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POISSON REDUCTION, POISSON BIALGEBRASAND COMPLETE INTEGRABILITYStanisªaw P. KasperzukInstitute of Physis, University of Zielona GóraPla Sªowia«ski 6, 65-690 Zielona Góra, Polande-mail: S.Kasperzuk�proton.if.uz.zgora.pl(Reeived April 29, 2002; revised version reeived September 6, 2002)We onsider Poisson bialgebras on sympleti leaves of a Poisson man-ifold. New lasses of ompletely integrable Hamiltonian systems with ar-bitrary many degrees of freedom are presented. Their Hamiltonians arede�ned as the kth oprodut of arbitrary smooth funtions on symple-ti foliations. We also onsider modi�ations of the Poisson bialgebras byintroduing the deformed oprodut and the deformed Poisson tensor.PACS numbers: 02.20.Sv, 02.90.+p, 04.20.Fy1. IntrodutionOne of the main feature of dynamial systems is their nonintegrability.The study of ompletely integrable Hamiltonian systems started with thepioneering work of Liouville on �nding loal solutions by quadratures. In-tegrable systems were typially disovered by hane or through tehniquesspei�ally prepared for the partiular problems. After Poinaré had reog-nized that integrability is an exeptional phenomenon of Hamiltonian sys-tems and began the study of their qualitative properties, the interest inintegrable Hamiltonian systems vanished. Integrable Hamiltonian systemsplay a fundamental role in the study and desription of physial systems,due to their many interesting properties, both from the mathematial andphysial points of view. Indeed, beyond the obvious interest of �nding �rstintegrals, the onept of integrability seems neessary for more thoroughunderstanding of the nonintegrability phenomenon. To date, however, thereexists no general method for determining whether or not a given system isintegrable. Even in the simplest nontrivial ase, i.e., in the two-degree offreedom Hamiltonian system our knowledge is far from the desired goal.In reent years there has been a renewed interest in ompletely integrableHamiltonian systems, speially in onjuntion with the study of quantum(17)



18 S.P. Kasperzukintegrable systems and quantum groups. Integrable Hamiltonian systemshave always a hidden algebrai struture that is responsible for their inte-grability. Therefore, the most fasinating problem in the study of dynamialsystems is to give suh general algebrai struture whih provide a hiddentreasure. In a reent paper Ballesteros and Ragniso [1℄ have proposed abeautiful idea for proving the omplete integrability of a large olletion ofHamiltonian systems by using oproduts in Poisson Hopf algebras. Thisonstrution was put into a geometrial perspetive in Refs. [2�4℄.This paper presents a proedure in order to onstrut omplete integrableHamiltonian systems with arbitrary many degrees of freedom from a Pois-son bialgebra (F(LÆ);�;4) on sympleti leaves LÆ of a Poisson manifold(R3;�) with the Poisson tensor � = (�x1��=2)�2^�3+x2�3^�1+x3�1^�2:This paper is organized as follows. Setion 2 ontains the redution of aPoisson manifold (M;�) by a Casimir funtion C. In Setion 3, the ba-si de�nitions of Poisson bialgebras are reviewed. In Setion 4, startingwith a Poisson manifold we onstrut a Poisson bialgebra. This bialgebrade�nes a family of ompletely integrable Hamiltonian systems with two de-grees of freedom. In Setion 5, we give an example of a Poisson struture� = (�x1��=2)�2^�3+x2�3^�1+x3�1^�2, and show how it an be used toonstrut new families of integrable Hamiltonian systems. In Setion 6, wegeneralize the results obtained in the previous Setion. In the last Setionsome onlusions are drawn.2. Poisson redutionLet M be a �nite-dimensional di�erentiable manifold and let F(M) bea spae of smooth funtions on M . A Poisson struture on a manifold M isa skew-symmetri bilinear map de�ned byf ; g : F(M)�F(M) ! F(M)suh that for every �; ';  2 F(M) we have(i) ff�; 'g;  g + ff'; g; �g + ff ; �g; 'g = 0;(ii) f�; ' g = f�; 'g + f�;  g';(iii) f�; 'g = �f'; �g:The pair (M; f ; g) is alled a Poisson manifold, and onditions (i) � (iii)make (F(M); f ; g) into a Poisson algebra. The loal expression for thePoisson braket is f�; 'g = fxa; xbg ���xa �'�xb ; (1)



Poisson Redution, Poisson Bialgebras and Complete Integrability 19where summation on repeated indies is understood. The expression forf�; 'g de�nes a twie ovariant skew-symmetri tensor � by�(d�; d') = f�; 'g� (2)then � = �ab ��xa ^ ��xb : (3)The bivetor �, alled a Poisson tensor, will play the ruial role in thispaper. If  2 F(M), the assoiated Hamiltonian vetor �eld takes the formX = �(d ). Poisson strutures for whih the rank of � is everywhere equalto the dimension of M is alled sympleti with sympleti struture !, theinverse of the tensor �. For the ase of a degenerate Poisson struture therewill exist nononstant Casimir funtions C, suh that�(d ; dC) � 0 8 2 F(M): (4)By the Sympleti Strati�ation Theorem [5℄ any Poisson manifold is par-titioned into sympleti leaves and, therefore, is a natural setting for thestudy of families of Hamiltonian systems. A Casimir is onstant along eahleaf, and the sympleti leaves are exatly ommon level manifolds of theCasimir funtions.Sine Poisson strutures orrespond to possibly degenerate bivetor �elds,one might hope for a theory whih also inludes degenerate 2-forms. Thisis provided by the theory of Dira strutures [6℄. These are subbundles of adiret sum TM�T �M whih are maximal isotropi for a natural symmetribilinear form and whih are losed under a braket disovered by Courant [6℄and whih has beome the prototype for an objet known as a Courant alge-broid [7℄. Let (P; !) be a sympleti manifold. A oisotropi submanifold ofthe phase spae is alled a �rst-lass onstraint set. A submanifold N � P isalled a seond-lass onstraint set if the sympleti form ! restrited to Nis nondegenerate. These terms are onsistent with Dira's terminology [8℄.Assume M = R3, with oordinates x1; x2; x3, a Poisson struture (3) isde�ned by the omponent funtions �ab = fxa; xbg satisfying the identity�ab = ��ba and �da(��b=�xd)+�db(��a=�xd)+�ba(��ba=�xd) = 0. Onean easily hek that the Casimir C for the Poisson struture (3) obeys theondition �ab �C�xb = 0 : (5)Suppose C : R3 ! R1 is a submersion, then C�1(Æ) = LÆ; Æ 2 R1, is asubmanifold of R3 with odimension one. Let fLÆg be a regular foliationde�ned by C and let (U;	) be a distinguished hart at x 2 R3. Then 	 :U ! R2 � R1 : (x1; x2; x3) 7! (p; q; z), where z is onstant on eah leaf LÆ.



20 S.P. KasperzukThe submanifolds LÆ orresponding to onstant value of the distinguishedoordinate z are easily seen to be Poisson submanifolds [9℄, with the naturalredued Poisson braket with respet to remaining oordinates p; q. Sine aPoisson struture is determined by its loal harater, we an assume that�at loal oordinates p; q; z with LÆ = f(p; q; z)jz = 0g. Let ~ : LÆ ! R1 beany smooth funtion. Then we an extend ~ to a smooth funtion  : R3 !R1, de�ned in U , with ~ =  jLÆ. In the loal oordinates ~ =  (p; q; 0). If~' : LÆ ! R1 has similar extension  , then the Poisson braket of ~' and ~ is de�ned by restrition f'; g to LÆf ~'; ~ gF := f ~'; ~ g~� = f'; g�jLÆ; (6)with ~�ab = �ab(p; q; 0). Sine fC;  g� = 0 for eah  2 F(R3), it followsf ~C; ~ gF = fC;  g�jLÆ � 0 : (7)A submanifold LÆ is de�ned by the mapping~x1 = ~x1(p; q); ~x2 = ~x2(p; q); ~x3 = ~x3(p; q) : (8)From (6) it follows that the Poisson struture on a sympleti leaf LÆ isgiven by f~xa; ~xbg~�. In loal oordinates on LÆ the Poisson struture is~�ab = �~xa�p �~xb�q � �~xa�q �~xb�p : (9)3. Poisson bialgebrasLet us start with some algebrai preliminaries that will be also usefulto establish notation. Detailed exposition of the theory an be found inRefs. [10�12℄.A unital assoiative algebra over K is a linear spae A together with twolinear maps m : A
A! A and � : K ! A suh thatm(m
 1) = m(1
m) ; (10)m(1
 �) = m(� 
 1) = id : (11)Here A
A is tensor produt of two algebras, 1 is the unit element of A andid means the entity map. The usual notation is simply ab := m(a
 b), andwe will use suh notation.Let (A1;m1; �1) and (A2;m2; �2) be algebras, then the tensor produtA1 
 A2 is naturally endowed with the struture of an algebra. The multi-pliation mA1
A2 is de�ned by(a1 
 b1)(a2 
 b2) = (a1a2)
 (b1b2) : (12)



Poisson Redution, Poisson Bialgebras and Complete Integrability 21A oalgebra is a triple (A;4; �) with a linear spae A over K, 4 : A!A 
 A a linear map alled oprodut and � : A ! K a linear morphismalled ounit with property4(ab) = 4(a)4(b) 8 a; b 2 A ; (13)(4
 id) Æ 4 = (id
4) Æ 4 ; (14)(id
 �) Æ 4 = (�
 id) Æ 4 = id : (15)We note that A
A is both an algebra and oalgebra [10℄.A bialgebra (A;m;4; �; �) is a linear spae over K with maps m;4; �; �whih satisfy all the above properties.One an de�ne a tensor produt of Poisson algebras F(LÆ) 
 F(LÆ).F(LÆ)
F(LÆ) is again a Poisson algebra struture on vetor spae F(LÆ)
F(LÆ) with the tensor produt algebra struture and the tensor produtoalgebra struture. We have to de�ne a Poisson struture on F(LÆ)
F(LÆ)suh that the axioms of Poisson algebra are satis�ed. For our purpose themaps are de�ned as follows.The multipliation mF(LÆ)
F(LÆ)(�
 ')(�
  ) = (��)
 (' ) : (16)The primitive oprodut on F(LÆ)4(~xa) = ~xa 
 1 + 1
 ~xa : (17)We note that as 4 is a homomorphism, we have 4(~xna) = (4(~xa))n:Given the Poisson struture on F(LÆ)f'; gF = f~xa; ~xbg~�� �'�~xa � �~xb� (18)one de�nes the following Poisson braket on F(LÆ)
F(LÆ)f�
 '; �
  gF
F = f�; �gF 
 ' + ��
 f'; gF : (19)This is easily seen to give the following ondition on the oprodutf4(');4( )gF
F = 4(f'; gF ) : (20)We will say that the set (F(LÆ);m;4; �; f ; gF ) is a Poisson bialgebra.



22 S.P. Kasperzuk4. Complete integrabilityLet (P; !) be a smooth sympleti 2n-dimensional manifold and letH : P ! R1 a smooth Hamiltonian with assoiated Hamiltonian vetor�eld �H : P ! TP . The Hamiltonian system (P; !;H) is said to be om-pletely integrable if there exist n smooth funtions (alled �rst integrals)F1 = H; � � � ; Fn de�ned on P so that:(i) fFi; Fjg = !(�Fi ; �Fj ) = 0 i; j = 1; � � � ; n;(ii) F1; � � � ; Fn are funtionally independent almost everywhere in P .The integrability in twodegrees-of-freedom Hamiltonian system meansthat a seond integral F2 = G exists, whih is not equal to H� for any : R1 ! R1. So if C is a Casimir funtion and ~h is an arbitrary smoothfuntion on LÆ, then the Hamiltonian system de�ned by the HamiltonianH = 4(~h) is ompletely integrable.Indeed, assume C is a Casimir for �, then for any h 2 F(R3)fh; Cg�jLÆ = f~h; ~CgF � 0 : (21)Sine the oprodut is a Poisson map, (21) givesf4( ~C);4(~h)gF
F = 4(f ~C; ~hg)F � 0 : (22)If we de�ne~xa(p; q)
 1 = ~xa(p1; p2) 1
 ~xa(p; q) = ~xa(p2; q2) ; (23)or more generally f(p; q)
 g(p; q) = f(p1; q1)g(p2; q2); (24)we get f4( ~C);4(~h)gF
F = fF;Hg! ; (25)with F = 4( ~C); H = 4(~h); and !�1 = f ; gF 
 1 + 1
 f ; gF : Sinef4(h);4( ~C)gF
F = fH;Fg! � 0for any h 2 F(LÆ), the Hamiltonian system(R4; ! = dp1 ^ dq1 + dp2 ^ dq2;H = 4(~h(~x(p; q)))is ompletely integrable if and only if dF ^ dH 6= 0 almost everywhere inR4. Beause h 2 F(LÆ) is an arbitrary smooth funtion, there is some lassof funtions in F(LÆ) whose oprodut is funtionally independent almosteverywhere in R4 of F = 4( ~C).



Poisson Redution, Poisson Bialgebras and Complete Integrability 235. AppliationsWe speialize our previous onsiderations to the ase of the Poisson man-ifold (R3;�) with� = (�x1 � �=2)�2 ^ �3 + x2�3 ^ �1 + x3�1 ^ �2 ; (26)where �; � are onstants, and �a = �=�a.5.1. Case: � = � = 0This ase was onsidered in paper [14℄. We start with the Lie algebrae(2) [e1; e2℄ = e3; [e2; e3℄ = 0 ; [e3; e1℄ = e2 : (27)This solvable algebra is of the type VII0 in Bianhi's lassi�ations and isisomorphi to the Eulidean algebra of the plane. We onsider the dual e(2)�to e(2) equipped with the linear Poisson�Lie struture� = x3�1 ^ �2 + x2�3 ^ �1 ; (28)A Casimir for (28) is C = x22 + x23 : (29)Hene f~x1; ~x2gF = ~x3 f~x2; ~x3gF = 0 f~x3; ~x1gF = ~x2 : (30)From (30) we obtain~x1 = p ~x2 = sin q ~x3 = os q : (31)Finally we get 4(C) = F (p1; p2; q1; q2) = 1 + os(q2 � q1) : (32)Thus any Hamiltonian system (R4; !;H) on the sympleti manifold(R4; ! = dp1^dq1+dp2^dq2), with an arbitrary HamiltonianH(p1; p2; q1; q2)= 4(~h(p; sin q; os q)) is ompletely integrable if and only if dH ^ dF 6= 0.5.2. Case: � = 0; � 6= 0This ase was disussed in paper [3℄ hene simple alulations will beomitted. One an easily show that for Poisson struture� = x3�1 ^ �2 + x2�3 ^ �1 � (�=2) �2 ^ �3 ; (33)



24 S.P. Kasperzukthe Casimir is C = x22 + x23 � �x1: (34)The redued Poisson brakets are ful�lled by the following funtions~x1 = p� ; ~x2 = pp sin(�q) ; ~x3 = pp os(�q) : (35)Using formulas (17), (20) and (35), we obtainf4(~x1);4(~x2)gF
F = 4(f~x1; ~x2gF ) = 4(~x3)= pp1 os(�q1) +pp2 os(�q2) ;f4(~x2);4(~x1)gF
F = 4(f~x2; ~x1gF ) = 4(~x3)= pp1 sin(�q1) +pp2 sin(�q2) ;f4(~x2);4(~x3)gF
F = 4(f~x2; ~x3gF ) = �� :In this ase 4( ~C) = (1� �)(p1 + p2) + 2pp1p2 os �(q1 � q2) : (36)5.3. Case: � 6= 0; � = 0Without loss of generality we an assume � = 1, then the Poisson stru-ture is generated by the Lie algebra su(2). Therefore the Poisson�Lie stru-ture on su(2)� �= R3 is given by the bivetor� = "iskxi�s ^ �k ; (37)with Levi�Civita tensor "isk. The Casimir funtion for the Poisson�Lie tensor(37) is C = x21 + x22 + x23 : (38)The funtions ~xa are de�ned by the partial di�erential equations�~xi�p �~xj�q � �~xi�q �~xj�p = "kij~xk :A small alulation gives~x1 =p1� p2 os q ; ~x2 =p1� p2 sin q ; ~x3 = p ; (39)and the oprodut of ~C reads4( ~C) = 2 + 2p1p2 + 2q(1� p21)(1 � p22) os(q1 � q2) : (40)



Poisson Redution, Poisson Bialgebras and Complete Integrability 255.4. Case: �; � 6= 0In this general ase the Poisson tensor is� = (�x1 � �=2)�2 ^ �3 + x2�3 ^ �1 + x3�1 ^ �2 : (41)We note that only for � = 0 and � = � = 0 the Poisson strutures maybe identi�ed with Poisson�Lie strutures. One an easily hek that theCasimir for this Poisson struture isC = x1(�x1 � �) + x22 + x23 : (42)From the relations f~x2; ~x3gF = �~x1 � �2 ; (43)f~x1; ~x2gF = ~x3 ; (44)f~x3; ~x1gF = ~x2 ; (45)we �nd ~x1 = p� ; (46)� ~x2~x3� = p1 + p� �p2��2 �� sin(�q)os(�q)� : (47)The oprodut of ~C is4( ~C) = 2 + 2���2p1p2+2q1� p1 + �p21��2 q1� p2 + �p22��2 os �(q1 � q2) : (48)The above relations de�ne a lass of integrable Hamiltonian systems withtwo degrees of freedom�R4; ! = dp1 ^ dq1 + dp2 ^ dq2;4(~h);4( ~C)� ;where h 2 F(LÆ) is an arbitrary smooth funtion, suh that d(4(~h)) ^d(4( ~C)) 6= 0:



26 S.P. Kasperzuk6. GeneralizationsThe proedure to obtain integrable Hamiltonian systems with two de-grees of freedom an be generalized to any degrees of freedom by makinguse of the kth oprodut. Letting 4 = 41 we �nd [10℄: 4k+1 : F(LÆ) !(F(LÆ))
k+2 by extending4k+1 = (4
 idk) Æ 4k ; (49)i.e. diagonalizing on the �rst fator after applying 4k. Hene for arbitraryk � 2, we have 4k�1(�) = kXi=1 �i ; (50)f4k�1(�);4k�1(�)gF
k = kXi=1f�; �gi ; (51)where � and � are linear oordinates on LÆ. The integrals of a Hamiltoniansystem with n degrees of freedom are given by n � 1 oproduts of theCasimir Fk(p; q) = 4k( ~C) k = 1; 2; � � � ; n� 1 ; (52)and arbitrary HamiltonianH(p; q) = 4n�1(h(~x1; ~x2; ~x3)) : (53)An easy omputation shows that H;F1; � � � ; Fn�1 are in involution, and Fkare funtionally independent by de�nition.6.1. Modi�ed struturesLet us introdue the deformed Poisson braketf~x; ~ygF = ~z ; f~z; ~xgF = ~y ; f~y; ~zgF = f(~x; ") ; (54)and the deformed oprodut4"(~x) = ~x
 1 + 1
 ~x ; (55)4"(~y) = ~y 
 e"~x=2 + e�"~x=2 
 ~y ; (56)4"(~z) = ~z 
 e"~x=2 + e�"~x=2 
 ~z ; (57)where lim"!0(f(~x; ")) = �~x1 � �=2; x = ~x1; y = ~x2; z = ~x3, and " is aonstant. Thus the deformed Poisson tensor reads�" = f(~x; ")�~y ^ �~z + ~y�~z ^ �~x + ~z�~x ^ �~y ; (58)



Poisson Redution, Poisson Bialgebras and Complete Integrability 27and the Casimir is ~C" = g(~x; ") + ~y2 + ~z2 ; (59)where g(~x; ") = R f(~x; ")d~x: Let us assume that 4" is a Poisson mapping,then the following equalities must hold4"(f~x; ~ygF ) = f4"(~x);4"(~y)gF
F ; (60)4"(f~z; ~xgF ) = f4"(~z);4"(~x)gF
F ; (61)4"(f~y; ~zgF ) = f4"(~y);4"(~z)gF
F : (62)It is easy to verify that the �rst two relations are always satis�ed. Thesituation is di�erent with the last relation4"(f~y; ~zgF ) = f~y; ~zgF 
 e"~x + e�"~x 
 f~y; ~zgF : (63)It is obvious that f~y; ~zgF 6= �~x � �=2. A relation that satis�es all therequirements is f~y; ~zgF = �" sinh("~x)� �2 e"~x : (64)From the above relations we obtain~x = p� ; (65)� ~y~z� = s1 + �(e"p=� � 1)" � 4� �sinh("p=2�)" �2 �� sin(�q)os(�q)� : (66)Hene the deformed oprodut of the Casimir reads4"( ~C) = �" he"p1=� + e"p2=�i� 4�[�2(p1) +�2(p2)℄ + �[	(p1) +	(p2)℄+p1 + �	(p1)� 4��(p1)p1 + �	(p2)� 4��(p2) os(�(q1 � q2)) ; (67)where 	(p)" = exp("p=�) � 1 (68)and �(p)" = sinh("p=2�) : (69)So we derived a family of ompletely integrable Hamiltonian system withtwo degrees of freedom, with the seond integral given by (67) and the Hamil-tonian de�ned by the deformed oprodut of an arbitrary smooth funtionh = h(~x; ~y; ~z).



28 S.P. Kasperzuk7. Conluding remarksSome new families of integrable Hamiltonian systems have been pre-sented. They have been obtained aording to a integrable sequene(R3;�) C�! (LÆ; ~�) 4�!  F 
 F ; ! = 2Xi=1 dpi ^ dqi;4( ~C)!with the Poisson tensor � = (�x1��=2)�2 ^�3+x2�3 ^�1+x3�1^�2: Theproedure to obtain integrable Hamiltonian systems has been generalizedto any number of degrees of freedom by making use of the k-th oprod-ut: 4k : F ! F
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