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LONG-TIME AUTOCORRELATION FUNCTIONOF ECG SIGNAL FOR HEALTHY VERSUS DISEASEDHUMAN HEARTB. Kulessaa, T. Srokowskia and S. Dro»d»a;b;;daH. Niewodniza«ski Institute of Nulear PhysisRadzikowskiego 152, 31-342 Kraków, PolandbInstitute of Physis, University of RzeszówRejtana 16a, 35-959 Rzeszów, PolandPhysikalishes Institut, Universität Bonn, 53115 Bonn, GermanydInstitut für Kernphysik, Forshungszentrum Jülih, 52425 Jülih, Germany(Reeived April 22, 2002; revised version reeived July 25, 2002)Long-time ECG time series for healthy subjets and diseased patientsare analysed. In the �rst ase, the power spetrum has the 1=f shape in abroad frequeny range. However, its behaviour for very low and very highfrequeny is di�erent and the entire spetrum is integrable. For patientswith post-ital heart rate osillation in partial epilepsy the 1=f noise isnot present. We determine the power spetrum by evaluating the Fouriertransform of the signal in both ases and alulate the signal autoorrelationfuntion. It falls with time faster for diseased patients then for healthypeople. The presented method an serve as a diagnosti tool of some heartdiseases.PACS numbers: 05.45.+b, 87.10.+e, 97.80.+s1. IntrodutionA long-time traing of ECG signal from a human heart is able to reveal [1℄some pathologial forms of arrhythmia but also the spetral struture ofthe heart rate variability. The shape of the spetral funtion and long-time autoorrelations of the signal arry a new information, omparing witha standard, short-time, ECG examination and o�ers, potentially, a newdiagnosti tool.It has been established [2℄ that the power spetrum of heart rate ex-hibits the 1=f behaviour over a broad frequeny domain. This kind of noise,alled also a ��iker noise�, is widespread in nature. Its presene has beendemonstrated in vauum tubes [3℄, arbon resistors, but also for see level(3)



4 B. Kulessa, T. Srokowski, S. Dro»d»�utuations [4℄ and in astronomy [5℄. The human heart is not the only bi-ologial system among living organisms for whih these spetral propertieshave been shown. Reently, it has been reported for the MEG signal fromthe human brain [6℄.The soure of the 1=f noise for the human heart is not known. A possiblemehanism of its generation stems from the obvious observation that thisnoise omprises many time sales. A typial power spetrum, onnetedwith the exponential deay of the autoorrelation funtion, has a Lorentzianform: P (f) = �=(1 + �2f2), where � is the orrelation time whih de�nesthe time sale. We an get formally the 1=f noise assuming that the time � ,instead of being a onstant value, is given by some probability distribution,e.g. the lognormal distribution. Physially it means that the phenomenonwe are dealing with results from many underlying proesses haraterised byvarious time sales, e�etively produing a sale-invariant proess.One an easily imagine andidates for suh proesses in human heart.The His-Purkinje system takes a single nerve pulse and branhes it out.Eah pathway of this pulse has its own time sale [7℄. Moreover, physio-logial ontrol systems operate on di�erent time sales; the blood pressureis regulated by at least nine di�erent systems that operate on time salesfrom a few seonds to a few hours [8℄. On the other hand, some pathologialonditions, a�eting metaboli and biohemial parameters, an destabiliseHis-Purkinje ell membranes. The power spetrum possesses in this aseadditional peaks beause some sort of regular rhythm of heart rate is gen-erated [9℄.The self-similar (more preisely: self-a�ne) nature of the heart rate anbe demonstrated by plotting the heart rate data for di�erent resolutions,on di�erent time sales. This means that if we take a su�iently long timeinterval and magnify a portion of it, we get a pattern qualitatively simi-lar to the original interval [10℄. Therefore, fratal properties are expeted.The self-similarity implies power-law dependenes of saled quantities whihmanifest themselves as a straight line on log-log plots. It is the ase, forexample, for the detrended �utuation analysis method [11℄ whih revealslong-range antiorrelations in the heartbeat �utuations [12℄. Moreover, theHurst analysis is able to demonstrate the self-similar orrelations in the heartrate data [13℄. However, the heartbeat time series possesses a rather ompli-ated self-similar struture and is not homogeneous enough to be desribeduniquely by a single singularity exponent. In order to take into aountall saling properties of the signal, one should determine the entire multi-fratal spetrum [14℄. Analysis of fratal harateristis for various ardiapathologies indiates signi�ant alterations in short and long-range heart-beat orrelation properties, suggesting possible linial appliations [15℄.



Long-Time Autoorrelation Funtion of ECG Signal for Healthy . . . 5In this paper we perform an analysis of ECG signals for a healthy sub-jet and ompare the results with those obtained for a patient with a heartdisease. In Se. 2 we present the ECG time series and details of the measure-ment. The method of extration of QRS omplexes from those time seriesis desribed in Se. 3. The power spetrum for 24 hours heart rate data, forboth healthy and diseased ases, are presented in Se. 4. Se. 5 is devotedto the heart rate autoorrelation funtion, its time dependene is alulatedfor both ases. The most important results are summarised and disussedin Se. 6. 2. Desription of dataThe �rst group of data onsists of �ve eletroardiographi reordingsof subjets without linial evidene of ardia disease. The healthy groupbetween 25 and 45 years of age underwent a omplete physial examina-tion and their medial history revealed no ardiovasular disease. The ECGreordings were monitored: 24 hours for one subjet and 8�10 hours for fourother subjets. We used three hannel semiondutor holters of the �MedilogOxford� type. Measurements have been performed in the Cardiologial De-partment of the Military Hospital in Craow.The seond group omprises of three 8 hours ECG reordings of subjetswith post-ital heart rate osillation in partial epilepsy. The patients rangedin age from 31 to 48 years had partial seizures and post-ital ardia osilla-tions assoiated with abnormal heart rhythms and Mayer waves [16℄. Mayerwaves are spontaneous osillations at frequenies 0.05�0.1 Hz in erebralblood �ow veloity and represent barore�ex ativation. These osillationsare aused by ation of the sympatheti nervous system and result from timedelays in the barore�ex feedbak loop for the ontrol of sympatheti nerveativity [17℄. The mehanism of post-ital osillation in heart rate duringpartial epilepsy is desribed in Refs. [18℄. The ECG reordings of the groupof diseased people has been taken from MIT-BIH database [19℄.3. Detetion of the QRS omplexesAnalysis of the data requires, as a �rst step, an identi�ation of QRSomplexes from ECG reording. The 3-lead ECG reordings were performed.For the purpose of our analysis, it was su�ient to take only one hannel;we hose the seond one for whih the signal amplitude is the largest. Fig. 1shows how the original ECG signal has been modi�ed to obtain the heartrate time series useful for our studies. From the ECG signal we subtratthe loal average of that signal, taken over subsequent �ve points. Crossingof the threshold value with the averaged ECG signal is used to �nd loal



6 B. Kulessa, T. Srokowski, S. Dro»d»minima orresponding to the sequene of heart beats. We determine theposition of eah QRS, as orresponding to its minimum. We aept thatminimum if the amplitude value is positioned below an assumed threshold.Applying the above proedure, we preserve the original interbeat intervalsand avoid unimportant �utuations aused by the hanges of the ECG signalbase line level. The aurate detetion of QRS peak loations is ruial tostudy long term heart rate variability. The ourrene time of the nth QRSwe denote by tn. The signal we will analyse in this paper, X(t), is de�nedas X(t) = tn� tn�1. More details about the detetion algorithm of the QRSomplexes an be found in Ref. [20℄.
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Fig. 1. The priniple of the QRS detetion method. In the upper part of the �gurethe measured ECG signal (dashed line) together with the ECG signal alulatedas a loal averaged over 5 points are presented (solid line). In the lower part ofthe �gure the di�erene of those two signals is plotted (dotted line). A QRS wasaepted if amplitude value outstripped the threshold value �15 mV (dot-dashedline). 4. The spetral analysisThe power spetrum P (f) is de�ned by the Fourier transform of the timesignal X(t) in the following way:P (f) � ������ 1Z0 X(t) os(2�ft)dt������2 : (1)To perform the Fourier integral, we have used the FFT algorithm [21℄.



Long-Time Autoorrelation Funtion of ECG Signal for Healthy . . . 74.1. The healthy heartFirst we onsider the heart rateX(t) for the healthy subjet and alulateits power spetrum aording to Eq. (1). The result is presented in Fig. 2.The urve has the shape 1=f within the frequeny interval (f1; f2), wheref1 = 0:003 Hz and f2 = 0:1 Hz. At higher frequeny a peak originating fromthe breathing proess emerges: it is entred around 0.2 Hz and reahes upto 0.3 Hz. In the highest frequeny limit, the shape 1=f2 is learly visible.This kind of noise, alled the brown noise, is de�ned as an integral from thewhite noise and it haraterises the Wiener proess (di�usion).
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Fig. 2. The power spetrum of the heart rate for a healthy subjet (solid line) andits power-law analytial representation, aording to Eq. (2) (dashed line).The 1=f noise is di�ult to handle mathematially beause the integralR10 P (f)df diverges at both ends in this ase. For stationary proesses theintegral must assume a �nite value [22℄. Consequently, in any theory of suhproesses the 1=f law an only appear for intermediate frequenies, i.e. thespetrum must possess ut-o� at some high, as well as some low, frequenyvalue. Suh requirement is obvious if harateristi times are limited fromabove and from below. For example, the MWhorter theory [23℄ of noisein semiondutors predits the spetrum onsisting of three parts: the �atspetrum at small frequenies (white noise), 1=f segment and, �nally, thebrown noise (� 1=f2).



8 B. Kulessa, T. Srokowski, S. Dro»d»For the human heart we are not able to point out what a mehanismis responsible for the appearane of 1=f behaviour and we annot provestationarity itself. However, the data themselves indiate the existene ofboth frequeny ut-o�s. Sine the time series has a limited length, thespetrum is determined with a �nite auray. The error manifests itselfas osillations of the power spetrum urve and it is espeially large atlow frequenies. That frequeny domain is the most important beause itorresponds to the long-time behaviour of the system. Nevertheless, theshape of the urve in this region (Fig. 2) apparently obey the power lawf�� with the numerially estimated exponent � = 0:65. Therefore, thepower spetrum for the ase under onsideration is integrable at both sides,suggesting that we are dealing with some sort of stationary proess.The shape of power spetrum at small frequenies is determined by long-time limit of the heart rate signal X(t). Therefore, the length of the data setis ruial for the above analysis. One an ask to what extend our onlusionsare sensitive on the �niteness of the time series. In order to hek that, weredued length of the data by 20%. The resulting power spetrum exhibitsenhaned osillations at small frequenies. However, the power law in thisregion is still reognisable and the �tted exponent di�ers from the value forthe full data by less then 2%. The rest of the spetrum is only slightlydistorted by shortening of the time series.We an then onlude that the power spetrum of the healthy heart ratean be represented by a juxtaposition of three power law dependenes:P (f) = 8>>><>>>: Af0:65 for f < f1 ,Bf for f1 � f � f2 ,Cf2 for f > f2 , (2)where the onstants A, B and C are evaluated from the ontinuity require-ment; the frequenies dividing subsequent intervals are: f1 = 0:003 Hz andf2 = 0:1 Hz. Assuming the above Ansatz for the further analysis, allowsus to get rid of statistial �utuations, as well as of some details whih arerather trivial, e.g. the peak from respiration.We performed the same analysis for the other �ve ases of healthy sub-jets. It on�rmed the presene of 1=f noise. However, it was impossible tostudy the low frequeny limit beause time series were onsiderably shorter.



Long-Time Autoorrelation Funtion of ECG Signal for Healthy . . . 94.2. A pathologial aseWe have performed a similar analysis for the data originated from apatient with post-ital ardia osillations. The power spetrum is presentedin Fig. 3. The shape of the urve di�ers substantially from that obtained for
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Fig. 3. The power spetrum of the heart rate for a subjet with post-ital heartrate osillation in partial epilepsy (solid line) and its power-law analytial repre-sentation, aording to Eq. (4) (dashed line).the healthy heart. It obeys the power law dependene in a broad frequenyrange but the exponent is unique and muh smaller, it equals 0.5. Therefore,the noise 1=f is laking. For pathologial ase a sharp peak develops at highfrequeny edge of the spetrum, at about f = 0:3 Hz. It originates fromthe respiratory sinus arrhythmia. Osillations on the left hand side of thatrespiratory peak an be interpreted as Mayer waves [24℄. Sine they are verysmall, we neglet them in further analysis. The respiratory sinus arrhythmiapeak is muh more distinguished than the respiratory peak for the ase ofhealthy heart. It an be parameterised by a Gaussian. If we take this peakinto aount, the power spetrum for the pathologial ase an then be astin the following form:P (f) = 8>>><>>>: Af0:5 for f < f1 ,B exp�� (f�f0)22�2 � for f1 � f � f2 ,Cf2 for f > f2 , (3)where f0 = 0:33 Hz, � = 0:03 Hz, f1 = 0:27 Hz and f2 = 0:38 Hz.



10 B. Kulessa, T. Srokowski, S. Dro»d»Alternatively, we an onsider the power spetrum with the respiratorypeak removed, similarly as for the ase of healthy heart, and obtain thefollowing simple parameterisation:P (f) = 8<: Af0:5 for f < f1 ,Cf2 for f > f1 , (4)where f1 = 0:278 Hz.5. The determination of the heart rate autoorrelation funtionFor any stohasti proess, a quantity of interest is its autoorrelationfuntion whih is a measure of the in�uene of the proess value X(�) atsome initial time � on its value at time � + t. It is de�ned as the so-alledlagged produt sum (time average):C(t) = limT!1 1T TZ0 X(�)X(� + t)d�: (5)In the ase of heart rate dynamis, this quantity allows us to quantify amemory of the heart, to determine to what extend the information aboutheart ativity is preserved with time.It is possible to evaluate C(t) diretly from the Eq. (5). However, thatproedure is not onvenient beause it leads to large rounding errors [25℄: weare interested in system's behaviour at large times for whih C(t)! 0. Toavoid that di�ulty, we derive the autoorrelation funtion as the Fouriertransform from the power spetrum P (f), using the Wiener�Khinhin the-orem [26℄: C(t) = 4� 1Z0 P (f) os(2�tf)df ; (6)where we have taken into aount that P (f) is an even funtion. The advan-tage of this method stems from the fat that asymptoti behaviour of C(t)is determined by small frequenies and P (f) has its maximum at f = 0.Therefore, in the most important region the rounding errors are small.Let us onsider �rst the ase of the healthy heart. Inserting the powerspetrum (2) into Eq. (6), we get the following expression:



Long-Time Autoorrelation Funtion of ECG Signal for Healthy . . . 11
C(t) = A 2�f1Z0 (2�f)�0:65 os(2�ft)df +B[i(2�f1t)� i(2�f2t)℄+ C2� �os(2�f2t)2�f2 + t si(2�f2t)� �2 � ; (7)where si(x) and i(x) denote the integral sine and integral osine, respe-tively. This result is shown in Fig. 4. The autoorrelation funtion falls veryslowly with time � after a few hours a onsiderable amount of informationabout the initial state of the system still remains. The asymptoti time de-pendene of C(t) is easy to determine. Sine in this limit only small valuesof frequeny ontribute to the Fourier integral, we an take into aountonly the �rst branh in (2) and extend the upper limit to the in�nity:2�f1Z0 (2�f)�0:65 os(2�ft)df � 1Z0 (2�f)�0:65 os(2�ft)df � t�0:65 (t!1) :
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Fig. 4. The heart rate autoorrelation funtion for healthy subjets alulated fromthe numerially estimated power spetrum via Eq. (6) (dots) and from its analytialrepresentation aording to Eq. (2) (solid line). The autoorrelation funtion fora diseased patient has been alulated from both analytial representations: withthe respiratory sinus arrhythmia peak, using Eq. (3) (triangles), and without it,using Eq. (4) (dashed line).



12 B. Kulessa, T. Srokowski, S. Dro»d»For omparison, we have alulated the same quantity by inserting toEq. (6) the original power spetrum in the numerial form, instead of itsanalytial representation (2). The urve, also presented in Fig. 4, is veryrough but the general tendeny of its fall-o� agrees with the analytial result.We have performed the same alulations for the pathologial ase. Theautoorrelation funtion obtained by taking the Fourier transform from theexpression (3) is shown in Fig. 4. A harateristi feature of this urve is thepresene of osillations whih die down at about t = 100 s. They orrespondto respiratory sinus arrhythmia peak in the power spetrum (Fig. 3). It be-omes learly visible if we evaluate C(t) from the power spetrum analytialrepresentation without that peak (Eq. (4)). The autoorrelation funtiondelines faster in the pathologial ase, omparing with the result for thehealthy heart. Asymptotially, it approahes the power law dependene:t�0:5. 6. Summary and onlusionsWe have presented power spetra obtained from analysis of heart ratedata for both healthy and diseased ases. The healthy heart exhibits thespetrum typial for the 1=f noise whih an be interpreted as a result ofontribution of many proesses possessing di�erent time sales. The 1=fshape of the spetrum is restrited to some interval of intermediate frequen-ies. At high frequeny limit a typial brown noise is observed. That fatan be an indiation that only one harateristi time prevails there. At lowfrequeny the spetrum obeys the power law with suh an exponent thatthe entire spetrum is integrable. Therefore, there exists a �nite varianeand the heart rate seems to behave like a stationary stohasti proess. Onthe other hand, there is no trae of 1=f pattern for patients with post-italheart rate osillation in partial epilepsy. The power spetrum still obeys thepower law but the exponent is smaller.Our aim was to extrat from the numerial power spetrum its mostessential features, eliminating unimportant details, statistial �utuationsand measurement errors. We have shown that algebrai dependene of P (f)on frequeny, with di�erent indies for low, intermediate and high frequeny,an properly represent the measured power spetrum. This parameterisationallowed us to obtain a simple and lear time dependene of the heart rateautoorrelation funtion C(t) and to extrapolate it to large times, regardlessthe �nite length of the time series. C(t) delines very slowly with time,asymptotially aording to the power law.The heart rate autoorrelation funtion dies down more rapidly for thepathologial ase than for the healthy heart. Therefore, the diseased heartlooses its memory faster, it behaves more �random�. The di�erene is espe-



Long-Time Autoorrelation Funtion of ECG Signal for Healthy . . . 13ially prominent at relatively short times. These observations are, in fat,onsistent with a more elaborate multifratal analysis [27℄ whih indiates asigni�antly higher degree of dynamial omplexity of healthy human heart-beat, ompared to the pathologi onditions. In many ases, however, theharateristis whih are relevant from the pratial point of view seem tobe quanti�able already using the method disussed here.Some methods based of statistial analysis of ECG signals e.g. mean�utuation funtion, an also be useful in distinguishing healthy subjetsfrom patients with ardia pathology [28℄. Therefore, they an serve as atool for diagnosti aims. Similarly, the spetral analysis desribed in thispaper, whih takes into aount long-time behaviour of the heart rate, hasa diagnosti advantage over traditional ardiologial methods. A short-timeECG examination is in many ases not su�ient to reognise the pathologywhat results in a sudden epilepti death [29℄. The appliability of presentedmethods for diagnosti aims in the ase of post-ital heart rate osillationin epilepsy suggests that other ardia diseases an be dealt with in a sim-ilar way. However, that problem must be addressed individually for eahpartiular illness.The statistial properties of measured heart-rate signals an be regardedeither as some sort of intrinsi noise or as a result of an underlying nonlineardeterministi dynamis [30℄. One an also onsider a possibility of a modelombining both approahes in the form of a nonlinear Langevin equation.Sine the noise exhibits long-time autoorrelations, the apparent determin-isti haos would be suppressed in this ase and haraterised by Lapunovexponents smaller, ompared to the purely deterministi system [31℄. Theyan even fall to zero for large noise amplitude. This problem of regularisationby the noise needs to be heked for spei� models of heart dynamis.The authors would like to thank A. Lipko, A. Olszewski andJ. Niezabitowski for providing the measured data. One of the authors (T.S.)was partly supported by the Polish State Committee for Sienti� Researh(KBN) Grant No. 2 P03 B 07218. S.D. aknowledges support from theDeutshe Forshungsgemeinshaft DFG under ontrat Bo 56/160-1.REFERENCES[1℄ J.J. �ebrowski, Ata Phys. Pol. B32, 1531 (2001); J.J. �ebrowski,W. Popªawska, R. Baranowski, T. Buhner, Ata Phys. Pol. B30, 2547 (1999).[2℄ C.D. Wagner, B. Nafz, P.B. Persson, Cardiovasular Res. 31, 380 (1996);A. Lewis, M.D. Lipsitz, Chaos 5, 102 (1995); B. Kaulakys, T. Meskauskas,Phys. Rev. E58, 7013 (1998); M. Rosenblum, J. Kurths, Physia A215, 439(1995).
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