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We consider Poisson bialgebras on symplectic leaves of a Poisson man-
ifold. New classes of completely integrable Hamiltonian systems with ar-
bitrary many degrees of freedom are presented. Their Hamiltonians are
defined as the k" coproduct of arbitrary smooth functions on symplec-
tic foliations. We also consider modifications of the Poisson bialgebras by
introducing the deformed coproduct and the deformed Poisson tensor.
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1. Introduction

One of the main feature of dynamical systems is their nonintegrability.
The study of completely integrable Hamiltonian systems started with the
pioneering work of Liouville on finding local solutions by quadratures. In-
tegrable systems were typically discovered by chance or through techniques
specifically prepared for the particular problems. After Poincaré had recog-
nized that integrability is an exceptional phenomenon of Hamiltonian sys-
tems and began the study of their qualitative properties, the interest in
integrable Hamiltonian systems vanished. Integrable Hamiltonian systems
play a fundamental role in the study and description of physical systems,
due to their many interesting properties, both from the mathematical and
physical points of view. Indeed, beyond the obvious interest of finding first
integrals, the concept of integrability seems necessary for more thorough
understanding of the nonintegrability phenomenon. To date, however, there
exists no general method for determining whether or not a given system is
integrable. Even in the simplest nontrivial case, ¢.e., in the two-degree of
freedom Hamiltonian system our knowledge is far from the desired goal.

In recent years there has been a renewed interest in completely integrable
Hamiltonian systems, specially in conjunction with the study of quantum
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integrable systems and quantum groups. Integrable Hamiltonian systems
have always a hidden algebraic structure that is responsible for their inte-
grability. Therefore, the most fascinating problem in the study of dynamical
systems is to give such general algebraic structure which provide a hidden
treasure. In a recent paper Ballesteros and Ragnisco [1] have proposed a
beautiful idea for proving the complete integrability of a large collection of
Hamiltonian systems by using coproducts in Poisson Hopf algebras. This
construction was put into a geometrical perspective in Refs. [2—4].

This paper presents a procedure in order to construct complete integrable
Hamiltonian systems with arbitrary many degrees of freedom from a Pois-
son bialgebra (F(Ls), A, /) on symplectic leaves L5 of a Poisson manifold
(R3, A) with the Poisson tensor A = (ax1—3/2)02 A3+ 220301 +1301 ADo.
This paper is organized as follows. Section 2 contains the reduction of a
Poisson manifold (M, A) by a Casimir function C. In Section 3, the ba-
sic definitions of Poisson bialgebras are reviewed. In Section 4, starting
with a Poisson manifold we construct a Poisson bialgebra. This bialgebra
defines a family of completely integrable Hamiltonian systems with two de-
grees of freedom. In Section 5, we give an example of a Poisson structure
A = (axy —/2)02 NO3+ 1203 N0y + 1301 A D2, and show how it can be used to
construct new families of integrable Hamiltonian systems. In Section 6, we
generalize the results obtained in the previous Section. In the last Section
some conclusions are drawn.

2. Poisson reduction

Let M be a finite-dimensional differentiable manifold and let F(M) be
a space of smooth functions on M. A Poisson structure on a manifold M is
a skew-symmetric bilinear map defined by

{.}: F(M)x F(M) — F(M)
such that for every ¢, ¢, € F(M) we have
(1) {{&:0} v} + {{o. v} ¢} + {{h, 0}, 0} =0,
(it) {¢, o9} ={d, 0} +{¢, ¥},

(iii) {p, 0} = —{p, ¢}

The pair (M,{ , }) is called a Poisson manifold, and conditions (i) — (%ii)
make (F(M),{ ,}) into a Poisson algebra. The local expression for the
Poisson bracket is

9% Op

0z, Oxp’

{9, 0} ={za, 1} (1)
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where summation on repeated indices is understood. The expression for
{#,p} defines a twice covariant skew-symmetric tensor A by

A(dp, do) = {¢, 0} 4 (2)
then 5 5
A — Aaba—g)a /\ a—{L‘b (3)

The bivector A, called a Poisson tensor, will play the crucial role in this
paper. If ¢ € F(M), the associated Hamiltonian vector field takes the form
Xy = A(dyp). Poisson structures for which the rank of A is everywhere equal
to the dimension of M is called symplectic with symplectic structure w, the
inverse of the tensor A. For the case of a degenerate Poisson structure there
will exist nonconstant Casimir functions C, such that

A(dip,dC) =0 V€ F(M). (4)

By the Symplectic Stratification Theorem [5] any Poisson manifold is par-
titioned into symplectic leaves and, therefore, is a natural setting for the
study of families of Hamiltonian systems. A Casimir is constant along each
leaf, and the symplectic leaves are exactly common level manifolds of the
Casimir functions.

Since Poisson structures correspond to possibly degenerate bivector fields,
one might hope for a theory which also includes degenerate 2-forms. This
is provided by the theory of Dirac structures [6]. These are subbundles of a
direct sum T'M &T*M which are maximal isotropic for a natural symmetric
bilinear form and which are closed under a bracket discovered by Courant [6]
and which has become the prototype for an object known as a Courant alge-
broid 7). Let (P,w) be a symplectic manifold. A coisotropic submanifold of
the phase space is called a first-class constraint set. A submanifold N C P is
called a second-class constraint set if the symplectic form w restricted to NV
is nondegenerate. These terms are consistent with Dirac’s terminology [8].

Assume M = R?, with coordinates z, 9, 3, a Poisson structure (3) is
defined by the component functions Ay, = {z4, s} satisfying the identity
Aap = —Apg and Agq (0 A/ 04) + Aqp(0Aae] 0T4) + Apa (0 Apa /D) = 0. One
can easily check that the Casimir C for the Poisson structure (3) obeys the
condition a0

Agp 9z, 0. (5)

Suppose C : R® — R! is a submersion, then C~!(§) = L5, § € R', is a
submanifold of R® with codimension one. Let {Ls} be a regular foliation
defined by C and let (U, ¥) be a distinguished chart at z € R?. Then ¥ :
U — R?> x R': (z1,29,73) = (p,q, 2), where z is constant on each leaf L.
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The submanifolds L5 corresponding to constant value of the distinguished
coordinate z are easily seen to be Poisson submanifolds [9], with the natural
reduced Poisson bracket with respect to remaining coordinates p, ¢q. Since a
Poisson structure is determined by its local character, we can assume that
flat local coordinates p, q, z with L5 = {(p,q, )|z = 0}. Let ¢ : L5 — R! be
any smooth function. Then we can extend z/; to a smooth function 1) : R —
R!, defined in U, with 9 = 9|Ls. In the local coordinates 1) = 9 (p, ¢,0). If
¢ : L5 — R! has similar extension ¢, then the Poisson bracket of ¢ and z/;
is defined by restriction {¢, ¥} to Ls

{()5’1/;}.7'— = {()571/;};1 = {(pa'l/J}/”E(sa (6)
with A, = Ags(p, q,0). Since {C,9} 2 = 0 for each o € F(R?), it follows
{CN,'ZZJ}}‘ = {Ca'l/)}/l|£6 =0. (7)

A submanifold L; is defined by the mapping
z :i'l(pa q)7 T2 :i'Q(p7Q)a Z3 :jS(p7Q) (8)

From (6) it follows that the Poisson structure on a symplectic leaf L; is
given by {Z,, %4} 3. In local coordinates on Ls the Poisson structure is

Dt 03,05,
b "9p Oq dqg Op

(9)

3. Poisson bialgebras

Let us start with some algebraic preliminaries that will be also useful
to establish notation. Detailed exposition of the theory can be found in
Refs. [10-12].

A unital associative algebra over K is a linear space A together with two
linear maps m: A® A — A and n: K — A such that

m(m®1) = m(1®@m), (10)
m(l®n) = m(nel)=id. (11)

Here A® A is tensor product of two algebras, 1 is the unit element of A and
id means the entity map. The usual notation is simply ab := m(a ® b), and
we will use such notation.

Let (A1,mq1,m1) and (Aa,mao,1n2) be algebras, then the tensor product
A1 ® As is naturally endowed with the structure of an algebra. The multi-
plication m 4,54, is defined by

(a1 ® bl)(GQ & b2) = (a1a2) & (ble) . (12)
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A coalgebra is a triple (A, A\, €) with a linear space A over K, A : A —
A ® A a linear map called coproduct and € : A — K a linear morphism
called counit with property

A(ab) = Aa)A(b) Va,be A, (13)
(A®id)o A = ([d® A)o A, (14)
(id®e)o A = (e®id) o A =1id. (15)

We note that A ® A is both an algebra and coalgebra [10].

A bialgebra (A, m, /A, n,€) is a linear space over K with maps m, A, 7, e
which satisfy all the above properties.

One can define a tensor product of Poisson algebras F(Ls) ® F(Ls).
F(Ls)®F(Ls) is again a Poisson algebra structure on vector space F(Ly) ®
F(Ls) with the tensor product algebra structure and the tensor product
coalgebra structure. We have to define a Poisson structure on F(Ls)QF (L;)
such that the axioms of Poisson algebra are satisfied. For our purpose the
maps are defined as follows.

The multiplication mzc)0r(cs)

(¢ @p)(x @) = ($x) ® (1)) (16)
The primitive coproduct on F(Ls)
A(Fe) =5a®1+1®,. (17)

We note that as A is a homomorphism, we have A(Z]) = (A(Zq))™.
Given the Poisson structure on F(Ls)

{o. v} r ={Za, T} <§—;0a g—;) (18)
one defines the following Poisson bracket on F(Ls) ® F(Ls)
{¢@ o x@V}rar ={dx}r @y + ¢x @ {p.¥}r. (19)
This is easily seen to give the following condition on the coproduct
{Ale), AW rer = A{e, ¥}F). (20)

We will say that the set (F(Ls),m, N\, e,{, }r) is a Poisson bialgebra.
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4. Complete integrability

Let (P,w) be a smooth symplectic 2n-dimensional manifold and let
H : P — R' a smooth Hamiltonian with associated Hamiltonian vector
field £ : P — T'P. The Hamiltonian system (P,w, H) is said to be com-
pletely integrable if there exist n smooth functions (called first integrals)
Fy=H,---,F, defined on P so that:

(Z) {EaF]}:w(SangF])ZO i) =1,---,mn,
(i) Fy,---,F, are functionally independent almost everywhere in P.

The integrability in twodegrees-of-freedom Hamiltonian system means
that a second integral Fo = G exists, which is not equal to H*¢ for any
9 : R' = R'. So if C is a Casimir function and h is an arbitrary smooth
function on Ls, then the Hamiltonian system defined by the Hamiltonian
H = A(h) is completely integrable.

Indeed, assume C is a Casimir for A, then for any h € F(R?)

{h,CY4|Ls ={h,C}Fr=0. (21)

Since the coproduct is a Poisson map, (21) gives

{AC), AW} ror = AHC B} F = 0. (22)
If we define
Za(p,q) ® 1 = Zq(p1,p2) 1® Za(p,q) = Za(P2,42) - (23)
or more generally
f(p,a) @ g(p,qa) = f(p1.q1)9(p2. 42), (24)
e {A(C), AW}y rer = {F, H}w (25)

with F = A(C), H=A(h),and w ' ={,}r®1+1®{, }r. Since
{A(h), AC)}roFr = {H, F}, =0
for any h € F(Ls), the Hamiltonian system
(R*,w = dpy Adq1 + dps A dgo, H = A(W(%(p, q)))

is completely integrable if and only if dFF A dH # 0 almost everywhere in
R*. Because h € F(L;) is an arbitrary smooth function, there is some class
of functions in F(Ls) whose coproduct is functionally independent almost
everywhere in R* of F = A(C).
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5. Applications
We specialize our previous considerations to the case of the Poisson man-
ifold (R3, A) with
A= (OtIl — ,3/2)82 A O3+ 1903 N\ 01 + 2301 A\ 0o, (26)

where «, [ are constants, and 9, = 9/0,.

5.1. Case: a==0
This case was considered in paper [14]. We start with the Lie algebra
e(2)
[e1, e9] = e3, [e2,e3] =0, [es,e1] = ea. (27)
This solvable algebra is of the type VIIy in Bianchi’s classifications and is

isomorphic to the Euclidean algebra of the plane. We consider the dual e(2)*
to e(2) equipped with the linear Poisson-Lie structure

A=2x301 Ny + 2203 N\ 01, (28)
A Casimir for (28) is
C=ux3+a3. (29)
Hence
{Z1,%2r =23 {f2,33}r =0 {&3,%1}Fr =172. (30)

From (30) we obtain
I1=p 1I9=sIng I3=cosq. (31)
Finally we get

A(C) = F(p1,p2,q1,92) =1+ cos(q2 — q1) - (32)

Thus any Hamiltonian system (R* w,H) on the symplectic manifold
(R*, w = dpy Adgy+dpaAdgs), with an arbitrary Hamiltonian H (p1, p2, q1, q2)

= A(h(p, sing, cos q)) is completely integrable if and only if dH A dF # 0.

5.2. Case: a=0, B#0

This case was discussed in paper [3] hence simple calculations will be
omitted. One can easily show that for Poisson structure

A:I381A82+:E283/\81—(,8/2)82/\83, (33)
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the Casimir is

C = a3+ 23 — f. (34)
The reduced Poisson brackets are fulfilled by the following functions
fi=T, F2=psin(fa), @ =p cos(fa). (35)

Using formulas (17), (20) and (35), we obtain

{A(Z1), A@2) rer = A({Z1,T2}F) = A(Z3)

= /p1cos(Bq1) + /P2 cos(Bgz),
{A(Z2), A@1) rer = A({Z2,T1}F) = A(Z3)

= p1sin(Bq1) + /p2sin(Bgz),
{A(&2), AE3) Y ror = A({Z2,23}7) = —B.

In this case

AC) = (1 = B)(p1 + p2) + 2y/P1p2cos Blq1 — q2) - (36)

5.8. Case: a#0, =0

Without loss of generality we can assume « = 1, then the Poisson struc-
ture is generated by the Lie algebra su(2). Therefore the Poisson—Lie struc-
ture on su(2)* = R3 is given by the bivector

A=¢l a;05 A Oy, (37)

with Levi—Civita tensor 6@ - The Casimir function for the Poisson-Lie tensor
(37) is
C=a?+a3+x3. (38)
The functions z, are defined by the partial differential equations
=zl T kg

op 0Oq 0q Op = G

A small calculation gives

71 = /1 p?cosq, 9 = /1 —p?sing, 3 =p, (39)

and the coproduct of C reads

AC) =2+ 2pip2 +2¢/(1 — p})(1 — pd) cos(ar — a2). (40)
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5.4. Case: a, 3 #0

In this general case the Poisson tensor is
A= (OtIl — ,8/2)82 A O3 + 2903 N O + 2301 A\ O . (41)

We note that only for § = 0 and a = § = 0 the Poisson structures may
be identified with Poisson—Lie structures. One can easily check that the
Casimir for this Poisson structure is

C=xi(az) — B) + 23 + 3. (42)
From the relations
{.’Z‘Q,.’Z‘g}]: = Ozfﬁl — g, (43)
{21,32}F = i3, (44)
{Z5.21}F = 22, (45)
we find
# = g (46)
I _ — sin(fq)
<j§) = \/1+p—ap2ﬁ 2 X(cos(ﬁq)) . (47)

The coproduct of C is

A(C) = 2+ 2aB 2 pips

+24/1—p1 + apd=? \/1— pa + apB62 cos flar — g2) . (48)

The above relations define a class of integrable Hamiltonian systems with
two degrees of freedom

<R4,w = dp1 AN dgy + dps A dqgo, A(ﬁ), A(é)) ,

where h € F(Ls) is an arbitrary smooth function, such that d(A(h)) A
A(A(C)) # 0.
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6. Generalizations

The procedure to obtain integrable Hamiltonian systems with two de-
grees of freedom can be generalized to any degrees of freedom by making
use of the kth coproduct. Letting A = A we find [10]: AF!: F(Ls) —

(F(L£5))%" " by extending
A = (A ®idF) o A, (49)

i.e. diagonalizing on the first factor after applying A*. Hence for arbitrary
k > 2, we have

k
AN =G, (50)
=1

k
{AF1O. 25 )} por = D (G (51)
=1

where ¢ and 7 are linear coordinates on L. The integrals of a Hamiltonian
system with n degrees of freedom are given by m — 1 coproducts of the
Casimir

Fk(paq):Ak(CN) k:1,2,,n—1, (52)

and arbitrary Hamiltonian
H(p.q) = A" (h(&1, B2, &3)) (53)
An easy computation shows that H, FY,---, F, 1 are in involution, and Fj,

are functionally independent by definition.

6.1. Modified structures

Let us introduce the deformed Poisson bracket
{‘%ag}]‘-:ga {2a‘%}.7'-:g7 {@,f}fo(.%,eE), (54)

and the deformed coproduct

Ne(Z) = 2@1+1®7, (55)
A(G) = e+ ey, (56)
A(Z) = 2@ e 2 gz, (57)

where lim._,o(f(Z,¢)) = a1 — /2, © = &1, y = 9, 2z = I3, and € is a
constant. Thus the deformed Poisson tensor reads

A, = f(f,e)ag AOs + y0; N\ 0z + 203 /\ag, (58)



Poisson Reduction, Poisson Bialgebras and Complete Integrability 27
and the Casimir is B
0629(5,5)4_@24_22’ (59)

where g(Z,e) = [ f(,¢)dz. Let us assume that A, is a Poisson mapping,
then the following equalities must hold

Ae({iag}}') = {Ae(i)a Ae(g)}}'(@}'a (60)
Ac({z,2}F) = {D:(2), Ac(@) } rar, (61)
A({,2}F) = {A:(9), Ac(2) }ror - (62)

It is easy to verify that the first two relations are always satisfied. The
situation is different with the last relation

A3, 2}F) = {0, 2} r @ +e T @ {2} F. (63)

It is obvious that {7,2}r # az — /2. A relation that satisfies all the
requirements is

(5,2} = gsinh(ei) - ged. (64)
From the above relations we obtain
i = %, (65)

() = i B2 a2 (i)

Hence the deformed coproduct of the Casimir reads

E e 4 %) - 40107 (pr) + 0%(a)] + AP (1) + W (p2)]

+V14BY(p1) — 4aO(p1) 1+ BY¥(p2) — 4O (p2) cos(B(qr — q2)) , (67)

where

A (é) =

¥ (p)e = exp(ep/pB) — 1 (68)
and

O (p)e = sinh(ep/20) . (69)

So we derived a family of completely integrable Hamiltonian system with
two degrees of freedom, with the second integral given by (67) and the Hamil-
tonian defined by the deformed coproduct of an arbitrary smooth function
h = h(z,7,2).
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7. Concluding remarks

Some new families of integrable Hamiltonian systems have been pre-
sented. They have been obtained according to a integrable sequence

2
(R%, 4) -5 (L5, 4) 2> (]—'@ Fw=Y dpA dqi,A((f)>
=1

with the Poisson tensor A = (axq — 3/2)02 A O3+ x203 A 01 + 2301 A 0o. The
procedure to obtain integrable Hamiltonian systems has been generalized
to any number of degrees of freedom by making use of the k-th coprod-
uct: AF 1 F — 7' We have considered modifications of the Poisson
bialgebra (F,A,{, }) by introducing the deformed coproduct A. and the
deformed Poisson tensor A.. These modifications also provide new classes
of completely integrable systems.

For case o = 8 = 0 the deformed coproduct defines the quantum group
U:(e(2)), whereas for a # 0,58 = 0 it leads to U-(su(2)*). The deformed
Poisson—Lie structures with the deformed coproduct may be identified with
nonstandard quantum deformations of these algebras.

We note that using the results of this paper one can easily generalize the
Calogero system (cf. [15-17]) — linked with the Poisson structure [4] — to
more complex integrable Hamiltonian systems.

The author would like to thank the referee for helpful comments.
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