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PARAMETERS IN WEIGHT CALCULATIONSFOR THE BE EFFECTK. Fiaªkowskiy and R. WitzM. Smolu
howski Institute of Physi
s, Jagellonian UniversityReymonta 4, 30-059 Kraków, Poland(Re
eived July 29, 2002)The weight method of implementing the BE e�e
t into Monte Carlogenerators is dis
ussed and presented in some detail. We show how the
hoi
e of free parameters and the de�nition of �dire
t� pions in�uen
e theresults for the hadroni
 Z0 de
ays.PACS numbers: 13.90.+i, 13.65.+i1. Introdu
tory remarksThe e�e
t of Bose�Einstein symmetrization (BE e�e
t) in the two-parti
le
orrelation spe
tra depends on the shape and size of the sour
e. This al-lowed to estimate the sour
e parameters of astronomi
al sour
es via theso-
alled Hanbury�Brown and Twiss e�e
t [1℄. The analogous estimates inparti
le physi
s are mu
h more involved [2�4℄. In fa
t, the appli
ability ofthe standard analysis assuming in
oherent produ
tion in parti
le 
ollisionswas questioned re
ently and an alternative approa
h was presented [5℄. Theimplementation of BE e�e
t into Monte Carlo generators modeling multipleprodu
tion is parti
ularly di�
ult, as the symmetrization should be doneat the level of amplitudes and generators deal usually with probabilities.As far as we know there is only one implementation based on the spe
i�
assumptions 
on
erning amplitudes, and it applies only for a single stringfragmentation pro
esses [6℄. The most widely used pro
edure modeling theBE e�e
t in the popular PYTHIA generator [7℄ is based on the pres
riptionfor shifting the �nal state momenta to produ
e an enhan
ement at smallmomentum di�eren
es in the distributions of pairs of identi
al hadrons [8℄.In this pro
edure one �ts the parameters of the �input BE fun
tion�y e-mail: fialkowski�th.if.uj.edu.plz e-mail: wit�th.if.uj.edu.pl (149)



150 K. Fiaªkowski, R. WitF (Q) = 1 + � exp(�Q2R2) ; (1)(assumed to have the same form as the standard parametrization of BEe�e
t) to reprodu
e the experimentally observed e�e
t.There is no simple relation between the values of input parameters � andR and the analogous parameters des
ribing the experimental distribution.There is also no theoreti
al justi�
ation for this pro
edure and it should beregarded as a 
onvenient parametrization, rather than the physi
al des
rip-tion of the BE e�e
t.The alternative approa
h is based on the formalism of Wigner fun
-tions [9℄. One approximates the 
orre
ted distribution as a produ
t of dis-tribution without the BE e�e
t and the weight fun
tion for whi
h a de�nitepres
ription is given [10℄. This allows us to produ
e the distributions withthe BE e�e
t by generating the events without this e�e
t and atta
hing tothem the weights. To 
al
ulate these weights one must adopt several sim-plifying assumptions [10℄ (and hope they do not destroy the validity of theformulae). Finally one must assume the form of �two parti
le weight fa
tor�and �t its parameters to des
ribe 
orre
tly the data.Super�
ially, there is a marked similarity between these two approa
hes.In both 
ases the form of an �input fun
tion� is assumed and its parametersshould be �tted to des
ribe the data. However, there are also 
lear di�er-en
es. Whereas the �momentum shifting method� has no theoreti
al justi-�
ation, it has two free parameters (plus a few hidden parameters de�ningthe 
hoi
e of momenta to be shifted, whi
h a�e
t the results rather mildly)and is quite easy to apply. Sin
e all generated events are used, neither themultipli
ity distributions nor, e.g., the de
ay 
hannel probabilities in Z0 de-
ay are a�e
ted by shifting. There seems to be no need to 
hange the valuesof the generator parameters �tted to the data before taking the BE e�e
tinto a

ount.On the other hand, the weight method is quite well justi�ed (grant-ing that simplifying assumptions are not too rough), but there are manyte
hni
al problems with its use. Some of them have been solved: prohibitivein
rease of 
omputational time with multipli
ity may be avoided by a proper
lustering pro
edure for �nal state momenta [11℄ and the distortion of themultipli
ity distribution may be removed by simple res
aling of weights de-pending on the event multipli
ity [12℄. Obviously, the weights may in prin-
iple a�e
t other distributions whi
h were �tted to data without taking theBE e�e
t into a

ount. Thus the proper pro
edure would be to re�t allthe generator parameters 
omparing the weighted results with data. How-ever, if the res
aling guarantees that average weight is equal to one for ea
hwell de�ned 
lass of events (e.g. in ea
h Z0 de
ay 
hannel), the 
hanges indistributions should be minor.
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t 151Another notorious te
hni
al problem for weight methods is the insta-bility of results due to the long tail of very high weight values. Usuallyit requires some arbitrary 
ut, but for su�
iently high number of gener-ated events the e�e
ts of this 
ut are not very signi�
ant. Finally, thereis a problem of sele
ting the parti
les, whose momenta are used to 
al
u-late weights and a problem of proper 
hoi
e of �two parti
le weight fa
tor�and its parametrization (re�e
ting somehow the shape and the size of theprodu
tion sour
e).In this paper we dis
uss the solutions to the last two problems presentingthe MC results for the BE e�e
t in the hadroni
 de
ay of Z0 and 
omparingthem with some data. We 
onsider only the distributions in the invariantfour momentum di�eren
e Q2 = �(p1 � p2)2: (2)The e�e
t of anisotropy in various 
omponents of Q [13℄ was dis
ussed else-where [14℄.The following 
hapter 
ontains the dis
ussion of possible parti
le sele
-tions and the in�uen
e of various MC parameters. The e�e
ts of di�erentforms of two parti
le weight fun
tions (
onsidered already in the earlier pa-per [15℄) are presented in the third 
hapter. The last 
hapter presents the
omparison with some data and 
on
lusions. It should be stressed that wedis
uss only the standard pres
ription for weights justi�ed by the Wignerfun
tion formalism [9,10℄. Other proposals [12,16,17℄ should be regarded asviable versions of the weight method only if it is shown that they reprodu
eapproximately the results obtained for this pres
ription.2. Parti
le sele
tion and MC parametersBefore dis
ussing the details of the MC pro
edure implementing the BEe�e
t we should de
ide whi
h distribution will be used to present this e�e
t.The standard quantity 
alled �the BE ratio� is de�ned asRBE(Q) = �2(Q)�02(Q) ; (3)where Q2 was de�ned above (2) and the numerator and denominator repre-sent the identi
al two-parti
le distribution with and without the BE e�e
t,respe
tively. Obviously, this de�nition requires a more pre
ise formulationof how we shall de�ne the denominator.In the experimental de�nition of the BE ratio one uses often the distri-bution of unlike sign pion pairs but this requires 
utting o� the resonan
ee�e
ts. Thus re
ently it is preferred to use the pairs of identi
al pions fromdi�erent events



152 K. Fiaªkowski, R. WitRBE(Q) = CBE2 (Q) � �2(Q)�1 
 �1(Q) ; (4)where the denominator is a 
onvolution of single distributions�1 
 �1(Q) = Z �1(p1)�1(p2)Æ �Q2 + (p1 � p2)2� d3p1d3p2 : (5)This 
hoi
e of the denominator has other �aws (i.e. it removes all 
orrela-tions, and not only the BE e�e
t). Therefore, one uses often double ratios,dividing the experimental ratio by an analogous ratio of distributions fromMC generator (without the BE e�e
t)R0BE(Q) = CBE2 (Q)CMC2 (Q) : (6)For the MC generated events the simplest 
hoi
e is just to run MC withoutthe pro
edure implementing the BE e�e
tRMCBE (Q) = �MC;BE2 (Q)�MC2 (Q) : (7)Obviously if in the experimental investigation a double ratio is used, it seemsmore proper to 
al
ulate for 
omparison an analogous double ratio from MCevents R0MCBE (Q) = CMC;BE2 (Q)CMC2 (Q) : (8)Fortunately the di�eren
e between R0MCBE (Q) and RMCBE (Q) is often in-signi�
ant. This is illustrated in Fig. 1, where we show both ratios 
al
ulatedfor pion pairs from Z0 de
ays using the weight method with the Gaussiantwo-parti
le weight fa
torw2(p1; p2) = exp�� (p1 � p2)22� � ; (9)with � = 0:05GeV2.Here, as in all the later �gures:� one million of events was generated by the PYTHIA 6.2 generator [7℄,� the ba
kground distributions were 
onstru
ted using pairs from di�er-ent events; four million pairs of events were used for this purpose,� the BE ratios were normalized to approa
h smoothly the value of oneat Q ex
eeding 1GeV.
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Fig. 1. Comparison of the ratio of Q distributions (7) with and without weights(squares) with double ratio of spe
trum-to-ba
kground ratios (8) with and withoutweights (stars).For 
ompleteness, let us remind here that the two-parti
le weight fa
toris related to the full weight 
al
ulated for ea
h event by a formula [10℄W (p1; :::; pn) =X nYi=1w2(pi; pP (i)) ; (10)where the sum extends over all permutations of n elements. More pre
isely,the event weight is a produ
t of su
h sums 
al
ulated for all kinds of identi
albosons registered by the dete
tors (in pra
ti
e it is enough to 
ount onlypositive and negative pions).This formula suggests that the � parameter in formula (9) is the onlyfree parameter in the method. This would be, however, an oversimpli�
ation.The 
al
ulation of the full sum over permutations is pra
ti
ally impossiblefor the number of identi
al pions ex
eeding twenty [18℄. Thus we de�nethe 
lusters of pions �
lose to ea
h other� in the phase spa
e and sum overpermutations within 
lusters only. To make the results independent on the
luster de�nition we have to 
hoose the value of the relevant parameter �mu
h bigger than �. The details of this pro
edure have been des
ribedelsewhere [11℄.Moreover, if the two parti
le weight fa
tor is interpreted as a Fouriertransform of the spa
e-time distribution of pairs of pions, it seems justi�edto use a 
ommon shape of this fa
tor only for pairs of �dire
t� pions.



154 K. Fiaªkowski, R. WitThe de
ay produ
ts of long living parti
les and resonan
es are born faraway from the original sour
e and the 
orresponding two-parti
le weight fa
-tor for pairs in
luding these de
ay produ
ts would be 
lose to the Dira
 deltafun
tion, 
ontributing negligibly to the �nal event weight. The same rea-soning was presented by Sjöstrand [7℄ who 
hoose 20MeV as a limit de�ning�long living� resonan
es and performed the momentum shift only for pionsprodu
ed dire
tly and the de
ay produ
ts of broader resonan
es.This suggests that we should 
al
ulate the event weight in
luding in thesum only �dire
t� pions de�ned in a similar way. To avoid the 
hanges of theoriginal Monte Carlo pro
edures (whi
h was the 
ase for Sjöstrand PYBOEIpro
edure, 
alled internally from the generator before the de
ay of �longliving� resonan
es and parti
les), we form a table of momenta for �dire
t�pions de�ned in various ways and use this table for the weight 
al
ulation.We found that the modi�
ations of the original width limit of 20MeV areirrelevant as long as we do not in
lude the ! de
ay produ
ts in the weight
al
ulations. In
luding ! de
ay produ
ts enhan
es strongly the BE ratio, asshown in Fig. 2 for the Z0 de
ay.
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Fig. 2. Comparison of the ratio of Q distributions with and without weights (7) forweights 
al
ulated ex
luding (squares) and in
luding (diamonds) ! de
ay produ
ts.To justify the 
hoi
e of the width limit let us require that the �dire
t�pion and the pion from ! de
ay have approximately the same momenta. Themaximal momentum of a pion in the de
ay of ! at rest is about 300MeV=
,and the most likely value is of the order of 100MeV=
. This allows toestimate that the distan
e between �birth points� of su
h pions is of the orderof 10 fm and the 
orresponding width in momentum spa
e should be about



Parameters in Weight Cal
ulations for the BE E�e
t 15520MeV, smaller than the typi
al resolution. This suggests that the de
ayprodu
ts of ! (as well as the de
ay produ
ts of narrower resonan
es andother unstable parti
les) should not be taken into a

ount when 
al
ulatingweights.However, this argument has some �aws. First, the BE ratio is de�ned asa fun
tion of Q2 and not of the three-momentum squared (thus it re�e
tsthe spa
e-time and not just the spa
e stru
ture of sour
e). Se
ond, thedistribution of the de
ay length is not Gaussian. Thus we should not expe
ta Gaussian shape of the weight fa
tor. Finally, ex
luding the de
ay produ
tsof narrow resonan
es is a very rough pro
edure; a better solution would be touse di�erent two-parti
le weight fa
tors for di�erent pairs of pions (dire
t�dire
t, dire
t�resonan
e and resonan
e�resonan
e). Let us add that all thisestimate is 
lassi
al and does not take into a

ount the possible quantume�e
ts. Thus we should not treat the 
hoi
e of �dire
t� pions ex
luding the! de
ay produ
ts as de�nite. In fa
t, the un
ertainty of this 
hoi
e seemsto be the biggest un
ertainty of the weight method. If ne
essary, it may beused to improve the des
ription of the BE e�e
t if the observed values of theBE ratio at small Q2 are high.The other free parameters of the PYTHIA generator may also in�uen
ethe weights and the resulting BE ratio. An example of this e�e
t is shownin Fig. 3 where we 
ompare the results for default values of PYTHIA pa-rameters and for the values �tted to the L3 data [13℄. Let us stress that the
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Fig. 3. Comparison of the ratio of Q distributions with and without weights (7) forweights 
al
ulated using default PYTHIA parameters (squares) and L3 parameters(
ir
les).
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hoi
e of �dire
t� pions (ex
luding the ! de
ay produ
ts) and the value of �parameter are the same in both 
ases, but the results are visibly di�erent.This is probably mainly due to the suppression of � and �0 mesons for theL3 parameters.Finally, let us 
he
k the dependen
e of the results on the value of the� parameter. Until now we were using the value of 0.05GeV2 whi
h 
or-responds to the average Gaussian sour
e size of the order of 1 fm. InFig. 4 we 
ompare the results (with L3 parameters) for � = 0:05GeV2and � = 0:07GeV2. We see that by in
reasing � (whi
h 
orresponds toa de
reasing sour
e size) we in
rease the width of �BE peak� and slightlyin
rease its height.
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Fig. 4. Comparison of the ratio of Q distributions with and without weights (7)for L3 parameters with weights 
al
ulated using � = 0:05GeV2 (
ir
les) and� = 0:07GeV2(triangles).A notorious problem of the weight method is a possible distortion of var-ious distributions (�tted previously to data) by the introdu
tion of weights.First su
h a distortion was observed for the multipli
ity distribution wherethe probabilities of high multipli
ities were enhan
ed by weights. This was
ured by res
aling the weights with a fa
tor C�n [12℄ where n is a 
hargeparti
le multipli
ity (measured in experiment). The values of parameters Cand � are �tted to restore the original values of n and the original normal-ization. With this method the weights 
ause only a moderate in
rease of thedispersion of the multipli
ity distribution.The weights in�uen
e also the single parti
le momentum distribution,redu
ing slightly the width, but these e�e
ts are not very signi�
ant. Moreimportant is the 
hange in the Q2 distribution of unlike sign pairs of pions, as
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t 157shown in Fig. 5. A similar e�e
t was observed for Sjöstrand's implementationmethod of the BE e�e
t. It should be noted, however, that by in
luding the! de
ay produ
ts in the weight 
al
ulation we in
rease the R ratio for unlikesign pion pairs by a few per
ent only, whereas the ratio for like sign pairsin
reased by about 50%, as shown in Fig. 2. Thus it is possible to des
ribea big BE e�e
t without distorting seriously the distribution for unlike signpairs.
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Fig. 5. Comparison of the ratio of Q distributions (7) with and without weightsfor unlike sign pairs of pions. Weights are 
al
ulated using L3 parameters with� = 0:07GeV2 ex
luding ! de
ay produ
ts (triangles) and using default parameterswith � = 0:05GeV2 in
luding ! de
ay produ
ts (diamonds).3. Choi
e of the two parti
le weight fa
torIn the former se
tion we used always the Gaussian two-parti
le weightfa
tor (9). Obviously, there is no reason why all the spa
e�time and momen-tum distributions should be des
ribed by su
h simple fun
tions. However,if we restri
t ourselves to the monotoni
ally de
reasing weight fa
tors nor-malized to one at Q2 = 0, it is easy to show that the Gaussian 
hoi
e resultsin a 
urve whi
h is the smoothest one and resembles the data best. This isdemonstrated in Fig. 6 where we 
ompare the results obtained for the defaultPYTHIA parameters for the Gaussian weight fa
tor (9) with � = 0:05GeV2and for two other 
hoi
es of the weight fa
tor:� step-like w2(p1; p2) = � �(p1 � p2)2 + �� ; (11)with the same value of �



158 K. Fiaªkowski, R. Wit� exponential w2(p1; p2) = exp�� p�(p1 � p2)22p� � ; (12)with � = 0:03GeV2.
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Fig. 6. Comparison of the ratio of Q distributions (7) for default PYTHIA param-eters and three di�erent 
hoi
es of two-parti
le weight fa
tor: Gaussian (
rosses),step-like (solid line) and exponential (diamonds).We see 
learly that the shape of the obtained BE ratio re�e
ts the shapeof the two-parti
le weight fa
tor. This may be written as an approximaterelation RBE(�(p1 � p2)2) � 1 + 
w2(p1; p2) ; (13)where the value of 
 depends on the shape of the weight fa
tor and thesele
tion of parti
les used in the weight 
al
ulations.Let us note that the Gaussian parametrization is unlikely to des
ribe thedata where the distribution of the spa
e�time distan
e between the �birthpoints� of two pions is more 
ompli
ated. This is the 
ase for the four jetde
ay of W+W� �nal states if two pions originate from two W . There it isunjusti�ed to expe
t monotoni
ally de
reasing and normalized two-parti
leweight fa
tors. However, for the Z0 de
ay the parametrization (9) seems tobe the appropriate one.
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t 1594. Comparison with data, 
on
lusionsWe will not attempt here a detailed �t to any published data. Thereare many reasons for this reservation. First, as we have already mentioned,di�erent experiments use di�erent de�nitions of the referen
e sample in thedenominator of the BE ratio. Thus the �t quality may depend on manyfa
tors not related to the pro
edure implementing the BE e�e
t (e.g., theresonan
e e�e
ts and other 
orrelations). Se
ond, the published data in
ludeusually the a

eptan
e 
orre
tions whi
h are di�
ult to re
onstru
t in our
al
ulations. In fa
t, the Monte Carlo parameters should be also �tted to theparti
ular set of data before implementing the BE e�e
t. As shown in Se
. 2there is a di�eren
e between the results obtained using default PYTHIAparameters and the parameters used by the L3 
ollaboration.Therefore, we want to make only a semi-quantitative 
omparison betweenthe results from our pro
edure and some high statisti
s data. To this purposewe use the re
ent L3 data shown as the referen
e sample in the paper devotedto the analysis of the WW de
ay [19℄. We 
ompared them with various MCresults shown in previous se
tions, res
aled with arbitrary 
onstants to agreewith data at Q2 > 1GeV2. We found that the modeled BE e�e
t is toosmall 
ompared with the data unless we in
lude the ! de
ay produ
ts forthe weight 
al
ulation. We show the 
omparison in Fig. 7 for two 
hoi
es ofthe � parameter in the weight fa
tor (9). Normalization of both 
urves was
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Fig. 7. Comparison of the ratio of Q distributions for L3 parameters (7) with� = 0:04 (solid line) and � = 0:03 (broken line) with the L3 data (stars).



160 K. Fiaªkowski, R. Witadjusted to �t the data. We see that the data are qualitatively des
ribed bythe PYTHIA MC with our implementation of the BE e�e
t. One should notexpe
t a good quantitative �t to the data for any single value of �; as alreadynoted, one 
ould use at least di�erent values of this parameter (and, evenbetter, di�erent shapes of w2) for pairs of pions of di�erent origin. Then,however, the number of free parameters would in
rease making the su

essof the �tting pro
edure rather trivial.To summarize, we have dis
ussed the freedomof the weight method forimplementing theBE e�e
t into MonteCarlo generators. Wehave shown thatthis freedom seems to be su�
ient to des
ribe the data. For pions 
omingfrom a single sour
e whi
h may be parametrized with a Gaussian distribu-tion, there are three steps for 
hoosing the weight method parameters:1. One should de
ide whi
h ratio (Eq. (4) or (6)) is used to display the BEe�e
t and to 
al
ulate the analogous ratio from the MC with weights(Eq. (7) or (8)).2. One should 
hoose the sele
tion 
riterion for pions used to 
al
ulateweights. The typi
al 
hoi
e 
orresponds to using dire
t pions andde
ay produ
ts of broad resonan
es, � > 20MeV (as in Sjöstrand'smethod).3. One should sele
t a proper value of the parameter � in (9).Te
hni
ally, our algorithm 
ontains four Fortran pro
edures:� LWBOEI, where for ea
h event the �dire
t� pions are sele
ted and theirmomenta are stored in the tables,� KLASKF, where pions of one sign are assigned to 
lusters,� PERCJE, where a weight fa
tor from ea
h 
luster is 
al
ulated,� CLUSWAGI, where the full event weight is 
al
ulated as a produ
t ofweight fa
tors from all 
lusters and all pion signs.All these pro
edures are available at request from us, together with a sampleprogram 
alling the PYTHIA 6.2 generator and 
omparing the weighted andunweighted distributions for hadroni
 Z0 de
ays. A modi�
ation of this pro-gram for other pro
esses or other MC generators would be straightforward.One should also remember that after the introdu
tion of weights oneshould res
ale them by a C�n fa
tor to restore the original normalizationand average multipli
ity. This, however, does not in�uen
e signi�
antly theshapes of the BE ratios.
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ulations for the BE E�e
t 161To des
ribe the pro
ess in whi
h pions originate from two or more in-dependent sour
es (as the e+e� ! W+W� pro
ess with double hadroni
de
ay of W ) one needs a more elaborate pro
edure. Di�erent forms of thew2 fa
tor should be used for pairs 
oming from the same and from di�erentsour
es. This will be dis
ussed in detail elsewhere.We are grateful to A. Kota«ski for reading the manus
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