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In the simple model of neutrino texture presented in this paper, the
Majorana lefthanded mass matrix is zero, the Majorana righthanded mass
matrix — diagonal and degenerate, and the Dirac mass matrix has a hi-
erarchical structure, deformed wunitarily by nearly bimaximal mixing. In
the case, when the Majorana righthanded term dominates over the Dirac
term, the familiar seesaw mechanism leads effectively to the nearly bimax-
imal oscillations of active neutrinos, consistent with solar and atmospheric
neutrino experiments. If the Dirac term, before its unitary deformation,
is similar in shape to the known charged-lepton mass matrix, then pa-
rameters for solar v.’s and atmospheric v,,’s become related to each other,
predicting from the SuperKamiokande value of Am3, a tiny Am3, typical
for MSW LOW solar solution rather than for MSW Large Mixing Angle
solution. The predicted mass spectrum is then hierarchical. In Appendix

a suggestive form of nearly bimaximal effective mass matrix is derived.

PACS numbers: 12.15.Ff, 14.60.Pq, 12.15.Hh.

1. Introduction

The popular, nearly bimaximal form of mixing matrix for three active

neutrinos Ver,, Vur,, V-1, (1],

c12 512 0
U= —512C23  €12C23 893 ;
512823  —C12823 €23

(1)
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arises from its generic shape a la Cabibbo—Kobayashi-Maskawa [2]| by putting
s13=0and c12, S12, 23, S23 not so far from 1/\/§(cij =cos 6;; and s;; =sin ;).
Asis well known, this form is globally consistent with neutrino oscillation ex-
periments [3] for solar v.’s and atmospheric v,’s as well as with the negative
Chooz experiment for reactor v.’s. It cannot explain, however, the possi-
ble LSND effect for accelerator 7,’s that, if confirmed by the MiniBooNE
experiment, may require the existence of one, at least, extra (sterile) light
neutrino vg, (different, in general, from the conventional sterile neutrinos
(ver)", (Vur)®, (Vrr)S)-

The neutrino mixing matrix U = (Uy,;) defines the unitary transforma-
tion

VoL, = Y UaitiL (2)
5

between the active-neutrino flavor and mass fields, v, (o = e, pu,7) and
via, (1 = 1,2, 3), respectively. In the flavor representation, where the
charged-lepton mass matrix is diagonal, it is at the same time the diago-
nalizing matrix for the neutrino mass matrix M = (M,g),

UtMU = diag(m1, mo, ms), (3)

where mq, mg, ms denote neutrino masses (real numbers). Two possible
Majorana phases in M are assumed to be zero. Then,

M = U diag(m , ma, m3)UT, (4)

leading in the case of form (1) of U to the following mass matrix elements:

Mee = m16%2 + m28%2 3

My, = (mlS%Q + m20%2) C33 + m3s3s

M., = (mls%Q + mQC%Q) 333 + mgcg3 ,

My, = —(m1 —ma)cizs12¢23 = Mye,

M, = (m1 —ma)ci2s12823 = My,

M/J/I' = —(m18%2 =+ mQC%Q — TTL3)023823 = MT# . (5)

Here, M* = M and M" = M.
For the nearly bimaximal form (1) of U the following popular neutrino
oscillation probabilities hold (in the vacuum):
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P(ve = Ve)sol = 1 — (2¢12512)? sin® (291 )sol ,
PV, = Vy)atm = 1— (2¢23893)° 372 8I0% (231)atm + 1o 5in° (232) atm ]
~ 1 — (2c23523)% sin®(32) atm 5

(2¢12512)% 34 sin® (221 )Lsnp = 0,

P(v, = Ue)LSND
P(Ue = Ue)Choor = 1 — (2¢12512)? sin®(%21) Choor = 1, (6)
where Am2; < Am3, ~ Am3, and

Amf; L 2 2 2 s
Tj = 1.27T , Ami=m;—m; (i, =1,2,3) (7)

(Am?i, L and E are measured in eVQ, km and GeV, respectively). Here,
U* =U and UT = Ut = U1, thus the possible CP violation in neutrino
oscillations is ignored. The fourth of these formulae is consistent with the
negative Chooz experiment and the third excludes the LSND effect.
Experimental estimations for solar v,’s and atmospheric v,’s, based on
the MSW versions of the first and second formulae (6), are 612~ (33° or 40°),
|AmZ,| ~ (5.5 x 1075 or 7.3 x 1078)eV? [4] and a3 ~ 45°, |Am32,| ~
2.7 x 103 eV? [5], respectively. For solar v,’s they correspond to the MSW
Large Mixing Angle solution or MSW LOW solution, respectively, of which
the first is favored. The mixing angles 615 and 6o3 give c12 ~ (1.2/4/2 or
1.1/v/2), s12 ~ (0.77/+/2 or 0.91/4/2) and ca3 ~ 1//2 ~ s93. The mass-
squared differences are hierarchical, Am3;, < Am3, ~ Am3,, while the mass
spectrum may be either hierarchical, m? < m3 < m% with Am3, ~ m3, or
nearly degenerate, m? ~ m3 ~ m3 with Am3;, < m3 and Am3, < m3
(here, the ordering m? < m3 < m3 is used). If m; — 0, then the option of
hierarchical spectrum is true (in spite of nearly bimaximal neutrino mixing
expressed by Eq. (1)). The possibility of m; — 0 is suggested in Sec. 4.
The rate of neutrino-less double 8 decay (allowed only in the case of
Majorana-type ver,) is proportional to mZ,, where me = |3, Uim;| =
c2ylmi| + s2ylma| ~ (0.70/m1| + 0.30mz| or 0.59|m1| + 0.41|ms|) and so
|mi| < Mmee < |mg| (in our argument Uez = 0 exactly). The suggested
experimental upper limit for me, is mee S (0.35 — 1) €V [6]. If the actual

Mee lay near its upper limit, then the option of nearly degenerate spectrum
(with hierarchical mass-squared differences) would be suggested.
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2. Four-parameter nearly bimaximal texture

In consistency with the SuperKamiokande data [5] we can put cp3 =1/v/2
= $93. Then, in the neutrino mixing and mass matrices, (1) and (4), there
are only four independent parameters mj, me, ms and s19 leading through
Egs. (5) to four independent matrix elements

Mee = mIC%Q + m?‘S%Q )
1
M““ — M,r,r = 5(’[7’1,18%2 + m26%2 + m3) ’
1
Mep, = _Me'r = _E(ml - m2)012812’
1 2 2
My = L (st riay ). ©

Hence, Mee+M,,—M,,r = mi+mo, Mee—M,,,+ M, = (m1—m3) (c2y—52,)
and (Mee — My, + My7)* +8M2, = (my — my)?.

In this case, the neutrino mass spectrum and mixing can be expressed by
four independent parameters [7,8]. Taking as the independent parameters
the matrix elements (8) we obtain exactly |7]

my+ma _ |my1 — my|

mi2 = 9 + 9
Mee + Myy — Mys Mee — Myy + Mys 2
= 5 F 5 + 2Me2“,

if mg —my > 0 (both for positive or negative my and ms). Signs F are

replaced here by =+, if mq — mgy > 0. For the mixing angle 619 we get
8M62u

(Mee — Myy + My )% +8M2,”

sin2 2012 = (2012812)2 = (10)

where sin2615 > 0 if ¢j2819 > 0. The formulae (9) and (10) provide us
with an inversion of Egs. (8). At the end of Sec. 5 we come back to these
formulae.

3. Explicit seesaw

Assume now that M is the effective neutrino Majorana mass matrix for
active neutrinos, arising by means of the familiar seesaw mechanism [9] from
the generic 6 X 6 neutrino mass term
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(L) (D)
1 MY M v
S o - g Mag 81,
Lmass = 5 - <(”“L) ’V”‘R) ( My M) ) < (vgr)° )+h.c. )

including both the active neutrinos v,y, and (v41,)¢ as well as the (conven-

tional) sterile neutrinos v and (VR )¢ (@ = €, p, 7). In the seesaw case, the
Majorana righthanded mass matrix M®) = (Mo(f;)) is presumed to dom-

inate over the Dirac mass matrix M®P) = (Mo(é];)) that in turn dominates

over the Majorana lefthanded mass matrix M®) = (MSZ;) which is ex-

pected naturally to be zero (as additionally violating the electroweak gauge
symmetry in the doublet Higgs case). Then, in the seesaw approximation

M = —MP) pyR=1 T (12)
Hence, through Eq. (4) we infer that
— M@ MR~ PIT — 7 diag(my, ma, ms)UT (13)
with U as given in Eq. (1).

The seesaw formula (13) gets an explicit realization in the simple model
of neutrino texture, where we postulate that [10]

MY =0,
M®) = Udiag(A1, X, A3)UT,
M®) = TAdiag(1,1,1) (14)
and then infer that )
mi =+, (i=1,2,3) (15)

respectively, A; and A being mass-dimensional parameters, such that 0<\;
& A. Thus, in this model, M(P) is a unitary transform (through the nearly
bimaximal mixing matrix U) of the diagonal, potentially hierarchical matrix
diag(A1, Az, A3), while M(®) is a diagonal, degenerate matrix. In a slightly
more general model, M (®) may be also a unitary transform (through the
same U) of the diagonal, nearly degenerate matrix diag(A;, Ao, A3) with
Ay =~ Ay =~ Az (what is natural for large A;); then m; = £\?/A;, where 0 <
Ai € A; (i =1,2,3). From the second Eq. (14) and Eq. (1) the Dirac mass

matrix M) = (MS?) gets analogical entries as those given in Egs. (5) for
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M = (M,gp), but with m; replaced now by \; = \/A|m;| (i =1,2,3), where
also Egs. (15) are used.

We should like to stress that, in the present paper (in particular, in its
part pertaining to the simple neutrino model defined through Eq. (14)), the
nearly bimaximal mixing matrix U given in Eq. (1) is adopted phenomeno-
logically on the ground of neutrino oscillation data, and so, is by no means
derived theoretically. One may speculate that, perhaps, such a derivation
would require some new, additional concepts about the nature of connec-
tions between neutrinos and charged leptons. The idea of deformed fermion
universality presented in the next section (and, in our opinion, very natural)
does not help to explain the experimental appearance of nearly bimaximal
neutrino mixing, though this idea coexists nicely with such a mixing (in spite
of the hierarchical neutrino mass spectrum implied by it), since the form (5)
of M is consistent with U given in Eq. (1) for any mass spectrum. However,
if the form of M could be accepted as natural because of some theoretical
reasons, then the nearly bimaximal mixing matrix U implied by such an M
might also be considered as justified theoretically. In Appendix, we rewrite
M, given as in Eq. (8) with cg3 = 1/v/2 = s93, in a suggestive form that
may help to accept it as the neutrino effective mass matrix.

4. Deformed fermion universality

We find very natural the idea that in the second Eq. (14) the original
Dirac mass matrix diag(\1, Ao, A\3), before it gets its actual form M®) de-
formed unitarily by the nearly bimaximal mixing matrix U, is similar in
shape to the charged-lepton and quark mass matrices which are also of the
Dirac type. To proceed a bit further with this idea we will try to conjecture
that diag(A1, A2, A3) has a shape analogous to the following charged-lepton
mass matrix [11]

. pleele) 0 0
e ()
@=L PWCEE 0 . (16)
0 24'u(e) 624+¢()
25

which predicts accurately the mass m, = MT(? from the experimental values
of masses m, = Még) and m, = M;(LZ) treated as an input. In fact, we get
m, = 1776.80 MeV [11] versus my® = 1776.9970:22 MeV [12] and, in addi-
tion, determine u(®) = 85.9924 MeV and (¢ = 0.172329. For a theoretical
background of this particular form of M(®) the interested reader may consult
Ref. [13]. Let us emphasize that the figures in the mass matrix (16) are not

fitted ad usum Delphini.
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Thus, making use of the neutrino analogue M *) of M(®) given in Eq. (16),
we put diag(A1, Ao, A3) = M), Then [10],

()
VAmi| = A = B~ c0) = 0.03450) u®

29
() 4(80 + @)
_ oy, = M7 A0+ ) ,®)
VAIm] = % =55 — = (1.23+0.0153e )u :
) 24(624 + )
VAms| = A3 = “29 ( 2;5 ) _ (20.7+0.03315(”>)u(”>, (17)

where also Eqs. (15) are invoked. Hence, taking ) = 0 (already (®) is
small), we calculate

m? =0,
mj = 2.26”5:;4,
m2 = 1.82 x 105”24 (18)
and
Am2, = m2 :2.26“Z;4,
Am2, = m?—m2 =1.82 x 105“24,
2222 — 1.24 x 1075 (19)

The neutrino mass spectrum described by Eqs. (18) is hierarchical,
m? < m3 < m2, in spite of the appearance of nearly bimaximal neu-
trino mixing. Using in the second Eq. (19) the SuperKamiokande estimate

Am2, ~ 2.7 x 1073 MeV? [5], we get
p?% ~ 1.2 x 107 A6V, (20)

If taking reasonably p() < ;(€) = 85.9924 MeV, we obtain from Eq. (20)
that A < 6.1 x 100 GeV. If e < ¢(9 = 0.172329 (i.e, not necessarily
e = 0), then m?/m3 < 6.81 x 10~'% from Eq. (17) and so, with m3 ~
2.7 x 1073 eV? we estimate m? < 1.8 x 1077 eV?2, thus m? = 0 practically.
Notice that A\; = m, Ay = my, A3 = m; if M(V) = M(e) and ) = W)
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5. Conclusions

From the ratio Am2,/Am2, in Eq. (19) and the estimate Am3, ~
2.7 x 1073 eV? we obtain the prediction [10]

m3 = Am3; ~ 3.3 x 1078 eV?, (21)
which lies not so far from the experimental estimate Am3, ~ 7.3 x 1078 eV?
based on the MSW LOW solar solution [4], whereas the favored experimen-
tal estimation based on the MSW Large Mixing Angle solar solution is much
larger: Am3, ~ 5.5 x 107° eV2. So, if really true, the latter excludes drasti-
cally our conjecture (17). Otherwise, this conjecture might be a significant
step forwards in our understanding of neutrino texture, in particular, of the
question of fermion universality extended to neutrinos.

If the prediction m? = 0, m3 ~ 3.3 x 1078 eV? and m3 ~ 2.7 x 1073 eV?
were true, then our previous estimate mee ~ 0.59|m1| + 0.41|mg| of the ef-
fective mass of 1, in the neutrino-less double 5 decay would give mee ~
7.5 x 107® €V, dramatically below the presently suggested experimental
upper limit mee < (0.35 — 1) €V [6] (recall, however, that in our argu-
ment U,z = 0 exactly). In this case, the option of hierarchical mass spec-
trum, m? < m3 < m2, would be true. This would be true also for
m3 ~ Am2, ~ 5.5 x 1075 eV2.

When m; = 0 (as in the case of our conjecture (17) with £*) = 0), the
four parameters in the mass formula (9) can be related to three independent
parameters M., M, and M,,, since in this case the first Eq. (9) gives

1
_Mee(Muu - M;n) . (22)

Me?#: 5

Then, from the second and third Eq. (9) we obtain

my = Mee+ My, — My ~+1.8 x 107 % eV,
my = My, + M, ~£52x 10 eV, (23)

where we use also the estimates m2 ~ 3.3 x 107%eV? and m2 ~ 2.7 x

1073eV?2. Here, as already in Egs (9) and (15), we allow for positive or
negative neutrino masses. Similarly, when my = 0, the formula (10) gives

4Mee(MW - MM)
(Mee + Muu - Ml“’)2

sin® 205 = ~ (0.84 or 0.97) (24)

due to Eq. (22), where also the estimate 012 ~ (33° or 40°) is used. Hence,
sty = Mee/(Mee+ My — Myr) and ¢y = (M — M) | (Mee + My — M7 ).
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We can see from Eqs (15) and (23) that for my =0

A =0,
A3 = £A(Mee + My, — My,) ~ 1.8 x 10744V,
A3 = A(My, + M) ~52x 1072AeV, (25)

where A1, A9, A3 and A are mass parameters introduced in Egs. (14). In our
simple neutrino model defined through Egs. (14), where M(®) is diagonal
and degenerate, the formulae (25) express for m; = 0 the seesaw relationship
MOIMOT = _pM®A equivalent to Eq. (12) (as M®=1 and M(P)
commute).

Finally, let us mention that if, instead of the model of neutrino texture
defined in Eqs. (14), we had [14]

M®) = + Adiag(1,1,1), M®) = U diag(A1, Ao, A3)UT, M®) =0, (26)

then under the assumption of 0 < )\; < A we would obtain for active
neutrinos the effective mass matrix of the form

M = MY 4 MO A @1 OT — 17 diag(my, me, ms)UT  (27)

with the nearly degenerate mass spectrum m; = (A + A?/A) (i = 1,2,3).
Here, A > );, but much less dramatically than in the seesaw mechanism
working in Eqgs. (14). In this case, when making the conjecture of deformed
fermion universality as it is expressed in Eqs. (17), we would predict Am3,
of the order 1075 eV?2, not very far from the favored experimental estimate
5.5 x 107° eV2 based on the MSW Large Mixing Angle solar solution (now,
12 ~ 3.2 x 1076 eV?2). The nonzero M) given in Egs. (26) would not
be justified, however, in the doublet Higgs case, since it would additionally
violate the electroweak gauge symmetry in contrast to M®). In the case
of the model (26), oscillations between and into the (conventional) sterile
neutrinos (ver)®, (vur)S, (v-r)¢ would be negligible as ();/A4)%. For these
sterile neutrinos the effective mass matrix would be —M®) AL -1 37OT
implying the mass spectrum FA?/A.

Note added in proof

If instead of Majorana neutrinos we had the Dirac neutrinos i.e.,
M =MD = U diag(m1,ma, m3) U, our conjecture of deformed fermion
universality would imply m; = \; with \; as given on the r.h.s. of Eq. (17)
where ) can be neglected. Then, we would predict Am%l of the order
107 eV?2, what is not very different from the favored experimental estima-
tion 5.5 x 107°eV? based on the MSW Large Mixing Angle solar solution
(now, p? ~ 6.4 x 107%eV?). Is it an argument for the Dirac nature of
neutrinos?
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Appendix A

A suggestive form of effective neutrino mass matriz

The neutrino spectrum (9), valid when cp3 = 1/4/2 = 593, can be rewrit-
ten in the case of 0 < my < mq in the form

mi1,2 :T(I)’L FJ, ms :7% +A, (Al)
where
0ty = Meet M= Myr.
2
M,, — M,, + M, \?>
0<5:\/< e~ 1 ’”) +2Mm,

0 —Mee+ My, +3M,,

A= My, + M;;— m= 5 (A.2)
Then, Egs. (8) give
M, = 7% — § cos 2019,
0 1 1
My, = M., =m +§A+ §5c0s2012,
1 .
My, = —M¢; = ﬁdsln2912,
1 1
M, = —§A — §5c0s2012. (A.3)

Thus, with the use of Egs. (A.3), the effective mass matrix M = (Myp)
may be presented as follows

0 1 0 0 0 0 0
M=m/ |0 1 0 |+A[ 0 % %
0 0 1 0 5 5
— cos 26012 % sin260y5 — % sin 2645
+4 \% sin 2601 % cos 2019 —% cos 261 . (A4)
— % sin 2912 —% COS 2912 % COS 2912

where three component matrices commute with each other (the products
in two orderings of the second and third matrix vanish). Using the nearly
bimaximal mixing matrix U defined in Eq. (1), now in the form



Ezxplicit Seesaw Model and Deformed Fermion Universality 173

c12 512 0
U= —%812 %012 % , (A.5)
%/2812 — 5012 %
with cg3 = 1/4/2 = s93, we obtain
mq 0 0
0 me 0 |=U'MU
0 0 ms
0 1 0 0 0 0 O -1 0 0
=m 01 0 |+A] 0 0 O |+6 0 1 0 |, (A6)
0 0 1 0 0 1 0 0 O

consistently with Eq. (A.1). Naturally, the mass matrix M determines its
diagonalizing matrix U and the mass spectrum my, ms, ms (here, the mixing
matrix is at the same time the diagonalizing matrix).

The form (A.4) of the effective neutrino mass matrix clearly suggests
the full democracy of v, and v; neutrinos, and of their interactions with v,
neutrino. These interactions are described by the third component matrix
that becomes

0 S
V2 V2
il % 00 , (A7)
-1 0
V2

for c19 — 1/\/§ + s19. Correspondingly, Eq. (A.5) and the formula v; =
Yo Ukiva, inverse to Eq. (2), express the full democracy of v, and v,, and
of their mixings with v,, leading to

vy — Ur
Vil = Ci12Ve — S12 N
2
vV, — U
_ 2 T
V9 = 819V + C12 N
v, + Vv
vy = LT (A.8)

V2
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or
1 < VH—VT>
v, = — | Ve — ,
1 \/i e \/5
1 I/M—I/T)
Vg = —— | Ve + s
’ ﬁ( V2
py = utVr (A.9)

V2

for c19 — 1/ V2 + $19. In this limit there are two maximal mixings: v,
with v, into the superpositions (v, Fv,)/V2, and v, with (v — v,)/v/2 into
(Ve F (V) — v7)/V/2)/V/2. The above interpretation of M given in Eq. (A.4)

0
is independent of the values of m, § and A.
Making use of the mass-squared differences

Am3, = m%—m%zélr%é,
Am2, = m2 —m2=2m (A—§) + A2 — 62 (A.10)
following from Eq. (A.1), we can write for A > 0
Am?2
5= 4";21, A=—m +\/(7% +0)2 + Am2, . (A.11)
m

0 0
Let us consider two extremal options: (1) § ~m < A, where m=~ § ~

\/Am%I/Q due to the first Eq. (A.11) and A = — T(I)”L +\/Am%1 + Am§2 from
the second and first Eqs. (A.11), and (i) § < A <m , where § = Am%l/élr(r)L

and A ~ 6 + Amgg/Q#L from Eqs. (A.11). Here, Am3, < Am2, from the
experiment.

In the option (i), taking the experimental estimates Am3, ~ (5.5 x 10~°
or 7.3 x 1078 eV?) and Am3, ~ 2.7 x 1073 eV?, we obtain

m o~ § %\/Tglw (3.7 x 1073 or 1.4 x 1074 eV,
A~ \/Rgf M~ (4.80r5.2) x 1072 eV (A.12)
and hence, the mass spectrum
my ~ 0,
my ~ 2m ~ (T4 x 1073 or 2.7 x 107) eV,
ms = M +A~52x102eV, (A.13)
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that is hierarchical, 0 ~ m? < m3 < m3 (here, m3/m% ~ (2.0 x 1072 or
2.7 x 1077)).
In the option (i), with the same estimates for Am3, and Am2, we get

A 2 2
6~ ZP2 (14 %100 or 1.8 x 10°°) %
4m m
Am? V?
A~ T2 14 x1038 (A.14)
0 0
2m m
and then, the mass spectrum
0
my ~ m,
0
mo = M,
VQ
my = m+A~m 414 %1070 (A.15)

m

0 0 0
which is nearly degenerate, m ~ m; ~ mo ~ mga, if m> 1.4x 1073 eV%/ m

. . 0 . .
(in this case, also m 2 ~ m? ~ m3 ~ m3, of course). For instance, if

M~ 16V, then § ~ (1.4x 1075 or 1.8 x 10~%) éV and A ~ 1.4 x 1073 6V, s0

0
that 0 K A <m.

The conjecture of deformed fermion universality, discussed in Sec. 4 and
concluded in Sec. 5, may work in the case of option (#) (though it is not
obligatory), but it cannot be applied in the case of option (7). This is true in
our seesaw model given in Eq. (14). In the “antiseesaw” model as presented
in Eq. (26), the situation is reversed.

When applying to the option (7) the conjecture of deformed fermion
universality (with ¢*) = 0) and making use of the estimate Am3, ~ 2.7 x
1073 eV? leading to Am3, ~ 3.3 x 1078 eV?, Eq. (21), we obtain

1
m= 6= SV Amd, ~ 091 x 10 eV,
A~ \JAmZ, — m~52x 10726V, (A.16)

in place of Eq. (A.12). This new value for Mm=24is a prediction lying not

so far from the former value 1.4 x 104 &V of m= 6 following from the
estimation Am32; ~ 7.3 x 1078 eV? based on the MSW LOW solar solution.
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Then,
my, = 0,
my = 2m~1.8 x 1046V,
ms = MmA+A ~ 5.2 x 1072eV, (A.17)

in place of Eq. (A.13).
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