
Vol. 34 (2003) ACTA PHYSICA POLONICA B No 1
RENYI ENTROPIES IN PARTICLE CASCADESA. Bialasa;by, W. Czy»a and A. OstruszkaaaM. Smoluhowski Institute of Physis, Jagellonian UniversityReymonta 4, 30-059 Kraków, PolandbH. Niewodniza«ski Institute of Nulear PhysisRadzikowskiego 152, 31-342 Kraków, Poland(Reeived Otober 11, 2002)Renyi entropies for partile distributions following from the generalasade models are disussed. The p-model and the � distribution intro-dued in earlier studies of asades are disussed in some detail. Somephenomenologial onsequenes are pointed out.PACS numbers: 05.10.�a, 13.85.Hd1. IntrodutionReently, two of us proposed that Renyi entropies [1℄ may provide a use-ful tool for studies of orrelations between partiles reated in high-energyollisions [2℄. We have also studied these quantities in several models [3, 4℄.In the present paper we ontinue this line of researh, extending our disus-sion to models of partile prodution based on the multipliative asademehanism, onsidered earlier by several authors [5�7℄.2. The asade modelsWe will be onsidering a multipliative asade of J steps with twobranhes at eah vertex, i.e. M = 2J bins at the end of the asade. Eah binis labelled by a set of J numbers taking values 0 or 1: (00. . . 0),(10. . . 0),. . . ,(11. . . 1). Thus at eah step, eah bin is split into two and the density inthe new bins is alulated by multiplying the density in the parent bin bythe random numbers q:::0 and q:::1 distributed aording to the probabilityy e-mail: bialas�th.if.uj.edu.pl (69)



70 A. Bialas, W. Czy», A. Ostruszkap(q:::0; q:::1). This onstrution leads to the following probability distributionof the partile densities e00:::0; : : : ; e11:::1P (J ; e0:::0; : : : ; e1:::1) = Z JYj=1 1Yk1;:::;kj�1=0dqk1:::kj�10dqk1:::kj�11�p(qk1:::kj�10; qk1:::kj�11) 1Yk1;:::;kJ=0 Æ0�ek1:::kJ � JYj=1 qk1:::kj1A : (1)Without any loss of generality we an furthermore assume that � on theaverage � in eah vertex the density is onserved:Z dq0dq1p(q0; q1)(q0 + q1) = hq0i+ hq1i = 1 : (2)The partile distribution is obtained as a Poisson transform of (1), i.e.,P (J ;n0:::0; : : : ; n1:::1) = Z de0:::0 : : : de1:::1P (J ; e0:::0; : : : ; e1:::1)� exp(�[e0:::0 +: : :+ e1:::1℄ �N)( �Ne0:::0)n0:::0 : : : ( �Ne1:::1)n1:::1 1n0:::0! : : : n1:::1! ;(3)where �N is the average number of partiles. This proedure does not intro-due any new orrelations (apart from those whih are already present in(1) [5℄).The Æ-funtions in (1) allow us to perform the integrations in (3) withthe resultP (J ;n0:::0; :::; n1:::1)= �NN Z JYj=1 1Yk1;:::;kj�1=0 dqk1:::kj�10dqk1:::kj�11p(qk1:::kj�10; qk1:::kj�11)� exp(�[q0q00 : : : q0:::0 + : : :+ q1q11 : : : q1:::1℄ �N)�(q0q00 : : : q0:::0)n0:::0 : : : (q1q11 : : : q1:::1)n1:::1n0:::0! : : : n1:::1! ; (4)whih an be rewritten asP (J ;n0:::0; : : : ; n1:::1) = W (N)P (J ;N ;n0:::0; : : : ; n1:::1) ; (5)where N = n0:::0 + : : : + n1:::1 (6)



Renyi Entropies in Partile Casades 71is the total number of partiles and W (N) is the Poisson distributionW (N) = e� �N �NNN ! ; (7)and P (J ;N ;n0:::0; :::; n1:::1)= Z JYj=1 1Yk1;:::;kj�1=0 dqk1:::kj�10dqk1:::kj�11p(qk1:::kj�10; qk1:::kj�11)� exp(�[q0q00 : : : q0:::0 + : : :+ q1q11 : : : q1:::1 � 1℄ �N)�N !(q0q00 : : : q0:::0)n0:::0 : : : (q1q11 : : : q1:::1)n1:::1n0:::0! : : : n1:::1! : (8)From the de�nition of the oinidene probabilitiesCl(J) = Xn0:::0;:::;n1:::1[P (J;N ;n0:::0; : : : ; n1:::1)℄l ; (9)one easily sees that Cl(J) =XN [W (N)℄lCl(J;N) (10)so that it is enough to onsider oinidene probabilities for a �xed totalnumber of partiles Cl(J;N).The atual shape of the distribution represented by (8) is determined bythe vertex distribution p(q0; q1). To illustrate that the models we onsiderdo indeed span a rather broad lass of distributions, it is useful to onsidertwo limiting ases.(i) At eah vertex one branh takes the value q = 0 and the other oneq = 1. Consequently, only one �nal bin is oupied. The probabilitythat this will be any given bin equals 1=2J beause all bins are equiv-alent. Consequently, for the oinidene probabilities one obtainsCl(J;N) = 2�J(l�1) : (11)The Renyi entropiesHl(J;N) � � logCl(J;N)l � 1 = J log 2 (12)depend neither on l nor on N .



72 A. Bialas, W. Czy», A. Ostruszka(ii) At eah vertex the density splits equally into two branhes. In thisase q = 1 � q = 1=2 so that eah bin ontains the same partiledensity. Consequently, for �xed N , the partile distribution is the oneof Bernoulli:P (J ;N ;n00:::0; : : : ; n11:::1) = M�N N !n00:::0! : : : n11:::1! ; (13)where we have denoted by M the total number of bins (M = 2J).For large N the oinidene probabilities an be obtained diretly fromthe de�nition, by hanging the sum into a (multidimensional) integral andusing the saddle point method [4℄. The result isCl(J;N) = �p2�N�(M�1)(1�l) �pM�M(l�1) �pl�1�M (14)and thusHl(J;N) = M � 12 log�2�NM �� 12 logM + M � 12 log ll � 1 : (15)In this ase the dependene on the number of steps of the asade is ex-ponential. One noties also the linear dependene on the logarithm of thepartile density. 3. Density onservationA signi�ant simpli�ation of the distribution (4) is obtained when thedensity is onserved in eah vertex1:p(q0; q1) = Æ(q0 + q1 � 1)f(q0; q1) : (16)The delta funtion simpli�es the problem onsiderably, beause it impliesthe equality q0q00 : : : q0:::0 + : : :+ q1q11 : : : q1:::1 = 1 (17)and thus there are no �utuations in the total partile density. In onse-quene, the integral in (4) fatorises. One obtainsP (J ;N ;n0:::0; : : : ; n1:::1)= Z JYj=1 1Yk1;:::;kj�1=0 dqk1:::kj�10dqk1:::kj�11p(qk1:::kj�10; qk1:::kj�11)1 This may be onsidered as a generalisation of the so�alled p-model [8℄.



Renyi Entropies in Partile Casades 73�(q0q00 : : : q0:::0)n0:::0 : : : (q1q11 : : : q1:::1)n1:::1 N !n0:::0! : : : n1:::1!= M(n0; n1)M(n00; n01)M(n10; n11) : : : M(n1:::10; n1:::11) N !n0:::0! : : : n1:::1! ;(18)where n::: denotes the number of partiles in a bin labelled by :::. It is simplythe sum of the numbers of partiles in the �nal bins � after J steps � whihoriginated from the given bin, e.g.,n0 = n00 + n01; n10 = n100 + n101; n101 = n1010 + n1011 : (19)M(k; l) are the moments of the vertex distribution:M(k; l) = Z dq0dqqp(q0; q1)qk0ql1 = Z dqf(q; 1� q)qk(1� q)l : (20)The fatorised form of (18) allows us to write down a general formula forthe oinidene probabilities:Cl(J;N) = Xn0:::0+:::+n1:::1=N M(n0; n1)lM(n00; n01)l : : :�M(n10; n11)l : : :M(n0:::00; n0:::01)l : : : M(n1:::10; n1:::11)l � N !n0:::0! : : : n1:::1!�l :(21)This formula still looks rather formidable, so we better make use of thereursive nature of the probabilities (18)P (J + 1;N ;n00:::0; : : : ; n11:::1)= N !n0!n1!M(n0; n1)P (J ;n0;n00:::0; : : : ; n11:::1)P (J ;n1;n10:::0; : : : ; n11:::1) ;(22)sine it allows one to write down a reursive relation between the oinideneprobabilities of asades of di�erent rankCl(J + 1; N) = Xn0:::+:::+n1:::=N P l(J + 1;N ;n0:::; : : : ; n1:::)= Xn0:::+:::+n1:::=N� N !n0!n1!�l [M(n0; n1)℄lP l(J ;n0;n0::: : : :)P l(J ;n1;n1::: : : :)= Xn0+n1=N� N !n0!n1!�l [M(n0; n1)℄lCl(J; n0)Cl(J; n1) ; (23)



74 A. Bialas, W. Czy», A. Ostruszkawith the initial ondition Cl(0; N) = 1 : (24)This formula is more e�etive for pratial appliations than the generalexpression (21).Introduing ~Cl(J;N) = 1(N !)lCl(J;N) ; (25)Eq. (23) an be rewritten in the simpler form~Cl(J + 1; N) = Xn0+n1=N[M(n0; n1)℄l ~Cl(J; n0) ~Cl(J; n1) ; (26)with ~Cl(0; N) = 1(N !)l : (27)4. The � distributionTo obtain more insight into the struture of the asade models we havestudied in some detail a speial ase of the vertex distribution, the so-alled� distribution2 for whihf(q; 1� q) = � (a+ b)� (a)� (b)qa�1(1� q)b�1 : (28)For symmetri distributions we have, of ourse, b = a. Using this, we anexpliitly alulate the moments with the resultM(n0; n1) = � (a+ n0)� (a) � (a+ n1)� (a) � (2a)� (2a+ n0 + n1) : (29)This allows us to simplify somewhat the reurrene relation (23). Introdu-ing Ĉ(J;N) � �� (a+N)N !� (a) �l Cl(J;N) ; (30)we obtainĈl(J + 1; N) = �� (a+N)� (2a)� (2a+N)� (a)�l Xn0+n1=N Ĉl(J; n0)Ĉl(J; n1) ; (31)2 To our knowledge, this distribution was �rst applied to multipartile asades in [9℄.



Renyi Entropies in Partile Casades 75with the initial onditionĈl(0; N) = �� (a+N)N !� (a) �l : (32)The reursive relation (31) with the initial ondition (32) allows us toalulate the oinidene probabilities of any order for arbitrary J and N .Unfortunately, the expliit losed solution seems to be out of reah. Fortu-nately, these relations are well-suited for numerial work. In the next setionwe show the results of the numerial evaluation of C2 in a broad region ofthe parameter a. As every multipliative asade the system is multifratal.The degree of fratality of the asade is ontrolled by the parameter a. Thefratal dimensions Dp is given by [10℄Dp = 1� fpp� 1 ; (33)where fp are intermitteny exponents [5℄fp = log[hqpi=hqip℄log 2 = log[2pM(p; 0)℄log 2 : (34)For a! 0, Dp ! 0; for a!1, Dp ! 1, i.e. the intermitteny disappears.5. Numerial analysis of the seond Renyi entropyNow we desribe behaviour of oinidene probabilities Cl(J;N) (we �xl = 2 in this setion). We will study �rst the dependene on the number ofpartiles for a �xed depth of the asade. Figure 1 presents plots ofH2(J;N)
0 5 10 15

0

2

4

6

8

10

12

14

log(N)

H
2(J

,N
)

J=1

J=2

J=3

J=4

0 5 10 15
0

10

20

30

40

50

60

log(N)

H
2(J

,N
)

J=1

J=2

J=3J=4

Fig. 1. H2(J;N) vs. logN for some values of J . Left subplot is for a = 0:1 whilethe right one is for a = 5.



76 A. Bialas, W. Czy», A. Ostruszkavs logN for two values of parameter a � for the left one a = 0:1 and forthe right a = 5. One sees that for large values of N the Renyi entropyreahes its asymptoti behaviour � logN (see Setion 7 for details). Theasymptoti regime is, however, reahed muh faster for small a than for largea. The seond observation is that the Renyi entropy inreases sharply withinreasing a. This on�rms the idea that it an be used as a measure of the�erratiity� [11℄ of the system.The dependene on J = log2M for a given N is shown in �gure 2. We seehere a similar pattern as in Fig. 1 with the roles of J and logN exhanged.
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Fig. 2. Dependene of H2(J;N) on J for some values of N . Left subplot is fora = 0:1 while the right one is for a = 5.In the next two setions we disuss the asymptoti behaviour in detail.6. Asymptoti behaviour at large J and �xed NThis limit is of obvious interest sine it is easily realized in experiment:one simply has to split a given phase-spae region into a large number ofbins, a proedure well-known from the studies of intermitteny [5℄. We studythis limit employing the reurrene relation (31).To this end we �rst observe that Eq. (31) an be � shematially �rewritten in the formĈl(J + 1; N) = 
N hĈl(J;N) +H(J;N)i ; (35)where 
N = 2 �� (a+N)� (2a)� (2a+N)� (a)�l ;H(J;N) = 12 N�1Xn=1 Ĉl(J; n)Ĉl(J;N � n) : (36)Ĉl(0; N) is given by (32), and Ĉl(J; 0) = 1 .



Renyi Entropies in Partile Casades 77To solve (35) for a given N we note that H(J;N) ontains only Ĉl(J; n)with n < N and thus an be onsidered as a known funtion. With thisremark the solution of (35) is easy to �nd:Ĉl(J;N) = [
N ℄J Ĉl(0; N) + JXj=1 [
N ℄j H(J � j;N) : (37)This allows us to onstrut the solution starting from N = 1 and thenstep-by-step for higher N .In Appendix A the �rst three steps (N = 1; 2; 3) are explained in detail.Here we only summarise the main features of the result.The solution for Ĉl(J;N) is a sum of terms whih are proportional to(
i
j : : : 
k)J where the sum of all indies is equal to N , but the asymptotibehaviour is determined only by two of them. If parameter a is smaller thanthat obtained as a solution of the equation 
N = 
N1 then 
N > 
N1 andthe dominating term is of the form 
JN . ThusCl(J;N) ! M��l(N)�l(N) (38)with M = 2J and �l(N) = � log
Nlog 2 ; (39)and �l depends only on N . For larger values of a we have 
N < 
N1 andthe leading term is (
N1 )J so we obtain the formula (38) with�l(N) = � log
N1log 2 = N(l � 1) : (40)For the transition value 
N = 
N1 the asymptoti behaviour annot bedesribed by a simple exponential law. The details for some values of N aregiven in the Appendix A.In Fig. 3 the limiting value (for J = log2M ! 1) of the ratio H2=Jis plotted versus a for several values of N . One sees that it inreases withinreasing a until a plateau is reahed. This shows expliitly that the Renyientropy inreases with inreasing randomisation of the system.It is interesting to note that the value of �l(N) is related to the inter-mitteny exponent fk of the asade. Indeed, as shown in [5℄fk = log[hqki=hqik℄log 2 = k � 1 + 1log 2 log �� (a+ k)� (2a+ 1)� (a+ 1)� (2a+ k)� (41)



78 A. Bialas, W. Czy», A. Ostruszkaand thus we obtain the relation�l(N) = Nl � 1� lfN (42)whih is valid as long as fN > (N � 1)=l. This is another manifestation ofthe fat that the Renyi entropy is very sensitive to multipartile orrelations.
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Fig. 3. Asymptoti dependene of Renyi entropy for large number of bins. Solid linerepresents theoretial preditions while values obtained from numerial alulations(J up to 5000) are represented by irles.7. Asymptoti behaviour at large N , �xed JThis limit has more theoretial than pratial signi�ane, beause itis not easily realized in an experiment. Indeed, when the number of binsis �xed, the number of partiles an only be inreased by inreasing thebin size. But this means inreasing the phase-spae volume. This an berealized only if the region we onsider is uniform enough, whih is not easyto guarantee.Derivation of the asymptoti form for Cl(1; N) is presented in Appendix B.Using the same tehnique it is not too di�ult to show by indution thatthe behaviour for arbitrary J is of the form N�� . The value of � dependson the value of a� = [M(J) � 1℄(l � 1) for a > 2J�1(l � 1)=l ; (43)� = [M(j � 1)� 1℄(l � 1) + (J � j + 1)al ;for 2j�1(l � 1)=l > a > 2j�2(l � 1)=l ; J � j � 2 ; (44)� = Jal for a < (l � 1)=l ; (45)where M(j) = 2j .



Renyi Entropies in Partile Casades 79It is more di�ult, however, to determine the oe�ient in front ofthe power law. In Fig. 4 the asymptoti value (for N ! 1) of the ra-tio H2= logN is plotted versus a for several values ofM = 2J . One sees thatit inreases with inreasing a until a plateau is reahed. One an make twointeresting observations.
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Fig. 4. Asymptoti dependene of Renyi entropy for large number of partiles.Solid line represents theoretial preditions while values obtained from numerialalulations (N up to 500000) are represented by irles.(a) Although H2= logN is, for eah M , a ontinuous funtion of a, itsderivative is not. There are �phase transitions� at a = 2j�2, j = 1; : : : ; J .(b) The asymptoti value at large a di�ers by fator 2 from that obtainedfor Bernoulli distribution [2℄. Thus the approah of the asade model tothe Bernoulli limit is not uniform: the order in whih one takes the limita!1 is important. 8. ConlusionsIn summary, we have investigated the Renyi entropy for systems of par-tiles reated by a multipliative asade mehanism. A general formula forbinary asades was written down and some speial ases were studied inmore detail. Our main onlusions an be summarized as follows:(i) It was shown that when partile density is onserved at eah vertexof the asade, the orresponding probability distribution fatorises.Consequently, a relatively simple (albeit non�linear) reurrene rela-tion for oinidene probabilities an be written down. This reurrenerelation, onneting oinidene probability for a asade of the lengthJ to those of length J � 1, simpli�es onsiderably the detailed studiesof their properties.



80 A. Bialas, W. Czy», A. Ostruszka(ii) The asade of the ��distribution in the vertexf(q) = � (2a)� 2(a) [q(1� q)℄a�1 (46)was onsidered in some detail. The asymptoti behaviour at largepartile densities and/or at large lengths of the asade was shown tobe of the form(a) for J !1, N �xed Hl(J;N) � �l(N; a)J ; (47)(b) for N !1, J �xedHl(J;N) � �l(N; a) logN: (48)The funtions �l(N; a) and �l(N; a) are desribed in Setions 6 and 7where also some interesting disontinuities are pointed out.(iii) In partiular, although it may seem that for a!1 the asade meh-anism should tend to the one desribed by the simple Bernoulli law,it turns out that this limit is not uniform. As a result, the limitsa ! 1 annot be interhanged with the limits J ! 1, N �xedand/or N !1, J �xed.(iv) An interesting relation between �l(N; a) and the intermitteny expo-nents was found.This investigation was supported in part by the Subsydium of Foundationfor Polish Siene NP 1/99 and by the Polish State Committee for Sienti�Researh (KBN) Grant No 2 P03 B 09322.Appendix AAsymptotis at large J for N = 1; 2; 3N = 1 
1 = 21�l; Ĉl(0; 1) = al; H(J; 1) = 0 (A.1)so that Ĉl(J; 1) = 
J1 Ĉl(0; 1) ! Cl(J; 1) = 
J1 = M1�l (A.2)



Renyi Entropies in Partile Casades 81N = 2 
2 = 21�l � a+ 12a+ 1�l ; Ĉl(0; 2) = �a(a+ 1)2 �l ;H(J; 2) = 12 Ĉl(J; 1)2 = 12(
21)J Ĉl(0; 1)2 (A.3)and thus Ĉl(J; 2) = 
J2 Ĉl(0; 2) + 12 Ĉl(0; 1)2 (
21)J �
J2
21 �
2 
2 (A.4)and Cl(J; 2) =  1� 12 Ĉl(0; 1)2Ĉl(0; 2) 
2
21 �
2!M��+12 Ĉl(0; 1)2Ĉl(0; 2) 
2
21 �
2M�2(l�1) (A.5)with � = � log
2= log 2. The asymptoti behaviour at large J dependsruially on the value of a. For small values of a (suh that 
21 < 
2) theasymptotis is given by the �rst term in (A.5) sine l � 1 < � < 2(l � 1)whereas for larger values of a (2(l�1) < � < 2l�1) the asymptoti behaviouris governed by the seond term. When � is equal to 2(l� 1) �a = 21=l�22�21=l+1�then Cl(J; 2) is given byCl(J; 2) =  1 + 12J Ĉl(0; 1)2Ĉl(0; 2) !M�2(l�1) (A.6)N = 3
3 = 21�l � (a+ 2)(a+ 1)(2a+ 2)(2a + 1)�l ; Ĉl(0; 3) = �a(a+ 1)(a + 2)6 �l : (A.7)In the following we will onentrate only on generi solution � that is forvalues of a that does not satisfy any of the equations: 
21 = 
2, 
31 = 
3,
2
1 = 
3 � handling those ases would give us a lot of formulas with nonew insight. H(J; 3) is given thus byH(J; 3) = 
J1 Ĉl(0; 1) �
J2 Ĉl(0; 2) + 12 Ĉl(0; 1)2 (
21)J �
J2
21 �
2 
2� (A.8)



82 A. Bialas, W. Czy», A. Ostruszkaand onsequentlyĈl(J; 3) = 
J3 �Ĉl(0; 3)Ĉl(0; 1)Ĉl(0; 2) 
3
1
2 �
3�12 Ĉl(0; 1)3 
2
21 �
2 
3
31 �
3+ 12 Ĉl(0; 1)3 
2
21 �
2 
3
1
2 �
3�+(
1
2)J �Ĉl(0; 1)Ĉl(0; 2) 
3
1
2 �
3� 12 Ĉl(0; 1)3 
2
21 �
2 
3
1
2 �
3�+(
31)J 12 Ĉl(0; 1)3 
2
21 �
2 
3
31 �
3 : (A.9)Sine one an show that 
1
2 � max(
3; 
31) then the asymptoti be-haviour will only depend either on 
J3 or (
31)J so for a smaller than thesolution of 
31 = 
3, the asymptoti value will be given by the �rst termin (A.9) whereas for larger values of a the asymptotis is governed by thelast term.Let us generalise: from (36) and (37) one an see that Ĉl(J;N) is a sumof terms whih all are of the form(
i
j : : : 
k)JBl(N ; i; j; : : : ; k) ; (A.10)where i+j+ : : :+k = N and Bl(N ; i; j; : : : ; k) is a oe�ient whih does notdepend on J (in generi ase). It is not di�ult to give reursive expressionfor oe�ients Bl(N + 1; : : :) in terms of Bl(n; : : :) where n = 1; 2; : : : ; Nwith the initial ondition Bl(1; 1) = Ĉl(0; 1) = al. In order to explain itlearly we introdue now the following notation:� 'n will denote set of numbers i1; : : : ; ik (k = 1; : : : ; n) suh that theirsum is equal to n,� 'n [ 'm is a sum of two suh sets (of ourse 'n [ 'm is a 'n+m),� if 'n = i; j; : : : ; k then 
'n = 
i
j : : : 
k.Using this notation we have the following expressions for oe�ientsB(N ;'N 6= N)= 120�N�1Xn=1 X'n['N�n='NB(n;'n)B(N � n;'N�n)1A 
N
'N �
N ;(A.11)



Renyi Entropies in Partile Casades 83and B(N ;N) = Ĉ(0; N) � X'N 6=N B(N ;'N ) : (A.12)Sine lima!1
N = 21�Nl ; (A.13)lima!0
N = 21�l = 
1 (A.14)one an see that for small values of a, term 
JN will dominate whereas forlarge a, (
N1 )J will be dominating. We were not able to prove that for allvalues of a, N and l the asymptoti behaviour is governed either by the
JN or by (
N1 )J but the numerial results do indiate so. Example of thissituation is presented in Fig. 5 where we used N = 5 and l = 2.
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Fig. 5. Dependene of all 
i
j : : : 
k on a for N = 5 and l = 2.Appendix BAsymptotis at large N for J = 1We again use Eq. (31) and taking into aount its symmetry we writeĈl(J + 1; N) = 2 �� (a+N)� (2a)� (2a+N)� (a)�l N=2Xn=0 Ĉl(J; n)Ĉl(J;N � n) : (B.1)



84 A. Bialas, W. Czy», A. OstruszkaAt large N we an approximate this formula byĈl(J + 1; N) = 2 �� (2a)� (a) �lN�al N=2Xn=0 Ĉl(J; n)Ĉl(J;N � n) : (B.2)As the �rst step we analyse Cl(1; N). At large N the initial ondition (32)gives Ĉl(0; N) = �Na�1� (a) �l : (B.3)When substituted into (B.2) it givesĈl(1; N) = 2 �� (2a)� 3(a)�lN�alN l(a�1) N=2Xn=0 Ĉl(0; n)[(1 � n=N)� (a)℄l(a�1) :(B.4)The behaviour of this expression at large N depends on the onvergene ofthe series. If l(a� 1) > �1; i:e; a > (l � 1)=l (B.5)the series is divergent, and we haveN=2Xn=0 Ĉl(0; n) �(1� n=N)a�1� (a)�l ! 12N l(a�1)+1 Z 10 duul(a�1)(1� u)l(a�1)= 12N l(a�1)+1 � 2[l(a� 1) + 1℄� [2l(a� 1) + 2℄ ; (B.6)and thus denoting Zl(a) = � l(2a)� 2l(a) ; (B.7)Ĉl(1; N) = Zl(a)� 2[l(a� 1) + 1℄� l(a)� [2l(a� 1) + 2℄N la�2l+1 : (B.8)From this we �nally obtainCl(1; N) = � l(a)N l(1�a)Ĉl(1; N) = Zl(a)� 2[l(a� 1) + 1℄� [2l(a� 1) + 2℄ N1�l: (B.9)Note that for l = 1 we reover C1 = 1. Ifa < l � 1l ; (B.10)



Renyi Entropies in Partile Casades 85the series in (B.4) is onvergent and thus does not depend on N for largeN . Denoting �l(a) = 2 1Xn=0 �� (N + a)N !� (a) �l ; (B.11)we obtain̂Cl(1; N) = Zl(a)�l(a)� l(a) N�laN l(a�1) = Zl(a)�l(a)� l(a) N�l (B.12)and thus Cl(1; N) = Zl(a)�l(a)N�al: (B.13)Note that this is the result for a < 1 � 1=l whih is not possible for l = 1,so there is no ontradition. REFERENCES[1℄ A. Rényi, Pro. 4-th Berkeley Symp. Math. Stat. Prob. 1960, Vol. 1, Univ. ofCalifornia Press, Berkeley-Los Angeles 1961, p. 547.[2℄ A. Bialas, W. Czy», Phys. Rev. D61, 074021 (2000); Ata Phys. Pol. B 31,687 (2000); A. Bialas, W. Czy», J. Wosiek, Ata Phys. Pol. B 30, 107 (1999).[3℄ A. Bialas, W. Czy», Ata Phys. Pol. B 31, 2803 (2000).[4℄ A. Bialas, W. Czy», Ata Phys. Pol. B 32, 2793 (2001).[5℄ A. Bialas, R. Peshanski, Nul. Phys. B273, 703 (1986); Nul. Phys. B308,857 (1988).[6℄ For an extensive theoretial disussion of the asade mehanism see, e.g.M. Greiner, H.C. Eggers, P. Lipa, Phys. Rev. Lett. 80, 5333 (1988); M. Greiner,J. Shmiegel, F. Eikmeyer, P. Lipa, H.C. Eggers, Phys. Rev. E58, 554 (1998)and referenes quoted there.[7℄ A. Bialas, J. Czy»ewski, Phys. Lett. B463, 303 (1999).[8℄ C. Meneveau, K.R. Sreenivasan, Phys. Rev. Lett. 59, 1424 (1987); P. Lipa,B. Bushbek, Phys. Lett. B223, 465 (1989).[9℄ A. Bialas, R. Peshanski, Phys. Lett. B207, 59 (1988).[10℄ B. Bushbek, P. Lipa, Phys. Lett. B233, 465 (1989).[11℄ R.C. Hwa, Ata Phys. Pol. B 27, 1789 (1996).


