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EXPLICIT SEESAW MODELAND DEFORMED FERMION UNIVERSALITY�Woj
ie
h KrólikowskiInstitute of Theoreti
al Physi
s, Warsaw UniversityHo»a 69, 00�681 Warszawa, Poland(Re
eived August 21, 2002)In the simple model of neutrino texture presented in this paper, theMajorana lefthanded mass matrix is zero, the Majorana righthanded massmatrix � diagonal and degenerate, and the Dira
 mass matrix has a hi-erar
hi
al stru
ture, deformed unitarily by nearly bimaximal mixing. Inthe 
ase, when the Majorana righthanded term dominates over the Dira
term, the familiar seesaw me
hanism leads e�e
tively to the nearly bimax-imal os
illations of a
tive neutrinos, 
onsistent with solar and atmospheri
neutrino experiments. If the Dira
 term, before its unitary deformation,is similar in shape to the known 
harged-lepton mass matrix, then pa-rameters for solar �e's and atmospheri
 ��'s be
ome related to ea
h other,predi
ting from the SuperKamiokande value of �m232 a tiny �m221 typi
alfor MSW LOW solar solution rather than for MSW Large Mixing Anglesolution. The predi
ted mass spe
trum is then hierar
hi
al. In Appendixa suggestive form of nearly bimaximal e�e
tive mass matrix is derived.PACS numbers: 12.15.Ff, 14.60.Pq, 12.15.Hh.1. Introdu
tionThe popular, nearly bimaximal form of mixing matrix for three a
tiveneutrinos �eL, ��L, ��L [1℄,U = 0� 
12 s12 0�s12
23 
12
23 s23s12s23 �
12s23 
23 1A ; (1)� Work supported in part by the Polish State Committee for S
ienti�
 Resear
h (KBN),grant 5 P03B 119 20 (2001�2002). (163)



164 W. Królikowskiarises from its generi
 shape à la Cabibbo�Kobayashi�Maskawa [2℄ by puttings13=0 and 
12; s12; 
23; s23 not so far from 1=p2(
ij=
os �ij and sij=sin �ij).As is well known, this form is globally 
onsistent with neutrino os
illation ex-periments [3℄ for solar �e's and atmospheri
 ��'s as well as with the negativeChooz experiment for rea
tor ��e's. It 
annot explain, however, the possi-ble LSND e�e
t for a

elerator ���'s that, if 
on�rmed by the MiniBooNEexperiment, may require the existen
e of one, at least, extra (sterile) lightneutrino �sL (di�erent, in general, from the 
onventional sterile neutrinos(�eR)
; (��R)
; (��R)
).The neutrino mixing matrix U = (U�i) de�nes the unitary transforma-tion ��L =Xi U�i�iL (2)between the a
tive-neutrino �avor and mass �elds, ��L (� = e; �; �) and�iL (i = 1; 2; 3), respe
tively. In the �avor representation, where the
harged-lepton mass matrix is diagonal, it is at the same time the diago-nalizing matrix for the neutrino mass matrix M = (M��),U yMU = diag(m1; m2; m3) ; (3)where m1; m2; m3 denote neutrino masses (real numbers). Two possibleMajorana phases in M are assumed to be zero. Then,M = U diag(m1 ; m2 ; m3)U y ; (4)leading in the 
ase of form (1) of U to the following mass matrix elements:Mee = m1
212 +m2s212 ;M�� = �m1s212 +m2
212� 
223 +m3s223 ;M�� = �m1s212 +m2
212� s223 +m3
223 ;Me� = �(m1 �m2)
12s12
23 =M�e ;Me� = (m1 �m2)
12s12s23 =M�e ;M�� = �(m1s212 +m2
212 �m3)
23s23 =M�� : (5)Here, M� =M and MT =M .For the nearly bimaximal form (1) of U the following popular neutrinoos
illation probabilities hold (in the va
uum):
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12s12)2 sin2(x21)sol ;P (�� ! ��)atm = 1� (2
23s23)2 �s212 sin2(x31)atm + 
212 sin2(x32)atm�' 1� (2
23s23)2 sin2(x32)atm ;P (��� ! ��e)LSND = (2
12s12)2
223 sin2(x21)LSND ' 0 ;P (��e ! ��e)Chooz = 1� (2
12s12)2 sin2(x21)Chooz ' 1 ; (6)where �m221 � �m232 ' �m231 andxji = 1:27�m2jiLE ; �m2ji = m2j �m2i (i; j = 1; 2; 3) (7)(�m2ji, L and E are measured in eV2, km and GeV, respe
tively). Here,U� = U and UT = U y = U�1, thus the possible CP violation in neutrinoos
illations is ignored. The fourth of these formulae is 
onsistent with thenegative Chooz experiment and the third ex
ludes the LSND e�e
t.Experimental estimations for solar �e's and atmospheri
 ��'s, based onthe MSW versions of the �rst and se
ond formulae (6), are �12�(33Æ or 40Æ),j�m221j � (5:5 � 10�5 or 7:3 � 10�8) eV2 [4℄ and �23 � 45Æ, j�m232j �2:7� 10�3 eV2 [5℄, respe
tively. For solar �e's they 
orrespond to the MSWLarge Mixing Angle solution or MSW LOW solution, respe
tively, of whi
hthe �rst is favored. The mixing angles �12 and �23 give 
12 � (1:2=p2 or1:1=p2), s12 � (0:77=p2 or 0:91=p2) and 
23 � 1=p2 � s23. The mass-squared di�eren
es are hierar
hi
al, �m221 � �m232 ' �m231, while the massspe
trum may be either hierar
hi
al, m21 < m22 � m23 with �m232 ' m23, ornearly degenerate, m21 ' m22 ' m23 with �m221 � m22 and �m232 � m23(here, the ordering m21 � m22 � m23 is used). If m1 ! 0, then the option ofhierar
hi
al spe
trum is true (in spite of nearly bimaximal neutrino mixingexpressed by Eq. (1)). The possibility of m1 ! 0 is suggested in Se
. 4.The rate of neutrino-less double � de
ay (allowed only in the 
ase ofMajorana-type �eL) is proportional to m2ee, where mee � jPi U2eimij =
212jm1j + s212jm2j � (0:70jm1j + 0:30jm2j or 0:59jm1j + 0:41jm2j) and sojm1j � mee � jm2j (in our argument Ue3 = 0 exa
tly). The suggestedexperimental upper limit for mee is mee . (0:35 � 1) eV [6℄. If the a
tualmee lay near its upper limit, then the option of nearly degenerate spe
trum(with hierar
hi
al mass-squared di�eren
es) would be suggested.



166 W. Królikowski2. Four-parameter nearly bimaximal textureIn 
onsisten
y with the SuperKamiokande data [5℄ we 
an put 
23=1=p2= s23. Then, in the neutrino mixing and mass matri
es, (1) and (4), thereare only four independent parameters m1; m2; m3 and s12 leading throughEqs. (5) to four independent matrix elementsMee = m1
212 +m2s212 ;M�� = M�� = 12(m1s212 +m2
212 +m3) ;Me� = �Me� = � 1p2(m1 �m2)
12s12 ;M�� = �12 �m1s212 +m2
212 �m3� : (8)Hen
e,Mee+M���M�� = m1+m2,Mee�M��+M�� = (m1�m2) (
212�s212)and (Mee �M�� +M�� )2 + 8M2e� = (m1 �m2)2.In this 
ase, the neutrino mass spe
trum and mixing 
an be expressed byfour independent parameters [7,8℄. Taking as the independent parametersthe matrix elements (8) we obtain exa
tly [7℄m1;2 = m1 +m22 � jm1 �m2j2= Mee +M�� �M��2 �s�Mee �M�� +M��2 �2 + 2M2e� ;m3 = M�� +M�� ; (9)if m2 � m1 � 0 (both for positive or negative m1 and m2). Signs � arerepla
ed here by �, if m1 �m2 � 0. For the mixing angle �12 we getsin2 2�12 = (2
12s12)2 = 8M2e�(Mee �M�� +M�� )2 + 8M2e� ; (10)where sin 2�12 > 0 if 
12s12 > 0. The formulae (9) and (10) provide uswith an inversion of Eqs. (8). At the end of Se
. 5 we 
ome ba
k to theseformulae. 3. Expli
it seesawAssume now that M is the e�e
tive neutrino Majorana mass matrix fora
tive neutrinos, arising by means of the familiar seesaw me
hanism [9℄ fromthe generi
 6� 6 neutrino mass term
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; ��R� M (L)�� M (D)��M (D)�� M (R)�� !� ��L(��R)
 �+ h:
: (11)in
luding both the a
tive neutrinos ��L and (��L)
 as well as the (
onven-tional) sterile neutrinos ��R and (��R)
 (� = e; �; �). In the seesaw 
ase, theMajorana righthanded mass matrix M (R) = �M (R)�� � is presumed to dom-inate over the Dira
 mass matrix M (D) = �M (D)�� � that in turn dominatesover the Majorana lefthanded mass matrix M (L) = �M (L)�� � whi
h is ex-pe
ted naturally to be zero (as additionally violating the ele
troweak gaugesymmetry in the doublet Higgs 
ase). Then, in the seesaw approximationM = �M (D)M (R)�1M (D)T : (12)Hen
e, through Eq. (4) we infer that�M (D)M (R)�1M (D)T = U diag(m1;m2;m3)U y (13)with U as given in Eq. (1).The seesaw formula (13) gets an expli
it realization in the simple modelof neutrino texture, where we postulate that [10℄M (L) = 0 ;M (D) = U diag(�1; �2; �3)U y ;M (R) = �� diag(1; 1; 1) (14)and then infer that mi = ��2i� ; (i = 1; 2; 3) (15)respe
tively, �i and � being mass-dimensional parameters, su
h that 0��i� �. Thus, in this model, M (D) is a unitary transform (through the nearlybimaximal mixing matrix U) of the diagonal, potentially hierar
hi
al matrixdiag(�1; �2; �3), while M (R) is a diagonal, degenerate matrix. In a slightlymore general model, M (R) may be also a unitary transform (through thesame U) of the diagonal, nearly degenerate matrix diag(�1; �2; �3) with�1 ' �2 ' �3 (what is natural for large �i); then mi = ��2i =�i, where 0 ��i � �i (i = 1; 2; 3). From the se
ond Eq. (14) and Eq. (1) the Dira
 massmatrix M (D) = �M (D)�� � gets analogi
al entries as those given in Eqs. (5) for



168 W. KrólikowskiM = (M��), but with mi repla
ed now by �i =p�jmij (i = 1; 2; 3), wherealso Eqs. (15) are used.We should like to stress that, in the present paper (in parti
ular, in itspart pertaining to the simple neutrino model de�ned through Eq. (14)), thenearly bimaximal mixing matrix U given in Eq. (1) is adopted phenomeno-logi
ally on the ground of neutrino os
illation data, and so, is by no meansderived theoreti
ally. One may spe
ulate that, perhaps, su
h a derivationwould require some new, additional 
on
epts about the nature of 
onne
-tions between neutrinos and 
harged leptons. The idea of deformed fermionuniversality presented in the next se
tion (and, in our opinion, very natural)does not help to explain the experimental appearan
e of nearly bimaximalneutrino mixing, though this idea 
oexists ni
ely with su
h a mixing (in spiteof the hierar
hi
al neutrino mass spe
trum implied by it), sin
e the form (5)of M is 
onsistent with U given in Eq. (1) for any mass spe
trum. However,if the form of M 
ould be a

epted as natural be
ause of some theoreti
alreasons, then the nearly bimaximal mixing matrix U implied by su
h an Mmight also be 
onsidered as justi�ed theoreti
ally. In Appendix, we rewriteM , given as in Eq. (8) with 
23 = 1=p2 = s23, in a suggestive form thatmay help to a

ept it as the neutrino e�e
tive mass matrix.4. Deformed fermion universalityWe �nd very natural the idea that in the se
ond Eq. (14) the originalDira
 mass matrix diag(�1; �2; �3), before it gets its a
tual form M (D) de-formed unitarily by the nearly bimaximal mixing matrix U , is similar inshape to the 
harged-lepton and quark mass matri
es whi
h are also of theDira
 type. To pro
eed a bit further with this idea we will try to 
onje
turethat diag(�1; �2; �3) has a shape analogous to the following 
harged-leptonmass matrix [11℄M (e) = 129 0B� �(e)"(e) 0 00 4�(e) 80+"(e)9 00 0 24�(e) 624+"(e)25 1CA ; (16)whi
h predi
ts a

urately the mass m� =M (e)�� from the experimental valuesof masses me =M (e)ee and m� =M (e)�� treated as an input. In fa
t, we getm� = 1776:80 MeV [11℄ versus mexp� = 1776:99+0:29�0:26 MeV [12℄ and, in addi-tion, determine �(e) = 85:9924 MeV and "(e) = 0:172329. For a theoreti
alba
kground of this parti
ular form ofM (e) the interested reader may 
onsultRef. [13℄. Let us emphasize that the �gures in the mass matrix (16) are not�tted ad usum Delphini.



Expli
it Seesaw Model and Deformed Fermion Universality 169Thus, making use of the neutrino analogueM (�) ofM (e) given in Eq. (16),we put diag(�1; �2; �3) =M (�). Then [10℄,p�jm1j = �1 = �(�)29 "(�) = 0:0345 "(�) �(�) ;p�jm2j = �2 = �(�)29 4(80 + "(�))9 = �1:23 + 0:0153 "(�)� �(�) ;p�jm3j = �3 = �(�)29 24(624 + "(�))25 = �20:7 + 0:0331 "(�)��(�) ; (17)where also Eqs. (15) are invoked. Hen
e, taking "(�) = 0 (already "(e) issmall), we 
al
ulate m21 = 0 ;m22 = 2:26�(�) 4�2 ;m23 = 1:82 � 105�(�) 4�2 (18)and �m221 = m22 = 2:26�(�) 4�2 ;�m232 = m23 �m22 = 1:82 � 105�(�) 4�2 ;�m221�m232 = 1:24 � 10�5 : (19)The neutrino mass spe
trum des
ribed by Eqs. (18) is hierar
hi
al,m21 < m22 � m23, in spite of the appearan
e of nearly bimaximal neu-trino mixing. Using in the se
ond Eq. (19) the SuperKamiokande estimate�m232 � 2:7� 10�3MeV2 [5℄, we get�(�) 2 � 1:2 � 10�4� eV : (20)If taking reasonably �(�) � �(e) = 85:9924 MeV, we obtain from Eq. (20)that � . 6:1 � 1010 GeV. If "(�) � "(e) = 0:172329 (i.e, not ne
essarily"(�) = 0), then m21=m23 � 6:81 � 10�15 from Eq. (17) and so, with m23 �2:7� 10�3 eV2 we estimate m21 . 1:8� 10�17 eV2, thus m21 = 0 pra
ti
ally.Noti
e that �1 =me; �2 = m�; �3 = m� if �(�) = �(e) and "(�) = "(�).



170 W. Królikowski5. Con
lusionsFrom the ratio �m221=�m232 in Eq. (19) and the estimate �m232 �2:7 � 10�3 eV2 we obtain the predi
tion [10℄m22 = �m221 � 3:3� 10�8 eV2 ; (21)whi
h lies not so far from the experimental estimate �m221 � 7:3�10�8 eV2based on the MSW LOW solar solution [4℄, whereas the favored experimen-tal estimation based on the MSW Large Mixing Angle solar solution is mu
hlarger: �m221 � 5:5� 10�5 eV2. So, if really true, the latter ex
ludes drasti-
ally our 
onje
ture (17). Otherwise, this 
onje
ture might be a signi�
antstep forwards in our understanding of neutrino texture, in parti
ular, of thequestion of fermion universality extended to neutrinos.If the predi
tion m21 = 0, m22 � 3:3� 10�8 eV2 and m23 � 2:7� 10�3 eV2were true, then our previous estimate mee � 0:59jm1j + 0:41jm2j of the ef-fe
tive mass of �e in the neutrino-less double � de
ay would give mee �7:5 � 10�5 eV, dramati
ally below the presently suggested experimentalupper limit mee . (0.35 � 1) eV [6℄ (re
all, however, that in our argu-ment Ue3 = 0 exa
tly). In this 
ase, the option of hierar
hi
al mass spe
-trum, m21 < m22 � m23, would be true. This would be true also form22 ' �m221 � 5:5 � 10�5 eV2.When m1 = 0 (as in the 
ase of our 
onje
ture (17) with "(�) = 0), thefour parameters in the mass formula (9) 
an be related to three independentparameters Mee, M�� and M�� , sin
e in this 
ase the �rst Eq. (9) givesM2e� = 12Mee(M�� �M�� ) : (22)Then, from the se
ond and third Eq. (9) we obtainm2 = Mee +M�� �M�� � �1:8 � 10�4 eV ;m3 = M�� +M�� � �5:2� 10�2 eV ; (23)where we use also the estimates m22 � 3:3 � 10�8eV2 and m23 � 2:7 �10�3eV2. Here, as already in Eqs (9) and (15), we allow for positive ornegative neutrino masses. Similarly, when m1 = 0, the formula (10) givessin2 2�12 = 4Mee(M�� �M�� )(Mee +M�� �M�� )2 � (0:84 or 0:97) (24)due to Eq. (22), where also the estimate �12 � (33Æ or 40Æ) is used. Hen
e,s212 =Mee=(Mee+M���M�� ) and 
212 = (M���M�� )=(Mee+M���M�� ).



Expli
it Seesaw Model and Deformed Fermion Universality 171We 
an see from Eqs (15) and (23) that for m1 = 0�21 = 0 ;�22 = ��(Mee +M�� �M�� ) � 1:8� 10�4� eV ;�23 = �(M�� +M�� ) � 5:2 � 10�2� eV ; (25)where �1; �2; �3 and � are mass parameters introdu
ed in Eqs. (14). In oursimple neutrino model de�ned through Eqs. (14), where M (R) is diagonaland degenerate, the formulae (25) express form1 = 0 the seesaw relationshipM (D)M (D)T = �M (R)M , equivalent to Eq. (12) (as M (R)�1 and M (D)
ommute).Finally, let us mention that if, instead of the model of neutrino texturede�ned in Eqs. (14), we had [14℄M (L) = ��diag(1; 1; 1) ;M (D) = U diag(�1; �2; �3)U y ;M (R) = 0 ; (26)then under the assumption of 0 � �i � � we would obtain for a
tiveneutrinos the e�e
tive mass matrix of the formM =M (L) +M (D)M (L)�1M (D)T = U diag(m1;m2;m3)U y (27)with the nearly degenerate mass spe
trum mi = �(� + �2i =�) (i = 1; 2; 3).Here, � � �i, but mu
h less dramati
ally than in the seesaw me
hanismworking in Eqs. (14). In this 
ase, when making the 
onje
ture of deformedfermion universality as it is expressed in Eqs. (17), we would predi
t �m221of the order 10�5 eV2, not very far from the favored experimental estimate5:5� 10�5 eV2 based on the MSW Large Mixing Angle solar solution (now,�(�)2 � 3:2 � 10�6 eV2). The nonzero M (L) given in Eqs. (26) would notbe justi�ed, however, in the doublet Higgs 
ase, sin
e it would additionallyviolate the ele
troweak gauge symmetry in 
ontrast to M (R). In the 
aseof the model (26), os
illations between and into the (
onventional) sterileneutrinos (�eR)
; (��R)
; (��R)
 would be negligible as (�i=�)2. For thesesterile neutrinos the e�e
tive mass matrix would be �M (D)M (L)�1M (D)T,implying the mass spe
trum ��2i =�.Note added in proofIf instead of Majorana neutrinos we had the Dira
 neutrinos i.e.,M = M (D) = U diag(m1;m2;m3)U y, our 
onje
ture of deformed fermionuniversality would imply mi = �i with �i as given on the r.h.s. of Eq. (17)where "(�) 
an be negle
ted. Then, we would predi
t �m221 of the order10�5 eV2, what is not very di�erent from the favored experimental estima-tion 5:5 � 10�5 eV2 based on the MSW Large Mixing Angle solar solution(now, �(�)2 � 6:4 � 10�6 eV2). Is it an argument for the Dira
 nature ofneutrinos?



172 W. KrólikowskiAppendix AA suggestive form of e�e
tive neutrino mass matrixThe neutrino spe
trum (9), valid when 
23 = 1=p2 = s23, 
an be rewrit-ten in the 
ase of 0 � m1 < m2 in the formm1;2 = 0m �Æ ; m3 = 0m +�; (A.1)where 0 < 0m = Mee +M�� �M��2 ;0 < Æ = s�Mee �M�� +M��2 �2 + 2M2e� ;� = M�� +M��� 0m= �Mee +M�� + 3M��2 : (A.2)Then, Eqs. (8) giveMee = 0m � Æ 
os 2�12 ;M�� = M�� = 0m +12�+ 12Æ 
os 2�12 ;Me� = �Me� = 1p2 Æ sin 2�12 ;M�� = �12�� 12Æ 
os 2�12 : (A.3)Thus, with the use of Eqs. (A.3), the e�e
tive mass matrix M = (M��)may be presented as followsM = 0m 0� 1 0 00 1 00 0 1 1A+�0� 0 0 00 12 120 12 12 1A+ Æ0B� � 
os 2�12 1p2 sin 2�12 � 1p2 sin 2�121p2 sin 2�12 12 
os 2�12 �12 
os 2�12� 1p2 sin 2�12 �12 
os 2�12 12 
os 2�12 1CA ; (A.4)where three 
omponent matri
es 
ommute with ea
h other (the produ
tsin two orderings of the se
ond and third matrix vanish). Using the nearlybimaximal mixing matrix U de�ned in Eq. (1), now in the form
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it Seesaw Model and Deformed Fermion Universality 173U = 0B� 
12 s12 0� 1p2s12 1p2
12 1p21p2s12 � 1p2
12 1p2 1CA ; (A.5)with 
23 = 1=p2 = s23, we obtain0� m1 0 00 m2 00 0 m3 1A = U yMU
= 0m 0� 1 0 00 1 00 0 1 1A+�0� 0 0 00 0 00 0 1 1A+Æ0� �1 0 00 1 00 0 0 1A ; (A.6)
onsistently with Eq. (A.1). Naturally, the mass matrix M determines itsdiagonalizing matrix U and the mass spe
trum m1;m2;m3 (here, the mixingmatrix is at the same time the diagonalizing matrix).The form (A.4) of the e�e
tive neutrino mass matrix 
learly suggeststhe full demo
ra
y of �� and �� neutrinos, and of their intera
tions with �eneutrino. These intera
tions are des
ribed by the third 
omponent matrixthat be
omes Æ0B� 0 1p2 � 1p21p2 0 0� 1p2 0 0 1CA ; (A.7)for 
12 ! 1=p2  s12. Correspondingly, Eq. (A.5) and the formula �i =P� U��i��, inverse to Eq. (2), express the full demo
ra
y of �� and �� , andof their mixings with �e, leading to�1 = 
12�e � s12 �� � ��p2 ;�2 = s12�e + 
12 �� � ��p2 ;�3 = �� + ��p2 (A.8)



174 W. Królikowskior �1 = 1p2 ��e � �� � ��p2 � ;�2 = 1p2 ��e + �� � ��p2 � ;�3 = �� + ��p2 (A.9)for 
12 ! 1=p2  s12. In this limit there are two maximal mixings: ��with �� into the superpositions (����� )=p2, and �e with (����� )=p2 into(�e � (�� � �� )=p2)=p2. The above interpretation of M given in Eq. (A.4)is independent of the values of 0m; Æ and �.Making use of the mass-squared di�eren
es�m221 = m22 �m21 = 4 0m Æ ;�m232 = m23 �m22 = 2 0m (�� Æ) +�2 � Æ2 (A.10)following from Eq. (A.1), we 
an write for � > 0Æ = �m2214 0m ; � = � 0m +q( 0m +Æ)2 +�m232 : (A.11)Let us 
onsider two extremal options: (i) Æ ' 0m< �, where 0m' Æ 'p�m221=2 due to the �rst Eq. (A.11) and� = � 0m +p�m221 +�m232 fromthe se
ond and �rst Eqs. (A.11), and (ii) Æ � �� 0m , where Æ = �m221=4 0mand � ' Æ +�m232=2 0m from Eqs. (A.11). Here, �m221 � �m232 from theexperiment.In the option (i), taking the experimental estimates �m221 � (5:5�10�5or 7:3� 10�8 eV2) and �m232 � 2:7� 10�3 eV2, we obtain0m ' Æ ' 12q�m221 � �3:7 � 10�3 or 1:4 � 10�4� eV ;� ' q�m232� 0m� (4:8 or 5:2) � 10�2 eV (A.12)and hen
e, the mass spe
trumm1 ' 0 ;m2 ' 2 0m � �7:4� 10�3 or 2:7� 10�4� eV ;m3 = 0m +� � 5:2� 10�2 eV ; (A.13)



Expli
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hi
al, 0 ' m21 < m22 � m23 (here, m22=m23 � (2:0 � 10�2 or2:7 � 10�5)).In the option (ii), with the same estimates for �m221 and �m232 we getÆ ' �m2214 0m � �1:4 � 10�5 or 1:8 � 10�8� eV20m ;� ' �m2322 0m � 1:4� 10�3 eV20m (A.14)and then, the mass spe
trumm1 ' 0m;m2 ' 0m;m3 = 0m +� � 0m +1:4� 10�3 eV20m ; (A.15)whi
h is nearly degenerate, 0m' m1 ' m2 ' m3, if 0m� 1:4�10�3 eV2= 0m(in this 
ase, also 0m 2 ' m21 ' m22 ' m23, of 
ourse). For instan
e, if0m� 1 eV, then Æ � (1:4� 10�5 or 1:8� 10�8) eV and � � 1:4� 10�3 eV, sothat Æ � �� 0m .The 
onje
ture of deformed fermion universality, dis
ussed in Se
. 4 and
on
luded in Se
. 5, may work in the 
ase of option (i) (though it is notobligatory), but it 
annot be applied in the 
ase of option (ii). This is true inour seesaw model given in Eq. (14). In the �antiseesaw� model as presentedin Eq. (26), the situation is reversed.When applying to the option (i) the 
onje
ture of deformed fermionuniversality (with "(�) = 0) and making use of the estimate �m232 � 2:7 �10�3 eV2 leading to �m221 � 3:3� 10�8 eV2, Eq. (21), we obtain0m = Æ = 12q�m221 � 0:91� 10�4 eV ;� ' q�m232� 0m� 5:2 � 10�2 eV ; (A.16)in pla
e of Eq. (A.12). This new value for 0m= Æ is a predi
tion lying notso far from the former value 1:4 � 10�4 eV of 0m= Æ following from theestimation �m221 � 7:3� 10�8 eV2 based on the MSW LOW solar solution.



176 W. KrólikowskiThen, m1 = 0 ;m2 = 2 0m�1:8 � 10�4 eV ;m3 = 0m+� � 5:2 � 10�2 eV ; (A.17)in pla
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