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HOW LOUD CAN SCHWARZSCHILD BLACK HOLESRING?Janusz Karkowski, Edward Male
M. Smolu
howski Institute of Physi
s, Jagellonian UniversityReymonta 4, 30-059 Kraków, Polandand Zdobysªaw �wier
zy«skiDepartment of Computer S
ien
e and Computer MethodsPedagogi
al University of Cra
owPod
hor¡»y
h 1, 30-084 Kraków, Poland(Re
eived August 14, 2002)A numeri
al pro
edure is des
ribed for the maximization of the energydi�usion due to the ba
ks
attering of the gravitational radiation. Theobtained maxima are solutions dominated by low frequen
y waves. Theygive rise to robust gravitational ringing, with amplitudes of the order ofthe original signal.PACS numbers: 04.20.�q, 04.30.Nk, 04.40.�b, 95.30.Sf1. MotivationThe dete
tion of gravitational radiation by the �rst generation of laserinterferometers requires from theorists and numeri
ists developing of theso-
alled templates for the Gravitational Waves (GW) produ
ed by binaryBla
k Holes (BH) [1,2℄. That 
an be done for the inspiral of BH while thereare signi�
ant problems as it 
on
erns the merger phase of BH [3℄, where nonumeri
al data are available as yet. In this 
ontext the next, ringing phase,of the 
ollapse of binary BH is interesting be
ause GW produ
ed during thisevolution period are independent to a degree on the details of its pre
edinghistory. Numeri
al simulations demonstrate that irrespe
tive of the initialdata, during some �intermediate� time the outgoing GW are dominated bya (fundamental) Quasinormal Mode (QM) [4℄, whose os
illation period andthe damping 
oe�
ient depend only on 
hara
teristi
s of the �nal bla
k hole.It is not 
lear, however, how energeti
 [5℄ are the QM and how big is the(59)
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zy«skiringing amplitude. The full answer to this question would require detailedinformation on the former evolution of the system, whi
h is not availableat present. This paper aims at �nding �upper limits�, that is identifyingthe most favourable situations for ringing and 
omparing their strength �amplitudes and the energy 
ontent � with the initial energy and amplitudes.The amplitudes of strongest ringing modes are of the order of the amplitudesof GW that generate them.2. Extremizing the di�used energyA. Prerequisities. The spa
e-time geometry is de�ned by a line element,ds2 = ��1� 2mR � dt2 + 11� 2mR dR2 +R2d
2 ; (1)where t is a time 
oordinate, R is the areal radius and d
2 = d�2+sin2 �d�2is the line element on the unit sphere, 0 � � < 2� and 0 � � � �. TheNewtonian gravitational 
onstant G, and 
, the velo
ity of light are putequal to 1.We will study the propagation of polar modes 	 of the quadrupole GWin a S
hwarzs
hild ba
kground; they are ruled by the Zerilli equation [6℄(��2t + �2r�)	 = V 	 : (2)Here �R = 1 � 2m=R, V (R) = 6�2R 1R2 + �R 63m2(1+mR )2R4(1+ 3m2R )2 and r� = R +2m ln( R2m � 1) .There exists a positive 
onserved energy E [7℄; its quasilo
al 
ontribution
oming from a region of a Cau
hy hypersurfa
e �t exterior to a sphere ofradius R reads E(R; t) = 2� 1ZR dr�(r; t) : (3)Here � is the redu
ed energy density, � = ((�t	)2+(�r�	)2+V 	2)=�R. Theinitial data 	 and �t	 are assumed to be purely outgoing, smooth and to benonzero outside a sphere of a radius a > 2m. Thus � is smooth and vanishesinside the sphere of radius a.Let ~�(R;t) be an outgoing null geodesi
 that originates at (R; t). By~�(R0;t0);(R;t) will be understood a segment of ~�(R0;t0) ending at (R; t). Astraightforward 
al
ulation shows that the rate of the energy 
hange along~�(R;0) is given by(�t + �r�)E(R; t) = �2� h(�t	 + �r�	)2 + V 	2i : (4)



How Loud Can S
hwarzs
hild Bla
k Holes Ring? 61Thus E(R; t) = E(a; 0)�2� R t0 dt h(�t	 + �r�	)2 + V 	2i, where the integralis done along ~�(a;0);(R;t). Some of the energy 
an di�use inward due to thes
attering o� the 
urvature of the spa
etime [9℄. In the limiting 
ase whenthe integration 
ontour 
oin
ides with ~�(a;0), the energy limit EB(a; 0) =limt!1E(R(t); t) is the analogue of the Bondi mass. We will de�ne thedi�used energy as ÆEa = E(a; 0)�EB(a; 0). Our aim is to �nd initial data,that maximize the di�usion parameter � � ÆEa=E(a; 0) for a sample ofa's. Let us remark that, from our experien
e, the 
omputational time isproportional to the square (a=(2m))2; therefore the maximization pro
edurewould not be feasible in the 
ase a � 2m . Fortunately, it is known fromanalyti
 estimates, that for big a's the di�usion is negligible, sin
e � <C(2m=a)2 (where C is of the order of 10) [10, 11℄. Therefore, it su�
es tofo
us on the range of relatively small distan
es � a being of the order of theS
hwarzs
hild radius 2m � and in that 
ase the numeri
al methods appearto be e�
ient.B. Method. It is advantageous to sear
h a solution of Eq. (2) in the formof 	 = ~	 + Æ [10℄. Here ~	 is a known fun
tion that is 
onstru
ted frominitial data while Æ is the unknown part of the sought solution. In expli
itterms ~	 � 	0(r� � t) + 	1(r� � t)R + 	2(r� � t)R2 ; (5)where 	i(r� � t), i = 0; 1; 2 ful�ll the relations �t	1 = 3	0 and �t	2 =	1�m�t	1. ~	 solves the Zerilli equation in Minkowski spa
e-time (m = 0),in whi
h 
ase it represents a purely outgoing radiation. The fun
tion Æsatis�es the equation(��2t + �2r�)Æ = V Æ+(V � 6�2RR2 )�	0 + 	1R + 	2R2�+ 2m�RR4 ��3	1 + 2	2R � ;(6)with initial data Æ = �tÆ = 0 at t = 0.Eq. (5) and the relations between fun
tions 	i imply that initial data	 and �t	 are entirely determined by the spe
i�
ation of 	0. 	0 in turn isdetermined (in a region outside the 
one de�ned by ~�a) by 
hoosing �t	0(with �t	0ja = 0) in an interval (r�(a);1) and 	0 = 0 for R = a. Wehave found that the numeri
al 
al
ulations 
an be signi�
antly fa
ilitatedif the following pro
edure is applied. First, expand �t	0 in an n-elementChebyshev polynomial basis (fi) [8℄; one has�t	0(r�; t = 0) = nXi=1 Cifi(r�) : (7)



62 J. Karkowski, E. Male
, Z. �wier
zy«skiThe initial energy be
omes in this basis quadrati
 in Ck, E(a;R; t = 0) �2� R Ra dr�(r; 0) =Pni;k=1Bik(a;R)CiCk. Se
ond, let 	fk(r�; t) be a solutionof (2) with initial data being de�ned by fk(r�). Obviously 	fk(r�; t) dependsonly on the initial data within the null past 
one with the apex at (r�(a); t).Then the solution of Eq. (2) reads	(r�; t) = nXi=1 Ci	fi(r�; t) : (8)Let R1 = R(r� = t + r�(a)) and R2 = R(r� = 2t + r�(a)). The di�usedenergy (through ~�(a;0);(R1;t)) is of the formÆEa(R; t) = nXi;k=1Aik(a;R)CiCk : (9)The quadrati
 form ÆEa(t; R1) is nonnegative; sin
e E(a;R; t = 0) is posi-tive, the two forms 
an be simultaneously diagonalized. The task of 
om-paring the extremal ratio of ÆEa and E(a;R; t = 0) 
an be redu
ed tothe sear
h of the maximal eigenvalue of the generalised eigenvalue prob-lem AX = �BX. That has been a

omplished with the use of the fastEISPACK [12℄ pa
kage. The typi
al step used in numeri
s was � = 0:02and n was of the order of one thousand, depending (weakly) on the size ofthe initial support.C. Extremal initial data. Below the mass m has been normalized tounity. The method des
ribed above 
onsists in 
omparing lo
al energy ex-pressions � the energy di�used through a segment ~�(a;0);(R1;t) is 
omparedwith the energy 
ontent inside the region a � R � R2 of the initial hypersu-fa
e. Fixing a and R2, one �nds �t	R20 (the upper index is put here in orderto stress the lo
al 
hara
ter of the pro
edure) and, through (5), initial val-ues of the lo
ally extremizing solution 	R2 . With the in
rease of R2, whilekeeping a �xed, the fun
tion �t	R20 
hanges. In the limit one obtains thesought extremizing solution, 	 = limR2!1 	R2 . In the numeri
al pra
ti
ethe integration region must be �nite.Fig. 1 shows the initial pro�le �t	0 for a = 2:1 and for various R2.The dependen
e of �t	0 on R2 suggests that limR2!1 �t	R20 � 0 outsidesome region of 
ompa
t support. The parameter � was extremized in that
lass of initial data whi
h is 
hara
terized by the vanishing of �t	0 outsidesome bounded region. Therefore, the 
hosen 	0 bears on an asymptoti
ally
onstant value [13℄. Fig. 2 shows initial pro�les of �t	0 for a = 2:1, a = 3and a = 4.
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10 100Fig. 1. Fun
tion �t	0 in dependen
e on R2. The abs
issa (R-axis) is in the(de
imal) logarithmi
 s
ale. Here a = 2:1; solid line, broken line and dot-ted line 
orrespond to r�(R2) = r�(2:1) + 6000, r�(R2) = r�(2:1) + 8000 andr�(R2) = r�(2:1) + 10000, respe
tively. Dot-dashed line depi
ts the 
ase withr�(R2) = r�(2:1) + 16000.
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10 100Fig. 2. Fun
tion �t	0 for various values of a. The abs
issa (R-axis) is in the(de
imal) logarithmi
 s
ale. Solid line, broken line and dotted line 
orrespond toa = 2:1, a = 3 and a = 4, respe
tively.The obtained extremizing initial data have a �nite total energy. Fig.3 shows initial energy pro�les for a = 2:1, a = 3 and a = 4. It is interestingto noti
e how e�
ient is the ba
ks
atter � � ranges from 
. 90% (a = 2:1)and 
. 16 % (a = 3) to 
. 4% (a = 4). Noti
e also that the region with thelargest 
ontribution to the initial energy widens with the in
rease of a.
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0 200 400 600 800 1000Fig. 3. Initial energy E(R) � E(a; 0)�E(R; 0) (y� axis) as a fun
tion of r��r�(a)for a = 2:1 (solid line), a = 3 (broken line) and a = 4 (dotted line).3. Evolving extremal initial dataA. Ringing is loud. Our primary aim is to �nd initial data that give thestrongest possible ringing. QM are evidently born by a sub
lass of multipleba
ks
attering (see an explanation in [14℄). The di�used energy ÆEa boundsthe energies of QM, the tail term and also of the radiation falling to a bla
khole. While we do not have analyti
 estimates of the shares of the parti
ular
ontributing terms in ÆEa, it is obvious that 
on�gurations with large �have some room for robust os
illations. For that reason, instead of obeyingthe 
ommonly used method of trial and error, we study GW de�ned by theextremal initial data. In the numeri
al 
al
ulations we use the splitting	 = ~	 + Æ (see Se
 II.B), sin
e the numeri
s is then more pre
ise.Fig. 4 presents the radiation 
orresponding to the a = 2:1, a = 3 anda = 4 initial pulses as seen by an �observer� situated at r�o = 280 + r�(a).The x = 0 point of the abs
issa 
orresponds to the moment of time t = 280.This train of initial data that moves with the speed of light is seen earlier(t < 280) and it lies to the right from x = 0. To the left from x = 0 we havet > 280; in the absen
e of the ba
ks
attering there would be no signal at all.Noti
e that in the 
ases a = 2:1 and a = 3 the amplitude of the strongestringing mode is about one third of the amplitude of the original radiation,as represented by the fun
tion ~	 . The amplitude of the strongest ringingmode de
reases with the in
rease of a � that is when the initial pulse ismoved away from the horizon � but in all 
ases it is of the order of theinitial amplitude.B. Birth and death of ringing modes. QM boil down predominantly inthe potential valley 2 < R < R
r � 3:1, where the maximal point R
ris de�ned by �RV jR
r = 0. Their 
omplex frequen
ies 
arry information
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100 50 0 -50 -100Fig. 4. Temporal dependen
e of ln j	 j (y� axis), as observed at r�o = r�(a) + 280.Solid line, broken line and dotted line 
orrespond to a = 2:1, a = 3 and a = 4,respe
tively.about the 
urvature of the ba
kground geometry in this region. This iswhy the 
hara
teristi
 features of the ringing modes � the period and thedamping 
oe�
ient of the dominant mode � do not depend on initial data.Let us point out, however, that the amplitudes of the QM depend on thefrequen
y pro�le and amplitudes of initial data. We examined QM in variousobservation points. Fig. 5 (with a = 4) shows 
learly that the number ofnodes in a radiation pulse de
reases with the distan
e. At the same time the
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ks
attered radiation (values ln j	 j put on y� axis), a = 4, as seen by anobserver lo
ated at r�o = 1 + r�(4) (solid line), r�o = 10 + r�(4) (broken line) andr�o = 100 + r�(4) (dotted line).
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zy«skidominant os
illations survive and they have the same 
hara
ter (but theiramplitude 
an signi�
antly in
rease) while the tail part extends.Fig. 5 shows that there are many os
illations at r�o = r�(4) + 1, whi
hgradually die when the observation point is moved away � only one node isseen at r� = 280 (Fig. 4). This observation that we make is probably novelin the literature, but its explanation 
an be standard, within the s
enariodes
ribed in [14℄. 4. Con
lusionsWe have found initial data that 
orrespond to maximal values of thedi�usion parameter �; we believe that these are optimal data for havingstrong QM. The largest amplitudes of QM 
onstitute a fra
tion (
. 1/3)of the largest amplitude within the main pulse of the radiation. Our ear-lier experien
e [15℄ in numeri
s suggests that the e�e
t of the ba
ks
atterdepends (�xing the distan
e a) mostly on the frequen
y, and that if the dom-inant frequen
y is low (as 
ompared to 1=m), then the di�usion parametr� does not depend strongly on details of the pro�le of initial data. Thiswould imply that in the real 
ollapse the ringing 
an be perhaps less vigor-ous than above, but still of interest, with amplitudes smaller by perhaps oneorder than those of the main pulse of GW. Similar 
on
lusions 
on
erningthe strength of QM are valid also for the axial quadrupole GW and for thedipole ele
tromagneti
 waves [17℄. The main di�eren
e between the polarand axial perturbations is that polar QM are stronger and they seem to bemore �generi
�, in a sense that will be explained elsewhere [17℄. The sameanalysis 
an be done for higher GW multipoles.Referring to a spe
i�
 
ase of 
ollapse of BH, we want to stress thefollowing. Our results 
an be applied to the head-on 
ollision of two spinlessBH. If one uses the 
lose approximation limit [16℄, then the outgoing partof a radiation that was produ
ed during the earlier phases, the merger andthe inspiral, should be interpreted as our initial data. If these initial dataare 
lose to �maximal�, in a sense used earlier, then the ringing amplitudes
ould be of the order of GW 
reated during the 
oales
en
e of BH.This work was partially supported by the Polish State Committee forS
ienti�
 Resear
h (KBN) grant no 2PO3B 006 23.
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