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We used the generalized form of the Thomas—Fermi type for the density
profile inside spherical nuclei to obtain a leptodermous expansion for the
matter density. This expansion was used to calculate the energy coefficients
of the liquid drop model formula. We obtained analytical expressions for
the volume, surface, curvature and higher order energy coefficients. These
analytical expressions were used to derive a liquid drop model expansion for
compressibility of spherical nuclei. We studied the energy and compress-
ibility expansion coefficients and also their convergence. Particular interest
was focused on the study of surface and curvature properties.

PACS numbers: 21.10.Dr, 21.60.Jz

1. Introduction

For nuclei that are not too small the surface thickness is much smaller
than the nuclear radius (leptodermous system) and we can expand the
nuclear energy of a finite nucleus into volume, surface, curvature and higher
order contributions. This leptodermous expansion (or the Liquid Drop
Model (LDM) formula) has proved enormously useful in calculating fission
barriers, ground-state masses and other nuclear properties [1-3]. In the limit
of a very large nuclear systems, the density may be considered to vary along
one axis and extending to infinity in the two other directions. This one-
dimensional geometry is called Semi-Infinite Nuclear Matter (SINM) and is
used to extract the surface and curvature energy coefficients of the liquid
drop formula [3,4].

In several problems of nuclear physics and astrophysics the surface and
curvature properties of nuclei play a crucial role. In nuclear physics they are
important, for example, for barrier heights and saddle-point configuration in
nuclear fissions and also for fragment distribution in heavy ion collision. In
astrophysics they are important in studying neutron stars and supernovae.

(189)
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Being a quantal system, the nucleus is best described by the shell model
or one of its self-consistent versions, such as the Hartree-Fock (HF) or ran-
dom phase approximations. However, a fairly good description of the nucleus
can be obtained within the semiclassical approach such as the liquid-drop
model, the droplet model or the extended Thomas-Fermi model [1-3]|. Com-
parison of Hartree—Fock and fully self-consistent semiclassical calculations
has shown that the quantal oscillations in the density are confined to the
interior of the nucleus and that the nuclear surface is well described by
semiclassical methods [5,6]. This allows us to calculate surface properties of
nuclei by means of semiclassical methods. Although the surface energy can
be calculated in a full quantal way, only one part of the curvature energy
can be obtained from a quantum mechanical calculation [7-9]. This is an
important reason to compute the surface and curvature coefficients using
semi-classical methods [9].

The nuclear curvature energy posses a problem, the so-called curvature
energy anomaly [10]. The value of the curvature energy obtained from the-
oretical calculations [1,3,7-10] is about 10 MeV. On the contrary, the em-
pirical value determined from the analysis of experimental data on ground
state nuclear masses is compatible with a vanishing value [2,11,12]. Several
explanations have been suggested to solve this anomaly, for instance the
consideration of finite range interaction, Friedel oscillations and relativistic
effects. The effects of the finite range interactions and the influence of Friedel
oscillations have been analyzed in reference [7] and it has been found that
they are not responsible for the curvature anomaly. Also, the relativistic
effects have been found [9] not to be responsible for the anomaly. Myers and
Swiatecki [13] pointed out that the reason for this puzzle is due to neglecting
terms of higher order in the LDM formula. They added a higher order term
to dispose of the curvature energy puzzle. The value of this term was chosen
empirically so as to make the binding energy vanish at A = 1.

The nuclear compressibility is one important factor in the equation of
state of nuclear matter which is accessible to experiment. It enters static
properties of nuclei and also in dynamical properties. It also plays a role
in determining the strength of the shock waves following the collapse of su-
pernovae. The direct relation between the nuclear compressibility and the
second derivative of the binding energy of the nucleus suggests a liquid drop
type formula for the compressibility. One way to determine the compress-
ibility coefficients in this LDM formula is done by fitting the compressibility
liquid drop formula to the experimental data from the giant monopole res-
onance of nuclei [14-17|. Recently Satpathy et al., [17] used an analytical
form for the energy LDM expansion to calculate the compressibility LDM
formula. They found that the LDM expansion of the compressibility shows
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anomalous behavior in contrast to the rapidly converging LDM energy ex-
pansion. They concluded that the LDM expansion of the compressibility is
not quite suitable for the extraction of the compressibility coefficients of this
formula.

The present paper has two aims. The first aim, is to calculate the higher
order terms in the LDM energy expansion. We used a variety of Skyrme
interactions together with the Extended Thomas—Fermi (ETF) functionals
including fourth order correction terms to obtain analytical formulae for en-
ergy expansion coefficients. These analytical formulae were used to analyze
the surface and curvature properties of spherical symmetric nuclei. The
second aim, was to calculate and study the LDM expansion coefficients of
compressibility. The convergence of this expansion was also studied.

We presented the calculation method in Section 2. Section 3 presents
our results and discussions.

2. Calculations

The total energy of a nuclear system is usually written as an integral
over all space of suitable kinetic and potential energy densities

E = /H(r)d37'. (1)

For the potential part, a most convenient interaction is the Skyrme in-
teraction that consists of a two-body and a three-body zero range force. The
three-body term simulates the density dependence, while the velocity depen-
dent two-body term represents the finite range expansion of the force [18|.
The general form of the Hamiltonian density for a symmetric spherical nu-
cleus with no Coulomb energy is given by

H = Hy + Heg + H, | (2)

where Hy, Heg, and H, represent the bulk, the effective mass and the kinetic
Hamiltonian energy density, respectively. They are given by

3 1
H, = gTop2 + Etwa“ +C1(Vp)?, (3)
Heff = CQ,OT (4)
and
ﬁ2
H,=_—pr, (5)

2m
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where 1
Ci = E <9t1 — t2(5 + 4.’1}2)) (6)
and
Gy = - <3t1 Fto(5 4+ 4302)) . (7)
16

p is the local density of the system and 7(p) is its kinetic energy density.
The kinetic energy density in the ETF model up to the fourth order
correction is given by [3]

7(p) = 10(p) + 72(p) + Ta(p) , (8)
where 7y(p) is the standard Thomas—Fermi kinetic energy density term and

is given by
2
3 (3n2\3 s
nio =2 (%) ot )

T2(p) is the second order correction and is given by

T9 —

1 (Vp)?2 1 1Vp-Vf 1pVf 1 [(Vf)?
ot e () w

and 74(p) is the fourth order correction and is given by

g () 0 () (3 () () )
(11)

f(p) is related to the effective mass by the relation

m OH
F = =14+ =1 12
(=" =1+ =110, (12)
where L9
m

Whenever the energy density can be written as a function of the matter
density, this is called the Energy Density Formalism (EDF), minimization
of the energy leads to a variational equation known as the Euler—Lagrange
(E-L) equation. Solving the E-L equation yields both the density profile and
the average total energy of the nucleus [3]. The same routine was employed
to calculate the surface energy of the nucleus using the SINM idea [3,6]. The
curvature energy is calculated using the obtained density profile [3,6].
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When solving the E-L equation numerically using the ETF limited to
a second order correction, the variational densities fall off too quickly in
the outer surface and lead to an overestimation of the kinetic energy [3,18].
This problem was overcome when the full fourth order ETF was used and
the results on the average were identical to that of Strutinsky-averaged HF
calculations [3,4]. Introducing the fourth order correction of the ETF makes
the E-L equation a highly nonlinear fourth order differential equation which
seems inaccessible to numerical solutions [3|. One practical way out of this
difficulty is to perform a leptodermous expansion of the energy using the
SINM simplifications [4]. The second way is to parameterize the density
profile and minimize the total energy with respect to the density parameters
(the restricted variational method). The two-parameters Fermi distribution
function (Fermi distribution to a power) for the trial density profile was
proved [3,4] to give a very good approximation to the numerical solution of
the fourth order E-L equation for symmetric SINM.

In our model calculations, we choose the two-parameters Fermi distribu-
tion for the trial density

plr) = oo |1+ e ()] (14)

where pg, a, and ¢ are the nuclear matter central density, the diffuseness
parameter and the skewness parameter, respectively.

For the density profile given by Eq. (11), the gradient terms (Vp) and
the Laplacian terms (Ap) can be expressed in terms of the density itself.
Thus, the total energy of the system contains only integrals of the form
[ pd3r. These integrals can be approximated by the form [19]

4
/ppd37' = ?ﬂ-pg |:R3 — aR2A1 (pq) + 6a2RA2(pq) - 6a3A3(pq)] ’ (15)

where the coefficients A, (m) are given by [19]

Ay (m) = — ! / {1{btexp(—2)] " +(~1)" [Loxp(x)] " Fa™ . (16)

(n—1)

The normalization condition

A= [ o = TR - R i(0) + 6 Rs(0) 66 4300} (17
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is inverted to obtain the radius R in the form

2
R = oA +adi(q) + | 41(q) - 245() | A75. (18)
0

From Egs. (12) and (15) we can write

wiN

[t = {4~ 3< ) A (pg) — A1 ())A

wl=

2
+6 (-0) [A2(pq) — As(q) — A1 (a)(As (pg) — Ar(q))]A

3
+3 (%) [442(q) —347(9) (A1 (pg) — A1(9)) +2 A1(q) A2 (pq) — 245 (pq)]
4
+ () @741 () ~ 941 (p0) + 1242(0) () — A1 (0)
+6.41(q) As(pg) — 643 (pa)]A 7 } (19)

This equation is the leptodermous expansion of the density. Introducing

this equation in the energy Eq. (1), we obtain the leptodermous expansion
of the energy in the form

B = ByA+ BsAt + EcAb + Eo+ B A1, (20)
where Fv, Fs, Ec, Fy and E_; represent the volume, surface, curvature,
zero and —1/3 energy coefficients, respectively. Each of these terms gets
contributions from bulk potential, effective mass and kinetic energies.

Thus, the surface energy can be written as

Es=E>+ ET + EF. (21)

The bulk surface energy is given by

a 3 1
EP = —3( =) { StopBs(2) + —t3p°t'B 2
s 3 <T0> {8750/) s( )+ 16t3p s(a+ )

+ 11_6 <g>2 p[9t1 — t2(5 + 4xo)] Gl(o)} . (22)

The kinetic surface energy is given by
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NS YT T SO
B = 7‘02m{q< 9 BS3+3 d1 + 36G( 1)+6G1(0)
- (@)2 Gi(1) + 1(C,O)SG1(2) - 3(c,0)4G1(3) + —(cp)°G1(4)

2 3 12 12

2
1 w2 2 3 (3a q\4 q q>
- 2)ofs (L) m-2LQi+2Lp ). (23
6480 2m <3772,0> <7’0) 2 a ! a4Q1+ at ! (23)
The effective mass surface energy is given by

2
or _ _g(4 3a (3mp\* p8  cayr_ U cp
B = 3<r0>02'0{5q< ) ) BS3+<G>[ 36710+ G )

2
1 2 \3 3a 1 g\*4 ¢ ¢
‘@(g?) o C2P? {—7(5) Hy=373Q2 430 7 2, (24

where Bs(n), Bdl; Gl(n), Fl(n), Hl, HQ, Ql; QQ, P1 and P2 are related to
the coefficients A, (m) and given in the Appendix.

The curvature energy can be written as

E.=E>+ EX + BT, (25)

The bulk curvature energy is given by

2
a 3 1
EP = — “topB.(2) + —t30°TIB 2
¢ 6<m> {80” C()+16 3P ol +2)

a

+% (g)Q p[9t1 —t2(5 + 4362)]3(0)} : (26)
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The kinetic curvature energy is given by

_ aq h? | 3a (37°p 5 q|1 cp
EF = GQ%{&]( 5 ) Beg + = |36 B(=1) + £ B(0)
~ (L) BO) + 5 (B — 5(e0)'BG) + 15 (e0)" BUA)

—I—%O [X(l) —cpX(2) + (C,O)QX(?)) _ (C,O)?’X(4)} }

0

vain (577) (3) w0 -

o Zin- i)
1 1Q2 — QuAi(g)] + 247 [Py — PLA(q)]

1 3 h? 8mrog® 1 q+9
- 5494 N4, (12
+6480 <37r) amw P |

- (B¢ +2)4 <¥) + B¢+ 14 <(12;_3) - qu(q)]

274 [Al <$) 34, <q"g6) +34, <q§3> —Al(q)] } (27)

The effective mass curvature energy is given by

1 h? 6q
+39,- { — 87mpgra(Ai(g+1) — Ay (q))}

o = 3a (3n%p\% , 8 g 11 cp
K 002{5(1( 2 ) BCTF;[—%B(O)JFFB(Q
- (%) B+ 50 BE) - 35(e0) Bl) + 15(0)°BG)|

+ P [X(2) - epX(3) + ()X (4) - (c0)* X (5)] }

2
6 2\2 [a)\? 1
+m <3?) <%) 02P3{ — ¢ [Ro — R1A1(q)]

~39[S5 — $141(a)] + 30 [T> — Ti Av(a)] }

1 2 8mrgq? 4949
1)4
16480 372 o Cap' {30 [(q+ ) 1< 3 )
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—(3g+2)4; <4q3+6) t e+ 24 <4q3+3> o <43_q)]

o (452) 20 (459 o (42) -4 ()]}

where B.(n), Be, X(n), S1, S2, R1, Re, T1 and Tj are related to the coeffi-
cients Ay (m) and given in the Appendix.
Also, the energy coefficient Eg can be written as

Ey=Ep + EY + ESE. (29)

The bulk energy term Ef is given by

3
a 3 1
B = 3<_> {étO”BO(Q) 5t Bola+2)

+% (%)2;)[% — t9(5 + 4] 0(0)}- (30)

The kinetic energy E’g is given by

a 71'2 % C
BE = 3—Sqﬁ—m{z—q<32p) Bog+g %C(—1)+§C(0)
cp\2 1 3 5 4 o 5
—(2) e +5()*C2) =~ 5 () C3) + 5 (ep)* C4)
+ 2 V() = eV () + (ep)?Y (3) = (e0)*Y (4)] }
w2 (a 8
ts {gUl g(aﬂ'ﬂ)(b} (31)

2 3a (37°p 8 8r 11 cp
et — 324 Nl - —C(1
¢ Cop 03+ 3 qaUy+= [ 36C(O)+ 6 C(1)
5 4 5 5
= 13(eP)"C(4) + 15 (cp) 0(5)]
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where By(n), Uy, Us, C(n) and Y (n) are related to the coefficients A, (m)
and given in the Appendix.
Also, the energy coefficient £ can be written as

E ,=E" +Ef +ET. (33)

The bulk energy EEI is given by

4
a 3 1
Eb, = (= “topB1(2) + —t3p*T1 B 2
2y <T0> {8 0pBi ( )+16 30 1(a+2)

+% <g>2 p[9t1 — t2(5 + 4I2)]D(0)} : (34)

a

The kinetic energy EF 1 is given by

2
a’q B | 3a (37%p\? _ 5 qgf1 cp
Bk =20 Bi= 46~ |—D(-1)+ —D(0
L E om 5q<2) 13t a[36( )+ 5 PO

() D+ §)'D@) - 130 DE) + %(op)5D(4)]

+P12(1) - pZ(2) + (e 2(3) - <cp)3z<4)]}. (35)

The effective mass energy E% is given by

2
3 3a [3m%p\? _ 8 11
BT = %Cw{—“< T p) Bl—+ﬁg [——D(0)+@D(1)

"o 59\ 2 3 36 6
~(3) @)+ 5'DE) = 350D + %(op)5D(5)]
TG 12(2) — pZ(3) + (c0)*2(4) - (cp)3z<5)]} ) (36)

where Bi(n), D(n), and Z(n) are related to the coefficients A, (m) and given
in the Appendix.
The nuclear compressibility is defined by

2 (E

e (37)

Po
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We used the analytical expressions for the energy coefficients obtained
before to get the nuclear compressibility. A similar leptodermous expansion,
or LDM formula, for compressibility is obtained

K = AyA + KsA3 + KcA3 + Ky + K_j A3 . (38)

It is easy and straightforward to calculate the compressibility coefficients
Kv , Ks, K¢, Ko and K_1 using the analytical equation of the correspond-
ing energy terms.

3. Results and discussions

One practical way to solve the fourth order E-L equations is to use
the restricted variational method. The trial density profile parameters are
determined by minimizing the total energy of the nucleus with respect to
these parameters. The surface and curvature energies are then obtained
using the SINM approximation. They are defined, until now, only for SINM
systems.

In our model calculations we used the generalized form of the Thomas—
Fermi distribution function for the trial density profile. We have three den-
sity parameters namely, pg, @ and gq. The central density of the nucleus pg
is determined from the saturation condition of the volume energy and it is
fixed by the Skyrme force parameters. The normalization condition on the
mass number of the nucleus, when using the analytical expression for the
density integral, is inverted to get the LDM expansion for the matter density.
This LDM expansion, when introduced in the energy equation, gives closed
analytical expressions for the LDM energy coefficients. These expressions
were used to calculate the surface and the curvature energies as functions of
the density parameters a and ¢. These density parameters were determined
at the minimum value of both the surface and the curvature energies. The
obtained optimal values of a and ¢ for different Skyrme forces are listed in
Table I. The analytical expression for the surface energy (also for the other
LDM energy coefficients) enabled us to study the interrelation between the
different factors of the surface energy. We divided the energy into three
parts: the bulk, the effective mass and the kinetic energy term. The sum of
the bulk and the effective mass terms is the potential energy. The effective
mass term (the two-body velocity dependent term in the Skyrme forces)
reflects the effect of the kinetic energy formula on the potential part.

Table IT shows the bulk, effective mass and the kinetic surface energies.
The total surface energy is also listed and compared with previous results for
some Skyrme forces. It is noted that the average value of the surface poten-
tial energy is +37MeV and the average value of the surface kinetic energy
is —19MeV (to be compared with the average value of the volume poten-
tial energy —38 MeV and the average value of the volume kinetic energy
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TABLE 1

The optimal value of the density parameters (a) and (g) for different Skyrme forces
with the corresponding reference for the force parameters.

Force [Ref. number| | a q

RATP|[20] 0.64 1.84
SGII [21] 047 1.00
SKM* [3] 06 1.3
SKT [22] 042 1.42
SLY4 [22] 055 1.1
SLY7 [22] 047 1.2
STIT [23] 052 14
SKA [24] 0.64 1.64
SKSC4 [25] 0.53 1.44
SKSC4o [25] 0.53 1.44
SKSC14 [25] 053 1.44
SKSC15 [25] 0.53 1.44
SKp [26] 053 1.11
T6 [27] 0.56 1.65

+22MeV). The negative contribution of the surface kinetic energy means
that the particles entering the surfaces are slowed down to reduce the sur-
face energy of the nucleus. The average value of the surface energy for the
different Skyrme force is about +18 MeV which is in a good agreement with
the LDM empirical value. Table IT shows also that our results are in a strong
agreement with that of the restricted variational method of Ref. [3].

Table III shows the bulk, effective mass and the kinetic curvature ener-
gies. The average kinetic curvature energy is about +2 MeV (SKp and SGII
give negative values) and the average potential curvature energy is about
+8MeV. This gives an average value for the nuclear curvature energy of
about +10 MeV which is the well-known value obtained using different the-
oretical models. The leptodermous curvature energy E. gets contribution
from the compression energy and the effective curvature energy E, is given
by [1,2]

Bt = Fo— 25, (39)
where Ky is the volume compressibility. This reduces the leptodermous

curvature energy by a factor of about 3 MeV and an average value of about
7 MeV is obtained for the effective curvature energy. Table III also shows
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TABLE 11

The bulk, effective mass and the kinetic surface energy together with the total
surface energy for different Skyrme forces, all in MeV.

Force E? Egt Ek Eg Es [Ref]
SKM* 53.27 —13.04 —22.28 17.95 17.22[3]
SKa 68.81 —29.56 —20.85 18.39 18.52 [3]
SIII 46.66 —11.98 —16.36 18.32 18.04 [3]

RATP | 64.89 —2421 —22.26 1843 18.48 [3]
SLY4 [ 61.99 —20.91 —22.39 1870 18.91[22]
SLY7 | 54.28 —1874 —17.78 17.76 17.85 [22]
SKI 35.17  —3.54 —14.01 17.62 17.31[22]
SGII 4726 —11.64 —19.17 16.45 —
SKSC4 | 37.59 000 —19.08 18.51 —
SKSC4o | 37.60  0.00 —19.08 18.52 —
SKSC14 | 37.86  0.00 —19.08 18.78 —
SKSC15 | 37.68  0.00 —19.08 18.60 —

SKp 40.47 0.00 —-21.31 19.16 —
T6 38.32 0.00 —19.55 18.77 —
TABLE III

The same as Table II but for the curvature energy.
Force EP, Et Ef, Ec(E}) Ec [Ref/]
SKM* 3.69 4.82 3.98 12.49 (9.52) 12.82 [3]
SKa ~1.07 1033  4.14 13.41(10.84) 12.15 [3]
SIIT 5.07 2.88 1.76 9.70 (7.81) 9.52 [3]
RATP —-0.23 9.21 4.77 13.75(10.91) 12.99 [3]
SLY4 809 536  0.17 13.63 (10.58)  8.21[22]
SLY7 4.53 4.28 1.43  10.24 (7.49 7.47 [22]
SKI 494 0.71 1.58 7.23 (5.55 5.06 [22]

(
(
SGII 877 224  —0.67 10.35 (7.82
SKSC4 814 0.00 136  9.50 (6.58
(
(
(

SKSC4o 8.13  0.00 1.36 9.49 (6.57

)
)
)
)
)
)

SKSC14 | 818  0.00 1.36  9.54 (6.54 —
SKSC15 | 815  0.00 1.36  9.50 (6 .56) —
SKp 1190 0.00 —1.06 10.84 (7.18) —
T6 751 0.00 2.24  9.84 (6.85) —
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that our results for the curvature energy using different Skyrme forces are in
a strong agreement with the corresponding values obtained by the restricted
variational method of Ref. 3.

Table IV shows the coefficients of the higher order terms in the LDM
energy expansion. It is noted that the coefficient of the Ey term has a slightly
greater value than the curvature energy coefficient F¢ (but with a negative
sign). This result was found in the restricted variational calculations of
reference [17] and also deduced by Myers and Swiatecki [13] in their Thomas—
Fermi model to overcome the curvature energy puzzle. As seen in Table IV
the energy coefficient E_; has a small (negative) value and can be neglected
to stop the energy expansion at the Ej term.

TABLE IV
The coefficients of the higher order terms in the LDM energy expansion.

Force FEy E_q

SKM* —-12.969 -—1.11
SKa —12.811 —2.44
SIIT —-10.217 —-1.31
RATP —13.418 —2.17
SLY4 —15.877 —1.92
SLY7 —10.472 —1.53
SLI —-7.228 —0.64
SGII —11.125 —1.15

SKSC4 | —11.386 —0.30
SKSCo | —11.383 —0.29
SKSC14 | —11.60 —0.30
SKSC15 | —11.451 —0.29
SKp —14.926 -0.15
T6 —11.588 —0.21

This result is very clear in Table V, where the value of each term in
the energy expansion is calculated at some representative values of the mass
number (A) using different Skyrme forces. The energy coefficient E_; can
be neglected and the energy expansion stops at the term Ey. The energy
coefficient Ey can be neglected for mass number A > 200.

Table VI shows the energy per nucleon using the different Skyrme forces
at different values of the mass number (A). We compared our results with
the Thomas-Fermi model of Myers and Swiatecki Fyi_g[13]. We see from
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TABLE V

Values of the different terms in the energy LDM expansion for the representative
mass number (A) and different Skyrme forces.

Force (A) Ev EsA™5 EcqA~3 FEoA~! E_A°% E

SKM* (40) | —15.776  5.25 081  —0.32  —0.01 —10.04
(120) —~15.776  3.64 0.39  —0.11 0.00  —11.85
(200) —-15.776  3.07 0.28  —0.06 0.00  —12.49
(280) ~15.776 274 022  —0.05 0.00  —12.85
SLY7 (40) | —15.896  5.19 064 —026 —0.01 —10.33
(120) —~15.896  3.60 0.31  —0.09 0.00  —12.07
(200) —~15.806  3.04 022  —0.05 0.00  —12.69
(280) —~15.806  2.71 0.18  —0.04 0.00  —13.04
SKSC4 (40) | —15.859  5.42 0.56  —0.28 0.00  —10.17
(120) —-15.859  3.76 0.27  —0.09 0.00  —11.93
(200) —-15.859  3.17 0.19  —0.06 0.00  —12.56
(280) —~15.859  2.83 0.14  —0.04 0.00  —12.92

Table VI that our calculated values for the energy per nucleon using different
Skyrme forces are consistent with each other. A strong agreement is noticed
for the forces SKM*, SLY7 and RATP with that of Myers and Swiatecki [13].

We used the obtained analytical formulae for the energy coefficients to
calculate the values of the compressibility coefficients for the most used
Skyrme forces.

Table VII shows the contribution of the bulk, effective mass and the ki-
netic compressibility terms to the surface compressibility. The contribution
of the bulk and the effective mass compressibility is negative and gives a neg-
ative value for the potential compressibility. The contribution of the kinetic
term is a small positive and the surface compressibility has a negative value.
The ratio | Kg/Kv | is also tabulated and it can be seen that the scaling
model result Kg ~ — Ky is well satisfied for all Skyrme forces except for SIII
interaction.
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TABLE VI

The binding energy as a function of the mass number (A) for different Skyrme
forces compared with that of Myers and Swiatecki En_g [13].

A | SKM*  SKa SIIT RATP SLY7 SGII SKp Ey-s

20 | —8.54 —842 858 —848 888 -90 866 —8.57
40 | -10.00 -100 -101 -10.1 -103 -104 -10.1 -10.1
60 | -10.80 -108 -108 -109 -11.0 -11.0 -10.8 -10.9
8 | -11.30 -11.3 -113 -114 -—-115 -—-114 -11.3 -—-114
100 | -11.60 -11.7 -116 -—-11.7 -11.8 -—-11.7 —-11.6 -—11.8
120 | -11.90 -119 -119 -120 -121 -120 -11.9 -12.0
140 | —-12.10 -12.1 -12.1 -12.2 -123 -12.2 121 —-12.2
160 | —12.20 -12.3 -12.3 -124 -124 -123 -123 -124
180 | —12.40 —-12.5 -124 -12.5 -125 -124 -124 —-125
200 | —=12.50 -12.6 —-12.5 —12.6 —12.6 —12.5 —12.5 —12.7
220 | —12.60 -—-12.7 -12.6 -—-12.7 —-12.7 -126 -—-12.6 —12.8
240 | —=12.70 -12.8 -12.7 -12.8 -—-128 -—-12.7 -12.7 -—-129
260 | —12.80 -129 -12.8 -129 -129 -128 -—-12.8 -13.0
280 | —-1290 -130 -129 -13.0 -13.0 -129 -129 -13.0

TABLE VII

The contribution of the bulk, effective mass and kinetic surface compressibility
terms together with the total surface compressibility. Also, the absolute value of
Kg /Ky is shown.

Force K? K&t KY Ks | Ks/Kv |
SKM* —241.6 —44.1 54.0 —231.7(1.07
SKa —272.5 —-81.8 72.2 —282.4 (1.07
SIIT —476.3 —-36.9 43.0 —470.2 (1.32
RATP —251.6 —-780 60.0 —269.9 (1.13
SLY4 —240.5 —68.5 57.0 —252.0(1.10
SLY7 —-203.6 —56.2 50.0 —209.8 (0.91

SGII —-209.6 —-37.2 48.0 —198.8 (0.93
SKSC4 | —284.1 0.0 48.0 —236.1(1.01
SKSC4o | —284.0 0.0 48.0 —236.0 (1.01
SKSC14 | —285.0 0.0 48.0 —237.0(1.01
SKSC15 | —284.3 0.0 48.0 —236.3 (1.01
SKp —237.6 0.0 51.0 —186.6 (0.93
T6 —291.7 0.0 49.0 —242.7 (1.03

(1.07)
(1.07)
(1.32)
(1.13)
(1.10)
(0.91)
SKI —461.9 -10.1 40.0 —431.9 (1.17)
(0.93)
(1.01)
(1.01)
(1.01)
(1.01)
(0.93)
(1.03)
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Table VIII shows the contribution of the bulk, effective mass and the
kinetic energy terms to the curvature compressibility. The curvature com-
pressibility has a positive value (K¢ = 0.85 Ky) for all Skyrme forces used
in our calculations. The value of the curvature compressibility, as found in
literature, is somewhat uncertain both in magnitude and in sign [28-31].
While, Treiner et al., [28] found K¢ to be about +345 MeV for SIII force
using ETF model, Nayak et al., [29] found within the scaling model K¢ to
be negative and about —150 MeV for the same force, which they assigned
to the use of the fourth order correction in the ETF kinetic energy formula.
Recently, Satpathy et al., [17] used the ETF kinetic energy formula includ-
ing only the second order correction and found that K¢ to be negative for
SkM* (=110 MeV), SKA (—124 MeV) and SIII (—114 MeV). In our model
calculations we found that the contribution of the effective mass term to the
curvature compressibility is zero for all Skyrme forces. The contribution of
the bulk term is small compared to that of the kinetic term. The kinetic
term has the main contribution to the curvature compressibility. For the ki-
netic curvature compressibility the Thomas—Fermi term is found to be zero
and only the second and the fourth order corrections of the ETF formula are
active. The most important terms concerned the curvature compressibility
are the gradient and the Laplacian terms of the ETF kinetic formula.

TABLE VIII

The same as in Table VII but for the curvature compressibility.

Force K K& KE  Kco|Ko/Ky|
SKM* | —189 0.0 231 212 (0.98)

SKa 21 0.0 194 196.1 (0.75)
SIII 53.9 0.0 201 254.9 (0.72)
RATP -7.9 0.0 222 214.1(0.89)
SLY4 —20.3 0.0 201 180.7 (0.79)
SLY7 ~12.6 0.0 202 189.4 (0.82)
SKI 488 0.0 212 260.8 (0.70)
SGII —-19.7 0.0 200 180 (0.84)

SKSC4 —-16.3 0.0 223 206.7 (0.88)
SKSC4o0 | —16.3 0.0 223  206.7 (0.88)
SKSC14 | —-16.4 0.0 223 206.6 (0.88)
SKSC15 | —16.3 0.0 223 206.7 (0.88)
SKp —29.1 0.0 221 181.9(0.91)
T6 —15.2 0.0 231 215.8(0.92)
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Table IX shows the higher order terms of the compressibility LDM ex-
pansion. The coefficient of the A° term (Kj) is negative for all Skyrme forces
and the coefficient of the A~1/3 term (K_;) is positive. The compressibility
of symmetric spherical nuclei as a function of the mass number (A) is shown
in Table X where we compared our results with that of the TF model of
Myers and Swiatecki Ky;—g[32| and a good agreement is noticed for Skm*,
SLy4 and SGII forces.

TABLE IX
The higher order terms of the compressibility LDM expansion.
Force Ky K 4
SKM* —219.2 165.2
SKa —385.7 204.9
SIII —-71.9 36.0
RATP —-319.2 180.1
SLY4 —345.0 148.1
SLY7 —-207.2 722
SKI —-12.8 13.5
SGIT —187.89 10.4
SKSC4 —81.1 92.1
SKSC4o —81.0 92.1
SKSC14 —81.3 924
SKSC15 —-81.1 92.2
SKp —129.5 115.5
T6 —-83.8 1094

Table XI shows the values of the compressibility coefficients in the LDM
expansion for some representative mass number A and different Skyrme
forces. The compressibility coefficient K_; can be neglected and the LDM
expansion for compressibility stops at the term Ky. The compressibility co-
efficient Ky can be neglected for mass number A > 200. Table XI shows also
that the LDM expansion of the nuclear compressibility is rapidly converging.
Recently, Satpathy et al., [17] found that this expansion shows anomalous
behavior. Their result may be due to using only the second order correction
ETF kinetic energy formula in their calculations. The nuclear compressibil-
ity is very sensitive to the gradient and Laplacian terms of the fourth order
ETF kinetic energy formula. In summary, we used the restricted variational
method to solve the energy equation of the ETF model including fourth order
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TABLE X

The nuclear compressibility as function of the mass number for the different Skyrme
forces compared with that of Myers and Swiatecki Ky_g [32].

A | SKM* SKa SIII RATP SLY7 SGII SKp Ku-s

20 | 152 170 214 157 169 158 152 125
40 | 163 189 238 173 180 168 159 148
60 | 168 198 251 180 185 173 163 159
80 | 172 204 259 185 189 176 166 166
100 | 175 208 265 189 192 179 168 171
120 | 177 211 270 192 194 181 170 175
140 | 178 213 274 194 194 182 171 178
160 | 180 215 277 196 196 184 172 181
180 | 181 217 280 197 198 185 172 183
200 | 182 219 282 198 199 186 164 185
220 | 183 220 284 200 199 186 175 186
240 | 184 221 286 201 200 187 175 188
260 | 185 222 288 202 200 187 176 189
280 | 185 223 289 202 201 188 176 190

TABLE XI

The values of the different terms in the compressibility LDM expansion for the
representative mass number (A) and different Skyrme forces.

Force (A) Ky KsA™3 KcA™3 KgA™' K_jA~i K

SKM* (40) | 216.7 —67.79  18.13  —5.47 121 1627
(120) 216.7 —46.93 872  —1.82 0.28  176.7
(200) 216.7 —39.58 620  —1.09 0.14  182.2
(280) 216.7 —35.38 496  —0.78 0.09  185.4
SLY4 (40) | 2299 —73.7 1545  —8.62 1.07  164.1
(120) 229.9 —51.1 743  —2.87 0.25  183.6
(200) 229.9 —43.1 528  —1.72 0.12  190.5
(280) 229.9 —3853 422  —123  0-08 1944
SKSC4 (40) | 234.6 —69.05  17.67  —2.03 0.67  181.9
(120) 234.6 —47.87 850  —0.68 0.16  194.7
(200) 234.6 —40.38  6.04  —0.41 0.08  199.9
(280) 234.6 —36.09 483  —0.29 0.05  203.1
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gradient corrections. We got analytical equations for the energy coefficients
in the LDM energy expansion. The LDM energy expansion stopped at the
fourth term and gave good convergence behavior. The value of the higher
order energy coefficient Fy was in a good agreement with the empirical value
proposed by Myers and Swiatecki in their Thomas Fermi model to overcome
the curvature energy puzzle. Analytical expressions were also derived for
the compressibility coefficients of the LDM compressibility expansion. The
LDM compressibility expansion was found to have good converging behav-
ior. The energy and compressibility expansion coefficients were useful in
comparing the leptodermous contributions of the individual terms of a large
variety of Skyrme forces on the market for the same reference density.

Appendix

In this appendix we give the explicit form of the functions of the coeffi-
cients An(m) appears in the energy LDM.

Bs(n) = Ai(ng) — Ai(q),
Be(n) = As(ng) — Aa(q) — A1(q)Bs(n) ,
Boln) = 3{74}(q) ~ 1241(g) As(a) — 943(q)
+12A5(q) A1(ng) + 6A1(q) A2(ng) — 6A43(ng)} ,
Bi(n) = Af(q){5A%(q) — 1445(q) + 6A3(nqg) — 6A2(ng)
+ A2(q)[842(q) + 1241 () A1 (ng) — 12A2(nqg)l},

Bao(n) = As(q+1) — Ax(q) — Ai(g)[Ai (g + 1) — Ai(q)],
Bgi(n) = qAi(q) — (2¢+ DAi(g+1) + (¢ +1)Ai(g +2),
Bia(n) = qAa(q) — (2 + 1)A2(q+1) + (¢ + 1) A2(g +2),
Baz(n) = qAs(q) — (2¢ + 1)A3(¢+1) + (¢ + 1) A3(q +2),

B. = Bg — Bs141(q),
By = Bg[4A1(q) — 3A3(q)] + 2BpA1(q) — 2Bys

B_1 = Bc[A}(q) — 24s(q)],
Fi(n) = Ai(ng+2) —24;(2¢ +1) + Ai(q)
Gi(n) = Aj(2¢+nq) — Ai(2g+nqg+1) + Ai(2qg + nqg + 2),

where 4 runs over 1, 2 and 3.
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