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HOW LOUD CAN SCHWARZSCHILD BLACK HOLESRING?Janusz Karkowski, Edward MaleM. Smoluhowski Institute of Physis, Jagellonian UniversityReymonta 4, 30-059 Kraków, Polandand Zdobysªaw �wierzy«skiDepartment of Computer Siene and Computer MethodsPedagogial University of CraowPodhor¡»yh 1, 30-084 Kraków, Poland(Reeived August 14, 2002)A numerial proedure is desribed for the maximization of the energydi�usion due to the baksattering of the gravitational radiation. Theobtained maxima are solutions dominated by low frequeny waves. Theygive rise to robust gravitational ringing, with amplitudes of the order ofthe original signal.PACS numbers: 04.20.�q, 04.30.Nk, 04.40.�b, 95.30.Sf1. MotivationThe detetion of gravitational radiation by the �rst generation of laserinterferometers requires from theorists and numeriists developing of theso-alled templates for the Gravitational Waves (GW) produed by binaryBlak Holes (BH) [1,2℄. That an be done for the inspiral of BH while thereare signi�ant problems as it onerns the merger phase of BH [3℄, where nonumerial data are available as yet. In this ontext the next, ringing phase,of the ollapse of binary BH is interesting beause GW produed during thisevolution period are independent to a degree on the details of its preedinghistory. Numerial simulations demonstrate that irrespetive of the initialdata, during some �intermediate� time the outgoing GW are dominated bya (fundamental) Quasinormal Mode (QM) [4℄, whose osillation period andthe damping oe�ient depend only on harateristis of the �nal blak hole.It is not lear, however, how energeti [5℄ are the QM and how big is the(59)



60 J. Karkowski, E. Male, Z. �wierzy«skiringing amplitude. The full answer to this question would require detailedinformation on the former evolution of the system, whih is not availableat present. This paper aims at �nding �upper limits�, that is identifyingthe most favourable situations for ringing and omparing their strength �amplitudes and the energy ontent � with the initial energy and amplitudes.The amplitudes of strongest ringing modes are of the order of the amplitudesof GW that generate them.2. Extremizing the di�used energyA. Prerequisities. The spae-time geometry is de�ned by a line element,ds2 = ��1� 2mR � dt2 + 11� 2mR dR2 +R2d
2 ; (1)where t is a time oordinate, R is the areal radius and d
2 = d�2+sin2 �d�2is the line element on the unit sphere, 0 � � < 2� and 0 � � � �. TheNewtonian gravitational onstant G, and , the veloity of light are putequal to 1.We will study the propagation of polar modes 	 of the quadrupole GWin a Shwarzshild bakground; they are ruled by the Zerilli equation [6℄(��2t + �2r�)	 = V 	 : (2)Here �R = 1 � 2m=R, V (R) = 6�2R 1R2 + �R 63m2(1+mR )2R4(1+ 3m2R )2 and r� = R +2m ln( R2m � 1) .There exists a positive onserved energy E [7℄; its quasiloal ontributionoming from a region of a Cauhy hypersurfae �t exterior to a sphere ofradius R reads E(R; t) = 2� 1ZR dr�(r; t) : (3)Here � is the redued energy density, � = ((�t	)2+(�r�	)2+V 	2)=�R. Theinitial data 	 and �t	 are assumed to be purely outgoing, smooth and to benonzero outside a sphere of a radius a > 2m. Thus � is smooth and vanishesinside the sphere of radius a.Let ~�(R;t) be an outgoing null geodesi that originates at (R; t). By~�(R0;t0);(R;t) will be understood a segment of ~�(R0;t0) ending at (R; t). Astraightforward alulation shows that the rate of the energy hange along~�(R;0) is given by(�t + �r�)E(R; t) = �2� h(�t	 + �r�	)2 + V 	2i : (4)



How Loud Can Shwarzshild Blak Holes Ring? 61Thus E(R; t) = E(a; 0)�2� R t0 dt h(�t	 + �r�	)2 + V 	2i, where the integralis done along ~�(a;0);(R;t). Some of the energy an di�use inward due to thesattering o� the urvature of the spaetime [9℄. In the limiting ase whenthe integration ontour oinides with ~�(a;0), the energy limit EB(a; 0) =limt!1E(R(t); t) is the analogue of the Bondi mass. We will de�ne thedi�used energy as ÆEa = E(a; 0)�EB(a; 0). Our aim is to �nd initial data,that maximize the di�usion parameter � � ÆEa=E(a; 0) for a sample ofa's. Let us remark that, from our experiene, the omputational time isproportional to the square (a=(2m))2; therefore the maximization proedurewould not be feasible in the ase a � 2m . Fortunately, it is known fromanalyti estimates, that for big a's the di�usion is negligible, sine � <C(2m=a)2 (where C is of the order of 10) [10, 11℄. Therefore, it su�es tofous on the range of relatively small distanes � a being of the order of theShwarzshild radius 2m � and in that ase the numerial methods appearto be e�ient.B. Method. It is advantageous to searh a solution of Eq. (2) in the formof 	 = ~	 + Æ [10℄. Here ~	 is a known funtion that is onstruted frominitial data while Æ is the unknown part of the sought solution. In expliitterms ~	 � 	0(r� � t) + 	1(r� � t)R + 	2(r� � t)R2 ; (5)where 	i(r� � t), i = 0; 1; 2 ful�ll the relations �t	1 = 3	0 and �t	2 =	1�m�t	1. ~	 solves the Zerilli equation in Minkowski spae-time (m = 0),in whih ase it represents a purely outgoing radiation. The funtion Æsatis�es the equation(��2t + �2r�)Æ = V Æ+(V � 6�2RR2 )�	0 + 	1R + 	2R2�+ 2m�RR4 ��3	1 + 2	2R � ;(6)with initial data Æ = �tÆ = 0 at t = 0.Eq. (5) and the relations between funtions 	i imply that initial data	 and �t	 are entirely determined by the spei�ation of 	0. 	0 in turn isdetermined (in a region outside the one de�ned by ~�a) by hoosing �t	0(with �t	0ja = 0) in an interval (r�(a);1) and 	0 = 0 for R = a. Wehave found that the numerial alulations an be signi�antly failitatedif the following proedure is applied. First, expand �t	0 in an n-elementChebyshev polynomial basis (fi) [8℄; one has�t	0(r�; t = 0) = nXi=1 Cifi(r�) : (7)



62 J. Karkowski, E. Male, Z. �wierzy«skiThe initial energy beomes in this basis quadrati in Ck, E(a;R; t = 0) �2� R Ra dr�(r; 0) =Pni;k=1Bik(a;R)CiCk. Seond, let 	fk(r�; t) be a solutionof (2) with initial data being de�ned by fk(r�). Obviously 	fk(r�; t) dependsonly on the initial data within the null past one with the apex at (r�(a); t).Then the solution of Eq. (2) reads	(r�; t) = nXi=1 Ci	fi(r�; t) : (8)Let R1 = R(r� = t + r�(a)) and R2 = R(r� = 2t + r�(a)). The di�usedenergy (through ~�(a;0);(R1;t)) is of the formÆEa(R; t) = nXi;k=1Aik(a;R)CiCk : (9)The quadrati form ÆEa(t; R1) is nonnegative; sine E(a;R; t = 0) is posi-tive, the two forms an be simultaneously diagonalized. The task of om-paring the extremal ratio of ÆEa and E(a;R; t = 0) an be redued tothe searh of the maximal eigenvalue of the generalised eigenvalue prob-lem AX = �BX. That has been aomplished with the use of the fastEISPACK [12℄ pakage. The typial step used in numeris was � = 0:02and n was of the order of one thousand, depending (weakly) on the size ofthe initial support.C. Extremal initial data. Below the mass m has been normalized tounity. The method desribed above onsists in omparing loal energy ex-pressions � the energy di�used through a segment ~�(a;0);(R1;t) is omparedwith the energy ontent inside the region a � R � R2 of the initial hypersu-fae. Fixing a and R2, one �nds �t	R20 (the upper index is put here in orderto stress the loal harater of the proedure) and, through (5), initial val-ues of the loally extremizing solution 	R2 . With the inrease of R2, whilekeeping a �xed, the funtion �t	R20 hanges. In the limit one obtains thesought extremizing solution, 	 = limR2!1 	R2 . In the numerial pratiethe integration region must be �nite.Fig. 1 shows the initial pro�le �t	0 for a = 2:1 and for various R2.The dependene of �t	0 on R2 suggests that limR2!1 �t	R20 � 0 outsidesome region of ompat support. The parameter � was extremized in thatlass of initial data whih is haraterized by the vanishing of �t	0 outsidesome bounded region. Therefore, the hosen 	0 bears on an asymptotiallyonstant value [13℄. Fig. 2 shows initial pro�les of �t	0 for a = 2:1, a = 3and a = 4.
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10 100Fig. 2. Funtion �t	0 for various values of a. The absissa (R-axis) is in the(deimal) logarithmi sale. Solid line, broken line and dotted line orrespond toa = 2:1, a = 3 and a = 4, respetively.The obtained extremizing initial data have a �nite total energy. Fig.3 shows initial energy pro�les for a = 2:1, a = 3 and a = 4. It is interestingto notie how e�ient is the baksatter � � ranges from . 90% (a = 2:1)and . 16 % (a = 3) to . 4% (a = 4). Notie also that the region with thelargest ontribution to the initial energy widens with the inrease of a.
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0 200 400 600 800 1000Fig. 3. Initial energy E(R) � E(a; 0)�E(R; 0) (y� axis) as a funtion of r��r�(a)for a = 2:1 (solid line), a = 3 (broken line) and a = 4 (dotted line).3. Evolving extremal initial dataA. Ringing is loud. Our primary aim is to �nd initial data that give thestrongest possible ringing. QM are evidently born by a sublass of multiplebaksattering (see an explanation in [14℄). The di�used energy ÆEa boundsthe energies of QM, the tail term and also of the radiation falling to a blakhole. While we do not have analyti estimates of the shares of the partiularontributing terms in ÆEa, it is obvious that on�gurations with large �have some room for robust osillations. For that reason, instead of obeyingthe ommonly used method of trial and error, we study GW de�ned by theextremal initial data. In the numerial alulations we use the splitting	 = ~	 + Æ (see Se II.B), sine the numeris is then more preise.Fig. 4 presents the radiation orresponding to the a = 2:1, a = 3 anda = 4 initial pulses as seen by an �observer� situated at r�o = 280 + r�(a).The x = 0 point of the absissa orresponds to the moment of time t = 280.This train of initial data that moves with the speed of light is seen earlier(t < 280) and it lies to the right from x = 0. To the left from x = 0 we havet > 280; in the absene of the baksattering there would be no signal at all.Notie that in the ases a = 2:1 and a = 3 the amplitude of the strongestringing mode is about one third of the amplitude of the original radiation,as represented by the funtion ~	 . The amplitude of the strongest ringingmode dereases with the inrease of a � that is when the initial pulse ismoved away from the horizon � but in all ases it is of the order of theinitial amplitude.B. Birth and death of ringing modes. QM boil down predominantly inthe potential valley 2 < R < Rr � 3:1, where the maximal point Rris de�ned by �RV jRr = 0. Their omplex frequenies arry information
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66 J. Karkowski, E. Male, Z. �wierzy«skidominant osillations survive and they have the same harater (but theiramplitude an signi�antly inrease) while the tail part extends.Fig. 5 shows that there are many osillations at r�o = r�(4) + 1, whihgradually die when the observation point is moved away � only one node isseen at r� = 280 (Fig. 4). This observation that we make is probably novelin the literature, but its explanation an be standard, within the senariodesribed in [14℄. 4. ConlusionsWe have found initial data that orrespond to maximal values of thedi�usion parameter �; we believe that these are optimal data for havingstrong QM. The largest amplitudes of QM onstitute a fration (. 1/3)of the largest amplitude within the main pulse of the radiation. Our ear-lier experiene [15℄ in numeris suggests that the e�et of the baksatterdepends (�xing the distane a) mostly on the frequeny, and that if the dom-inant frequeny is low (as ompared to 1=m), then the di�usion parametr� does not depend strongly on details of the pro�le of initial data. Thiswould imply that in the real ollapse the ringing an be perhaps less vigor-ous than above, but still of interest, with amplitudes smaller by perhaps oneorder than those of the main pulse of GW. Similar onlusions onerningthe strength of QM are valid also for the axial quadrupole GW and for thedipole eletromagneti waves [17℄. The main di�erene between the polarand axial perturbations is that polar QM are stronger and they seem to bemore �generi�, in a sense that will be explained elsewhere [17℄. The sameanalysis an be done for higher GW multipoles.Referring to a spei� ase of ollapse of BH, we want to stress thefollowing. Our results an be applied to the head-on ollision of two spinlessBH. If one uses the lose approximation limit [16℄, then the outgoing partof a radiation that was produed during the earlier phases, the merger andthe inspiral, should be interpreted as our initial data. If these initial dataare lose to �maximal�, in a sense used earlier, then the ringing amplitudesould be of the order of GW reated during the oalesene of BH.This work was partially supported by the Polish State Committee forSienti� Researh (KBN) grant no 2PO3B 006 23.
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