320 . (4.35)

Results of our calculations concerning unintegrated gluon distributions
in the photon are presented in Figs. 1 and 2. We plot in these figures
Q? fy(2, Qt, Q)/tem as the function of Q¢ at @ = 10GeV for two values of
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Fig.1. The function Q?f,(z,Qt, Q)/cem, where f,(z,Qt, Q) is the unintegrated
gluon distribution in a photon plotted as the function of the transverse momentum
Q) of the gluon for z = 0.01 and @ = 10 GeV. The solid and dashed lines correspond
to the exact solution of the system of the CCFM equations in the single loop
approximation and to the approximate expression (4.36), respectively.
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Fig.2. The function Q?f,(z,Qt, Q)/em, where fy(z,Qt, Q) is the unintegrated
gluon distribution in a photon plotted as the function of the transverse momentum
Q4 of the gluon for z = 0.1 and = 10 GeV. The solid and dashed lines correspond
to the exact solution of the system of the CCFM equations in the single loop
approximation and to the approximate expression (4.36), respectively.

z, i.e. for x = 0.01 (Fig. 1) and =z = 0.1 (Fig. 2). We compare our result
with the approximate expression for QZf,(z, Qt, Q)/em

Qi folz,Q1, Q) ~ os (QF) Ty (@, Q)

2T Qlgm
1-Q:/Q
X / dz [ng(z)gg (;Q%) +qu(z)§E (;Q%)] ;
’ (4.36)
where the Sudakov-like form factor is given by
Qo oy Qi/a

Ty(Qt, Q) = exp —/ dq%az(z ) / d?’ [legg(zl)"‘ leqg(zl)] -(4.37)

Q7 0

Derivation of approximate relation (4.36), which is similar to that discussed
in [2] is given in the Appendix. We see that the approximate expression
(4.36) reproduces reasonably well exact solution of the CCFM equation for
unintegrated gluon distributions in a photon. In Figs. 3 and 4 we show
decomposition of the unintegrated gluon distributions into their hadronic
and point-like components. The point-like component is found to become
increasingly important in the region of large @J;. The relative contribution
of this component does also increase with increasing x.
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Fig.3. The point-like (solid line) and hadronic (dashed line) components of the
unintegrated gluon distribution in a photon plotted as functions of the transverse

momentum ¢ of the gluon for x = 0.01 and @ = 10 GeV.
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Fig.4. The point-like (solid line) and hadronic (dashed line) components of the
unintegrated gluon distribution in a photon plotted as functions of the transverse
momentum @y of the gluon for x = 0.1 and @ = 10 GeV.

5. Summary and conclusions

We have considered in this paper the system of CCFM equations in
the single loop approximation for the unintegrated parton distributions in
a photon. We have extended the conventional CCFM formalism by including
quarks and the complete splitting functions. We have utilised the fact that
the CCFM equation(s) in the single loop approximation can be diagonalised
by the Fourier-Bessel transform. We have found that the unintegrated gluon
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distributions in a photon obtained from the exact solution of the system of
CCFM equations in the single loop approximation can be well represented
by the approximate expressions connecting those distributions with the in-
tegrated (gluon and quark) distributions and the Sudakov-like form factor.

The novel feature of the CCFM equation for the parton distributions
in a photon, when compared with the hadronic case is the presence of the
point-like components. Those components become increasingly important
at large values of z. They have also been found to play important role at
large values of the transverse momentum @; of the gluon for moderately
small values of x.

The unintegrated gluon distributions which describe the z and @y dis-
tributions are needed in the description of the processes which are sensitive
to the transverse momentum of the gluon. Their knowledge is in particular
necessary for the description of heavy quark production in 7 7 collisions
within the k; factorisation. Results obtained in our paper may, therefore,
be used for the theoretical analysis of this process.

This research was partially supported by the EU Fourth Framework Pro-
gramme “Training and Mobility of Researchers”, Network “Quantum Chro-
modynamics and the Deep Structure of Elementary Particles”, contract
FMRX-CT98-0194 and by the Polish State Committee for Scientific Re-
search (KBN) grants no. 2P03B 05119 and 5P03B 14420.

Appendix A
Let us make the following approximation:
J(u) ~O0(1 —u). (A1)

It is clear that in this approximation solution of equations (3.17), (3.18) is
independent of b for @ < 1/b, provided we neglect the b dependence of the
“hadronic” input that is justified at small b. From (3.15), (A.1) we also get

afk(xab = 1/Qt7Q) )

fr(z,Q:, Q) ~ 2 A2
It is useful to rearrange equations (3.17), (3.18) as below
r em d S
Folab,@) = & %()(b@+gwb+/ [0 () 0@

< la-2] [Bl—a) (Pu)fs (£.0.0) + Py (£.0.0))

- qu(Z)fTs(m, baq)] +qu(z)(1_J0[(1 - Z)qb])fS(ma b,(])} ) (A3)



Unintegrated Gluon Distributions in a Photon from ... 145

Zas

fo(.0.Q) = R, b)+/d /dqi Do (2 - ) 0@

X{JO 1 z qb —x) (ng(z)fg (gab,Q)‘f‘qu(z)fS (%abaq))
—(2Pyq(2) + 2Pyy(2)) fy(, b Q)] — [2Pygg(2) + 2Pyy(2)]
(1= f(1 = at) fy(a:0.0) | (A.4)

Differentiating this equation with respect to 9Q? for b* = 1/Q? and
using equations (A.1), (A.2) we get

Qe

fulo, 0@ = 52 B8 o6, 0) +/ [ 2 - )o@ -a)
o (- 72%5) L™ [Purss (20.0) + R, (£.0.0)]
P [1-0 (- 72 )] e}, (A5)
£, Q0@) = 2@ + / i [0 (- )o@ -0

(o %) 2 oty (£0) o ()

[Py (2) + 2Py (2)] [1_@ < . ‘ftz) )} fole. @1, )}. (A.6)

In equations (A.5), (A.6) we have neglected integrals with the integrands
containing the terms like:

Afy (2,6 =1/Q%.q)
9Q?
8fg($ab = 1/Q%7Q)
9Q?

_ Neglecting those terms is justified, since in the region ¢ < Q;/(1—-2) ~ Q4
fo(z,b=1/Q?,q) is independent of b and so its derivative with respect to
9Q? vanishes. We next identify

2 (Sb=1/Qua=@Qi/1-2) =20 (2,Q}), (A8

OlQy — (1 - 2)q] ng(z)@(z — )

C(AT)

— (2Pygg(2) + 2Pg4(2))
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2y (Z0=1/Qua=Q/1-2) ~Zg(2.Q). (A9
Substituting (A.8), (A.9) into equations (A.5), (A.6) we get
Cem kg (iE))

folr QuQ) = SR 4 4w Q)
,. 1-Q/Q
S [ [0 (2.00) + Rt (200
T a? o) [ Q?
_/q_2 o /dquq(z) [1—@<(1_;)2—q2)]fs(x,Qt,q), (A.10)
@ 0

fg(xa Qta Q) = fgo(xa Qt)
1-Q+/Q

229 [ 0% (2.62) + Rata 2 (.60

T
2

1
2 o (2
- /diQ ;g)/dZ[Zng(z)—{—qug(z)]
0

q
@

X [1—@<(£;) — )] fo(2,Q1,q) . (A.11)

Let us now define the Sudakov-like form factor T,

T,(Q:,Q) =
Q2d ) ( 2) 1-Qt/q
q- as\q
exp _/q—2 o / dz[ngg(z)+qug(z)]
Q2 0

(A.12)

From equation (A.11) we get the following approximate expression for
the unintegrated gluon distribution

1-Q¢/Q

(02
5(QF) dzTgfl(QtaQt/(l - 2))

2mQ}
T

X [ng( )= ( Qt) + Pyq(2 ) ( Qt)} . (A.13)

fg(xa Qta Q) = Tg(Qt, Q)
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Let us finally notice that
Ty(Q1, )T, H(Qu, Qi/ (1 — 2))
1—

Q? t/q

wl [ ol

P q? 2
Q7 /(1-2)?

O

d2' [2' Ppg(2') + 2/ Ppg ()] p . (A.14)

O\

Replacing the lower integration limit Q2 /(1—2)? by Q? in the integral in the
argument of the exponent in equation (A.14) we get from equations (A.13)
and (A.14) equation (4.36) in Sec. 4.
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