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THE Æ-DEFORMATION OF THE FOCK SPACEK. Kowalski and J. Rembieli«skiDepartment of Theoretial Physis, University of �ód¹Pomorska 149/153, 90-236 �ód¹, Poland(Reeived June 25, 2002; revised version reeived September 4, 2002)A deformation of the Fok spae based on the �nite di�erene replae-ment for the derivative is introdued. The deformation parameter is relatedto the dimension of the �nite analogue of the Fok spae.PACS numbers: 02.20.Sv, 03.65.Fd1. IntrodutionIn reent years there has been a growing interest in disretizations ofquantum mehanis based on the �nite di�erene replaement for the deriva-tive. This is motivated by the well-known speulations that below the Planksale the onventional notions of spae and time break down and the newdisrete strutures are likely to emerge. This has ehoes in the argumentsput forward in string theory and quantum gravity. We also mention the teh-nial reasons for the appliation of disrete models. Let us only reall thelattie gauge theories. As a matter of fat the onnetion has been shownin Ref. [1℄ between ordinary quantum mehanis on a equidistant lattie,where the the role of the derivative is played by the forward or bakwarddisrete derivative, and q-deformations utilizing the Jakson derivative, nev-ertheless no expliit form of the orresponding deformation of the Fok spaehas been provided in [1℄. On the other hand, there are indiations [2℄ thatapproahes based on the entral di�erene operator are more adequate fordisretization of quantum mehanis than those using asymmetri forwardor bakward disrete derivatives.In this paper we introdue a deformation of the Fok spae, suh that thereation and annihilation operators are elements of the quotient �eld of thedeformed Heisenberg algebra generated by the usual position operator andthe entral di�erene operator. The deformation parameter Æ desribingthe �xed oordinate spaing is naturally related to the dimension of the�nite-dimensional spae whih an be regarded as an analogue of the Fokspae. In the formal limit Æ ! 0 we arrive at the in�nite-dimensional spaeoiniding with the usual Fok spae.(45)



46 K. Kowalski, J. Rembieli«ski2. The Æ-deformation of the Heisenberg algebraAs mentioned in the introdution there are indiations that disretiza-tions of quantum mehanis should involve the entral di�erene operatorsuh that �Æf(x) = f(x+ Æ) � f(x� Æ)2Æ : (2.1)In view of (2.1) the disrete ounterpart of the momentum operator is givenby p̂Æ = �i�Æ ; (2.2)where we set ~ = 1. Furthermore, it seems to us that the most naturalandidate for the position operator in any disretized version of quantummehanis is the standard one of the formx̂f(x) = xf(x) : (2.3)In order to lose the algebra satis�ed by the operators p̂Æ and x̂ we introduethe operator IÆ de�ned byIÆf(x) = f(x+ Æ) + f(x� Æ)2 : (2.4)It follows that[x̂; p̂Æ℄ = iIÆ ; [x̂; IÆ℄ = �iÆ2p̂Æ ; [p̂Æ; IÆ℄ = 0 : (2.5)Using (2.1)�(2.4) we also �nd easily the following Casimir operator for thealgebra (2.5): I2Æ + Æ2p̂2Æ = I : (2.6)We remark that (2.5) is a deformation of the e(2) algebra orresponding toÆ = 1. Evidently, p̂Æ = 1Æ sin Æp̂ ; IÆ = os Æp̂ ; (2.7)where p̂ = �i ddx is the usual momentum operator, so the ontration of thealgebra (2.5) referring to Æ ! 0, is the usual Heisenberg algebra[x̂; p̂℄ = iI; [x̂; I℄ = 0; [p̂; I℄ = 0 : (2.8)We now disuss the representations of the algebra (2.5) in the Hilbertspae H = L2(R; dx) spei�ed by the salar produthf jgi = 1Z�1 dxf�(x)g(x) : (2.9)



The Æ-Deformation of the Fok Spae 47Consider the operator UÆ de�ned byUÆ := IÆ � iÆp̂Æ : (2.10)Using the hermiity and boundedness of the operators IÆ and p̂Æ followingdiretly from (2.1), (2.2), (2.4) and (2.9), and utilizing (2.6) and (2.5) we�nd that UÆ is unitary. We point out that the unitarity ondition satis�edby UÆ is simply an equivalent form of the Casimir (2.6). Making use of therelations p̂Æ = � i2Æ (UÆ � U yÆ ) ;IÆ = 12(UÆ + U yÆ ) ; (2.11)implied by (2.10), we arrive at the following equivalent form of the algebra(2.5): [x̂; UÆ℄ = ÆUÆ : (2.12)Consider now the abstrat eigenvalue equationx̂jxi = xjxi ; (2.13)where x 2 R, and f(x) is related with hxjfi (see below). From equations(2.12) and (2.13) it follows that the ation of the operators UÆ and U yÆ onthe vetors jxi is of the formUÆjxi = jx+ Æi ;U yÆ jxi = jx� Æi : (2.14)Therefore U�nÆ jxi = jx� nÆi : (2.15)Thus, it turns out that we an generate the whole basis fj�+nÆig, where nis integer, of an irreduible representation of the algebra (2.12) and thus thealgebra (2.5) from the unique vetor j�i, where � 2 [0; Æ). It is lear that� labels irreduible representations of the algebra. On the other hand, thehoie of � determines in view of the relationx̂j�+ nÆi = (�+ nÆ)j�+ nÆi ; (2.16)where n is integer, the position of the lattie on the real line. We point outthat, in order to ontrol the ontration Æ ! 0, we use the unnormalizedvetors j� + nÆi, satisfying h� + nÆj� + n0Æi = 1Æ Ænn0 . Further, it is also



48 K. Kowalski, J. Rembieli«skievident that the original Hilbert spae H = L2(R; dx) an be written as adiret integral H = Z[0;Æ)�d�H� ; (2.17)where H� is the Hilbert spae of funtions de�ned on a lattie with spaingsÆ, with the salar produthf jgi� = 1Xn=�1 f�(�+ nÆ)g(� + nÆ)Æ ; (2.18)where f(�+ nÆ) = h�+ nÆjfi.We now speialize, without loss of generality, to the ase of � = 0. Wehave x̂jnÆi = nÆjnÆi ;p̂ÆjnÆi = � i2Æ (j(n+ 1)Æi � j(n� 1)Æi) ;IÆjnÆi = 12(j(n+ 1)Æi + j(n� 1)Æi) : (2.19)The last two equations from (2.19) follow diretly from (2.11) andUÆjnÆi = j(n+ 1)Æi; U yÆ jnÆi = j(n� 1)Æi : (2.20)Clearly, the realization of the abstrat Hilbert spae of states is spei�ed bythe salar produt (2.18) with � = 0, i.e.hf jgi = 1Xn=�1hf jnÆihnÆjgiÆ = 1Xn=�1 f�(nÆ)g(nÆ)Æ ; (2.21)where f(nÆ) = hnÆjfi.We remark that the operator x̂ is self-adjoint by standard arguments,with domain ff 2 l2(ÆZ)jxf 2 l2(ÆZ)g, where Z designates the set ofintegers and l2(ÆZ) is the spae of square summable funtions on the in�nitelattie with spaing Æ, with the salar produt (2.18), where � = 0. Theoperators p̂Æ and IÆ are bounded and symmetri so they are essentially self-adjoint on the whole l2(ÆZ).We now study the representation generated by eigenvetors j'iÆ , ��Æ �' � �Æ , of the unitary operator UÆ suh thatUÆj'iÆ = e�iÆ'j'iÆ : (2.22)



The Æ-Deformation of the Fok Spae 49The representation spanned by the vetors j'iÆ is applied in setion 4 to theproof of a relationship between the atual treatment and some generalizationof the harmoni osillator. It follows immediately from (2.11) and (2.22) thatx̂j'iÆ = �i dd' j'iÆ ;p̂Æj'iÆ = 1Æ sin(Æ')j'iÆ ;IÆj'iÆ = os(Æ')j'iÆ : (2.23)The ompleteness of the vetors j'iÆ gives rise to the funtional representa-tion of vetors hf jgi = 12� �ÆZ��Æ f�(')g(')d' ; (2.24)where f(') = h'jfi, and we have omitted for brevity the dependene off(') on Æ.Our purpose now is to analyze the ontration Æ ! 0 of the represen-tations (2.21) and (2.24) introdued above. Taking into aount (2.22) and(2.20) we �nd that the passage from the representation spanned by the ve-tors jnÆi and that generated by the vetors j'iÆ an be desribed by thekernel hnÆj'iÆ = einÆ' : (2.25)Equations (2.24) and (2.25) taken together yieldhnÆjn0Æi = 12� �ÆZ��Æ ei(n�n0)Æ'd' = sin�(n� n0)�(n� n0)Æ : (2.26)Therefore hnÆjn0Æi = 1Æ Ænn0 ; (2.27)whenever Æ 6= 0. On the other hand, de�ning the ontinuum limit asn!1; Æ ! 0; nÆ = onst = x ; (2.28)we �nd that (2.26) takes the formlimn;n0!1; Æ!0nÆ=x; n0Æ=x0 hnÆjn0Æi = Æ(x� x0) : (2.29)Hene, we get limn!1; Æ!0nÆ=x jnÆi = jxi ; (2.30)



50 K. Kowalski, J. Rembieli«skiwhere jxi, x 2 R, are the usual normalized eigenvetors of the position op-erator for a quantum mehanis on a real line. This observation is onsistentwith the fat that for Æ ! 0 the sum from (2.21) is simply the integral sumfor the salar produt in L2(R; dx). By (2.19) and (2.28) it is also evidentthat in the limit Æ ! 0 we arrive at the Heisenberg algebra (2.8). We havethus shown that the ontration referring to Æ ! 0 of the representationof the algebra (2.5) given by (2.21) and (2.19) oinides with the standardoordinate L2 representation of the Heisenberg algebra (2.8). Analogously,we have Æh'j'0iÆ = 1Xn=�1 e�inÆ('�'0)Æ : (2.31)Therefore, limÆ!0 Æh'j'0iÆ = 2�Æ(' � '0) ; (2.32)and we an identify limÆ!0 j'iÆ = p2�jpi ; (2.33)where p = ', and jpi, p 2 R, are the normalized eigenvetors of the momen-tum operator. Further, in view of (2.23) the ase Æ ! 0 really orrespondsto the Heisenberg algebra (2.8). So the representation spei�ed by (2.24)oinides in the limit Æ ! 0 with the standard momentum representation.We onlude that the introdued deformation works both on the level of thealgebra and the representation.Finally, we reall that the operator IÆ an be regarded as an evolutionoperator for a free partile on a lattie on a real line [1℄. Indeed, following[1℄ we set f(x; tn) := InÆ f(x) ; (2.34)with the imaginary time tn := nÆ2=i. On introduing the Hamiltonian for afree partile with the unit mass of the formHÆ := 1Æ2 (1� IÆ) ; (2.35)we arrive at the Shrödinger equation satis�ed by the time-dependent fun-tions (2.34) suh that i~�tf = HÆf ; (2.36)where ~�t is the disrete time derivative de�ned by~�tf(x; t) := 1�t [f(x; t+�t)� f(x; t)℄ ; (2.37)where �t := Æ2=i. We point out that in view of (2.35) and the seondequation of (2.7) we really reover in the limit Æ ! 0 the Hamiltonian of afree partile on a real line H = p̂2=2.



The Æ-Deformation of the Fok Spae 513. The Æ-deformation of the Heisenberg�Weyl algebraIn this setion we study the Æ-deformation of the Heisenberg�Weyl al-gebra satis�ed by the Bose reation and annihilation operators. Let usintrodue the following family of operators:A(s) = 1p2 [x̂+i(1�Æ2s)p̂ÆI�1Æ ℄ ; Ay(s) = 1p2 [x̂�i(1�Æ2s)p̂ÆI�1Æ ℄ ; (3.1)where s = 0; 1; : : :. Clearly, these operators redue to the standard Bosereation and annihilation operators in the limit Æ ! 0. We point out thatin this limit A(s) and Ay(s) do not depend on s. Notie that in view ofhermiity of generators of the algebra (2.5) Ay(s) is really the Hermitianonjugate of A(s). It should also be noted that in the representation spannedby the vetors j'iÆ the ation of the operator I�1Æ is simply the multipliationby se Æ'. It is lear that, in opposition to the operator IÆ, the operator I�1Æis unbounded. Obviously, the Bose operators (3.1) are unbounded as well.We now seek the vetors jsi and funtions �(s) and �(s), satisfyingA(s)jsi = �(s)js� 1i ; Ay(s)jsi = �(s)js+ 1i ; s = 0; 1; : : : ; (3.2)We stress that we have not designated for brevity the dependene of vetorsjsi on the parameter Æ i.e. jsi � jsiÆ. Referring bak to (3.2), we are simplylooking for the Æ-deformation of vetors spanning the oupation numberrepresentation. Using the following form of the Casimir (2.6) whih an beobtained with the help of (3.1):A(s+ 1)Ay(s)�Ay(s� 1)A(s) = (1� Æ2s)I ; (3.3)where I is the unit operator, we get�(s+ 1)�(s) � �(s)�(s� 1) = 1� Æ2s : (3.4)Hene, setting �(0) = 0 and solving the elementary reurrene (3.4) weobtain �(s)�(s � 1) = s� Æ22 s(s� 1) : (3.5)The following solution of (3.5) onsistent with the limit values �(s) = ps and�(s) = ps+ 1, orresponding to Æ = 0, when jsi span the usual oupationnumber representation an be guessed easily:�(s) =qs� Æ22 s(s� 1) ; �(s) =qs+ 1� Æ22 s(s+ 1) ; (3.6)so we haveA(s)jsi =qs� Æ22 s(s� 1)js� 1i; Ay(s)jsi =qs+ 1� Æ22 s(s+ 1)js+1i :(3.7)



52 K. Kowalski, J. Rembieli«skiNow, by virtue ofhsjAy(s)A(s)jsi = [s� Æ22 s(s� 1)℄hs� 1js� 1i � 0 ; (3.8)we see that the sequene of s and thus jsi should trunate. The only possi-bility left is to set Æ2 = 1smax : (3.9)Indeed, by (3.1) we then haveA(smax) = Ay(smax) = 1p2 x̂ : (3.10)Using this and (3.7), we �ndjsmax + 1i = jsmax � 1i ; (3.11)where jsmax + 1i = Ay(smax)jsmaxi. We have thus shown that instead ofÆ we an use the parameter smax exeeding by one the dimension of thesystem of vetors fjsig0�s�smax . Suh systems for smax = 1, smax = 2and so on, an be interpreted as a �nite-dimensional analogues of the usualin�nite-dimensional Fok spae. The latter evidently refers to the ase withsmax =1, when Æ = 0.We now disuss the algebra satis�ed by the operators (3.1), that is theÆ-deformation of the Heisenberg�Weyl algebra. Taking into aount (3.7)we getA(s0) = �1� Æ2(s� s0)2(Æ2s� 1)�A(s) + Æ2(s� s0)2(Æ2s� 1)Ay(s);Ay(s0) = Æ2(s� s0)2(Æ2s� 1)A(s) + �1� Æ2(s� s0)2(Æ2s� 1)�Ay(s) ; s < smax : (3.12)Making use of (2.5), (3.1), (3.12) and the following form of the Casimir (2.6),whih an be easily derived with the help of (3.1):Æ2[A(s)�Ay(s)℄2 = 2(1� Æ2s)(1� I�2Æ ) ; (3.13)we arrive at the ommutation relations suh thathA(s); Ay(s0)i = [1� Æ22(s+ s0)℄I�2Æ ;�A(s); A(s0)� = [Ay(s0); Ay(s)℄ = Æ22 (s0 � s)I�2Æ ; s; s0 � smax ;



The Æ-Deformation of the Fok Spae 53hA(s); I�2kÆ i = [Ay(s); I�2kÆ ℄ = [A(smax); I�2kÆ ℄= k Æ21� Æ2sBk(s) ; s < smax ;�A(s); Bk(s0)� = [Ay(s); Bk(s0)℄= 2k(1 � Æ2s0)I�2kÆ � (2k + 1)(1 � Æ2s0)I�2(k+1)Æ ;hBk(s); I�2lÆ i = [I�2kÆ ; I�2lÆ ℄= [Bk(s); Bl(s0)℄ = 0 ; s; s0 � smax ; k; l = 1; 2; : : : ;(3.14)where Bk(s) = [A(s)�Ay(s)℄I�2kÆ . We remark that due to the ommutatorof A(s) and Bk(s0), the algebra (3.14) is in�nite dimensional. It should alsobe noted that in view of the following relation:A(s) = (1� Æ2s2 )A(0) + Æ2s2 Ay(0) ; 0 � s � smax ; (3.15)whih is an immediate onsequene of (3.1), A(s), Ay(s) and Bk(s) an beregarded as a disrete urve in the algebra generated by A(0), Ay(0), I�2kÆand Bk(0). Of ourse, (3.14) redue to the Heisenberg�Weyl algebra in thelimit Æ ! 0, that is smax !1.4. The Æ-deformation of the Fok spaeWe now disuss the Æ-deformation of the Fok spae expressed by (3.7)in a more detail. We �rst observe that the generation of the states jsi, withs � 1, from the �vauum vetor� j0i an be desribed with the help of theseond equation of (3.7) byjsi = 0� s�1Ys0=0 1qs0 + 1� Æ22 s0(s0 + 1)1AAy(s� 1) � � �Ay(1)Ay(0)j0i ;0 < s � smax : (4.1)The vetors jsi are not orthonormal. In fat, using the �rst equation of(3.12) with s0 = s + 1, (3.7) and alulating the expetation value of theCasimir (3.13) in the state jsi with the use of the �rst equation of (3.14) fors = s0, we �nd



54 K. Kowalski, J. Rembieli«skih1j1i = 22� Æ2 h0j0i ;hsjsi = Æ2[2(Æ2s� 1)� Æ2℄[s� Æ22 s(s� 1)℄ s�2Xs0=0(Æ2s0 � 1)hs0js0i+ 1 + Æ2[Æ2(s� 1)� 1℄[2(Æ2s� 1)� Æ2℄[s� Æ22 s(s� 1)℄! hs� 1js� 1i; 2 � s � smax :(4.2)Furthermore, Eqs. (3.12) and (3.7) taken together yieldqs� Æ22 s(s� 1)hsjs0i = �1� Æ2(s0 � s+ 1)2(Æ2s0 � 1) ��qs0 � Æ22 s0(s0 � 1)hs� 1js0 � 1i+Æ2(s0�s+ 1)2(Æ2s0�1) qs0+1� Æ22 s0(s0+1)hs�1js0+1i ;0 < s � smax; 0 � s0 < smax : (4.3)The equations (4.2) and (4.3) form the losed system whih enables to alu-late the inner produt hsjs0i for arbitrary s; s0 � smax. In partiular, utilizingthe relation hsjs+ 1i = 0; s � smax ; (4.4)implied by (4.3) and using reursively (4.3) we �nd thathsjs0i = 0; s; s0 � smax ; (4.5)where s is even and s0 is odd.We �nally disuss the onrete realization of the introdued Æ-deformationof the abstrat Fok spae in the representation (2.24). On using (2.23) and(3.7) we arrive at the following system:� dd' + (1� Æ2s)1Æ tgÆ'� fs(') = �ip2qs� Æ22 s(s� 1) fs�1(') ;� dd' � (1� Æ2s)1Æ tgÆ'� fs(') = �ip2qs+ 1� Æ22 s(s+ 1) fs+1(p) ; (4.6)where fs(') = h'jsi. We remark that the system (4.6) is the speial ase ofthe more general one



The Æ-Deformation of the Fok Spae 55� ddx + k(s; x)� ys(x) = �(s)ys�1(x) ;�� ddx + k(s; x)� ys(x) = �(s)ys+1(x) : (4.7)The system (4.7) was studied by Jannussis et al [3℄ in the ontext of thegeneralization of the Infeld�Hull method of fatorization in the ase of theharmoni osillator. Analyzing the ompatibility of the two seond orderdi�erential equations implied by (4.7) they showed that besides the periodisolution there exists the following one:k(s; x) = atg(ax+ �) s� batg(ax+ �) + sin(ax+ �) ; (4.8)provided �(s)�(s� 1) = �a2s(s� 1) + 2bs+ � ; (4.9)where a, b, , � and � are arbitrary onstants. A look at (4.8), (4.9), (4.6)and (3.5) is enough to onlude that the atual treatment refers to the asewith a = Æ, b = 1,  = 0, � = �=2 and � = 0. We point out that within theformalism introdued herein the seond order equations implied by (4.6) aresimply the realization of the abstrat equationsA(s+ 1)Ay(s)jsi = �(s)�(s + 1)jsi ;Ay(s� 1)A(s)jsi = �(s)�(s � 1)jsi : (4.10)in the representation (2.24). The ompatibility of the Eqs. (4.10) is ensuredby the Casimir (3.3). In this sense the atual approah an be interpretedas an abstrat form of the Infeld�Hull fatorization method.We now return to (4.6). Using (4.6) and the limitlimÆ!0 (os Æ') 1Æ2 = e�'22 ; (4.11)we �nd f0(') = �� 14 (os Æ') 1Æ2 : (4.12)Furthermore, utilizing (4.6) anddd' (os Æ') 1Æ2 = �tgÆ'Æ (os Æ') 1Æ2 ; dd' �tgÆ'Æ � = 1 + Æ2 �tgÆ'Æ �2 ;(4.13)



56 K. Kowalski, J. Rembieli«skiwe getfs(') = �� 14 (�i)s(p2)s 0� s�1Ys0=0 1qs0 + 1� Æ22 s0(s0 + 1)1AH(Æ)s �tgÆ'Æ � (os Æ') 1Æ2 ;(4.14)where 1 � s � smax, and H(Æ)s (x) are the polynomials satisfying thereurrene H(Æ)s+1(x) = (2� Æ2s)xH(Æ)s (x)� (1 + Æ2x2)H(Æ)0s (x) ;H(Æ)0 (x) = 1 ; (4.15)where the prime designates the di�erentiation with respet to x. Of ourse,H(Æ)s (x) are simply the Æ-deformation of the usual Hermite polynomials refer-ing to the limit Æ ! 0, i.e. smax ! 1. The �rst few Æ-deformed Hermitepolynomials are of the formH(Æ)0 (x) = 1 ;H(Æ)1 (x) = 2x ;H(Æ)2 (x) = 4(1� Æ2)x2 � 2 ;H(Æ)3 (x) = 8(1� Æ2)(1� 2Æ2)x3 � 12(1 � Æ2)x ;H(Æ)4 (x) = 16(1�Æ2)(1�2Æ2)(1�3Æ2)x4�48(1�Æ2)(1�2Æ2)x2 + 12(1�Æ2) :(4.16)As with the standard Hermite polynomials the general formula on the Æ-deformed ones an be derived suh thatH(Æ)0 (x) = 1;H(Æ)s (x) = [ s2 ℄Xj=0(�1)j s!j!(s�2j)! 2s�2j "s�j�1Ys0=0 (1�Æ2s0)#xs�2j ; 1 � s � smax ;(4.17)where [y℄ is the biggest integer in y.We �nally write down the following formula on the matrix elements hsjs0iimplied by (2.24) and (4.14):hsjs0i = 12� �ÆZ��Æ f�s (')fs0(')d' ; (4.18)



The Æ-Deformation of the Fok Spae 57where fs(') is given by (4.12) and (4.14). The alulation of the integralfrom (4.18) for arbitrary s; s0 seems to be more ompliated than the so-lution of the reurrenes (4.2) and (4.3). It should be noted however that(4.18) enables to alulate the squared norm of the �vauum vetor� j0iparametrizing solutions of (4.2) and (4.3). Namely, we �ndh0j0i = 12� 32 �ÆZ��Æ (os Æ') 2Æ2 d' =rsmax� (2smax�1)!!(2smax)!! = psmax� � (smax+ 12)� (smax+1) ;(4.19)where Æ2smax = 1 and � (x) is the gamma funtion.5. ConlusionWe have introdued in this work the deformation of the Fok spaebased on the utilization of the entral di�erene operator instead of theusual derivative. It should be mentioned that there exist alternative ap-proahes for disretization of quantum mehanis relying on �nite di�erenerepresentations of the usual Heisenberg [4℄ or Heisenberg�Weyl algebra [5℄.Nevertheless, the general problem with them is the interpretation of thenonequivalene of the obtained representations of the anonial ommuta-tion relations and the standard Shrödinger one. Some problems with thespetrum of operators within suh approahes have been also reported [4℄.We also reall the disretization of the harmoni osillator introdued in [6℄relying on the replaement of the Hermite polynomials with the Kravhukpolynomials in a disrete variable as well as the �nite-dimensional ounter-part of the Fok spae spanned by the eigenvetors of the phase operatordisussed in [7℄. In analogy with the atual treatment in both approahestaken up in [6℄ and [7℄ the standard in�nite-dimensional Fok spae refers tothe formal limit N !1, where N is dimension of the �nite-dimensional dis-rete version of the Fok spae. Moreover, in the ase with the disretizationdesribed in [6℄ one an reognize a ounterpart of the parameter Æ spei�edby (3.9) suh that Æ ' N� 12 . Nevertheless, besides of those similarities wehave also serious di�erenes. For example, in opposition to the operators(3.1) the generalizations of the Bose operators introdued in [6℄ do not de-pend on the index labelling the basis of the �nite-dimensional analogue ofthe Fok spae. On the other hand, the alternatives to the number statesdisussed in [7℄ form the orthonormal set. This is not the ase for the statesjsi desribed herein. Last but not least we point out that besides of quantummehanis the results of this paper would be of importane in the theory ofdi�erential equations. We only reall the abstrat form of the Infeld�Hullmethod of fatorization desribed by the equations (4.10) and (3.3).
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