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LONG-TIME AUTOCORRELATION FUNCTIONOF ECG SIGNAL FOR HEALTHY VERSUS DISEASEDHUMAN HEARTB. Kulessaa, T. Srokowskia and S. Dro»d»a;b;
;daH. Niewodni
za«ski Institute of Nu
lear Physi
sRadzikowskiego 152, 31-342 Kraków, PolandbInstitute of Physi
s, University of RzeszówRejtana 16a, 35-959 Rzeszów, Poland
Physikalis
hes Institut, Universität Bonn, 53115 Bonn, GermanydInstitut für Kernphysik, Fors
hungszentrum Jüli
h, 52425 Jüli
h, Germany(Re
eived April 22, 2002; revised version re
eived July 25, 2002)Long-time ECG time series for healthy subje
ts and diseased patientsare analysed. In the �rst 
ase, the power spe
trum has the 1=f shape in abroad frequen
y range. However, its behaviour for very low and very highfrequen
y is di�erent and the entire spe
trum is integrable. For patientswith post-i
tal heart rate os
illation in partial epilepsy the 1=f noise isnot present. We determine the power spe
trum by evaluating the Fouriertransform of the signal in both 
ases and 
al
ulate the signal auto
orrelationfun
tion. It falls with time faster for diseased patients then for healthypeople. The presented method 
an serve as a diagnosti
 tool of some heartdiseases.PACS numbers: 05.45.+b, 87.10.+e, 97.80.+s1. Introdu
tionA long-time tra
ing of ECG signal from a human heart is able to reveal [1℄some pathologi
al forms of arrhythmia but also the spe
tral stru
ture ofthe heart rate variability. The shape of the spe
tral fun
tion and long-time auto
orrelations of the signal 
arry a new information, 
omparing witha standard, short-time, ECG examination and o�ers, potentially, a newdiagnosti
 tool.It has been established [2℄ that the power spe
trum of heart rate ex-hibits the 1=f behaviour over a broad frequen
y domain. This kind of noise,
alled also a ��i
ker noise�, is widespread in nature. Its presen
e has beendemonstrated in va
uum tubes [3℄, 
arbon resistors, but also for see level(3)
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tuations [4℄ and in astronomy [5℄. The human heart is not the only bi-ologi
al system among living organisms for whi
h these spe
tral propertieshave been shown. Re
ently, it has been reported for the MEG signal fromthe human brain [6℄.The sour
e of the 1=f noise for the human heart is not known. A possibleme
hanism of its generation stems from the obvious observation that thisnoise 
omprises many time s
ales. A typi
al power spe
trum, 
onne
tedwith the exponential de
ay of the auto
orrelation fun
tion, has a Lorentzianform: P (f) = �=(1 + �2f2), where � is the 
orrelation time whi
h de�nesthe time s
ale. We 
an get formally the 1=f noise assuming that the time � ,instead of being a 
onstant value, is given by some probability distribution,e.g. the lognormal distribution. Physi
ally it means that the phenomenonwe are dealing with results from many underlying pro
esses 
hara
terised byvarious time s
ales, e�e
tively produ
ing a s
ale-invariant pro
ess.One 
an easily imagine 
andidates for su
h pro
esses in human heart.The His-Purkinje system takes a single nerve pulse and bran
hes it out.Ea
h pathway of this pulse has its own time s
ale [7℄. Moreover, physio-logi
al 
ontrol systems operate on di�erent time s
ales; the blood pressureis regulated by at least nine di�erent systems that operate on time s
alesfrom a few se
onds to a few hours [8℄. On the other hand, some pathologi
al
onditions, a�e
ting metaboli
 and bio
hemi
al parameters, 
an destabiliseHis-Purkinje 
ell membranes. The power spe
trum possesses in this 
aseadditional peaks be
ause some sort of regular rhythm of heart rate is gen-erated [9℄.The self-similar (more pre
isely: self-a�ne) nature of the heart rate 
anbe demonstrated by plotting the heart rate data for di�erent resolutions,on di�erent time s
ales. This means that if we take a su�
iently long timeinterval and magnify a portion of it, we get a pattern qualitatively simi-lar to the original interval [10℄. Therefore, fra
tal properties are expe
ted.The self-similarity implies power-law dependen
es of s
aled quantities whi
hmanifest themselves as a straight line on log-log plots. It is the 
ase, forexample, for the detrended �u
tuation analysis method [11℄ whi
h revealslong-range anti
orrelations in the heartbeat �u
tuations [12℄. Moreover, theHurst analysis is able to demonstrate the self-similar 
orrelations in the heartrate data [13℄. However, the heartbeat time series possesses a rather 
ompli-
ated self-similar stru
ture and is not homogeneous enough to be des
ribeduniquely by a single singularity exponent. In order to take into a

ountall s
aling properties of the signal, one should determine the entire multi-fra
tal spe
trum [14℄. Analysis of fra
tal 
hara
teristi
s for various 
ardia
pathologies indi
ates signi�
ant alterations in short and long-range heart-beat 
orrelation properties, suggesting possible 
lini
al appli
ations [15℄.



Long-Time Auto
orrelation Fun
tion of ECG Signal for Healthy . . . 5In this paper we perform an analysis of ECG signals for a healthy sub-je
t and 
ompare the results with those obtained for a patient with a heartdisease. In Se
. 2 we present the ECG time series and details of the measure-ment. The method of extra
tion of QRS 
omplexes from those time seriesis des
ribed in Se
. 3. The power spe
trum for 24 hours heart rate data, forboth healthy and diseased 
ases, are presented in Se
. 4. Se
. 5 is devotedto the heart rate auto
orrelation fun
tion, its time dependen
e is 
al
ulatedfor both 
ases. The most important results are summarised and dis
ussedin Se
. 6. 2. Des
ription of dataThe �rst group of data 
onsists of �ve ele
tro
ardiographi
 re
ordingsof subje
ts without 
lini
al eviden
e of 
ardia
 disease. The healthy groupbetween 25 and 45 years of age underwent a 
omplete physi
al examina-tion and their medi
al history revealed no 
ardiovas
ular disease. The ECGre
ordings were monitored: 24 hours for one subje
t and 8�10 hours for fourother subje
ts. We used three 
hannel semi
ondu
tor holters of the �MedilogOxford� type. Measurements have been performed in the Cardiologi
al De-partment of the Military Hospital in Cra
ow.The se
ond group 
omprises of three 8 hours ECG re
ordings of subje
tswith post-i
tal heart rate os
illation in partial epilepsy. The patients rangedin age from 31 to 48 years had partial seizures and post-i
tal 
ardia
 os
illa-tions asso
iated with abnormal heart rhythms and Mayer waves [16℄. Mayerwaves are spontaneous os
illations at frequen
ies 0.05�0.1 Hz in 
erebralblood �ow velo
ity and represent barore�ex a
tivation. These os
illationsare 
aused by a
tion of the sympatheti
 nervous system and result from timedelays in the barore�ex feedba
k loop for the 
ontrol of sympatheti
 nervea
tivity [17℄. The me
hanism of post-i
tal os
illation in heart rate duringpartial epilepsy is des
ribed in Refs. [18℄. The ECG re
ordings of the groupof diseased people has been taken from MIT-BIH database [19℄.3. Dete
tion of the QRS 
omplexesAnalysis of the data requires, as a �rst step, an identi�
ation of QRS
omplexes from ECG re
ording. The 3-lead ECG re
ordings were performed.For the purpose of our analysis, it was su�
ient to take only one 
hannel;we 
hose the se
ond one for whi
h the signal amplitude is the largest. Fig. 1shows how the original ECG signal has been modi�ed to obtain the heartrate time series useful for our studies. From the ECG signal we subtra
tthe lo
al average of that signal, taken over subsequent �ve points. Crossingof the threshold value with the averaged ECG signal is used to �nd lo
al
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orresponding to the sequen
e of heart beats. We determine theposition of ea
h QRS, as 
orresponding to its minimum. We a

ept thatminimum if the amplitude value is positioned below an assumed threshold.Applying the above pro
edure, we preserve the original interbeat intervalsand avoid unimportant �u
tuations 
aused by the 
hanges of the ECG signalbase line level. The a

urate dete
tion of QRS peak lo
ations is 
ru
ial tostudy long term heart rate variability. The o

urren
e time of the nth QRSwe denote by tn. The signal we will analyse in this paper, X(t), is de�nedas X(t) = tn� tn�1. More details about the dete
tion algorithm of the QRS
omplexes 
an be found in Ref. [20℄.
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Fig. 1. The prin
iple of the QRS dete
tion method. In the upper part of the �gurethe measured ECG signal (dashed line) together with the ECG signal 
al
ulatedas a lo
al averaged over 5 points are presented (solid line). In the lower part ofthe �gure the di�eren
e of those two signals is plotted (dotted line). A QRS wasa

epted if amplitude value outstripped the threshold value �15 mV (dot-dashedline). 4. The spe
tral analysisThe power spe
trum P (f) is de�ned by the Fourier transform of the timesignal X(t) in the following way:P (f) � ������ 1Z0 X(t) 
os(2�ft)dt������2 : (1)To perform the Fourier integral, we have used the FFT algorithm [21℄.



Long-Time Auto
orrelation Fun
tion of ECG Signal for Healthy . . . 74.1. The healthy heartFirst we 
onsider the heart rateX(t) for the healthy subje
t and 
al
ulateits power spe
trum a

ording to Eq. (1). The result is presented in Fig. 2.The 
urve has the shape 1=f within the frequen
y interval (f1; f2), wheref1 = 0:003 Hz and f2 = 0:1 Hz. At higher frequen
y a peak originating fromthe breathing pro
ess emerges: it is 
entred around 0.2 Hz and rea
hes upto 0.3 Hz. In the highest frequen
y limit, the shape 1=f2 is 
learly visible.This kind of noise, 
alled the brown noise, is de�ned as an integral from thewhite noise and it 
hara
terises the Wiener pro
ess (di�usion).
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Fig. 2. The power spe
trum of the heart rate for a healthy subje
t (solid line) andits power-law analyti
al representation, a

ording to Eq. (2) (dashed line).The 1=f noise is di�
ult to handle mathemati
ally be
ause the integralR10 P (f)df diverges at both ends in this 
ase. For stationary pro
esses theintegral must assume a �nite value [22℄. Consequently, in any theory of su
hpro
esses the 1=f law 
an only appear for intermediate frequen
ies, i.e. thespe
trum must possess 
ut-o� at some high, as well as some low, frequen
yvalue. Su
h requirement is obvious if 
hara
teristi
 times are limited fromabove and from below. For example, the M
Whorter theory [23℄ of noisein semi
ondu
tors predi
ts the spe
trum 
onsisting of three parts: the �atspe
trum at small frequen
ies (white noise), 1=f segment and, �nally, thebrown noise (� 1=f2).



8 B. Kulessa, T. Srokowski, S. Dro»d»For the human heart we are not able to point out what a me
hanismis responsible for the appearan
e of 1=f behaviour and we 
annot provestationarity itself. However, the data themselves indi
ate the existen
e ofboth frequen
y 
ut-o�s. Sin
e the time series has a limited length, thespe
trum is determined with a �nite a

ura
y. The error manifests itselfas os
illations of the power spe
trum 
urve and it is espe
ially large atlow frequen
ies. That frequen
y domain is the most important be
ause it
orresponds to the long-time behaviour of the system. Nevertheless, theshape of the 
urve in this region (Fig. 2) apparently obey the power lawf�� with the numeri
ally estimated exponent � = 0:65. Therefore, thepower spe
trum for the 
ase under 
onsideration is integrable at both sides,suggesting that we are dealing with some sort of stationary pro
ess.The shape of power spe
trum at small frequen
ies is determined by long-time limit of the heart rate signal X(t). Therefore, the length of the data setis 
ru
ial for the above analysis. One 
an ask to what extend our 
on
lusionsare sensitive on the �niteness of the time series. In order to 
he
k that, weredu
ed length of the data by 20%. The resulting power spe
trum exhibitsenhan
ed os
illations at small frequen
ies. However, the power law in thisregion is still re
ognisable and the �tted exponent di�ers from the value forthe full data by less then 2%. The rest of the spe
trum is only slightlydistorted by shortening of the time series.We 
an then 
on
lude that the power spe
trum of the healthy heart rate
an be represented by a juxtaposition of three power law dependen
es:P (f) = 8>>><>>>: Af0:65 for f < f1 ,Bf for f1 � f � f2 ,Cf2 for f > f2 , (2)where the 
onstants A, B and C are evaluated from the 
ontinuity require-ment; the frequen
ies dividing subsequent intervals are: f1 = 0:003 Hz andf2 = 0:1 Hz. Assuming the above Ansatz for the further analysis, allowsus to get rid of statisti
al �u
tuations, as well as of some details whi
h arerather trivial, e.g. the peak from respiration.We performed the same analysis for the other �ve 
ases of healthy sub-je
ts. It 
on�rmed the presen
e of 1=f noise. However, it was impossible tostudy the low frequen
y limit be
ause time series were 
onsiderably shorter.
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orrelation Fun
tion of ECG Signal for Healthy . . . 94.2. A pathologi
al 
aseWe have performed a similar analysis for the data originated from apatient with post-i
tal 
ardia
 os
illations. The power spe
trum is presentedin Fig. 3. The shape of the 
urve di�ers substantially from that obtained for
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Fig. 3. The power spe
trum of the heart rate for a subje
t with post-i
tal heartrate os
illation in partial epilepsy (solid line) and its power-law analyti
al repre-sentation, a

ording to Eq. (4) (dashed line).the healthy heart. It obeys the power law dependen
e in a broad frequen
yrange but the exponent is unique and mu
h smaller, it equals 0.5. Therefore,the noise 1=f is la
king. For pathologi
al 
ase a sharp peak develops at highfrequen
y edge of the spe
trum, at about f = 0:3 Hz. It originates fromthe respiratory sinus arrhythmia. Os
illations on the left hand side of thatrespiratory peak 
an be interpreted as Mayer waves [24℄. Sin
e they are verysmall, we negle
t them in further analysis. The respiratory sinus arrhythmiapeak is mu
h more distinguished than the respiratory peak for the 
ase ofhealthy heart. It 
an be parameterised by a Gaussian. If we take this peakinto a

ount, the power spe
trum for the pathologi
al 
ase 
an then be 
astin the following form:P (f) = 8>>><>>>: Af0:5 for f < f1 ,B exp�� (f�f0)22�2 � for f1 � f � f2 ,Cf2 for f > f2 , (3)where f0 = 0:33 Hz, � = 0:03 Hz, f1 = 0:27 Hz and f2 = 0:38 Hz.



10 B. Kulessa, T. Srokowski, S. Dro»d»Alternatively, we 
an 
onsider the power spe
trum with the respiratorypeak removed, similarly as for the 
ase of healthy heart, and obtain thefollowing simple parameterisation:P (f) = 8<: Af0:5 for f < f1 ,Cf2 for f > f1 , (4)where f1 = 0:278 Hz.5. The determination of the heart rate auto
orrelation fun
tionFor any sto
hasti
 pro
ess, a quantity of interest is its auto
orrelationfun
tion whi
h is a measure of the in�uen
e of the pro
ess value X(�) atsome initial time � on its value at time � + t. It is de�ned as the so-
alledlagged produ
t sum (time average):C(t) = limT!1 1T TZ0 X(�)X(� + t)d�: (5)In the 
ase of heart rate dynami
s, this quantity allows us to quantify amemory of the heart, to determine to what extend the information aboutheart a
tivity is preserved with time.It is possible to evaluate C(t) dire
tly from the Eq. (5). However, thatpro
edure is not 
onvenient be
ause it leads to large rounding errors [25℄: weare interested in system's behaviour at large times for whi
h C(t)! 0. Toavoid that di�
ulty, we derive the auto
orrelation fun
tion as the Fouriertransform from the power spe
trum P (f), using the Wiener�Khin
hin the-orem [26℄: C(t) = 4� 1Z0 P (f) 
os(2�tf)df ; (6)where we have taken into a

ount that P (f) is an even fun
tion. The advan-tage of this method stems from the fa
t that asymptoti
 behaviour of C(t)is determined by small frequen
ies and P (f) has its maximum at f = 0.Therefore, in the most important region the rounding errors are small.Let us 
onsider �rst the 
ase of the healthy heart. Inserting the powerspe
trum (2) into Eq. (6), we get the following expression:
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C(t) = A 2�f1Z0 (2�f)�0:65 
os(2�ft)df +B[
i(2�f1t)� 
i(2�f2t)℄+ C2� �
os(2�f2t)2�f2 + t si(2�f2t)� �2 � ; (7)where si(x) and 
i(x) denote the integral sine and integral 
osine, respe
-tively. This result is shown in Fig. 4. The auto
orrelation fun
tion falls veryslowly with time � after a few hours a 
onsiderable amount of informationabout the initial state of the system still remains. The asymptoti
 time de-penden
e of C(t) is easy to determine. Sin
e in this limit only small valuesof frequen
y 
ontribute to the Fourier integral, we 
an take into a

ountonly the �rst bran
h in (2) and extend the upper limit to the in�nity:2�f1Z0 (2�f)�0:65 
os(2�ft)df � 1Z0 (2�f)�0:65 
os(2�ft)df � t�0:65 (t!1) :
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Fig. 4. The heart rate auto
orrelation fun
tion for healthy subje
ts 
al
ulated fromthe numeri
ally estimated power spe
trum via Eq. (6) (dots) and from its analyti
alrepresentation a

ording to Eq. (2) (solid line). The auto
orrelation fun
tion fora diseased patient has been 
al
ulated from both analyti
al representations: withthe respiratory sinus arrhythmia peak, using Eq. (3) (triangles), and without it,using Eq. (4) (dashed line).
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omparison, we have 
al
ulated the same quantity by inserting toEq. (6) the original power spe
trum in the numeri
al form, instead of itsanalyti
al representation (2). The 
urve, also presented in Fig. 4, is veryrough but the general tenden
y of its fall-o� agrees with the analyti
al result.We have performed the same 
al
ulations for the pathologi
al 
ase. Theauto
orrelation fun
tion obtained by taking the Fourier transform from theexpression (3) is shown in Fig. 4. A 
hara
teristi
 feature of this 
urve is thepresen
e of os
illations whi
h die down at about t = 100 s. They 
orrespondto respiratory sinus arrhythmia peak in the power spe
trum (Fig. 3). It be-
omes 
learly visible if we evaluate C(t) from the power spe
trum analyti
alrepresentation without that peak (Eq. (4)). The auto
orrelation fun
tionde
lines faster in the pathologi
al 
ase, 
omparing with the result for thehealthy heart. Asymptoti
ally, it approa
hes the power law dependen
e:t�0:5. 6. Summary and 
on
lusionsWe have presented power spe
tra obtained from analysis of heart ratedata for both healthy and diseased 
ases. The healthy heart exhibits thespe
trum typi
al for the 1=f noise whi
h 
an be interpreted as a result of
ontribution of many pro
esses possessing di�erent time s
ales. The 1=fshape of the spe
trum is restri
ted to some interval of intermediate frequen-
ies. At high frequen
y limit a typi
al brown noise is observed. That fa
t
an be an indi
ation that only one 
hara
teristi
 time prevails there. At lowfrequen
y the spe
trum obeys the power law with su
h an exponent thatthe entire spe
trum is integrable. Therefore, there exists a �nite varian
eand the heart rate seems to behave like a stationary sto
hasti
 pro
ess. Onthe other hand, there is no tra
e of 1=f pattern for patients with post-i
talheart rate os
illation in partial epilepsy. The power spe
trum still obeys thepower law but the exponent is smaller.Our aim was to extra
t from the numeri
al power spe
trum its mostessential features, eliminating unimportant details, statisti
al �u
tuationsand measurement errors. We have shown that algebrai
 dependen
e of P (f)on frequen
y, with di�erent indi
es for low, intermediate and high frequen
y,
an properly represent the measured power spe
trum. This parameterisationallowed us to obtain a simple and 
lear time dependen
e of the heart rateauto
orrelation fun
tion C(t) and to extrapolate it to large times, regardlessthe �nite length of the time series. C(t) de
lines very slowly with time,asymptoti
ally a

ording to the power law.The heart rate auto
orrelation fun
tion dies down more rapidly for thepathologi
al 
ase than for the healthy heart. Therefore, the diseased heartlooses its memory faster, it behaves more �random�. The di�eren
e is espe-
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ially prominent at relatively short times. These observations are, in fa
t,
onsistent with a more elaborate multifra
tal analysis [27℄ whi
h indi
ates asigni�
antly higher degree of dynami
al 
omplexity of healthy human heart-beat, 
ompared to the pathologi
 
onditions. In many 
ases, however, the
hara
teristi
s whi
h are relevant from the pra
ti
al point of view seem tobe quanti�able already using the method dis
ussed here.Some methods based of statisti
al analysis of ECG signals e.g. mean�u
tuation fun
tion, 
an also be useful in distinguishing healthy subje
tsfrom patients with 
ardia
 pathology [28℄. Therefore, they 
an serve as atool for diagnosti
 aims. Similarly, the spe
tral analysis des
ribed in thispaper, whi
h takes into a

ount long-time behaviour of the heart rate, hasa diagnosti
 advantage over traditional 
ardiologi
al methods. A short-timeECG examination is in many 
ases not su�
ient to re
ognise the pathologywhat results in a sudden epilepti
 death [29℄. The appli
ability of presentedmethods for diagnosti
 aims in the 
ase of post-i
tal heart rate os
illationin epilepsy suggests that other 
ardia
 diseases 
an be dealt with in a sim-ilar way. However, that problem must be addressed individually for ea
hparti
ular illness.The statisti
al properties of measured heart-rate signals 
an be regardedeither as some sort of intrinsi
 noise or as a result of an underlying nonlineardeterministi
 dynami
s [30℄. One 
an also 
onsider a possibility of a model
ombining both approa
hes in the form of a nonlinear Langevin equation.Sin
e the noise exhibits long-time auto
orrelations, the apparent determin-isti
 
haos would be suppressed in this 
ase and 
hara
terised by Lapunovexponents smaller, 
ompared to the purely deterministi
 system [31℄. They
an even fall to zero for large noise amplitude. This problem of regularisationby the noise needs to be 
he
ked for spe
i�
 models of heart dynami
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