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EXPLICIT SEESAW MODELAND DEFORMED FERMION UNIVERSALITY�Wojieh KrólikowskiInstitute of Theoretial Physis, Warsaw UniversityHo»a 69, 00�681 Warszawa, Poland(Reeived August 21, 2002)In the simple model of neutrino texture presented in this paper, theMajorana lefthanded mass matrix is zero, the Majorana righthanded massmatrix � diagonal and degenerate, and the Dira mass matrix has a hi-erarhial struture, deformed unitarily by nearly bimaximal mixing. Inthe ase, when the Majorana righthanded term dominates over the Diraterm, the familiar seesaw mehanism leads e�etively to the nearly bimax-imal osillations of ative neutrinos, onsistent with solar and atmospherineutrino experiments. If the Dira term, before its unitary deformation,is similar in shape to the known harged-lepton mass matrix, then pa-rameters for solar �e's and atmospheri ��'s beome related to eah other,prediting from the SuperKamiokande value of �m232 a tiny �m221 typialfor MSW LOW solar solution rather than for MSW Large Mixing Anglesolution. The predited mass spetrum is then hierarhial. In Appendixa suggestive form of nearly bimaximal e�etive mass matrix is derived.PACS numbers: 12.15.Ff, 14.60.Pq, 12.15.Hh.1. IntrodutionThe popular, nearly bimaximal form of mixing matrix for three ativeneutrinos �eL, ��L, ��L [1℄,U = 0� 12 s12 0�s1223 1223 s23s12s23 �12s23 23 1A ; (1)� Work supported in part by the Polish State Committee for Sienti� Researh (KBN),grant 5 P03B 119 20 (2001�2002). (163)



164 W. Królikowskiarises from its generi shape à la Cabibbo�Kobayashi�Maskawa [2℄ by puttings13=0 and 12; s12; 23; s23 not so far from 1=p2(ij=os �ij and sij=sin �ij).As is well known, this form is globally onsistent with neutrino osillation ex-periments [3℄ for solar �e's and atmospheri ��'s as well as with the negativeChooz experiment for reator ��e's. It annot explain, however, the possi-ble LSND e�et for aelerator ���'s that, if on�rmed by the MiniBooNEexperiment, may require the existene of one, at least, extra (sterile) lightneutrino �sL (di�erent, in general, from the onventional sterile neutrinos(�eR); (��R); (��R)).The neutrino mixing matrix U = (U�i) de�nes the unitary transforma-tion ��L =Xi U�i�iL (2)between the ative-neutrino �avor and mass �elds, ��L (� = e; �; �) and�iL (i = 1; 2; 3), respetively. In the �avor representation, where theharged-lepton mass matrix is diagonal, it is at the same time the diago-nalizing matrix for the neutrino mass matrix M = (M��),U yMU = diag(m1; m2; m3) ; (3)where m1; m2; m3 denote neutrino masses (real numbers). Two possibleMajorana phases in M are assumed to be zero. Then,M = U diag(m1 ; m2 ; m3)U y ; (4)leading in the ase of form (1) of U to the following mass matrix elements:Mee = m1212 +m2s212 ;M�� = �m1s212 +m2212� 223 +m3s223 ;M�� = �m1s212 +m2212� s223 +m3223 ;Me� = �(m1 �m2)12s1223 =M�e ;Me� = (m1 �m2)12s12s23 =M�e ;M�� = �(m1s212 +m2212 �m3)23s23 =M�� : (5)Here, M� =M and MT =M .For the nearly bimaximal form (1) of U the following popular neutrinoosillation probabilities hold (in the vauum):



Expliit Seesaw Model and Deformed Fermion Universality 165P (�e ! �e)sol = 1� (212s12)2 sin2(x21)sol ;P (�� ! ��)atm = 1� (223s23)2 �s212 sin2(x31)atm + 212 sin2(x32)atm�' 1� (223s23)2 sin2(x32)atm ;P (��� ! ��e)LSND = (212s12)2223 sin2(x21)LSND ' 0 ;P (��e ! ��e)Chooz = 1� (212s12)2 sin2(x21)Chooz ' 1 ; (6)where �m221 � �m232 ' �m231 andxji = 1:27�m2jiLE ; �m2ji = m2j �m2i (i; j = 1; 2; 3) (7)(�m2ji, L and E are measured in eV2, km and GeV, respetively). Here,U� = U and UT = U y = U�1, thus the possible CP violation in neutrinoosillations is ignored. The fourth of these formulae is onsistent with thenegative Chooz experiment and the third exludes the LSND e�et.Experimental estimations for solar �e's and atmospheri ��'s, based onthe MSW versions of the �rst and seond formulae (6), are �12�(33Æ or 40Æ),j�m221j � (5:5 � 10�5 or 7:3 � 10�8) eV2 [4℄ and �23 � 45Æ, j�m232j �2:7� 10�3 eV2 [5℄, respetively. For solar �e's they orrespond to the MSWLarge Mixing Angle solution or MSW LOW solution, respetively, of whihthe �rst is favored. The mixing angles �12 and �23 give 12 � (1:2=p2 or1:1=p2), s12 � (0:77=p2 or 0:91=p2) and 23 � 1=p2 � s23. The mass-squared di�erenes are hierarhial, �m221 � �m232 ' �m231, while the massspetrum may be either hierarhial, m21 < m22 � m23 with �m232 ' m23, ornearly degenerate, m21 ' m22 ' m23 with �m221 � m22 and �m232 � m23(here, the ordering m21 � m22 � m23 is used). If m1 ! 0, then the option ofhierarhial spetrum is true (in spite of nearly bimaximal neutrino mixingexpressed by Eq. (1)). The possibility of m1 ! 0 is suggested in Se. 4.The rate of neutrino-less double � deay (allowed only in the ase ofMajorana-type �eL) is proportional to m2ee, where mee � jPi U2eimij =212jm1j + s212jm2j � (0:70jm1j + 0:30jm2j or 0:59jm1j + 0:41jm2j) and sojm1j � mee � jm2j (in our argument Ue3 = 0 exatly). The suggestedexperimental upper limit for mee is mee . (0:35 � 1) eV [6℄. If the atualmee lay near its upper limit, then the option of nearly degenerate spetrum(with hierarhial mass-squared di�erenes) would be suggested.



166 W. Królikowski2. Four-parameter nearly bimaximal textureIn onsisteny with the SuperKamiokande data [5℄ we an put 23=1=p2= s23. Then, in the neutrino mixing and mass matries, (1) and (4), thereare only four independent parameters m1; m2; m3 and s12 leading throughEqs. (5) to four independent matrix elementsMee = m1212 +m2s212 ;M�� = M�� = 12(m1s212 +m2212 +m3) ;Me� = �Me� = � 1p2(m1 �m2)12s12 ;M�� = �12 �m1s212 +m2212 �m3� : (8)Hene,Mee+M���M�� = m1+m2,Mee�M��+M�� = (m1�m2) (212�s212)and (Mee �M�� +M�� )2 + 8M2e� = (m1 �m2)2.In this ase, the neutrino mass spetrum and mixing an be expressed byfour independent parameters [7,8℄. Taking as the independent parametersthe matrix elements (8) we obtain exatly [7℄m1;2 = m1 +m22 � jm1 �m2j2= Mee +M�� �M��2 �s�Mee �M�� +M��2 �2 + 2M2e� ;m3 = M�� +M�� ; (9)if m2 � m1 � 0 (both for positive or negative m1 and m2). Signs � arereplaed here by �, if m1 �m2 � 0. For the mixing angle �12 we getsin2 2�12 = (212s12)2 = 8M2e�(Mee �M�� +M�� )2 + 8M2e� ; (10)where sin 2�12 > 0 if 12s12 > 0. The formulae (9) and (10) provide uswith an inversion of Eqs. (8). At the end of Se. 5 we ome bak to theseformulae. 3. Expliit seesawAssume now that M is the e�etive neutrino Majorana mass matrix forative neutrinos, arising by means of the familiar seesaw mehanism [9℄ fromthe generi 6� 6 neutrino mass term



Expliit Seesaw Model and Deformed Fermion Universality 167�Lmass = 12X�� �(��L); ��R� M (L)�� M (D)��M (D)�� M (R)�� !� ��L(��R) �+ h:: (11)inluding both the ative neutrinos ��L and (��L) as well as the (onven-tional) sterile neutrinos ��R and (��R) (� = e; �; �). In the seesaw ase, theMajorana righthanded mass matrix M (R) = �M (R)�� � is presumed to dom-inate over the Dira mass matrix M (D) = �M (D)�� � that in turn dominatesover the Majorana lefthanded mass matrix M (L) = �M (L)�� � whih is ex-peted naturally to be zero (as additionally violating the eletroweak gaugesymmetry in the doublet Higgs ase). Then, in the seesaw approximationM = �M (D)M (R)�1M (D)T : (12)Hene, through Eq. (4) we infer that�M (D)M (R)�1M (D)T = U diag(m1;m2;m3)U y (13)with U as given in Eq. (1).The seesaw formula (13) gets an expliit realization in the simple modelof neutrino texture, where we postulate that [10℄M (L) = 0 ;M (D) = U diag(�1; �2; �3)U y ;M (R) = �� diag(1; 1; 1) (14)and then infer that mi = ��2i� ; (i = 1; 2; 3) (15)respetively, �i and � being mass-dimensional parameters, suh that 0��i� �. Thus, in this model, M (D) is a unitary transform (through the nearlybimaximal mixing matrix U) of the diagonal, potentially hierarhial matrixdiag(�1; �2; �3), while M (R) is a diagonal, degenerate matrix. In a slightlymore general model, M (R) may be also a unitary transform (through thesame U) of the diagonal, nearly degenerate matrix diag(�1; �2; �3) with�1 ' �2 ' �3 (what is natural for large �i); then mi = ��2i =�i, where 0 ��i � �i (i = 1; 2; 3). From the seond Eq. (14) and Eq. (1) the Dira massmatrix M (D) = �M (D)�� � gets analogial entries as those given in Eqs. (5) for



168 W. KrólikowskiM = (M��), but with mi replaed now by �i =p�jmij (i = 1; 2; 3), wherealso Eqs. (15) are used.We should like to stress that, in the present paper (in partiular, in itspart pertaining to the simple neutrino model de�ned through Eq. (14)), thenearly bimaximal mixing matrix U given in Eq. (1) is adopted phenomeno-logially on the ground of neutrino osillation data, and so, is by no meansderived theoretially. One may speulate that, perhaps, suh a derivationwould require some new, additional onepts about the nature of onne-tions between neutrinos and harged leptons. The idea of deformed fermionuniversality presented in the next setion (and, in our opinion, very natural)does not help to explain the experimental appearane of nearly bimaximalneutrino mixing, though this idea oexists niely with suh a mixing (in spiteof the hierarhial neutrino mass spetrum implied by it), sine the form (5)of M is onsistent with U given in Eq. (1) for any mass spetrum. However,if the form of M ould be aepted as natural beause of some theoretialreasons, then the nearly bimaximal mixing matrix U implied by suh an Mmight also be onsidered as justi�ed theoretially. In Appendix, we rewriteM , given as in Eq. (8) with 23 = 1=p2 = s23, in a suggestive form thatmay help to aept it as the neutrino e�etive mass matrix.4. Deformed fermion universalityWe �nd very natural the idea that in the seond Eq. (14) the originalDira mass matrix diag(�1; �2; �3), before it gets its atual form M (D) de-formed unitarily by the nearly bimaximal mixing matrix U , is similar inshape to the harged-lepton and quark mass matries whih are also of theDira type. To proeed a bit further with this idea we will try to onjeturethat diag(�1; �2; �3) has a shape analogous to the following harged-leptonmass matrix [11℄M (e) = 129 0B� �(e)"(e) 0 00 4�(e) 80+"(e)9 00 0 24�(e) 624+"(e)25 1CA ; (16)whih predits aurately the mass m� =M (e)�� from the experimental valuesof masses me =M (e)ee and m� =M (e)�� treated as an input. In fat, we getm� = 1776:80 MeV [11℄ versus mexp� = 1776:99+0:29�0:26 MeV [12℄ and, in addi-tion, determine �(e) = 85:9924 MeV and "(e) = 0:172329. For a theoretialbakground of this partiular form ofM (e) the interested reader may onsultRef. [13℄. Let us emphasize that the �gures in the mass matrix (16) are not�tted ad usum Delphini.



Expliit Seesaw Model and Deformed Fermion Universality 169Thus, making use of the neutrino analogueM (�) ofM (e) given in Eq. (16),we put diag(�1; �2; �3) =M (�). Then [10℄,p�jm1j = �1 = �(�)29 "(�) = 0:0345 "(�) �(�) ;p�jm2j = �2 = �(�)29 4(80 + "(�))9 = �1:23 + 0:0153 "(�)� �(�) ;p�jm3j = �3 = �(�)29 24(624 + "(�))25 = �20:7 + 0:0331 "(�)��(�) ; (17)where also Eqs. (15) are invoked. Hene, taking "(�) = 0 (already "(e) issmall), we alulate m21 = 0 ;m22 = 2:26�(�) 4�2 ;m23 = 1:82 � 105�(�) 4�2 (18)and �m221 = m22 = 2:26�(�) 4�2 ;�m232 = m23 �m22 = 1:82 � 105�(�) 4�2 ;�m221�m232 = 1:24 � 10�5 : (19)The neutrino mass spetrum desribed by Eqs. (18) is hierarhial,m21 < m22 � m23, in spite of the appearane of nearly bimaximal neu-trino mixing. Using in the seond Eq. (19) the SuperKamiokande estimate�m232 � 2:7� 10�3MeV2 [5℄, we get�(�) 2 � 1:2 � 10�4� eV : (20)If taking reasonably �(�) � �(e) = 85:9924 MeV, we obtain from Eq. (20)that � . 6:1 � 1010 GeV. If "(�) � "(e) = 0:172329 (i.e, not neessarily"(�) = 0), then m21=m23 � 6:81 � 10�15 from Eq. (17) and so, with m23 �2:7� 10�3 eV2 we estimate m21 . 1:8� 10�17 eV2, thus m21 = 0 pratially.Notie that �1 =me; �2 = m�; �3 = m� if �(�) = �(e) and "(�) = "(�).



170 W. Królikowski5. ConlusionsFrom the ratio �m221=�m232 in Eq. (19) and the estimate �m232 �2:7 � 10�3 eV2 we obtain the predition [10℄m22 = �m221 � 3:3� 10�8 eV2 ; (21)whih lies not so far from the experimental estimate �m221 � 7:3�10�8 eV2based on the MSW LOW solar solution [4℄, whereas the favored experimen-tal estimation based on the MSW Large Mixing Angle solar solution is muhlarger: �m221 � 5:5� 10�5 eV2. So, if really true, the latter exludes drasti-ally our onjeture (17). Otherwise, this onjeture might be a signi�antstep forwards in our understanding of neutrino texture, in partiular, of thequestion of fermion universality extended to neutrinos.If the predition m21 = 0, m22 � 3:3� 10�8 eV2 and m23 � 2:7� 10�3 eV2were true, then our previous estimate mee � 0:59jm1j + 0:41jm2j of the ef-fetive mass of �e in the neutrino-less double � deay would give mee �7:5 � 10�5 eV, dramatially below the presently suggested experimentalupper limit mee . (0.35 � 1) eV [6℄ (reall, however, that in our argu-ment Ue3 = 0 exatly). In this ase, the option of hierarhial mass spe-trum, m21 < m22 � m23, would be true. This would be true also form22 ' �m221 � 5:5 � 10�5 eV2.When m1 = 0 (as in the ase of our onjeture (17) with "(�) = 0), thefour parameters in the mass formula (9) an be related to three independentparameters Mee, M�� and M�� , sine in this ase the �rst Eq. (9) givesM2e� = 12Mee(M�� �M�� ) : (22)Then, from the seond and third Eq. (9) we obtainm2 = Mee +M�� �M�� � �1:8 � 10�4 eV ;m3 = M�� +M�� � �5:2� 10�2 eV ; (23)where we use also the estimates m22 � 3:3 � 10�8eV2 and m23 � 2:7 �10�3eV2. Here, as already in Eqs (9) and (15), we allow for positive ornegative neutrino masses. Similarly, when m1 = 0, the formula (10) givessin2 2�12 = 4Mee(M�� �M�� )(Mee +M�� �M�� )2 � (0:84 or 0:97) (24)due to Eq. (22), where also the estimate �12 � (33Æ or 40Æ) is used. Hene,s212 =Mee=(Mee+M���M�� ) and 212 = (M���M�� )=(Mee+M���M�� ).



Expliit Seesaw Model and Deformed Fermion Universality 171We an see from Eqs (15) and (23) that for m1 = 0�21 = 0 ;�22 = ��(Mee +M�� �M�� ) � 1:8� 10�4� eV ;�23 = �(M�� +M�� ) � 5:2 � 10�2� eV ; (25)where �1; �2; �3 and � are mass parameters introdued in Eqs. (14). In oursimple neutrino model de�ned through Eqs. (14), where M (R) is diagonaland degenerate, the formulae (25) express form1 = 0 the seesaw relationshipM (D)M (D)T = �M (R)M , equivalent to Eq. (12) (as M (R)�1 and M (D)ommute).Finally, let us mention that if, instead of the model of neutrino texturede�ned in Eqs. (14), we had [14℄M (L) = ��diag(1; 1; 1) ;M (D) = U diag(�1; �2; �3)U y ;M (R) = 0 ; (26)then under the assumption of 0 � �i � � we would obtain for ativeneutrinos the e�etive mass matrix of the formM =M (L) +M (D)M (L)�1M (D)T = U diag(m1;m2;m3)U y (27)with the nearly degenerate mass spetrum mi = �(� + �2i =�) (i = 1; 2; 3).Here, � � �i, but muh less dramatially than in the seesaw mehanismworking in Eqs. (14). In this ase, when making the onjeture of deformedfermion universality as it is expressed in Eqs. (17), we would predit �m221of the order 10�5 eV2, not very far from the favored experimental estimate5:5� 10�5 eV2 based on the MSW Large Mixing Angle solar solution (now,�(�)2 � 3:2 � 10�6 eV2). The nonzero M (L) given in Eqs. (26) would notbe justi�ed, however, in the doublet Higgs ase, sine it would additionallyviolate the eletroweak gauge symmetry in ontrast to M (R). In the aseof the model (26), osillations between and into the (onventional) sterileneutrinos (�eR); (��R); (��R) would be negligible as (�i=�)2. For thesesterile neutrinos the e�etive mass matrix would be �M (D)M (L)�1M (D)T,implying the mass spetrum ��2i =�.Note added in proofIf instead of Majorana neutrinos we had the Dira neutrinos i.e.,M = M (D) = U diag(m1;m2;m3)U y, our onjeture of deformed fermionuniversality would imply mi = �i with �i as given on the r.h.s. of Eq. (17)where "(�) an be negleted. Then, we would predit �m221 of the order10�5 eV2, what is not very di�erent from the favored experimental estima-tion 5:5 � 10�5 eV2 based on the MSW Large Mixing Angle solar solution(now, �(�)2 � 6:4 � 10�6 eV2). Is it an argument for the Dira nature ofneutrinos?



172 W. KrólikowskiAppendix AA suggestive form of e�etive neutrino mass matrixThe neutrino spetrum (9), valid when 23 = 1=p2 = s23, an be rewrit-ten in the ase of 0 � m1 < m2 in the formm1;2 = 0m �Æ ; m3 = 0m +�; (A.1)where 0 < 0m = Mee +M�� �M��2 ;0 < Æ = s�Mee �M�� +M��2 �2 + 2M2e� ;� = M�� +M��� 0m= �Mee +M�� + 3M��2 : (A.2)Then, Eqs. (8) giveMee = 0m � Æ os 2�12 ;M�� = M�� = 0m +12�+ 12Æ os 2�12 ;Me� = �Me� = 1p2 Æ sin 2�12 ;M�� = �12�� 12Æ os 2�12 : (A.3)Thus, with the use of Eqs. (A.3), the e�etive mass matrix M = (M��)may be presented as followsM = 0m 0� 1 0 00 1 00 0 1 1A+�0� 0 0 00 12 120 12 12 1A+ Æ0B� � os 2�12 1p2 sin 2�12 � 1p2 sin 2�121p2 sin 2�12 12 os 2�12 �12 os 2�12� 1p2 sin 2�12 �12 os 2�12 12 os 2�12 1CA ; (A.4)where three omponent matries ommute with eah other (the produtsin two orderings of the seond and third matrix vanish). Using the nearlybimaximal mixing matrix U de�ned in Eq. (1), now in the form



Expliit Seesaw Model and Deformed Fermion Universality 173U = 0B� 12 s12 0� 1p2s12 1p212 1p21p2s12 � 1p212 1p2 1CA ; (A.5)with 23 = 1=p2 = s23, we obtain0� m1 0 00 m2 00 0 m3 1A = U yMU
= 0m 0� 1 0 00 1 00 0 1 1A+�0� 0 0 00 0 00 0 1 1A+Æ0� �1 0 00 1 00 0 0 1A ; (A.6)onsistently with Eq. (A.1). Naturally, the mass matrix M determines itsdiagonalizing matrix U and the mass spetrum m1;m2;m3 (here, the mixingmatrix is at the same time the diagonalizing matrix).The form (A.4) of the e�etive neutrino mass matrix learly suggeststhe full demoray of �� and �� neutrinos, and of their interations with �eneutrino. These interations are desribed by the third omponent matrixthat beomes Æ0B� 0 1p2 � 1p21p2 0 0� 1p2 0 0 1CA ; (A.7)for 12 ! 1=p2  s12. Correspondingly, Eq. (A.5) and the formula �i =P� U��i��, inverse to Eq. (2), express the full demoray of �� and �� , andof their mixings with �e, leading to�1 = 12�e � s12 �� � ��p2 ;�2 = s12�e + 12 �� � ��p2 ;�3 = �� + ��p2 (A.8)



174 W. Królikowskior �1 = 1p2 ��e � �� � ��p2 � ;�2 = 1p2 ��e + �� � ��p2 � ;�3 = �� + ��p2 (A.9)for 12 ! 1=p2  s12. In this limit there are two maximal mixings: ��with �� into the superpositions (����� )=p2, and �e with (����� )=p2 into(�e � (�� � �� )=p2)=p2. The above interpretation of M given in Eq. (A.4)is independent of the values of 0m; Æ and �.Making use of the mass-squared di�erenes�m221 = m22 �m21 = 4 0m Æ ;�m232 = m23 �m22 = 2 0m (�� Æ) +�2 � Æ2 (A.10)following from Eq. (A.1), we an write for � > 0Æ = �m2214 0m ; � = � 0m +q( 0m +Æ)2 +�m232 : (A.11)Let us onsider two extremal options: (i) Æ ' 0m< �, where 0m' Æ 'p�m221=2 due to the �rst Eq. (A.11) and� = � 0m +p�m221 +�m232 fromthe seond and �rst Eqs. (A.11), and (ii) Æ � �� 0m , where Æ = �m221=4 0mand � ' Æ +�m232=2 0m from Eqs. (A.11). Here, �m221 � �m232 from theexperiment.In the option (i), taking the experimental estimates �m221 � (5:5�10�5or 7:3� 10�8 eV2) and �m232 � 2:7� 10�3 eV2, we obtain0m ' Æ ' 12q�m221 � �3:7 � 10�3 or 1:4 � 10�4� eV ;� ' q�m232� 0m� (4:8 or 5:2) � 10�2 eV (A.12)and hene, the mass spetrumm1 ' 0 ;m2 ' 2 0m � �7:4� 10�3 or 2:7� 10�4� eV ;m3 = 0m +� � 5:2� 10�2 eV ; (A.13)



Expliit Seesaw Model and Deformed Fermion Universality 175that is hierarhial, 0 ' m21 < m22 � m23 (here, m22=m23 � (2:0 � 10�2 or2:7 � 10�5)).In the option (ii), with the same estimates for �m221 and �m232 we getÆ ' �m2214 0m � �1:4 � 10�5 or 1:8 � 10�8� eV20m ;� ' �m2322 0m � 1:4� 10�3 eV20m (A.14)and then, the mass spetrumm1 ' 0m;m2 ' 0m;m3 = 0m +� � 0m +1:4� 10�3 eV20m ; (A.15)whih is nearly degenerate, 0m' m1 ' m2 ' m3, if 0m� 1:4�10�3 eV2= 0m(in this ase, also 0m 2 ' m21 ' m22 ' m23, of ourse). For instane, if0m� 1 eV, then Æ � (1:4� 10�5 or 1:8� 10�8) eV and � � 1:4� 10�3 eV, sothat Æ � �� 0m .The onjeture of deformed fermion universality, disussed in Se. 4 andonluded in Se. 5, may work in the ase of option (i) (though it is notobligatory), but it annot be applied in the ase of option (ii). This is true inour seesaw model given in Eq. (14). In the �antiseesaw� model as presentedin Eq. (26), the situation is reversed.When applying to the option (i) the onjeture of deformed fermionuniversality (with "(�) = 0) and making use of the estimate �m232 � 2:7 �10�3 eV2 leading to �m221 � 3:3� 10�8 eV2, Eq. (21), we obtain0m = Æ = 12q�m221 � 0:91� 10�4 eV ;� ' q�m232� 0m� 5:2 � 10�2 eV ; (A.16)in plae of Eq. (A.12). This new value for 0m= Æ is a predition lying notso far from the former value 1:4 � 10�4 eV of 0m= Æ following from theestimation �m221 � 7:3� 10�8 eV2 based on the MSW LOW solar solution.
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