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The influence of a hypothetical CP violating |AS| = 2 interaction on
the masses and lifetimes of neutral mesons K° and KO is investigated.
It is shown, that the assumption of the existence of this superweak in-
teraction does not significantly affect these parameters if phenomenolog-
ical constraints based on recent experiments are imposed. To establish
this result we use a computer simulation of a parameter corresponding
to the difference between the diagonal elements of the effective Hamilto-
nian governing the time evolution in the K° — K system. Instead of the
widely used Lee, Oehme and Yang approximation which is insensitive to
the |AS| = 2 interaction we use a formalism based on the Krolikowski—
Rzewuski equation.

PACS numbers: 03.65.Ge, 11.10.St, 13.20.Eb

1. Introduction

Until recently there were two types of models of interactions which were
considered plausible while investigating the source of the CP violation [1].
The first of them is the class of miliweak models which assume that a part
of order 1073GF in the weak interaction is responsible for the observed CP
violation effects. One of the most important predictions of this class of mod-
els is that the CP violation should also be observed in other than K = K0
processes, and that it should be of the same order. The CKM model is an
example of such miliweak models, at the same time being the most success-
ful one. The recent experimental results concerning the measurement of €' /e
and CP violation in the neutral B-meson system show, that the CKM model
correctly describes CP violation. There is, however, a small possibility that
a superweak-like interaction (the terms “superweak” and “superweak-like”

(31)
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will be used interchangeably) does exist in addition to the CKM mechanism,
and some authors consider its implications (see 2] and references therein).

One of the most important parameters of the K% — KO system is the
difference between the diagonal elements of the effective Hamiltonian gov-
erning the time evolution. The standard approximation put forward by Lee,
Oehme and Yang (the LOY approximation) [3] leads to the conclusion that
the above difference is exactly zero. The real parts of the diagonal elements
are interpreted as the masses of the particles and the imaginary parts are the
decay widths. Consequently, in the LOY approximation the masses and the
decay widths of K and K9 are equal. This result is corroborated by the ex-
perimental result |[(mg, — mg,)/mr,) < 107 [4]. However, in the course
of derivation of the LOY approximation the elements which correspond to
the hypothetical superweak interaction are neglected [3,5]. In [6-10] it was
shown with the use of a method based on the Kroélikowski-Rzewuski equa-
tion [11,12], that if such elements are present the masses of the kaon and
anti-kaon need not be equal. It is, therefore, interesting to see what effect
such a superweak interaction might have on the masses of neutral kaons if
the limitations following from the most recent experiments are taken into
account. The result of this calculation may be used to test the accuracy of
the LOY approximation.

The paper is organised as follows: In the second section we review the
most important (for our purposes) features of the Standard Model and the
Superweak Model and their present experimental status. The third section
reviews the standard phenomenological approach to the neutral kaon system
which is based on the Weisskopf~Wigner approach. Also, basing on [6-10],
we review the alternative formalism and analyse its relevance to the super-
weak interaction. The fourth section contains a computer simulation of
the time dependence of the parameter describing the difference between
the diagonal elements in the alternative model, which in the presence of the
superweak interaction turns out to be different from zero. In this section, by
imposing the phenomenological constraints following from the most recent
experiments, we find the upper bound on the difference between the masses
of the K° and K° mesons. This bound turns out to be extremely small,
which shows that the LOY approximation is very good, even in the presence
of the superweak interaction. The summary and conclusions are contained
in the last section.

2. K° =2 KO° mixing in the Standard Model
and the Superweak Model

___In this section we review the Standard Model approach to the K% =
KO system. We also briefly describe the salient features of the superweak
scenario of CP violation.
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2.1. K® 2 KO mizing and CP violation in the Standard Model

The flavour transitions allowed in the Standard Model are specified by
the CKM matrix, which allows the following flavour mixing

d Vud Vus Vub d
s =1 Ve Ves Va s . (2.1)
v Vie Vis Va b

__ Consequently, in the CKM theory there are no direct, first order K° =
KO transitions. In other words there are no first order |AS| = 2 transitions,
or, in yet another equivalent formulation, which we will be using in the
remaining part of the paper

(11HW|2) =0, (2.2)

where |Ky) = |1) and |Kg) = |2) and H" is the flavour-changing part of
the weak Hamiltonian [5].

Matrix (2.1) is unitary and contains 9 parameters. Three of these pa-
rameters may be chosen to be real angles 019, 613, 623 and the remaining six
are phases. The number of phases can be reduced by using the fact, that
spinors are defined up to a phase, so we may redefine the quark eigenstates.
After doing this we notice, that in the procedure there are only five inde-
pendent phase differences, whereas there are six phases in (2.1), so there is
one physically meaningful phase in this unitary matrix. This is the crucial
point of the CKM theory because this phase allows for CP violation [1].

2.2. The hypothetical superweak interaction

The Superweak Model postulates the existence of a new |AS| = 2, CP
violating interaction. The coupling constant of this interaction should be
smaller than second order weak interaction. Thus, the Superweak Model
assumes a non-vanishing first order transition matrix element

(1|HW|2) ~ gGr #0, (2.1)

where g is the superweak coupling constant. It is widely accepted that this
interaction can only be detected in the K1, — Kg system, because it is the only
known pair of states with the energy difference so small, that it is sensitive
to interactions weaker than second order weak interaction [1].

2.8. The status of the Standard Model and the Superweak Model

The recent experimental results from the CPLEAR and KTeV Collabo-
rations and others have given the decisive answer to the question whether
the CP violation effects are correctly described by the CKM miliweak theory.
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The measured value of ¢ /e = (1.72 + 0.18) x 1072 [13] proves that there
is a direct CP violating effect, and that CP violation cannot only be as-
cribed to mass mixing in the K® 2 KO process. On the contrary: the CKM
mechanism must be the dominant source of CP violation (in low-energy
flavour-changing processes) [13]. Additionally, the measured value is per-
fectly consistent with the world average for the value €'/e [14]. Another
experimental argument for the miliweak CKM theory are the two recent
measurements of CP violation in B decays [13] (and references therein). In
other words, the Standard Model alone is able to correctly predict the value
of € /e and no improvements or extensions are in fact necessary.

However, even if the CP violation effects are correctly described by the
CKM mechanism the idea of a |AS| = 2 interaction has not been aban-
doned entirely. Indeed, some authors consider the implications of such an
interaction. For example the question of the existence of the superweak in-
teraction turns out to be of some importance in tagged experiments in which
flavour is determined for the initial meson and then for the meson at the
time of decay. The existence of the |AS| = 2 superweak interaction might
cause the production of “wrong” neutral meson states [2]. The effect of such
a hypothetical interaction is, however, believed to be negligibly small.

3. The standard phenomenological description
of the K° — KO system

In this section we briefly describe the phenomenology which is currently
used to describe the time evolution of the K° — K0 system.

3.1. The Lee, Oehme and Yang approximation

This formalism is based on the formalism of particle mixture introduced
by Gell-Mann and Pais [15]. The most important modification was in-
troduced to this formalism by Lee, Oehme and Yang [3], who, using the
Weisskopf-Wigner approximation arrived at the widely known formula (3.5)
— see below. Further extensions were introduced by many other authors,
e.g. Bell and Steinberger [16].

In the standard approach the full Hamiltonian is divided into two parts

H=H% Y (3.1)

where H© is the flavour-conserving part of the Hamiltonian, and H (1) is the
flavour-changing part. The complete state vector which has evolved from
|1) or |2) is projected onto the subspace spanned by |1) and |2). Therefore,
we define this projected state vector as

W5 8)) = an(t)[1) + aa(2)]2) . (3.2)
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Lee, Oehme and Yang, by modifying the Weisskopf~Wigner method for the

a9 (t)

single line, showed that the time dependence of the vector < o () ) can
be described by the following Schridinger-like equation

LOY LOY
z-i( i (1) )_ ( HiPY  Hi ><a1<t>) (3.3)
e ) °
dt \ as(t) HLOY  HLOY as(t)
where we have adopted i = ¢ = 1. The operator on the right hand side of
the equation is the LOY effective Hamiltonian, and its matrix elements are
matrix elements of the weak interaction transition operator. In the case of
CPT conserved it can be shown, that for this effective Hamiltonian we have
HEPY = HzPY [5)-
The effective Hamiltonian can be split into two parts, each of them with
a definite physical meaning

HYOY — M =iz, (3.4)
or
AT AP
Zi( Oél(t) )_ Mll_’LT M12_'LT < Otl(t) ) (3 5)
- I I ' '
dt OéQ(t) M21 —’L% M22 —’L% Otg(t)

For our purpose, which is the analysis of the influence of the hypothetical
|AS| = 2 interaction on the time evolution of the K° — KO system, the
LOY method is not suitable. Indeed, in [9,17] it was shown, that the LOY
formulae may only be correct if we assume (1|H()|2) = 0 and take ¢ — co.
This obviously excludes the possibility of using the Lee, Oehme and Yang
approximation in studying the hypothetical superweak interaction

3.2. The alternative approach

One alternative to the approach described above is the formalism de-
veloped in [6-9]. We will briefly review this approximation and its basic
findings.

The starting point of the derivation of the alternative effective Hamilto-
nian carried out in [9-11] is the Krolikowski-Rzewuski equation [11,12]. In
this approach the time evolution is not studied in the total space of states H
but rather in a closed subspace H| C H. If we define the following projector

PE )] +2)(2],
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then the subspace || may be defined as H), = PH or |¢); 1) = Ply;t) € Hy.
In this way the total state space is split into two orthogonal subspaces H,,
and H | = HOSH,|, and the Shrodinger equation can be replaced by equations
describing each of the subspaces, respectively. The equation for | has the
following form [9-12]

9 i
<7,§—PHP) Wt = ) z/Kt—T Wpirydr,  (3.6)
0

Q=1-P, (3.7)
K(t) = O(t)PHQe "@HRQHP (3.8)
Xit) = PHQe "@M%yp) (3.9)
where
ew={4 & iZ0
%)L = Q[4;0).
The initial conditions for this problem are
|9;0) = [;0)y, (3.10)
which means
[9)L =0.

Following [11,12]| we introduce an effective Hamiltonian

This formula corresponds to (3.4), which also specifies an effective Hamilto-
nian.

The main difference between the standard Lee, Oehme and Yang approx-
imation and this approach is the effective potential. It can be shown [9,10]
that

oo
Vii(t) ~ z/K (t — 1) PHEP par (3.12)
0

To establish notation let us now define the following symbols

Hyy  Hips
PHP = 3.13
[ Hy1  Hyo ] ’ (3:13)
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H;; = (j|H|q),
1
Hy = §(H11+H22)7

1
Kk = \/|H12|2 + Z(HH — Hy),
1

Hz = §(H11 — HQQ) .

The matrix elements v;;(t) = (§]|V](t)[2) of V}|(¢) (3.12), without assum-
ing any symmetries, like [CP, H] =0 or [CPT,H| =0 [9,10] are

1 H
Ujl(t) = — 5(1 + 72)5]'1(1‘[0 + H,t)

1 H,N _
- —(1 - ?Z)._"‘,jl(Ho —K,t)

vja(t) = —

where
e~ MQHQ-X) _q

QHQ — A
and Zji(e,t) = (3 | Z(e,t) | k), 4,k = 1,2. This effective potential, together
with the remaining parts of the effective Hamiltonian yields the following
matrix elements for the effective Hamiltonian

hjk(t) = (F1H k) = Hjx + vji (), (U, k=1,2). (3.17)

For the [CPT, H] = 0 case the formulae simplify as H, = 0 in this case.

Now, it is easy to notice that, in the case of [CPT, H] = 0, contrary to
the LOY effective Hamiltonian for which we have H{{>Y — HIOY =0 | the
difference between the diagonal elements is non-vanishing

=) ¥ PHQ

QHP, (3.16)

he(t) = (hin(8) ~ ha(®) 20, (1>0). (3.18)

It is also obvious that the necessary condition for (3.18) to be true is Hys # 0,
that is, the existence of the superweak interaction.
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4. Computer simulation of the time evolution of h(t)
within the Friedrichs—Lee model

In this section we perform a numerical simulation of the h,(t) parameter,
which has proved so important in the present approach. By making some
assumptions concerning the scale of the hypothetical superweak interaction
we arrive at a form which is convenient for computer analysis. We analyse
the time evolution of the module and the real and imaginary part of this
parameter.

4.1. The Friedrichs—Lee model

In [9] the Friedrichs-Lee model [18] was used to obtain the following
formulae for the matrix elements of the effective Hamiltonian with the
[CPT,H] = 0 assumption

1 m
hji(t) = mj — 3 <F31 + |mj;|Fj2) Do (t; mo + |maa| — 1)
1 m
~ 3 (- ) da(tima — bl -, (@
1 m
hjg(t) = Mmjo — 2 <FJ2 + | 1;1—’1) @O(t; mo + |m12| — ,u)
1 m
_5 <FJ2 — ﬁ[’]1> @O(t; mqo — |’ITL12| — ,u) . (42)

In these formulae my = (1|HO|1) = (2|H©®)|2), compare Eq. (3.1),
mi9 = Hyo; mg — p is the difference between the mass of the mesons con-
sidered and the threshold energy of the continuum state, like K — 27.
Functions @ (t,m) are defined by

¢0(t7 m) = FO(m) - FO(ta m) ) (43)

where

Fo(t,m) = —— [s \/ﬁ)}
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and finally S(y) and C(y) are the sine and cosine Fresnel integrals

v COS(T
]

y?
1 sin(T)
V2 VT
0
The parameters I5; correspond to the matrix elements of the decay matrix
in the LOY approximation (3.5).

By setting j = 1 in (4.1) and j = 2 in (4.2) and then subtracting (4.2)
from (4.1) we get

E\H

S(y) = dr.

mo1l'12 — mialny

h.(t) =

X ¢O(t; mo — |m12| — M) — 450(t;m0 + |m12| — /1)] . (4.6)
Let us introduce a new independent variable x
x=x(t) = (mg— ) t. (4.7)

If we define 71, = 5.2 x 10785 as the mean lifetime of K, the value of
corresponding to this time is = 2.8 x 10'6. Now, using = we can rewrite
h,(t) as

ha () = mo1l'12 — mi2l

r(z

where r(z) has the following form (see Appendix A

= Vb {i — [S(va2) - C(vao)] - i[C (VE2) + S (vao)]}
+/by =i+ [S (Vay) —C (VaD)] =i [C (VET) +5 (Va)]} , (4.9)

by = <1 + 7|m12| ) , T4 = bix.
moy — p

This expression (4.9) is simple to analyse using computer methods as it

contains no other variables but the independent variable z.

To extract any numerical information from (4.9) we need to make some
assumptions concerning the strength of the superweak interaction. There
are some estimates in the literature — we will accept the one suggested by
Lee in [5] (equation 15.138, page 375) |ma2|/(mo — p) ~ 10717, To be sure,
we do not even know if the strength is different from zero, we are assuming
a value of |mya|/(mo — p) which is consistent with the assumptions made in
Sec. 2. to see how h,(t) changes with time.

, 4.8
4|m12| ( )

)
)

where
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4.2. Time dependence of h,(x(t))
From (A.2), and (A.3)

_ h(xz(t))
r@) = Tyo| 2sin(¢ — 0) (4.10)
so we may analyse the following three parameters
r(@)| ~ [hz(z())], (4.11)
R(ir(z)) ~ R(h:(2)), (4.12)
S(ir(z)) ~ S(hy(z)). (4.13)

The computer analysis of the module (4.11) shows that for very small values
of x it rapidly oscillates around the value of |r(z)| =~ 1071¢, then it becomes
basically constant. What are small values of z will become apparent from
Fig 1. and the discussion of the imaginary part. The real part of ir(x) is
basically constant: R(ir(z)) ~ 10716 for all > 0 except for the immediate
neighbourhood of 0, where r(0) = 0. The behaviour of the imaginary part
of ir(z) is shown in Fig 1. Tt oscillates rapidly about 0 for very small z, then
the imaginary part quickly tends to zero. This, together with the behaviour
of the real part of ir(z) means that the oscillations in |r(z)| should be
attributed to the oscillations in the imaginary part.

In the standard approach the real parts of the diagonal elements of the
effective Hamiltonian are interpreted as the masses of the particles. There-
fore, it seems that the existence of the superweak interaction would remove

6 x 10717 1 | I

y = 3(ir(z)) ~ S(h:(z))
4%x10717 ¢ .

2x 10717 | .

o | e :

-2x 10717 ¢ .

—4x 10717 ¢ .

—6 x 10—17 L I— 1 I .
1 10° 1010 10 10%0

Fig.1. The x dependence of S(h.(x)) for |mia|/(mo — p) = 10717, The value of
x = 2.8 x 10'® corresponds to 71, — the lifetime of Ki,. This is why the region of
rapid oscillation is called “small z”.
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the mass degeneracy between the particle and antiparticle in the neutral
kaon system. Correspondingly, the imaginary parts are interpreted as the
decay constants, so in the model considered the decay widths of the parti-
cle and antiparticle should be equal, which is consistent with the standard
result. These results are consistent with the conclusions reached earlier on
the basis of the form of h,(¢) for large times [9].

4.83. Order-of-magnitude estimation of the effect
introduced by the superweak interaction

In this short subsection we try to estimate the order of magnitude of the
effect introduced by the hypothetical superweak-like interaction. To this end
we use the assumption, that the dominating contribution to |I'j2| is correctly
described by the Standard Model. This means that we may assume

GZ M} sin? 0
(2m)*

where G is the Fermi constant, Mp is the proton mass and @ is the Cabbio
angle [19]. Using our result from the previous section, |r(z — oc)| ~ 10716
and equation (4.10) we get the following upper bound on our parameter

|Tia| ~ mr, ~ 1072 MeV , (4.14)

1
<~ x 1073, (4.15)

h,(t — o0)
~2

mgK,

This value corresponds to the currently measured |(mx, —mpg,)/ M|

< 1078 [4]. Obviously, this effect is much too small to be observed with the
present, and possibly also future, experiments.

5. Summary and conclusions

In this paper the influence of the hypothetical superweak interaction on
the neutral kaon system has been studied. As the LOY approximation is
insensitive to such an interaction we chose an alternative formalism, namely
the formalism based on the Krolikowski-Rzewuski equation.

The analysis performed in Sec. 4 yielded the following results: The
difference between the real parts of the diagonal elements of the effective
Hamiltonian is different from zero and basically constant for all times. This
difference is usually interpreted as the difference between the mass of the
kaon and anti-kaon. In the LOY approximation it is equal to zero and exper-
imentally it is bound by |(mg, — mg,)/mKk,| < 1078, Result (4.15) shows
that the LOY approximation is very good even if the superweak interaction
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really exists. Another result of Sec. 4 is that the superweak interaction
would not affect the difference between the decay widths and they would be
equal for K° and KO even in the presence of this hypothetical interaction.
Finally, it should be stressed that all the results obtained in the present
paper are consistent with the Standard Model and the recent experimental
findings. We have been assuming, that even if there is a first order CP
violating |AS| = 2 interaction, the K* — K0 system is correctly described
by the Standard Model to a high degree of accuracy. This is the reason for
assuming |miz|/(mo — ) = 10717 and || ~ 10712 MeV in Sec. 4.

I would like to thank professor Krzysztof Urbanowski for many helpful

discussions.

Appendix A
By rewriting the mi9 and o parameters as
mo1 = m’{2 = |m12|e_i9, Flg = [’2*1 = |I’12|6i¢, (Al)

we may cast h,(t) in the following form
ho(t) = i |I'ys] (ei(¢*9) — e*i(¢*9)>
X [@o(t; mo — [miz| — p) — Po(t;mo + |mia| — M)]
=1[I'2| 2sin(¢—0) [‘%(t; mo = [maz|—p) = Po(t; mo+|m12|—u)] :

(A.2)
It is easy to notice, that if ¢ = 6 we have h, = 0, but this case

corresponds exactly to the CP conserved case — compare [9] page 3743.
Let us assume from now on, that we are dealing with the CP violating, CPT
conserving case in which sin(¢ — 6) # 0.
To make our formulae simpler, let us define
r(t) = [Po(t;mo — [maz| — p) — Po(t;mo + [maz| — p)] . (A.3)
So now
r(t) = Fo(mo — [mia| — p) — Fo(t;mo — [maa] — p)
= Fo(mo + [maz| — p) + Fo(timo + [mag] —p).  (A4)

Let us transform the above expression using

m
Vmg — [mag| — p=mo — p g1 — [maz) ;

mo — K
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and

mi2
\/m0+|m12|—;z:\/m0—u 1+u.

mo — [

This justifies introducing the dimensionless variable (4.7).

Now we have
(mo—p) <1 _ maa] ) t= <1 _ dmiaf ) z,
mo — mo — K

mo= (14 20 ) o (14 el )0 as)

mo — mo — K

(mo — |mig|—p)t

(mo + |maa| —p)t

Using the above and equation (A.4) we arrive at (4.9).
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