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PARAMETERS IN WEIGHT CALCULATIONSFOR THE BE EFFECTK. Fiaªkowskiy and R. WitzM. Smoluhowski Institute of Physis, Jagellonian UniversityReymonta 4, 30-059 Kraków, Poland(Reeived July 29, 2002)The weight method of implementing the BE e�et into Monte Carlogenerators is disussed and presented in some detail. We show how thehoie of free parameters and the de�nition of �diret� pions in�uene theresults for the hadroni Z0 deays.PACS numbers: 13.90.+i, 13.65.+i1. Introdutory remarksThe e�et of Bose�Einstein symmetrization (BE e�et) in the two-partileorrelation spetra depends on the shape and size of the soure. This al-lowed to estimate the soure parameters of astronomial soures via theso-alled Hanbury�Brown and Twiss e�et [1℄. The analogous estimates inpartile physis are muh more involved [2�4℄. In fat, the appliability ofthe standard analysis assuming inoherent prodution in partile ollisionswas questioned reently and an alternative approah was presented [5℄. Theimplementation of BE e�et into Monte Carlo generators modeling multipleprodution is partiularly di�ult, as the symmetrization should be doneat the level of amplitudes and generators deal usually with probabilities.As far as we know there is only one implementation based on the spei�assumptions onerning amplitudes, and it applies only for a single stringfragmentation proesses [6℄. The most widely used proedure modeling theBE e�et in the popular PYTHIA generator [7℄ is based on the presriptionfor shifting the �nal state momenta to produe an enhanement at smallmomentum di�erenes in the distributions of pairs of idential hadrons [8℄.In this proedure one �ts the parameters of the �input BE funtion�y e-mail: fialkowski�th.if.uj.edu.plz e-mail: wit�th.if.uj.edu.pl (149)



150 K. Fiaªkowski, R. WitF (Q) = 1 + � exp(�Q2R2) ; (1)(assumed to have the same form as the standard parametrization of BEe�et) to reprodue the experimentally observed e�et.There is no simple relation between the values of input parameters � andR and the analogous parameters desribing the experimental distribution.There is also no theoretial justi�ation for this proedure and it should beregarded as a onvenient parametrization, rather than the physial desrip-tion of the BE e�et.The alternative approah is based on the formalism of Wigner fun-tions [9℄. One approximates the orreted distribution as a produt of dis-tribution without the BE e�et and the weight funtion for whih a de�nitepresription is given [10℄. This allows us to produe the distributions withthe BE e�et by generating the events without this e�et and attahing tothem the weights. To alulate these weights one must adopt several sim-plifying assumptions [10℄ (and hope they do not destroy the validity of theformulae). Finally one must assume the form of �two partile weight fator�and �t its parameters to desribe orretly the data.Super�ially, there is a marked similarity between these two approahes.In both ases the form of an �input funtion� is assumed and its parametersshould be �tted to desribe the data. However, there are also lear di�er-enes. Whereas the �momentum shifting method� has no theoretial justi-�ation, it has two free parameters (plus a few hidden parameters de�ningthe hoie of momenta to be shifted, whih a�et the results rather mildly)and is quite easy to apply. Sine all generated events are used, neither themultipliity distributions nor, e.g., the deay hannel probabilities in Z0 de-ay are a�eted by shifting. There seems to be no need to hange the valuesof the generator parameters �tted to the data before taking the BE e�etinto aount.On the other hand, the weight method is quite well justi�ed (grant-ing that simplifying assumptions are not too rough), but there are manytehnial problems with its use. Some of them have been solved: prohibitiveinrease of omputational time with multipliity may be avoided by a properlustering proedure for �nal state momenta [11℄ and the distortion of themultipliity distribution may be removed by simple resaling of weights de-pending on the event multipliity [12℄. Obviously, the weights may in prin-iple a�et other distributions whih were �tted to data without taking theBE e�et into aount. Thus the proper proedure would be to re�t allthe generator parameters omparing the weighted results with data. How-ever, if the resaling guarantees that average weight is equal to one for eahwell de�ned lass of events (e.g. in eah Z0 deay hannel), the hanges indistributions should be minor.



Parameters in Weight Calulations for the BE E�et 151Another notorious tehnial problem for weight methods is the insta-bility of results due to the long tail of very high weight values. Usuallyit requires some arbitrary ut, but for su�iently high number of gener-ated events the e�ets of this ut are not very signi�ant. Finally, thereis a problem of seleting the partiles, whose momenta are used to alu-late weights and a problem of proper hoie of �two partile weight fator�and its parametrization (re�eting somehow the shape and the size of theprodution soure).In this paper we disuss the solutions to the last two problems presentingthe MC results for the BE e�et in the hadroni deay of Z0 and omparingthem with some data. We onsider only the distributions in the invariantfour momentum di�erene Q2 = �(p1 � p2)2: (2)The e�et of anisotropy in various omponents of Q [13℄ was disussed else-where [14℄.The following hapter ontains the disussion of possible partile sele-tions and the in�uene of various MC parameters. The e�ets of di�erentforms of two partile weight funtions (onsidered already in the earlier pa-per [15℄) are presented in the third hapter. The last hapter presents theomparison with some data and onlusions. It should be stressed that wedisuss only the standard presription for weights justi�ed by the Wignerfuntion formalism [9,10℄. Other proposals [12,16,17℄ should be regarded asviable versions of the weight method only if it is shown that they reprodueapproximately the results obtained for this presription.2. Partile seletion and MC parametersBefore disussing the details of the MC proedure implementing the BEe�et we should deide whih distribution will be used to present this e�et.The standard quantity alled �the BE ratio� is de�ned asRBE(Q) = �2(Q)�02(Q) ; (3)where Q2 was de�ned above (2) and the numerator and denominator repre-sent the idential two-partile distribution with and without the BE e�et,respetively. Obviously, this de�nition requires a more preise formulationof how we shall de�ne the denominator.In the experimental de�nition of the BE ratio one uses often the distri-bution of unlike sign pion pairs but this requires utting o� the resonanee�ets. Thus reently it is preferred to use the pairs of idential pions fromdi�erent events



152 K. Fiaªkowski, R. WitRBE(Q) = CBE2 (Q) � �2(Q)�1 
 �1(Q) ; (4)where the denominator is a onvolution of single distributions�1 
 �1(Q) = Z �1(p1)�1(p2)Æ �Q2 + (p1 � p2)2� d3p1d3p2 : (5)This hoie of the denominator has other �aws (i.e. it removes all orrela-tions, and not only the BE e�et). Therefore, one uses often double ratios,dividing the experimental ratio by an analogous ratio of distributions fromMC generator (without the BE e�et)R0BE(Q) = CBE2 (Q)CMC2 (Q) : (6)For the MC generated events the simplest hoie is just to run MC withoutthe proedure implementing the BE e�etRMCBE (Q) = �MC;BE2 (Q)�MC2 (Q) : (7)Obviously if in the experimental investigation a double ratio is used, it seemsmore proper to alulate for omparison an analogous double ratio from MCevents R0MCBE (Q) = CMC;BE2 (Q)CMC2 (Q) : (8)Fortunately the di�erene between R0MCBE (Q) and RMCBE (Q) is often in-signi�ant. This is illustrated in Fig. 1, where we show both ratios alulatedfor pion pairs from Z0 deays using the weight method with the Gaussiantwo-partile weight fatorw2(p1; p2) = exp�� (p1 � p2)22� � ; (9)with � = 0:05GeV2.Here, as in all the later �gures:� one million of events was generated by the PYTHIA 6.2 generator [7℄,� the bakground distributions were onstruted using pairs from di�er-ent events; four million pairs of events were used for this purpose,� the BE ratios were normalized to approah smoothly the value of oneat Q exeeding 1GeV.
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Fig. 1. Comparison of the ratio of Q distributions (7) with and without weights(squares) with double ratio of spetrum-to-bakground ratios (8) with and withoutweights (stars).For ompleteness, let us remind here that the two-partile weight fatoris related to the full weight alulated for eah event by a formula [10℄W (p1; :::; pn) =X nYi=1w2(pi; pP (i)) ; (10)where the sum extends over all permutations of n elements. More preisely,the event weight is a produt of suh sums alulated for all kinds of identialbosons registered by the detetors (in pratie it is enough to ount onlypositive and negative pions).This formula suggests that the � parameter in formula (9) is the onlyfree parameter in the method. This would be, however, an oversimpli�ation.The alulation of the full sum over permutations is pratially impossiblefor the number of idential pions exeeding twenty [18℄. Thus we de�nethe lusters of pions �lose to eah other� in the phase spae and sum overpermutations within lusters only. To make the results independent on theluster de�nition we have to hoose the value of the relevant parameter �muh bigger than �. The details of this proedure have been desribedelsewhere [11℄.Moreover, if the two partile weight fator is interpreted as a Fouriertransform of the spae-time distribution of pairs of pions, it seems justi�edto use a ommon shape of this fator only for pairs of �diret� pions.



154 K. Fiaªkowski, R. WitThe deay produts of long living partiles and resonanes are born faraway from the original soure and the orresponding two-partile weight fa-tor for pairs inluding these deay produts would be lose to the Dira deltafuntion, ontributing negligibly to the �nal event weight. The same rea-soning was presented by Sjöstrand [7℄ who hoose 20MeV as a limit de�ning�long living� resonanes and performed the momentum shift only for pionsprodued diretly and the deay produts of broader resonanes.This suggests that we should alulate the event weight inluding in thesum only �diret� pions de�ned in a similar way. To avoid the hanges of theoriginal Monte Carlo proedures (whih was the ase for Sjöstrand PYBOEIproedure, alled internally from the generator before the deay of �longliving� resonanes and partiles), we form a table of momenta for �diret�pions de�ned in various ways and use this table for the weight alulation.We found that the modi�ations of the original width limit of 20MeV areirrelevant as long as we do not inlude the ! deay produts in the weightalulations. Inluding ! deay produts enhanes strongly the BE ratio, asshown in Fig. 2 for the Z0 deay.
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Fig. 2. Comparison of the ratio of Q distributions with and without weights (7) forweights alulated exluding (squares) and inluding (diamonds) ! deay produts.To justify the hoie of the width limit let us require that the �diret�pion and the pion from ! deay have approximately the same momenta. Themaximal momentum of a pion in the deay of ! at rest is about 300MeV=,and the most likely value is of the order of 100MeV=. This allows toestimate that the distane between �birth points� of suh pions is of the orderof 10 fm and the orresponding width in momentum spae should be about



Parameters in Weight Calulations for the BE E�et 15520MeV, smaller than the typial resolution. This suggests that the deayproduts of ! (as well as the deay produts of narrower resonanes andother unstable partiles) should not be taken into aount when alulatingweights.However, this argument has some �aws. First, the BE ratio is de�ned asa funtion of Q2 and not of the three-momentum squared (thus it re�etsthe spae-time and not just the spae struture of soure). Seond, thedistribution of the deay length is not Gaussian. Thus we should not expeta Gaussian shape of the weight fator. Finally, exluding the deay produtsof narrow resonanes is a very rough proedure; a better solution would be touse di�erent two-partile weight fators for di�erent pairs of pions (diret�diret, diret�resonane and resonane�resonane). Let us add that all thisestimate is lassial and does not take into aount the possible quantume�ets. Thus we should not treat the hoie of �diret� pions exluding the! deay produts as de�nite. In fat, the unertainty of this hoie seemsto be the biggest unertainty of the weight method. If neessary, it may beused to improve the desription of the BE e�et if the observed values of theBE ratio at small Q2 are high.The other free parameters of the PYTHIA generator may also in�uenethe weights and the resulting BE ratio. An example of this e�et is shownin Fig. 3 where we ompare the results for default values of PYTHIA pa-rameters and for the values �tted to the L3 data [13℄. Let us stress that the
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Fig. 3. Comparison of the ratio of Q distributions with and without weights (7) forweights alulated using default PYTHIA parameters (squares) and L3 parameters(irles).



156 K. Fiaªkowski, R. Withoie of �diret� pions (exluding the ! deay produts) and the value of �parameter are the same in both ases, but the results are visibly di�erent.This is probably mainly due to the suppression of � and �0 mesons for theL3 parameters.Finally, let us hek the dependene of the results on the value of the� parameter. Until now we were using the value of 0.05GeV2 whih or-responds to the average Gaussian soure size of the order of 1 fm. InFig. 4 we ompare the results (with L3 parameters) for � = 0:05GeV2and � = 0:07GeV2. We see that by inreasing � (whih orresponds toa dereasing soure size) we inrease the width of �BE peak� and slightlyinrease its height.
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Fig. 4. Comparison of the ratio of Q distributions with and without weights (7)for L3 parameters with weights alulated using � = 0:05GeV2 (irles) and� = 0:07GeV2(triangles).A notorious problem of the weight method is a possible distortion of var-ious distributions (�tted previously to data) by the introdution of weights.First suh a distortion was observed for the multipliity distribution wherethe probabilities of high multipliities were enhaned by weights. This wasured by resaling the weights with a fator C�n [12℄ where n is a hargepartile multipliity (measured in experiment). The values of parameters Cand � are �tted to restore the original values of n and the original normal-ization. With this method the weights ause only a moderate inrease of thedispersion of the multipliity distribution.The weights in�uene also the single partile momentum distribution,reduing slightly the width, but these e�ets are not very signi�ant. Moreimportant is the hange in the Q2 distribution of unlike sign pairs of pions, as



Parameters in Weight Calulations for the BE E�et 157shown in Fig. 5. A similar e�et was observed for Sjöstrand's implementationmethod of the BE e�et. It should be noted, however, that by inluding the! deay produts in the weight alulation we inrease the R ratio for unlikesign pion pairs by a few perent only, whereas the ratio for like sign pairsinreased by about 50%, as shown in Fig. 2. Thus it is possible to desribea big BE e�et without distorting seriously the distribution for unlike signpairs.
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Fig. 5. Comparison of the ratio of Q distributions (7) with and without weightsfor unlike sign pairs of pions. Weights are alulated using L3 parameters with� = 0:07GeV2 exluding ! deay produts (triangles) and using default parameterswith � = 0:05GeV2 inluding ! deay produts (diamonds).3. Choie of the two partile weight fatorIn the former setion we used always the Gaussian two-partile weightfator (9). Obviously, there is no reason why all the spae�time and momen-tum distributions should be desribed by suh simple funtions. However,if we restrit ourselves to the monotonially dereasing weight fators nor-malized to one at Q2 = 0, it is easy to show that the Gaussian hoie resultsin a urve whih is the smoothest one and resembles the data best. This isdemonstrated in Fig. 6 where we ompare the results obtained for the defaultPYTHIA parameters for the Gaussian weight fator (9) with � = 0:05GeV2and for two other hoies of the weight fator:� step-like w2(p1; p2) = � �(p1 � p2)2 + �� ; (11)with the same value of �



158 K. Fiaªkowski, R. Wit� exponential w2(p1; p2) = exp�� p�(p1 � p2)22p� � ; (12)with � = 0:03GeV2.
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Fig. 6. Comparison of the ratio of Q distributions (7) for default PYTHIA param-eters and three di�erent hoies of two-partile weight fator: Gaussian (rosses),step-like (solid line) and exponential (diamonds).We see learly that the shape of the obtained BE ratio re�ets the shapeof the two-partile weight fator. This may be written as an approximaterelation RBE(�(p1 � p2)2) � 1 + w2(p1; p2) ; (13)where the value of  depends on the shape of the weight fator and theseletion of partiles used in the weight alulations.Let us note that the Gaussian parametrization is unlikely to desribe thedata where the distribution of the spae�time distane between the �birthpoints� of two pions is more ompliated. This is the ase for the four jetdeay of W+W� �nal states if two pions originate from two W . There it isunjusti�ed to expet monotonially dereasing and normalized two-partileweight fators. However, for the Z0 deay the parametrization (9) seems tobe the appropriate one.



Parameters in Weight Calulations for the BE E�et 1594. Comparison with data, onlusionsWe will not attempt here a detailed �t to any published data. Thereare many reasons for this reservation. First, as we have already mentioned,di�erent experiments use di�erent de�nitions of the referene sample in thedenominator of the BE ratio. Thus the �t quality may depend on manyfators not related to the proedure implementing the BE e�et (e.g., theresonane e�ets and other orrelations). Seond, the published data inludeusually the aeptane orretions whih are di�ult to reonstrut in ouralulations. In fat, the Monte Carlo parameters should be also �tted to thepartiular set of data before implementing the BE e�et. As shown in Se. 2there is a di�erene between the results obtained using default PYTHIAparameters and the parameters used by the L3 ollaboration.Therefore, we want to make only a semi-quantitative omparison betweenthe results from our proedure and some high statistis data. To this purposewe use the reent L3 data shown as the referene sample in the paper devotedto the analysis of the WW deay [19℄. We ompared them with various MCresults shown in previous setions, resaled with arbitrary onstants to agreewith data at Q2 > 1GeV2. We found that the modeled BE e�et is toosmall ompared with the data unless we inlude the ! deay produts forthe weight alulation. We show the omparison in Fig. 7 for two hoies ofthe � parameter in the weight fator (9). Normalization of both urves was
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Fig. 7. Comparison of the ratio of Q distributions for L3 parameters (7) with� = 0:04 (solid line) and � = 0:03 (broken line) with the L3 data (stars).



160 K. Fiaªkowski, R. Witadjusted to �t the data. We see that the data are qualitatively desribed bythe PYTHIA MC with our implementation of the BE e�et. One should notexpet a good quantitative �t to the data for any single value of �; as alreadynoted, one ould use at least di�erent values of this parameter (and, evenbetter, di�erent shapes of w2) for pairs of pions of di�erent origin. Then,however, the number of free parameters would inrease making the suessof the �tting proedure rather trivial.To summarize, we have disussed the freedomof the weight method forimplementing theBE e�et into MonteCarlo generators. Wehave shown thatthis freedom seems to be su�ient to desribe the data. For pions omingfrom a single soure whih may be parametrized with a Gaussian distribu-tion, there are three steps for hoosing the weight method parameters:1. One should deide whih ratio (Eq. (4) or (6)) is used to display the BEe�et and to alulate the analogous ratio from the MC with weights(Eq. (7) or (8)).2. One should hoose the seletion riterion for pions used to alulateweights. The typial hoie orresponds to using diret pions anddeay produts of broad resonanes, � > 20MeV (as in Sjöstrand'smethod).3. One should selet a proper value of the parameter � in (9).Tehnially, our algorithm ontains four Fortran proedures:� LWBOEI, where for eah event the �diret� pions are seleted and theirmomenta are stored in the tables,� KLASKF, where pions of one sign are assigned to lusters,� PERCJE, where a weight fator from eah luster is alulated,� CLUSWAGI, where the full event weight is alulated as a produt ofweight fators from all lusters and all pion signs.All these proedures are available at request from us, together with a sampleprogram alling the PYTHIA 6.2 generator and omparing the weighted andunweighted distributions for hadroni Z0 deays. A modi�ation of this pro-gram for other proesses or other MC generators would be straightforward.One should also remember that after the introdution of weights oneshould resale them by a C�n fator to restore the original normalizationand average multipliity. This, however, does not in�uene signi�antly theshapes of the BE ratios.
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