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A deformation of the Fock space based on the finite difference replace-
ment for the derivative is introduced. The deformation parameter is related
to the dimension of the finite analogue of the Fock space.
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1. Introduction

In recent years there has been a growing interest in discretizations of
quantum mechanics based on the finite difference replacement for the deriva-
tive. This is motivated by the well-known speculations that below the Planck
scale the conventional notions of space and time break down and the new
discrete structures are likely to emerge. This has echoes in the arguments
put forward in string theory and quantum gravity. We also mention the tech-
nical reasons for the application of discrete models. Let us only recall the
lattice gauge theories. As a matter of fact the connection has been shown
in Ref. [1] between ordinary quantum mechanics on a equidistant lattice,
where the the role of the derivative is played by the forward or backward
discrete derivative, and ¢-deformations utilizing the Jackson derivative, nev-
ertheless no explicit form of the corresponding deformation of the Fock space
has been provided in [1]. On the other hand, there are indications [2| that
approaches based on the central difference operator are more adequate for
discretization of quantum mechanics than those using asymmetric forward
or backward discrete derivatives.

In this paper we introduce a deformation of the Fock space, such that the
creation and annihilation operators are elements of the quotient field of the
deformed Heisenberg algebra generated by the usual position operator and
the central difference operator. The deformation parameter § describing
the fixed coordinate spacing is naturally related to the dimension of the
finite-dimensional space which can be regarded as an analogue of the Fock
space. In the formal limit 6 — 0 we arrive at the infinite-dimensional space
coinciding with the usual Fock space.

(45)
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2. The §-deformation of the Heisenberg algebra

As mentioned in the introduction there are indications that discretiza-
tions of quantum mechanics should involve the central difference operator

such that 5 5

In view of (2.1) the discrete counterpart of the momentum operator is given
by

(2.1)

ps = —ils, (2.2)

where we set A = 1. Furthermore, it seems to us that the most natural
candidate for the position operator in any discretized version of quantum
mechanics is the standard one of the form

if(z) = xf(x). (2.3)

In order to close the algebra satisfied by the operators ps and Z we introduce
the operator Iy defined by

fla+0)+f=0)

Isf(z) = 5

(2.4)
It follows that

[z, ps] = ils, 2, I5] = —i6°ps , [Ds, I5] = 0. (2.5)

Using (2.1)—(2.4) we also find easily the following Casimir operator for the
algebra (2.5):
IZ+6%p3=1. (2.6)

We remark that (2.5) is a deformation of the e(2) algebra corresponding to
6 = 1. Evidently,
D5 = 3sindp, Is = cos 6p, (2.7)

where p = —i% is the usual momentum operator, so the contraction of the
algebra (2.5) referring to § — 0, is the usual Heisenberg algebra

[#,p] =4I, [#,1]=0, [p,1]=0. (2.8)

We now discuss the representations of the algebra (2.5) in the Hilbert
space H = L?(R,dx) specified by the scalar product

o

um=/Mﬂmm. (2.9)

—00
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Consider the operator Us defined by
Us := I5 —idps . (2.10)

Using the hermicity and boundedness of the operators Iy and pg following
directly from (2.1), (2.2), (2.4) and (2.9), and utilizing (2.6) and (2.5) we
find that Us is unitary. We point out that the unitarity condition satisfied
by Us is simply an equivalent form of the Casimir (2.6). Making use of the
relations

ps = —%(Us —UY),
Is = YU +U)), (2.11)
implied by (2.10), we arrive at the following equivalent form of the algebra

(2.5):
&, Us] = 6Uj . (2.12)

Consider now the abstract eigenvalue equation
Z|z) = z|z), (2.13)

where z € R, and f(z) is related with (z|f) (see below). From equations

(2.12) and (2.13) it follows that the action of the operators Us and Ug on
the vectors |z) is of the form

Uslz) = |z +9),

Ullz) = |z - ). (2.14)
Therefore

Uéin|x) = |z £ nd). (2.15)

Thus, it turns out that we can generate the whole basis {|\ 4+ nd)}, where n
is integer, of an irreducible representation of the algebra (2.12) and thus the
algebra (2.5) from the unique vector |\), where A € [0,4d). It is clear that
A labels irreducible representations of the algebra. On the other hand, the
choice of A determines in view of the relation

ZIN +nd) = (A +nd)|\ + nd), (2.16)

where n is integer, the position of the lattice on the real line. We point out
that, in order to control the contraction § — 0, we use the unnormalized
vectors |A + nd), satisfying (A + nd|A + n'6) = $0,,. Further, it is also
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evident that the original Hilbert space # = L?(R,dx) can be written as a
direct integral

@
H= / ANy, (2.17)
[0,0)

where H ) is the Hilbert space of functions defined on a lattice with spacings
0, with the scalar product

(flg)x Z F* A+ n8)g(\ + né)s (2.18)

n=-—oo

where f(A 4 nd) = (A +nd|f).
We now specialize, without loss of generality, to the case of A = 0. We
have

Z|nd) = n5|-n5),
psInd) = —55(l(n +1)6) —[(n —1)d)),
Is|nd) = $(|(n+1)0) +|(n —1)8)). (2.19)

The last two equations from (2.19) follow directly from (2.11) and
Uslnd) = [(n+1)6),  Ulnd) =|(n —1)d). (2.20)

Clearly, the realization of the abstract Hilbert space of states is specified by
the scalar product (2.18) with A =0, i.e.

o

(flg) = > (fInd)(ndlg)d Z f*(nd)g(nd)s (2.21)

n=—00 n=—00

where f(nd) = (nd|f).

We remark that the operator z is self-adjoint by standard arguments,
with domain {f € 12(6Z)|zf € 12(6Z)}, where Z designates the set of
integers and [?(6Z) is the space of square summable functions on the infinite
lattice with spacing d, with the scalar product (2.18), where A = 0. The
operators ps and I5 are bounded and symmetric so they are essentially self-
adjoint on the whole I2(§Z).

We now study the representation generated by eigenvectors [p)s, —5 <
¢ < %, of the unitary operator Us such that

Uslp)s = e %)) . (2.22)
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The representation spanned by the vectors |¢)s is applied in section 4 to the
proof of a relationship between the actual treatment and some generalization
of the harmonic oscillator. It follows immediately from (2.11) and (2.22) that
. d
Z = —i— ,
lp)s dy [¢)s

Dsle)s = $sin(dp)|p)s
Is|p)s = cos(dp)|e@)s - (2.23)

The completeness of the vectors |¢)s gives rise to the functional representa-
tion of vectors

(119 = 5= [ £@aterde, (2.24)

>3

where f(¢) = (p|f), and we have omitted for brevity the dependence of
F() on b,

Our purpose now is to analyze the contraction § — 0 of the represen-
tations (2.21) and (2.24) introduced above. Taking into account (2.22) and
(2.20) we find that the passage from the representation spanned by the vec-
tors |nd) and that generated by the vectors |¢)s can be described by the

kernel _
(nélp)s = enoe. (2.25)

Equations (2.24) and (2.25) taken together yield

1 (e sinm(n —n’

SO

Therefore
(nd|n'6) = $0nn (2.27)

whenever ¢ # 0. On the other hand, defining the continuum limit as
n — 00, 0 — 0, nd = const = x, (2.28)
we find that (2.26) takes the form
lim (nd|n'd) = 6(z — 2') . (2.29)

n,n’—o00, 6—0
nd=xz,n'd=x'

Hence, we get
lim  |nd) = |z), (2.30)

n—00, 6—0
né=x
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where |z), z € R, are the usual normalized eigenvectors of the position op-
erator for a quantum mechanics on a real line. This observation is consistent
with the fact that for 6 — 0 the sum from (2.21) is simply the integral sum
for the scalar product in L?(R,dz). By (2.19) and (2.28) it is also evident
that in the limit 6 — 0 we arrive at the Heisenberg algebra (2.8). We have
thus shown that the contraction referring to § — 0 of the representation
of the algebra (2.5) given by (2.21) and (2.19) coincides with the standard
coordinate L? representation of the Heisenberg algebra (2.8). Analogously,

we have
(o0}

sloleys = Y e milemels, (2.31)
n=-—o0o
Therefore,
lim 5{pl¢")s = 2md(p — ¢'), (2.32)
6—0
and we can identify
lim [); = V27[p), (2.33)

where p = @, and |p), p € R, are the normalized eigenvectors of the momen-
tum operator. Further, in view of (2.23) the case § — 0 really corresponds
to the Heisenberg algebra (2.8). So the representation specified by (2.24)
coincides in the limit § — 0 with the standard momentum representation.
We conclude that the introduced deformation works both on the level of the
algebra and the representation.

Finally, we recall that the operator I5 can be regarded as an evolution
operator for a free particle on a lattice on a real line [1]. Indeed, following
[1] we set

fla,tn) =15 f(z) (2.34)
with the imaginary time ¢, := nd?/i. On introducing the Hamiltonian for a
free particle with the unit mass of the form

1
Hy = (1= 1Tp), (2.35)

we arrive at the Schrédinger equation satisfied by the time-dependent func-
tions (2.34) such that

o f = Hsf (2.36)
where 8, is the discrete time derivative defined by
~ 1
atf(xat) = Kt[f(x’t =+ At) - f(iE,t)] ) (237)

where At := §?/i. We point out that in view of (2.35) and the second
equation of (2.7) we really recover in the limit 6 — 0 the Hamiltonian of a
free particle on a real line H = p?/2.
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3. The d-deformation of the Heisenberg—Weyl algebra

In this section we study the §-deformation of the Heisenberg—Weyl al-
gebra satisfied by the Bose creation and annihilation operators. Let us
introduce the following family of operators:

Als) = sle+i(1-0"s)psI; ], Al(s) = S5l —i(1-8°s)psI; '], (3.1)
where s = 0,1,.... Clearly, these operators reduce to the standard Bose

creation and annihilation operators in the limit § — 0. We point out that
in this limit A(s) and Af(s) do not depend on s. Notice that in view of
hermicity of generators of the algebra (2.5) Af(s) is really the Hermitian
conjugate of A(s). It should also be noted that in the representation spanned
by the vectors |¢)s the action of the operator 15_1 is simply the multiplication
by secdp. It is clear that, in opposition to the operator I, the operator Igl
is unbounded. Obviously, the Bose operators (3.1) are unbounded as well.
We now seek the vectors |s) and functions a(s) and f(s), satisfying

A(s)|s) = a(s)|s — 1), AT(3)|3) = B(s)|s + 1), s=0,1,..., (3.2)

We stress that we have not designated for brevity the dependence of vectors
|s) on the parameter ¢ i.e. |s) = |s)s5. Referring back to (3.2), we are simply
looking for the d-deformation of vectors spanning the occupation number
representation. Using the following form of the Casimir (2.6) which can be
obtained with the help of (3.1):

A(s+1)AT(s) — AT(s = 1)A(s) = (1 — 629)I, (3.3)
where [ is the unit operator, we get
a(s +1)B(s) —a(s)B(s —1) = 1 — 6%s. (3.4)
Hence, setting «(0) = 0 and solving the elementary recurrence (3.4) we
obtain ,
a(s)B(s —1) =s—Ls(s—1). (3.5)

The following solution of (3.5) consistent with the limit values a(s) = /s and
B(s) = Vs + 1, corresponding to § = 0, when |s) span the usual occupation
number representation can be guessed easily:

als)=\fs—Ls(s—1),  Bls)=yfs+1-Ls(s+1),  (36)

so we have

As)ls) = /s — Ts(s —1)|s — 1),  Af(s)|s) = \/s+ 1—Zs(s+1)]s+1).
(3.7)
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Now, by virtue of
(s|AT () A(s)|s) = [s — Zs(s — D)](s — 1]s — 1) > 0, (3.8)

we see that the sequence of s and thus |s) should truncate. The only possi-

bility left is to set
1

5% = - (3.9)
Indeed, by (3.1) we then have
A(smax) = Al (smax) = 57 (3.10)
Using this and (3.7), we find
|Smax + 1) = [Smax — 1), (3.11)

where |smax + 1) = Af(Smax)|Smax). We have thus shown that instead of
0 we can use the parameter spax exceeding by one the dimension of the
system of vectors {|s)}o<s<smac: Such systems for smax = 1, Smax = 2
and so on, can be interpreted as a finite-dimensional analogues of the usual
infinite-dimensional Fock space. The latter evidently refers to the case with
Smax = 00, when § = 0.

We now discuss the algebra satisfied by the operators (3.1), that is the
d-deformation of the Heisenberg—Weyl algebra. Taking into account (3.7)
we get

2(s — &' 2(s — 5
A(s) = [1 — M] A(s) + MAT(S),

2(0% — 1) 2(0% — 1)
2(s — &' 2(s— g
AT(SI) = %A(S) + |:1 — %] AT(S), S < Smax - (312)

Making use of (2.5), (3.1), (3.12) and the following form of the Casimir (2.6),
which can be easily derived with the help of (3.1):

§2[A(s) — AT(s)]* = 2(1 — 0%s)(1 — I ?), (3.13)

we arrive at the commutation relations such that

! B 52

[A(s), A(s)] = [AN(), AN()] = 5 (5 =) [; % 5,8 < Smax,
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[4(3), 1] = [AT(3), 15 2] = [A(sma), Iy 2]

52
= kmBk(S), s < Smax »

[A(s), Bi(s")] = [A¥(s), Bi(s")]

— 2k(1 — 628 I; 2 — (2% + 1)(1 — 0% T; 2D
[Bk(s),IgQZ] _ [I,;?’“,I,;”]

= [Bk(s),Bi(s)] =0, 5,8 <Smax, k,I=1,2,..

bl

(.3.14)

where By(s) = [A(s) — Af(s)]I;2%. We remark that due to the commutator
of A(s) and By(s'), the algebra (3.14) is infinite dimensional. It should also
be noted that in view of the following relation:

A(s) = (1 — £2)A(0) + 2247(0),  0<s < Smax, (3.15)

which is an immediate consequence of (3.1), A(s), AT(s) and By(s) can be
regarded as a discrete curve in the algebra generated by A(0), At(0), Ié_gk
and By (0). Of course, (3.14) reduce to the Heisenberg-Weyl algebra in the
limit 6 — 0, that is spax — 00.

4. The §-deformation of the Fock space

We now discuss the d-deformation of the Fock space expressed by (3.7)
in a more detail. We first observe that the generation of the states |s), with
s > 1, from the “vacuum vector” |0) can be described with the help of the
second equation of (3.7) by

s—1 1

s'=0 \/s’ +1- %s’(s’ +1)
0 < s < Smax - (4.1)

|s) = Al(s = 1)--- AT (1) AN (0) 0),

The vectors |s) are not orthonormal. In fact, using the first equation of
(3.12) with ' = s+ 1, (3.7) and calculating the expectation value of the
Casimir (3.13) in the state |s) with the use of the first equation of (3.14) for
s =s', we find
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52 §s—2

s|s) = . 525" — 1)(s'ls'
(s]s) [2(625 — 1) — 62][s — Ls(s — 1)] s'z::o( )(s'[s)
* (” 0% (s = 1) ~ 1]

[2(0%5 = 1) = ][ = 5s(s = )]

)(s—1|s—1), 2 < s < Spax -
(4.2)
Furthermore, Eqs. (3.12) and (3.7) taken together yield

2 / (s — s
s— 2s(s—1)(s]s) = [1_ ﬁ]

X\/s’ — %s’(s’ —1)(s—1]s" = 1)

52(SI—$+ ].) 52
m\/Sl+1—78’(3/+1)<8—1|$I+1>,
0<5<Smaxs 0<8 < Smax- (4.3)

The equations (4.2) and (4.3) form the closed system which enables to calcu-
late the inner product (s|s’) for arbitrary s, s’ < spax. In particular, utilizing
the relation

(s|]s+1) =0, 5 < Smax » (4.4)

implied by (4.3) and using recursively (4.3) we find that
<5|SI> =0, S, s' < Smax (45)

where s is even and ¢ is odd.

We finally discuss the concrete realization of the introduced §-deformation
of the abstract Fock space in the representation (2.24). On using (2.23) and
(3.7) we arrive at the following system:

i+ (= 2gte0] 1) = —ivBVs— Fale 1) ().

[% “a _523)%@80] folg) = —ivay/s 41— Ls(s+1) fusap), (46)

where fs(¢) = (¢|s). We remark that the system (4.6) is the special case of
the more general one
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) ) = (o),

[_% + k(s,I):| ys(z) = v(s)ys+1(z). (4.7)

The system (4.7) was studied by Jannussis et al [3] in the context of the
generalization of the Infeld-Hull method of factorization in the case of the
harmonic oscillator. Analyzing the compatibility of the two second order
differential equations implied by (4.7) they showed that besides the periodic
solution there exists the following one:

C

sin(az + 6)’ (48)

k(s,z) = actg(az + 0) s — éctg(ax +6)+
a
provided
p(s)v(s —1) = —a’s(s — 1) +2bs + A, (4.9)

where a, b, ¢, § and X are arbitrary constants. A look at (4.8), (4.9), (4.6)
and (3.5) is enough to conclude that the actual treatment refers to the case
witha=0,b=1,¢=0,0 =x/2 and A = 0. We point out that within the
formalism introduced herein the second order equations implied by (4.6) are
simply the realization of the abstract equations

A(s +1)AN(s)]s) = Bls)a(s +1)]s),
Af(s —1)A(s)|s) = a(s)B(s —1)]|s). (4.10)

in the representation (2.24). The compatibility of the Eqs. (4.10) is ensured
by the Casimir (3.3). In this sense the actual approach can be interpreted
as an abstract form of the Infeld—Hull factorization method.

We now return to (4.6). Using (4.6) and the limit

2

lim (cos 5@)5% —e 7, (4.11)
0—0
we find ) )
Jolp) = m 4 (cos p) s> . (4.12)
Furthermore, utilizing (4.6) and
d 1 tgd 1 d (tgd tgop
%(coséw);? == g(;(P(Cos&P);? Y <%) =1+4° <%) :
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w—%(—i)s 51:[1 1 0 <tg6<p) (cos 5@)%
(V2)* s'=0 \/s’ +1- %s’(s’ +1) | 0
(4.14)

where 1 < s < Smax, and Hgé)(x) are the polynomials satisfying the
recurrence

HY (2) = (2 - 8%)2zHO (z) — (1 + 622°)HY (z),
HO(z) = 1, (4.15)

where the prime designates the differentiation with respect to . Of course,
§5) (x) are simply the d-deformation of the usual Hermite polynomials refer-
ing to the limit § — 0, i.e. Spax — 00. The first few J-deformed Hermite

polynomials are of the form

(9)

H (2) = 1,
H{(s)(.’L‘) = 2z,

HO (z) = 4(1 - 6%)2? — 2,

O (2) = 8(1— 82)(1 - 26%)0® — 12(1 — %)z

HO(z) = 16(1-0%)(1-20%)(1-36%)2" —48(1—462)(1—262)22 + 12(1—62).

(4.16)

As with the standard Hermite polynomials the general formula on the §-
deformed ones can be derived such that

=
Nl
—~~
8
SN—
|
—_—

] s—j—1

gl .
HO(z) = (‘UJWQS 2 [ IT a—6%s '] 5721 < 5 < Smax,
=0 J! 7) e

N|w >

V)
o

(4.17)

where [y] is the biggest integer in y.
We finally write down the following formula on the matrix elements (s|s’)
implied by (2.24) and (4.14):

/ 7@ (9)do (4.18)

oq\ﬁ
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where fs(p) is given by (4.12) and (4.14). The calculation of the integral
from (4.18) for arbitrary s, s’ seems to be more complicated than the so-
lution of the recurrences (4.2) and (4.3). It should be noted however that
(4.18) enables to calculate the squared norm of the “vacuum vector” |0)
parametrizing solutions of (4.2) and (4.3). Namely, we find

5
1 2 Smax (23m x_l)” YV Smax F(smaX+l)
e (5 2d e 2 a e 2
(00) = —— /(COS ) de =\ = T T T(omatl)’

>3

(4.19)
where 0252, = 1 and I'(z) is the gamma function.

5. Conclusion

We have introduced in this work the deformation of the Fock space
based on the utilization of the central difference operator instead of the
usual derivative. It should be mentioned that there exist alternative ap-
proaches for discretization of quantum mechanics relying on finite difference
representations of the usual Heisenberg [4] or Heisenberg—Weyl algebra [5].
Nevertheless, the general problem with them is the interpretation of the
nonequivalence of the obtained representations of the canonical commuta-
tion relations and the standard Schrodinger one. Some problems with the
spectrum of operators within such approaches have been also reported [4].
We also recall the discretization of the harmonic oscillator introduced in [6]
relying on the replacement of the Hermite polynomials with the Kravchuk
polynomials in a discrete variable as well as the finite-dimensional counter-
part of the Fock space spanned by the eigenvectors of the phase operator
discussed in [7]. In analogy with the actual treatment in both approaches
taken up in [6] and |7] the standard infinite-dimensional Fock space refers to
the formal limit NV — oo, where IV is dimension of the finite-dimensional dis-
crete version of the Fock space. Moreover, in the case with the discretization
described in [6] one can recognize a counterpart of the parameter ¢ specified

by (3.9) such that § ~ N -3, Nevertheless, besides of those similarities we
have also serious differences. For example, in opposition to the operators
(3.1) the generalizations of the Bose operators introduced in [6] do not de-
pend on the index labelling the basis of the finite-dimensional analogue of
the Fock space. On the other hand, the alternatives to the number states
discussed in [7] form the orthonormal set. This is not the case for the states
|s) described herein. Last but not least we point out that besides of quantum
mechanics the results of this paper would be of importance in the theory of
differential equations. We only recall the abstract form of the Infeld-Hull
method of factorization described by the equations (4.10) and (3.3).
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