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THE Æ-DEFORMATION OF THE FOCK SPACEK. Kowalski and J. Rembieli«skiDepartment of Theoreti
al Physi
s, University of �ód¹Pomorska 149/153, 90-236 �ód¹, Poland(Re
eived June 25, 2002; revised version re
eived September 4, 2002)A deformation of the Fo
k spa
e based on the �nite di�eren
e repla
e-ment for the derivative is introdu
ed. The deformation parameter is relatedto the dimension of the �nite analogue of the Fo
k spa
e.PACS numbers: 02.20.Sv, 03.65.Fd1. Introdu
tionIn re
ent years there has been a growing interest in dis
retizations ofquantum me
hani
s based on the �nite di�eren
e repla
ement for the deriva-tive. This is motivated by the well-known spe
ulations that below the Plan
ks
ale the 
onventional notions of spa
e and time break down and the newdis
rete stru
tures are likely to emerge. This has e
hoes in the argumentsput forward in string theory and quantum gravity. We also mention the te
h-ni
al reasons for the appli
ation of dis
rete models. Let us only re
all thelatti
e gauge theories. As a matter of fa
t the 
onne
tion has been shownin Ref. [1℄ between ordinary quantum me
hani
s on a equidistant latti
e,where the the role of the derivative is played by the forward or ba
kwarddis
rete derivative, and q-deformations utilizing the Ja
kson derivative, nev-ertheless no expli
it form of the 
orresponding deformation of the Fo
k spa
ehas been provided in [1℄. On the other hand, there are indi
ations [2℄ thatapproa
hes based on the 
entral di�eren
e operator are more adequate fordis
retization of quantum me
hani
s than those using asymmetri
 forwardor ba
kward dis
rete derivatives.In this paper we introdu
e a deformation of the Fo
k spa
e, su
h that the
reation and annihilation operators are elements of the quotient �eld of thedeformed Heisenberg algebra generated by the usual position operator andthe 
entral di�eren
e operator. The deformation parameter Æ des
ribingthe �xed 
oordinate spa
ing is naturally related to the dimension of the�nite-dimensional spa
e whi
h 
an be regarded as an analogue of the Fo
kspa
e. In the formal limit Æ ! 0 we arrive at the in�nite-dimensional spa
e
oin
iding with the usual Fo
k spa
e.(45)



46 K. Kowalski, J. Rembieli«ski2. The Æ-deformation of the Heisenberg algebraAs mentioned in the introdu
tion there are indi
ations that dis
retiza-tions of quantum me
hani
s should involve the 
entral di�eren
e operatorsu
h that �Æf(x) = f(x+ Æ) � f(x� Æ)2Æ : (2.1)In view of (2.1) the dis
rete 
ounterpart of the momentum operator is givenby p̂Æ = �i�Æ ; (2.2)where we set ~ = 1. Furthermore, it seems to us that the most natural
andidate for the position operator in any dis
retized version of quantumme
hani
s is the standard one of the formx̂f(x) = xf(x) : (2.3)In order to 
lose the algebra satis�ed by the operators p̂Æ and x̂ we introdu
ethe operator IÆ de�ned byIÆf(x) = f(x+ Æ) + f(x� Æ)2 : (2.4)It follows that[x̂; p̂Æ℄ = iIÆ ; [x̂; IÆ℄ = �iÆ2p̂Æ ; [p̂Æ; IÆ℄ = 0 : (2.5)Using (2.1)�(2.4) we also �nd easily the following Casimir operator for thealgebra (2.5): I2Æ + Æ2p̂2Æ = I : (2.6)We remark that (2.5) is a deformation of the e(2) algebra 
orresponding toÆ = 1. Evidently, p̂Æ = 1Æ sin Æp̂ ; IÆ = 
os Æp̂ ; (2.7)where p̂ = �i ddx is the usual momentum operator, so the 
ontra
tion of thealgebra (2.5) referring to Æ ! 0, is the usual Heisenberg algebra[x̂; p̂℄ = iI; [x̂; I℄ = 0; [p̂; I℄ = 0 : (2.8)We now dis
uss the representations of the algebra (2.5) in the Hilbertspa
e H = L2(R; dx) spe
i�ed by the s
alar produ
thf jgi = 1Z�1 dxf�(x)g(x) : (2.9)
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k Spa
e 47Consider the operator UÆ de�ned byUÆ := IÆ � iÆp̂Æ : (2.10)Using the hermi
ity and boundedness of the operators IÆ and p̂Æ followingdire
tly from (2.1), (2.2), (2.4) and (2.9), and utilizing (2.6) and (2.5) we�nd that UÆ is unitary. We point out that the unitarity 
ondition satis�edby UÆ is simply an equivalent form of the Casimir (2.6). Making use of therelations p̂Æ = � i2Æ (UÆ � U yÆ ) ;IÆ = 12(UÆ + U yÆ ) ; (2.11)implied by (2.10), we arrive at the following equivalent form of the algebra(2.5): [x̂; UÆ℄ = ÆUÆ : (2.12)Consider now the abstra
t eigenvalue equationx̂jxi = xjxi ; (2.13)where x 2 R, and f(x) is related with hxjfi (see below). From equations(2.12) and (2.13) it follows that the a
tion of the operators UÆ and U yÆ onthe ve
tors jxi is of the formUÆjxi = jx+ Æi ;U yÆ jxi = jx� Æi : (2.14)Therefore U�nÆ jxi = jx� nÆi : (2.15)Thus, it turns out that we 
an generate the whole basis fj�+nÆig, where nis integer, of an irredu
ible representation of the algebra (2.12) and thus thealgebra (2.5) from the unique ve
tor j�i, where � 2 [0; Æ). It is 
lear that� labels irredu
ible representations of the algebra. On the other hand, the
hoi
e of � determines in view of the relationx̂j�+ nÆi = (�+ nÆ)j�+ nÆi ; (2.16)where n is integer, the position of the latti
e on the real line. We point outthat, in order to 
ontrol the 
ontra
tion Æ ! 0, we use the unnormalizedve
tors j� + nÆi, satisfying h� + nÆj� + n0Æi = 1Æ Ænn0 . Further, it is also



48 K. Kowalski, J. Rembieli«skievident that the original Hilbert spa
e H = L2(R; dx) 
an be written as adire
t integral H = Z[0;Æ)�d�H� ; (2.17)where H� is the Hilbert spa
e of fun
tions de�ned on a latti
e with spa
ingsÆ, with the s
alar produ
thf jgi� = 1Xn=�1 f�(�+ nÆ)g(� + nÆ)Æ ; (2.18)where f(�+ nÆ) = h�+ nÆjfi.We now spe
ialize, without loss of generality, to the 
ase of � = 0. Wehave x̂jnÆi = nÆjnÆi ;p̂ÆjnÆi = � i2Æ (j(n+ 1)Æi � j(n� 1)Æi) ;IÆjnÆi = 12(j(n+ 1)Æi + j(n� 1)Æi) : (2.19)The last two equations from (2.19) follow dire
tly from (2.11) andUÆjnÆi = j(n+ 1)Æi; U yÆ jnÆi = j(n� 1)Æi : (2.20)Clearly, the realization of the abstra
t Hilbert spa
e of states is spe
i�ed bythe s
alar produ
t (2.18) with � = 0, i.e.hf jgi = 1Xn=�1hf jnÆihnÆjgiÆ = 1Xn=�1 f�(nÆ)g(nÆ)Æ ; (2.21)where f(nÆ) = hnÆjfi.We remark that the operator x̂ is self-adjoint by standard arguments,with domain ff 2 l2(ÆZ)jxf 2 l2(ÆZ)g, where Z designates the set ofintegers and l2(ÆZ) is the spa
e of square summable fun
tions on the in�nitelatti
e with spa
ing Æ, with the s
alar produ
t (2.18), where � = 0. Theoperators p̂Æ and IÆ are bounded and symmetri
 so they are essentially self-adjoint on the whole l2(ÆZ).We now study the representation generated by eigenve
tors j'iÆ , ��Æ �' � �Æ , of the unitary operator UÆ su
h thatUÆj'iÆ = e�iÆ'j'iÆ : (2.22)



The Æ-Deformation of the Fo
k Spa
e 49The representation spanned by the ve
tors j'iÆ is applied in se
tion 4 to theproof of a relationship between the a
tual treatment and some generalizationof the harmoni
 os
illator. It follows immediately from (2.11) and (2.22) thatx̂j'iÆ = �i dd' j'iÆ ;p̂Æj'iÆ = 1Æ sin(Æ')j'iÆ ;IÆj'iÆ = 
os(Æ')j'iÆ : (2.23)The 
ompleteness of the ve
tors j'iÆ gives rise to the fun
tional representa-tion of ve
tors hf jgi = 12� �ÆZ��Æ f�(')g(')d' ; (2.24)where f(') = h'jfi, and we have omitted for brevity the dependen
e off(') on Æ.Our purpose now is to analyze the 
ontra
tion Æ ! 0 of the represen-tations (2.21) and (2.24) introdu
ed above. Taking into a

ount (2.22) and(2.20) we �nd that the passage from the representation spanned by the ve
-tors jnÆi and that generated by the ve
tors j'iÆ 
an be des
ribed by thekernel hnÆj'iÆ = einÆ' : (2.25)Equations (2.24) and (2.25) taken together yieldhnÆjn0Æi = 12� �ÆZ��Æ ei(n�n0)Æ'd' = sin�(n� n0)�(n� n0)Æ : (2.26)Therefore hnÆjn0Æi = 1Æ Ænn0 ; (2.27)whenever Æ 6= 0. On the other hand, de�ning the 
ontinuum limit asn!1; Æ ! 0; nÆ = 
onst = x ; (2.28)we �nd that (2.26) takes the formlimn;n0!1; Æ!0nÆ=x; n0Æ=x0 hnÆjn0Æi = Æ(x� x0) : (2.29)Hen
e, we get limn!1; Æ!0nÆ=x jnÆi = jxi ; (2.30)



50 K. Kowalski, J. Rembieli«skiwhere jxi, x 2 R, are the usual normalized eigenve
tors of the position op-erator for a quantum me
hani
s on a real line. This observation is 
onsistentwith the fa
t that for Æ ! 0 the sum from (2.21) is simply the integral sumfor the s
alar produ
t in L2(R; dx). By (2.19) and (2.28) it is also evidentthat in the limit Æ ! 0 we arrive at the Heisenberg algebra (2.8). We havethus shown that the 
ontra
tion referring to Æ ! 0 of the representationof the algebra (2.5) given by (2.21) and (2.19) 
oin
ides with the standard
oordinate L2 representation of the Heisenberg algebra (2.8). Analogously,we have Æh'j'0iÆ = 1Xn=�1 e�inÆ('�'0)Æ : (2.31)Therefore, limÆ!0 Æh'j'0iÆ = 2�Æ(' � '0) ; (2.32)and we 
an identify limÆ!0 j'iÆ = p2�jpi ; (2.33)where p = ', and jpi, p 2 R, are the normalized eigenve
tors of the momen-tum operator. Further, in view of (2.23) the 
ase Æ ! 0 really 
orrespondsto the Heisenberg algebra (2.8). So the representation spe
i�ed by (2.24)
oin
ides in the limit Æ ! 0 with the standard momentum representation.We 
on
lude that the introdu
ed deformation works both on the level of thealgebra and the representation.Finally, we re
all that the operator IÆ 
an be regarded as an evolutionoperator for a free parti
le on a latti
e on a real line [1℄. Indeed, following[1℄ we set f(x; tn) := InÆ f(x) ; (2.34)with the imaginary time tn := nÆ2=i. On introdu
ing the Hamiltonian for afree parti
le with the unit mass of the formHÆ := 1Æ2 (1� IÆ) ; (2.35)we arrive at the S
hrödinger equation satis�ed by the time-dependent fun
-tions (2.34) su
h that i~�tf = HÆf ; (2.36)where ~�t is the dis
rete time derivative de�ned by~�tf(x; t) := 1�t [f(x; t+�t)� f(x; t)℄ ; (2.37)where �t := Æ2=i. We point out that in view of (2.35) and the se
ondequation of (2.7) we really re
over in the limit Æ ! 0 the Hamiltonian of afree parti
le on a real line H = p̂2=2.



The Æ-Deformation of the Fo
k Spa
e 513. The Æ-deformation of the Heisenberg�Weyl algebraIn this se
tion we study the Æ-deformation of the Heisenberg�Weyl al-gebra satis�ed by the Bose 
reation and annihilation operators. Let usintrodu
e the following family of operators:A(s) = 1p2 [x̂+i(1�Æ2s)p̂ÆI�1Æ ℄ ; Ay(s) = 1p2 [x̂�i(1�Æ2s)p̂ÆI�1Æ ℄ ; (3.1)where s = 0; 1; : : :. Clearly, these operators redu
e to the standard Bose
reation and annihilation operators in the limit Æ ! 0. We point out thatin this limit A(s) and Ay(s) do not depend on s. Noti
e that in view ofhermi
ity of generators of the algebra (2.5) Ay(s) is really the Hermitian
onjugate of A(s). It should also be noted that in the representation spannedby the ve
tors j'iÆ the a
tion of the operator I�1Æ is simply the multipli
ationby se
 Æ'. It is 
lear that, in opposition to the operator IÆ, the operator I�1Æis unbounded. Obviously, the Bose operators (3.1) are unbounded as well.We now seek the ve
tors jsi and fun
tions �(s) and �(s), satisfyingA(s)jsi = �(s)js� 1i ; Ay(s)jsi = �(s)js+ 1i ; s = 0; 1; : : : ; (3.2)We stress that we have not designated for brevity the dependen
e of ve
torsjsi on the parameter Æ i.e. jsi � jsiÆ. Referring ba
k to (3.2), we are simplylooking for the Æ-deformation of ve
tors spanning the o

upation numberrepresentation. Using the following form of the Casimir (2.6) whi
h 
an beobtained with the help of (3.1):A(s+ 1)Ay(s)�Ay(s� 1)A(s) = (1� Æ2s)I ; (3.3)where I is the unit operator, we get�(s+ 1)�(s) � �(s)�(s� 1) = 1� Æ2s : (3.4)Hen
e, setting �(0) = 0 and solving the elementary re
urren
e (3.4) weobtain �(s)�(s � 1) = s� Æ22 s(s� 1) : (3.5)The following solution of (3.5) 
onsistent with the limit values �(s) = ps and�(s) = ps+ 1, 
orresponding to Æ = 0, when jsi span the usual o

upationnumber representation 
an be guessed easily:�(s) =qs� Æ22 s(s� 1) ; �(s) =qs+ 1� Æ22 s(s+ 1) ; (3.6)so we haveA(s)jsi =qs� Æ22 s(s� 1)js� 1i; Ay(s)jsi =qs+ 1� Æ22 s(s+ 1)js+1i :(3.7)



52 K. Kowalski, J. Rembieli«skiNow, by virtue ofhsjAy(s)A(s)jsi = [s� Æ22 s(s� 1)℄hs� 1js� 1i � 0 ; (3.8)we see that the sequen
e of s and thus jsi should trun
ate. The only possi-bility left is to set Æ2 = 1smax : (3.9)Indeed, by (3.1) we then haveA(smax) = Ay(smax) = 1p2 x̂ : (3.10)Using this and (3.7), we �ndjsmax + 1i = jsmax � 1i ; (3.11)where jsmax + 1i = Ay(smax)jsmaxi. We have thus shown that instead ofÆ we 
an use the parameter smax ex
eeding by one the dimension of thesystem of ve
tors fjsig0�s�smax . Su
h systems for smax = 1, smax = 2and so on, 
an be interpreted as a �nite-dimensional analogues of the usualin�nite-dimensional Fo
k spa
e. The latter evidently refers to the 
ase withsmax =1, when Æ = 0.We now dis
uss the algebra satis�ed by the operators (3.1), that is theÆ-deformation of the Heisenberg�Weyl algebra. Taking into a

ount (3.7)we getA(s0) = �1� Æ2(s� s0)2(Æ2s� 1)�A(s) + Æ2(s� s0)2(Æ2s� 1)Ay(s);Ay(s0) = Æ2(s� s0)2(Æ2s� 1)A(s) + �1� Æ2(s� s0)2(Æ2s� 1)�Ay(s) ; s < smax : (3.12)Making use of (2.5), (3.1), (3.12) and the following form of the Casimir (2.6),whi
h 
an be easily derived with the help of (3.1):Æ2[A(s)�Ay(s)℄2 = 2(1� Æ2s)(1� I�2Æ ) ; (3.13)we arrive at the 
ommutation relations su
h thathA(s); Ay(s0)i = [1� Æ22(s+ s0)℄I�2Æ ;�A(s); A(s0)� = [Ay(s0); Ay(s)℄ = Æ22 (s0 � s)I�2Æ ; s; s0 � smax ;
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k Spa
e 53hA(s); I�2kÆ i = [Ay(s); I�2kÆ ℄ = [A(smax); I�2kÆ ℄= k Æ21� Æ2sBk(s) ; s < smax ;�A(s); Bk(s0)� = [Ay(s); Bk(s0)℄= 2k(1 � Æ2s0)I�2kÆ � (2k + 1)(1 � Æ2s0)I�2(k+1)Æ ;hBk(s); I�2lÆ i = [I�2kÆ ; I�2lÆ ℄= [Bk(s); Bl(s0)℄ = 0 ; s; s0 � smax ; k; l = 1; 2; : : : ;(3.14)where Bk(s) = [A(s)�Ay(s)℄I�2kÆ . We remark that due to the 
ommutatorof A(s) and Bk(s0), the algebra (3.14) is in�nite dimensional. It should alsobe noted that in view of the following relation:A(s) = (1� Æ2s2 )A(0) + Æ2s2 Ay(0) ; 0 � s � smax ; (3.15)whi
h is an immediate 
onsequen
e of (3.1), A(s), Ay(s) and Bk(s) 
an beregarded as a dis
rete 
urve in the algebra generated by A(0), Ay(0), I�2kÆand Bk(0). Of 
ourse, (3.14) redu
e to the Heisenberg�Weyl algebra in thelimit Æ ! 0, that is smax !1.4. The Æ-deformation of the Fo
k spa
eWe now dis
uss the Æ-deformation of the Fo
k spa
e expressed by (3.7)in a more detail. We �rst observe that the generation of the states jsi, withs � 1, from the �va
uum ve
tor� j0i 
an be des
ribed with the help of these
ond equation of (3.7) byjsi = 0� s�1Ys0=0 1qs0 + 1� Æ22 s0(s0 + 1)1AAy(s� 1) � � �Ay(1)Ay(0)j0i ;0 < s � smax : (4.1)The ve
tors jsi are not orthonormal. In fa
t, using the �rst equation of(3.12) with s0 = s + 1, (3.7) and 
al
ulating the expe
tation value of theCasimir (3.13) in the state jsi with the use of the �rst equation of (3.14) fors = s0, we �nd



54 K. Kowalski, J. Rembieli«skih1j1i = 22� Æ2 h0j0i ;hsjsi = Æ2[2(Æ2s� 1)� Æ2℄[s� Æ22 s(s� 1)℄ s�2Xs0=0(Æ2s0 � 1)hs0js0i+ 1 + Æ2[Æ2(s� 1)� 1℄[2(Æ2s� 1)� Æ2℄[s� Æ22 s(s� 1)℄! hs� 1js� 1i; 2 � s � smax :(4.2)Furthermore, Eqs. (3.12) and (3.7) taken together yieldqs� Æ22 s(s� 1)hsjs0i = �1� Æ2(s0 � s+ 1)2(Æ2s0 � 1) ��qs0 � Æ22 s0(s0 � 1)hs� 1js0 � 1i+Æ2(s0�s+ 1)2(Æ2s0�1) qs0+1� Æ22 s0(s0+1)hs�1js0+1i ;0 < s � smax; 0 � s0 < smax : (4.3)The equations (4.2) and (4.3) form the 
losed system whi
h enables to 
al
u-late the inner produ
t hsjs0i for arbitrary s; s0 � smax. In parti
ular, utilizingthe relation hsjs+ 1i = 0; s � smax ; (4.4)implied by (4.3) and using re
ursively (4.3) we �nd thathsjs0i = 0; s; s0 � smax ; (4.5)where s is even and s0 is odd.We �nally dis
uss the 
on
rete realization of the introdu
ed Æ-deformationof the abstra
t Fo
k spa
e in the representation (2.24). On using (2.23) and(3.7) we arrive at the following system:� dd' + (1� Æ2s)1Æ tgÆ'� fs(') = �ip2qs� Æ22 s(s� 1) fs�1(') ;� dd' � (1� Æ2s)1Æ tgÆ'� fs(') = �ip2qs+ 1� Æ22 s(s+ 1) fs+1(p) ; (4.6)where fs(') = h'jsi. We remark that the system (4.6) is the spe
ial 
ase ofthe more general one
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k Spa
e 55� ddx + k(s; x)� ys(x) = �(s)ys�1(x) ;�� ddx + k(s; x)� ys(x) = �(s)ys+1(x) : (4.7)The system (4.7) was studied by Jannussis et al [3℄ in the 
ontext of thegeneralization of the Infeld�Hull method of fa
torization in the 
ase of theharmoni
 os
illator. Analyzing the 
ompatibility of the two se
ond orderdi�erential equations implied by (4.7) they showed that besides the periodi
solution there exists the following one:k(s; x) = a
tg(ax+ �) s� ba
tg(ax+ �) + 
sin(ax+ �) ; (4.8)provided �(s)�(s� 1) = �a2s(s� 1) + 2bs+ � ; (4.9)where a, b, 
, � and � are arbitrary 
onstants. A look at (4.8), (4.9), (4.6)and (3.5) is enough to 
on
lude that the a
tual treatment refers to the 
asewith a = Æ, b = 1, 
 = 0, � = �=2 and � = 0. We point out that within theformalism introdu
ed herein the se
ond order equations implied by (4.6) aresimply the realization of the abstra
t equationsA(s+ 1)Ay(s)jsi = �(s)�(s + 1)jsi ;Ay(s� 1)A(s)jsi = �(s)�(s � 1)jsi : (4.10)in the representation (2.24). The 
ompatibility of the Eqs. (4.10) is ensuredby the Casimir (3.3). In this sense the a
tual approa
h 
an be interpretedas an abstra
t form of the Infeld�Hull fa
torization method.We now return to (4.6). Using (4.6) and the limitlimÆ!0 (
os Æ') 1Æ2 = e�'22 ; (4.11)we �nd f0(') = �� 14 (
os Æ') 1Æ2 : (4.12)Furthermore, utilizing (4.6) anddd' (
os Æ') 1Æ2 = �tgÆ'Æ (
os Æ') 1Æ2 ; dd' �tgÆ'Æ � = 1 + Æ2 �tgÆ'Æ �2 ;(4.13)



56 K. Kowalski, J. Rembieli«skiwe getfs(') = �� 14 (�i)s(p2)s 0� s�1Ys0=0 1qs0 + 1� Æ22 s0(s0 + 1)1AH(Æ)s �tgÆ'Æ � (
os Æ') 1Æ2 ;(4.14)where 1 � s � smax, and H(Æ)s (x) are the polynomials satisfying there
urren
e H(Æ)s+1(x) = (2� Æ2s)xH(Æ)s (x)� (1 + Æ2x2)H(Æ)0s (x) ;H(Æ)0 (x) = 1 ; (4.15)where the prime designates the di�erentiation with respe
t to x. Of 
ourse,H(Æ)s (x) are simply the Æ-deformation of the usual Hermite polynomials refer-ing to the limit Æ ! 0, i.e. smax ! 1. The �rst few Æ-deformed Hermitepolynomials are of the formH(Æ)0 (x) = 1 ;H(Æ)1 (x) = 2x ;H(Æ)2 (x) = 4(1� Æ2)x2 � 2 ;H(Æ)3 (x) = 8(1� Æ2)(1� 2Æ2)x3 � 12(1 � Æ2)x ;H(Æ)4 (x) = 16(1�Æ2)(1�2Æ2)(1�3Æ2)x4�48(1�Æ2)(1�2Æ2)x2 + 12(1�Æ2) :(4.16)As with the standard Hermite polynomials the general formula on the Æ-deformed ones 
an be derived su
h thatH(Æ)0 (x) = 1;H(Æ)s (x) = [ s2 ℄Xj=0(�1)j s!j!(s�2j)! 2s�2j "s�j�1Ys0=0 (1�Æ2s0)#xs�2j ; 1 � s � smax ;(4.17)where [y℄ is the biggest integer in y.We �nally write down the following formula on the matrix elements hsjs0iimplied by (2.24) and (4.14):hsjs0i = 12� �ÆZ��Æ f�s (')fs0(')d' ; (4.18)
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e 57where fs(') is given by (4.12) and (4.14). The 
al
ulation of the integralfrom (4.18) for arbitrary s; s0 seems to be more 
ompli
ated than the so-lution of the re
urren
es (4.2) and (4.3). It should be noted however that(4.18) enables to 
al
ulate the squared norm of the �va
uum ve
tor� j0iparametrizing solutions of (4.2) and (4.3). Namely, we �ndh0j0i = 12� 32 �ÆZ��Æ (
os Æ') 2Æ2 d' =rsmax� (2smax�1)!!(2smax)!! = psmax� � (smax+ 12)� (smax+1) ;(4.19)where Æ2smax = 1 and � (x) is the gamma fun
tion.5. Con
lusionWe have introdu
ed in this work the deformation of the Fo
k spa
ebased on the utilization of the 
entral di�eren
e operator instead of theusual derivative. It should be mentioned that there exist alternative ap-proa
hes for dis
retization of quantum me
hani
s relying on �nite di�eren
erepresentations of the usual Heisenberg [4℄ or Heisenberg�Weyl algebra [5℄.Nevertheless, the general problem with them is the interpretation of thenonequivalen
e of the obtained representations of the 
anoni
al 
ommuta-tion relations and the standard S
hrödinger one. Some problems with thespe
trum of operators within su
h approa
hes have been also reported [4℄.We also re
all the dis
retization of the harmoni
 os
illator introdu
ed in [6℄relying on the repla
ement of the Hermite polynomials with the Krav
hukpolynomials in a dis
rete variable as well as the �nite-dimensional 
ounter-part of the Fo
k spa
e spanned by the eigenve
tors of the phase operatordis
ussed in [7℄. In analogy with the a
tual treatment in both approa
hestaken up in [6℄ and [7℄ the standard in�nite-dimensional Fo
k spa
e refers tothe formal limit N !1, where N is dimension of the �nite-dimensional dis-
rete version of the Fo
k spa
e. Moreover, in the 
ase with the dis
retizationdes
ribed in [6℄ one 
an re
ognize a 
ounterpart of the parameter Æ spe
i�edby (3.9) su
h that Æ ' N� 12 . Nevertheless, besides of those similarities wehave also serious di�eren
es. For example, in opposition to the operators(3.1) the generalizations of the Bose operators introdu
ed in [6℄ do not de-pend on the index labelling the basis of the �nite-dimensional analogue ofthe Fo
k spa
e. On the other hand, the alternatives to the number statesdis
ussed in [7℄ form the orthonormal set. This is not the 
ase for the statesjsi des
ribed herein. Last but not least we point out that besides of quantumme
hani
s the results of this paper would be of importan
e in the theory ofdi�erential equations. We only re
all the abstra
t form of the Infeld�Hullmethod of fa
torization des
ribed by the equations (4.10) and (3.3).
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