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POISSON REDUCTION, POISSON BIALGEBRASAND COMPLETE INTEGRABILITYStanisªaw P. Kasper
zukInstitute of Physi
s, University of Zielona GóraPla
 Sªowia«ski 6, 65-690 Zielona Góra, Polande-mail: S.Kasper
zuk�proton.if.uz.zgora.pl(Re
eived April 29, 2002; revised version re
eived September 6, 2002)We 
onsider Poisson bialgebras on symple
ti
 leaves of a Poisson man-ifold. New 
lasses of 
ompletely integrable Hamiltonian systems with ar-bitrary many degrees of freedom are presented. Their Hamiltonians arede�ned as the kth 
oprodu
t of arbitrary smooth fun
tions on symple
-ti
 foliations. We also 
onsider modi�
ations of the Poisson bialgebras byintrodu
ing the deformed 
oprodu
t and the deformed Poisson tensor.PACS numbers: 02.20.Sv, 02.90.+p, 04.20.Fy1. Introdu
tionOne of the main feature of dynami
al systems is their nonintegrability.The study of 
ompletely integrable Hamiltonian systems started with thepioneering work of Liouville on �nding lo
al solutions by quadratures. In-tegrable systems were typi
ally dis
overed by 
han
e or through te
hniquesspe
i�
ally prepared for the parti
ular problems. After Poin
aré had re
og-nized that integrability is an ex
eptional phenomenon of Hamiltonian sys-tems and began the study of their qualitative properties, the interest inintegrable Hamiltonian systems vanished. Integrable Hamiltonian systemsplay a fundamental role in the study and des
ription of physi
al systems,due to their many interesting properties, both from the mathemati
al andphysi
al points of view. Indeed, beyond the obvious interest of �nding �rstintegrals, the 
on
ept of integrability seems ne
essary for more thoroughunderstanding of the nonintegrability phenomenon. To date, however, thereexists no general method for determining whether or not a given system isintegrable. Even in the simplest nontrivial 
ase, i.e., in the two-degree offreedom Hamiltonian system our knowledge is far from the desired goal.In re
ent years there has been a renewed interest in 
ompletely integrableHamiltonian systems, spe
ially in 
onjun
tion with the study of quantum(17)
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zukintegrable systems and quantum groups. Integrable Hamiltonian systemshave always a hidden algebrai
 stru
ture that is responsible for their inte-grability. Therefore, the most fas
inating problem in the study of dynami
alsystems is to give su
h general algebrai
 stru
ture whi
h provide a hiddentreasure. In a re
ent paper Ballesteros and Ragnis
o [1℄ have proposed abeautiful idea for proving the 
omplete integrability of a large 
olle
tion ofHamiltonian systems by using 
oprodu
ts in Poisson Hopf algebras. This
onstru
tion was put into a geometri
al perspe
tive in Refs. [2�4℄.This paper presents a pro
edure in order to 
onstru
t 
omplete integrableHamiltonian systems with arbitrary many degrees of freedom from a Pois-son bialgebra (F(LÆ);�;4) on symple
ti
 leaves LÆ of a Poisson manifold(R3;�) with the Poisson tensor � = (�x1��=2)�2^�3+x2�3^�1+x3�1^�2:This paper is organized as follows. Se
tion 2 
ontains the redu
tion of aPoisson manifold (M;�) by a Casimir fun
tion C. In Se
tion 3, the ba-si
 de�nitions of Poisson bialgebras are reviewed. In Se
tion 4, startingwith a Poisson manifold we 
onstru
t a Poisson bialgebra. This bialgebrade�nes a family of 
ompletely integrable Hamiltonian systems with two de-grees of freedom. In Se
tion 5, we give an example of a Poisson stru
ture� = (�x1��=2)�2^�3+x2�3^�1+x3�1^�2, and show how it 
an be used to
onstru
t new families of integrable Hamiltonian systems. In Se
tion 6, wegeneralize the results obtained in the previous Se
tion. In the last Se
tionsome 
on
lusions are drawn.2. Poisson redu
tionLet M be a �nite-dimensional di�erentiable manifold and let F(M) bea spa
e of smooth fun
tions on M . A Poisson stru
ture on a manifold M isa skew-symmetri
 bilinear map de�ned byf ; g : F(M)�F(M) ! F(M)su
h that for every �; ';  2 F(M) we have(i) ff�; 'g;  g + ff'; g; �g + ff ; �g; 'g = 0;(ii) f�; ' g = f�; 'g + f�;  g';(iii) f�; 'g = �f'; �g:The pair (M; f ; g) is 
alled a Poisson manifold, and 
onditions (i) � (iii)make (F(M); f ; g) into a Poisson algebra. The lo
al expression for thePoisson bra
ket is f�; 'g = fxa; xbg ���xa �'�xb ; (1)
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es is understood. The expression forf�; 'g de�nes a twi
e 
ovariant skew-symmetri
 tensor � by�(d�; d') = f�; 'g� (2)then � = �ab ��xa ^ ��xb : (3)The bive
tor �, 
alled a Poisson tensor, will play the 
ru
ial role in thispaper. If  2 F(M), the asso
iated Hamiltonian ve
tor �eld takes the formX = �(d ). Poisson stru
tures for whi
h the rank of � is everywhere equalto the dimension of M is 
alled symple
ti
 with symple
ti
 stru
ture !, theinverse of the tensor �. For the 
ase of a degenerate Poisson stru
ture therewill exist non
onstant Casimir fun
tions C, su
h that�(d ; dC) � 0 8 2 F(M): (4)By the Symple
ti
 Strati�
ation Theorem [5℄ any Poisson manifold is par-titioned into symple
ti
 leaves and, therefore, is a natural setting for thestudy of families of Hamiltonian systems. A Casimir is 
onstant along ea
hleaf, and the symple
ti
 leaves are exa
tly 
ommon level manifolds of theCasimir fun
tions.Sin
e Poisson stru
tures 
orrespond to possibly degenerate bive
tor �elds,one might hope for a theory whi
h also in
ludes degenerate 2-forms. Thisis provided by the theory of Dira
 stru
tures [6℄. These are subbundles of adire
t sum TM�T �M whi
h are maximal isotropi
 for a natural symmetri
bilinear form and whi
h are 
losed under a bra
ket dis
overed by Courant [6℄and whi
h has be
ome the prototype for an obje
t known as a Courant alge-broid [7℄. Let (P; !) be a symple
ti
 manifold. A 
oisotropi
 submanifold ofthe phase spa
e is 
alled a �rst-
lass 
onstraint set. A submanifold N � P is
alled a se
ond-
lass 
onstraint set if the symple
ti
 form ! restri
ted to Nis nondegenerate. These terms are 
onsistent with Dira
's terminology [8℄.Assume M = R3, with 
oordinates x1; x2; x3, a Poisson stru
ture (3) isde�ned by the 
omponent fun
tions �ab = fxa; xbg satisfying the identity�ab = ��ba and �da(��
b=�xd)+�db(��a
=�xd)+�ba(��ba=�xd) = 0. One
an easily 
he
k that the Casimir C for the Poisson stru
ture (3) obeys the
ondition �ab �C�xb = 0 : (5)Suppose C : R3 ! R1 is a submersion, then C�1(Æ) = LÆ; Æ 2 R1, is asubmanifold of R3 with 
odimension one. Let fLÆg be a regular foliationde�ned by C and let (U;	) be a distinguished 
hart at x 2 R3. Then 	 :U ! R2 � R1 : (x1; x2; x3) 7! (p; q; z), where z is 
onstant on ea
h leaf LÆ.
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zukThe submanifolds LÆ 
orresponding to 
onstant value of the distinguished
oordinate z are easily seen to be Poisson submanifolds [9℄, with the naturalredu
ed Poisson bra
ket with respe
t to remaining 
oordinates p; q. Sin
e aPoisson stru
ture is determined by its lo
al 
hara
ter, we 
an assume that�at lo
al 
oordinates p; q; z with LÆ = f(p; q; z)jz = 0g. Let ~ : LÆ ! R1 beany smooth fun
tion. Then we 
an extend ~ to a smooth fun
tion  : R3 !R1, de�ned in U , with ~ =  jLÆ. In the lo
al 
oordinates ~ =  (p; q; 0). If~' : LÆ ! R1 has similar extension  , then the Poisson bra
ket of ~' and ~ is de�ned by restri
tion f'; g to LÆf ~'; ~ gF := f ~'; ~ g~� = f'; g�jLÆ; (6)with ~�ab = �ab(p; q; 0). Sin
e fC;  g� = 0 for ea
h  2 F(R3), it followsf ~C; ~ gF = fC;  g�jLÆ � 0 : (7)A submanifold LÆ is de�ned by the mapping~x1 = ~x1(p; q); ~x2 = ~x2(p; q); ~x3 = ~x3(p; q) : (8)From (6) it follows that the Poisson stru
ture on a symple
ti
 leaf LÆ isgiven by f~xa; ~xbg~�. In lo
al 
oordinates on LÆ the Poisson stru
ture is~�ab = �~xa�p �~xb�q � �~xa�q �~xb�p : (9)3. Poisson bialgebrasLet us start with some algebrai
 preliminaries that will be also usefulto establish notation. Detailed exposition of the theory 
an be found inRefs. [10�12℄.A unital asso
iative algebra over K is a linear spa
e A together with twolinear maps m : A
A! A and � : K ! A su
h thatm(m
 1) = m(1
m) ; (10)m(1
 �) = m(� 
 1) = id : (11)Here A
A is tensor produ
t of two algebras, 1 is the unit element of A andid means the entity map. The usual notation is simply ab := m(a
 b), andwe will use su
h notation.Let (A1;m1; �1) and (A2;m2; �2) be algebras, then the tensor produ
tA1 
 A2 is naturally endowed with the stru
ture of an algebra. The multi-pli
ation mA1
A2 is de�ned by(a1 
 b1)(a2 
 b2) = (a1a2)
 (b1b2) : (12)
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oalgebra is a triple (A;4; �) with a linear spa
e A over K, 4 : A!A 
 A a linear map 
alled 
oprodu
t and � : A ! K a linear morphism
alled 
ounit with property4(ab) = 4(a)4(b) 8 a; b 2 A ; (13)(4
 id) Æ 4 = (id
4) Æ 4 ; (14)(id
 �) Æ 4 = (�
 id) Æ 4 = id : (15)We note that A
A is both an algebra and 
oalgebra [10℄.A bialgebra (A;m;4; �; �) is a linear spa
e over K with maps m;4; �; �whi
h satisfy all the above properties.One 
an de�ne a tensor produ
t of Poisson algebras F(LÆ) 
 F(LÆ).F(LÆ)
F(LÆ) is again a Poisson algebra stru
ture on ve
tor spa
e F(LÆ)
F(LÆ) with the tensor produ
t algebra stru
ture and the tensor produ
t
oalgebra stru
ture. We have to de�ne a Poisson stru
ture on F(LÆ)
F(LÆ)su
h that the axioms of Poisson algebra are satis�ed. For our purpose themaps are de�ned as follows.The multipli
ation mF(LÆ)
F(LÆ)(�
 ')(�
  ) = (��)
 (' ) : (16)The primitive 
oprodu
t on F(LÆ)4(~xa) = ~xa 
 1 + 1
 ~xa : (17)We note that as 4 is a homomorphism, we have 4(~xna) = (4(~xa))n:Given the Poisson stru
ture on F(LÆ)f'; gF = f~xa; ~xbg~�� �'�~xa � �~xb� (18)one de�nes the following Poisson bra
ket on F(LÆ)
F(LÆ)f�
 '; �
  gF
F = f�; �gF 
 ' + ��
 f'; gF : (19)This is easily seen to give the following 
ondition on the 
oprodu
tf4(');4( )gF
F = 4(f'; gF ) : (20)We will say that the set (F(LÆ);m;4; �; f ; gF ) is a Poisson bialgebra.
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zuk4. Complete integrabilityLet (P; !) be a smooth symple
ti
 2n-dimensional manifold and letH : P ! R1 a smooth Hamiltonian with asso
iated Hamiltonian ve
tor�eld �H : P ! TP . The Hamiltonian system (P; !;H) is said to be 
om-pletely integrable if there exist n smooth fun
tions (
alled �rst integrals)F1 = H; � � � ; Fn de�ned on P so that:(i) fFi; Fjg = !(�Fi ; �Fj ) = 0 i; j = 1; � � � ; n;(ii) F1; � � � ; Fn are fun
tionally independent almost everywhere in P .The integrability in twodegrees-of-freedom Hamiltonian system meansthat a se
ond integral F2 = G exists, whi
h is not equal to H� for any : R1 ! R1. So if C is a Casimir fun
tion and ~h is an arbitrary smoothfun
tion on LÆ, then the Hamiltonian system de�ned by the HamiltonianH = 4(~h) is 
ompletely integrable.Indeed, assume C is a Casimir for �, then for any h 2 F(R3)fh; Cg�jLÆ = f~h; ~CgF � 0 : (21)Sin
e the 
oprodu
t is a Poisson map, (21) givesf4( ~C);4(~h)gF
F = 4(f ~C; ~hg)F � 0 : (22)If we de�ne~xa(p; q)
 1 = ~xa(p1; p2) 1
 ~xa(p; q) = ~xa(p2; q2) ; (23)or more generally f(p; q)
 g(p; q) = f(p1; q1)g(p2; q2); (24)we get f4( ~C);4(~h)gF
F = fF;Hg! ; (25)with F = 4( ~C); H = 4(~h); and !�1 = f ; gF 
 1 + 1
 f ; gF : Sin
ef4(h);4( ~C)gF
F = fH;Fg! � 0for any h 2 F(LÆ), the Hamiltonian system(R4; ! = dp1 ^ dq1 + dp2 ^ dq2;H = 4(~h(~x(p; q)))is 
ompletely integrable if and only if dF ^ dH 6= 0 almost everywhere inR4. Be
ause h 2 F(LÆ) is an arbitrary smooth fun
tion, there is some 
lassof fun
tions in F(LÆ) whose 
oprodu
t is fun
tionally independent almosteverywhere in R4 of F = 4( ~C).
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ationsWe spe
ialize our previous 
onsiderations to the 
ase of the Poisson man-ifold (R3;�) with� = (�x1 � �=2)�2 ^ �3 + x2�3 ^ �1 + x3�1 ^ �2 ; (26)where �; � are 
onstants, and �a = �=�a.5.1. Case: � = � = 0This 
ase was 
onsidered in paper [14℄. We start with the Lie algebrae(2) [e1; e2℄ = e3; [e2; e3℄ = 0 ; [e3; e1℄ = e2 : (27)This solvable algebra is of the type VII0 in Bian
hi's 
lassi�
ations and isisomorphi
 to the Eu
lidean algebra of the plane. We 
onsider the dual e(2)�to e(2) equipped with the linear Poisson�Lie stru
ture� = x3�1 ^ �2 + x2�3 ^ �1 ; (28)A Casimir for (28) is C = x22 + x23 : (29)Hen
e f~x1; ~x2gF = ~x3 f~x2; ~x3gF = 0 f~x3; ~x1gF = ~x2 : (30)From (30) we obtain~x1 = p ~x2 = sin q ~x3 = 
os q : (31)Finally we get 4(C) = F (p1; p2; q1; q2) = 1 + 
os(q2 � q1) : (32)Thus any Hamiltonian system (R4; !;H) on the symple
ti
 manifold(R4; ! = dp1^dq1+dp2^dq2), with an arbitrary HamiltonianH(p1; p2; q1; q2)= 4(~h(p; sin q; 
os q)) is 
ompletely integrable if and only if dH ^ dF 6= 0.5.2. Case: � = 0; � 6= 0This 
ase was dis
ussed in paper [3℄ hen
e simple 
al
ulations will beomitted. One 
an easily show that for Poisson stru
ture� = x3�1 ^ �2 + x2�3 ^ �1 � (�=2) �2 ^ �3 ; (33)
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zukthe Casimir is C = x22 + x23 � �x1: (34)The redu
ed Poisson bra
kets are ful�lled by the following fun
tions~x1 = p� ; ~x2 = pp sin(�q) ; ~x3 = pp 
os(�q) : (35)Using formulas (17), (20) and (35), we obtainf4(~x1);4(~x2)gF
F = 4(f~x1; ~x2gF ) = 4(~x3)= pp1 
os(�q1) +pp2 
os(�q2) ;f4(~x2);4(~x1)gF
F = 4(f~x2; ~x1gF ) = 4(~x3)= pp1 sin(�q1) +pp2 sin(�q2) ;f4(~x2);4(~x3)gF
F = 4(f~x2; ~x3gF ) = �� :In this 
ase 4( ~C) = (1� �)(p1 + p2) + 2pp1p2 
os �(q1 � q2) : (36)5.3. Case: � 6= 0; � = 0Without loss of generality we 
an assume � = 1, then the Poisson stru
-ture is generated by the Lie algebra su(2). Therefore the Poisson�Lie stru
-ture on su(2)� �= R3 is given by the bive
tor� = "iskxi�s ^ �k ; (37)with Levi�Civita tensor "isk. The Casimir fun
tion for the Poisson�Lie tensor(37) is C = x21 + x22 + x23 : (38)The fun
tions ~xa are de�ned by the partial di�erential equations�~xi�p �~xj�q � �~xi�q �~xj�p = "kij~xk :A small 
al
ulation gives~x1 =p1� p2 
os q ; ~x2 =p1� p2 sin q ; ~x3 = p ; (39)and the 
oprodu
t of ~C reads4( ~C) = 2 + 2p1p2 + 2q(1� p21)(1 � p22) 
os(q1 � q2) : (40)
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ase the Poisson tensor is� = (�x1 � �=2)�2 ^ �3 + x2�3 ^ �1 + x3�1 ^ �2 : (41)We note that only for � = 0 and � = � = 0 the Poisson stru
tures maybe identi�ed with Poisson�Lie stru
tures. One 
an easily 
he
k that theCasimir for this Poisson stru
ture isC = x1(�x1 � �) + x22 + x23 : (42)From the relations f~x2; ~x3gF = �~x1 � �2 ; (43)f~x1; ~x2gF = ~x3 ; (44)f~x3; ~x1gF = ~x2 ; (45)we �nd ~x1 = p� ; (46)� ~x2~x3� = p1 + p� �p2��2 �� sin(�q)
os(�q)� : (47)The 
oprodu
t of ~C is4( ~C) = 2 + 2���2p1p2+2q1� p1 + �p21��2 q1� p2 + �p22��2 
os �(q1 � q2) : (48)The above relations de�ne a 
lass of integrable Hamiltonian systems withtwo degrees of freedom�R4; ! = dp1 ^ dq1 + dp2 ^ dq2;4(~h);4( ~C)� ;where h 2 F(LÆ) is an arbitrary smooth fun
tion, su
h that d(4(~h)) ^d(4( ~C)) 6= 0:
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zuk6. GeneralizationsThe pro
edure to obtain integrable Hamiltonian systems with two de-grees of freedom 
an be generalized to any degrees of freedom by makinguse of the kth 
oprodu
t. Letting 4 = 41 we �nd [10℄: 4k+1 : F(LÆ) !(F(LÆ))
k+2 by extending4k+1 = (4
 idk) Æ 4k ; (49)i.e. diagonalizing on the �rst fa
tor after applying 4k. Hen
e for arbitraryk � 2, we have 4k�1(�) = kXi=1 �i ; (50)f4k�1(�);4k�1(�)gF
k = kXi=1f�; �gi ; (51)where � and � are linear 
oordinates on LÆ. The integrals of a Hamiltoniansystem with n degrees of freedom are given by n � 1 
oprodu
ts of theCasimir Fk(p; q) = 4k( ~C) k = 1; 2; � � � ; n� 1 ; (52)and arbitrary HamiltonianH(p; q) = 4n�1(h(~x1; ~x2; ~x3)) : (53)An easy 
omputation shows that H;F1; � � � ; Fn�1 are in involution, and Fkare fun
tionally independent by de�nition.6.1. Modi�ed stru
turesLet us introdu
e the deformed Poisson bra
ketf~x; ~ygF = ~z ; f~z; ~xgF = ~y ; f~y; ~zgF = f(~x; ") ; (54)and the deformed 
oprodu
t4"(~x) = ~x
 1 + 1
 ~x ; (55)4"(~y) = ~y 
 e"~x=2 + e�"~x=2 
 ~y ; (56)4"(~z) = ~z 
 e"~x=2 + e�"~x=2 
 ~z ; (57)where lim"!0(f(~x; ")) = �~x1 � �=2; x = ~x1; y = ~x2; z = ~x3, and " is a
onstant. Thus the deformed Poisson tensor reads�" = f(~x; ")�~y ^ �~z + ~y�~z ^ �~x + ~z�~x ^ �~y ; (58)
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tion, Poisson Bialgebras and Complete Integrability 27and the Casimir is ~C" = g(~x; ") + ~y2 + ~z2 ; (59)where g(~x; ") = R f(~x; ")d~x: Let us assume that 4" is a Poisson mapping,then the following equalities must hold4"(f~x; ~ygF ) = f4"(~x);4"(~y)gF
F ; (60)4"(f~z; ~xgF ) = f4"(~z);4"(~x)gF
F ; (61)4"(f~y; ~zgF ) = f4"(~y);4"(~z)gF
F : (62)It is easy to verify that the �rst two relations are always satis�ed. Thesituation is di�erent with the last relation4"(f~y; ~zgF ) = f~y; ~zgF 
 e"~x + e�"~x 
 f~y; ~zgF : (63)It is obvious that f~y; ~zgF 6= �~x � �=2. A relation that satis�es all therequirements is f~y; ~zgF = �" sinh("~x)� �2 e"~x : (64)From the above relations we obtain~x = p� ; (65)� ~y~z� = s1 + �(e"p=� � 1)" � 4� �sinh("p=2�)" �2 �� sin(�q)
os(�q)� : (66)Hen
e the deformed 
oprodu
t of the Casimir reads4"( ~C) = �" he"p1=� + e"p2=�i� 4�[�2(p1) +�2(p2)℄ + �[	(p1) +	(p2)℄+p1 + �	(p1)� 4��(p1)p1 + �	(p2)� 4��(p2) 
os(�(q1 � q2)) ; (67)where 	(p)" = exp("p=�) � 1 (68)and �(p)" = sinh("p=2�) : (69)So we derived a family of 
ompletely integrable Hamiltonian system withtwo degrees of freedom, with the se
ond integral given by (67) and the Hamil-tonian de�ned by the deformed 
oprodu
t of an arbitrary smooth fun
tionh = h(~x; ~y; ~z).
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zuk7. Con
luding remarksSome new families of integrable Hamiltonian systems have been pre-sented. They have been obtained a

ording to a integrable sequen
e(R3;�) C�! (LÆ; ~�) 4�!  F 
 F ; ! = 2Xi=1 dpi ^ dqi;4( ~C)!with the Poisson tensor � = (�x1��=2)�2 ^�3+x2�3 ^�1+x3�1^�2: Thepro
edure to obtain integrable Hamiltonian systems has been generalizedto any number of degrees of freedom by making use of the k-th 
oprod-u
t: 4k : F ! F
k+1 : We have 
onsidered modi�
ations of the Poissonbialgebra (F ;4; f ; g) by introdu
ing the deformed 
oprodu
t 4" and thedeformed Poisson tensor �". These modi�
ations also provide new 
lassesof 
ompletely integrable systems.For 
ase � = � = 0 the deformed 
oprodu
t de�nes the quantum groupU"(e(2)), whereas for � 6= 0; � = 0 it leads to U"(su(2)�). The deformedPoisson�Lie stru
tures with the deformed 
oprodu
t may be identi�ed withnonstandard quantum deformations of these algebras.We note that using the results of this paper one 
an easily generalize theCalogero system (
f. [15�17℄) � linked with the Poisson stru
ture [4℄ � tomore 
omplex integrable Hamiltonian systems.The author would like to thank the referee for helpful 
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