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Renyi entropies for particle distributions following from the general
cascade models are discussed. The p-model and the § distribution intro-
duced in earlier studies of cascades are discussed in some detail. Some
phenomenological consequences are pointed out.

PACS numbers: 05.10.—a, 13.85.Hd

1. Introduction

Recently, two of us proposed that Renyi entropies [1] may provide a use-
ful tool for studies of correlations between particles created in high-energy
collisions [2]. We have also studied these quantities in several models [3,4].
In the present paper we continue this line of research, extending our discus-
sion to models of particle production based on the multiplicative cascade
mechanism, considered earlier by several authors [5-7].

2. The cascade models

We will be considering a multiplicative cascade of J steps with two
branches at each vertex, i.e. M = 27 bins at the end of the cascade. Each bin
is labelled by a set of J numbers taking values 0 or 1: (00...0),(10...0),...,
(11...1). Thus at each step, each bin is split into two and the density in
the new bins is calculated by multiplying the density in the parent bin by
the random numbers ¢ ¢ and ¢ 1 distributed according to the probability
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p(q..0,49..1)- This construction leads to the following probability distribution
of the particle densities egg..gy...,€11...1

J 1
P(J;e0..05---,€1..1) Z/H I darsr;—r0dar,..k; 11

G=1 k1 yeenskj—1=0
1

J
XP(qhy.kjr0 Ghrky—i1) L] O | €kroks = [ @hrok; | - (1)
k1,...,ky=0 7=1

Without any loss of generality we can furthermore assume that — on the
average — in each vertex the density is conserved:

/dQOdQ1P(QO,Q1)(QO +q1) = {q) + {q1) = 1. (2)

The particle distribution is obtained as a Poisson transform of (1), i.e.,

P(J;no..0,---5m1.1) = /deo...o ...dey. 1 P(Jse0.0,...,€1..1)

x exp(—[eo..o +. .. + el ]N)(Neg. o)™ ... (Ney )"t ———
ng..ol...n1.1!

where N is the average number of particles. This procedure does not intro-
duce any new correlations (apart from those which are already present in

(1) [5])-
The é-functions in (1) allow us to perform the integrations in (3) with
the result

P(J;ﬂo...oa---,ﬂl...l)

J 1

= NN/H H Aqky ...k; 100Gk, .. k; 1 1P(qky .. kej 105 Ty k1 1)
G=1 ki eeskj_1=0

x exp(—[q0qo0 - - qo..0 + -+ +q1q11 ---q1..1]N)

q0q00 - - - q0...0)n0"'0 - (q1Q11 - (]1...1)“1”'1 (4)

! ! ’
n0..0:---T1..1:

2

which can be rewritten as
P(J;no..0y---sn1..1) = W(N)P(J;Ning..0,---5m1..1) (5)

where
N=mng.o+...+n1.1 (6)
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is the total number of particles and W (V) is the Poisson distribution

e Y
W) =e N (7)

and

P(J;N;ng..05.-,m1...1)

7 1
= /H H Aqky...k; 100Gk, ...k;_11P(Qhy .. kj_105 k. kj_11)

]:1 kl,...,kj_lzo
X exp(—[qoqoo ce.Qo.ot+ .- tqQqu1-.-q1.1 — 1]]\7)

N! no..o | ni..1
% (QOQOO QO...O) (Q1Q11 Q1...1) . (8)
ng..0!... 111!

From the definition of the coincidence probabilities

Ci(J) = Z [P(J,N;ng._0,---5n1.1)], 9)

N0...05--+,11...1

one easily sees that

Ci(J) =Y _[W(N)'Cy(J,N) (10)
N

so that it is enough to consider coincidence probabilities for a fixed total
number of particles Cj(J, N).

The actual shape of the distribution represented by (8) is determined by
the vertex distribution p(qo,q1). To illustrate that the models we consider
do indeed span a rather broad class of distributions, it is useful to consider
two limiting cases.

(i) At each vertex one branch takes the value ¢ = 0 and the other one
q = 1. Consequently, only one final bin is occupied. The probability
that this will be any given bin equals 1/27 because all bins are equiv-
alent. Consequently, for the coincidence probabilities one obtains

Cy(J,N) = 27701 (11)
The Renyi entropies
log Cy(J, N
H(J,N) = —% = Jlog2 (12)

depend neither on / nor on N.
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(i) At each vertex the density splits equally into two branches. In this
case ¢ = 1 — q¢ = 1/2 so that each bin contains the same particle
density. Consequently, for fixed N, the particle distribution is the one
of Bernoulli:

N!

! 1’
700...0: - - - M11...1-

P(J;N;no0..05---sni1.1) = MY (13)

where we have denoted by M the total number of bins (M = 27).

For large N the coincidence probabilities can be obtained directly from
the definition, by changing the sum into a (multidimensional) integral and
using the saddle point method [4]. The result is

VI N) = (\/%_N>(M—1)(1—l) <m>M(1—1) (\/Z)l—M (1)

and thus

(15)

M-1_ [2zN) 1 M — 1 logl
H(J,N) = — 1og<”> o8

— Zlog M .
M g 08 M+ 51

In this case the dependence on the number of steps of the cascade is ex-
ponential. One notices also the linear dependence on the logarithm of the
particle density.

3. Density conservation

A significant simplification of the distribution (4) is obtained when the
density is conserved in each vertex!:

p(q0,q1) = (g0 + @1 — 1) f (g0, 1) - (16)

The delta function simplifies the problem considerably, because it implies
the equality

40900 ---90.0+ .-+ qqi1-..q1.1 =1 (17)

and thus there are no fluctuations in the total particle density. In conse-
quence, the integral in (4) factorises. One obtains

P(J;N;ng..0,...,n1..1)

J 1
= / I II  daksi;—0dqr,. b, 10(Gk 0 Gy —i1)
T=1 kit ooy 1 =0

! This may be considered as a generalisation of the so—called p-model [8].
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N!
ng..ol...n1 1!

= M (ng, n1)M (noo, no1) M (ni0,n11) ... M(n1. 10, m1..11)

10...0 L. ( )nl...l

%(q0q00 - - - qo..0) 91911 ---q1..1

N!
! 1’
10..0% - - - 1.1

(18)

where n_ denotes the number of particles in a bin labelled by . It is simply
the sum of the numbers of particles in the final bins — after J steps — which
originated from the given bin, e.g.,

ng = Moo + Mo1; Mio = Mioo + N101; N101 = N1010 + N1011 - (19)

M (k,l) are the moments of the vertex distribution:

M (k1) = /dQOquP(QOaQI)ngll = /dqf(q, 1-q)d"(1-q)'.  (20)

The factorised form of (18) allows us to write down a general formula for
the coincidence probabilities:

no...o+...+n1...1=N

N :
XM('”IIO, ’n,ll)l - M(’n,omoo, ’17,0_.01)1 - M(n1...10, 'n'l...ll)l <m> :

(21)

This formula still looks rather formidable, so we better make use of the
recursive nature of the probabilities (18)

P(J+1;N;n00..05- -+ s M11...1)

N!
= M (ng,n1)P(J;n05n00...05- - -, 111..1) P(J5n13 110,05 - - - s M111)
no!nl!

(22)

since it allows one to write down a recursive relation between the coincidence
probabilities of cascades of different rank

Cy(J+1,N) = > P{(J+1;N;ng. ,...,n1.)
no...+..4+ni. =N
Nt
- Z <—|) [M (ng,n1)]' P (J;ng;no..... )P (J;ni;na.....)

nolng!
no...+...tni. =N 0=

z
= > <L'|> [M (ng,n1))' Ci(J,n0)Ci(J,m1) (23)

nglng!
no+ni=N 0:7e1
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with the initial condition
Ci(0O,N)=1. (24)

This formula is more effective for practical applications than the general
expression (21).
Introducing

Cy(J, N) = ﬁqu, N), (25)

Eq. (23) can be rewritten in the simpler form

CT+1,N)= > [M(ng,m)]'Ci(J,n0)Ci(J,ma). (26)
no+ni=N
with )
él(oaN) - (N')l (27)

4. The B distribution

To obtain more insight into the structure of the cascade models we have
studied in some detail a special case of the vertex distribution, the so-called
B distribution? for which

fla1—q) = Fsmava™ (=)' (28)

For symmetric distributions we have, of course, b = a. Using this, we can

explicitly calculate the moments with the result

I'(a+ng) I'(a +n1) I'(2a)
I'(a) I'(a) I'(2a+mno+mn1)’

M(no, nl) = (29)

This allows us to simplify somewhat the recurrence relation (23). Introduc-
ing

l
C(J,N) = [%] Cy(J,N), (30)
we obtain
l
Ci(J +1,N) = [?E;:ﬁ\)[f lfm noglj:]vélu, no)Ci(Jimy),  (31)

2 To our knowledge, this distribution was first applied to multiparticle cascades in [9].
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with the initial condition
. I'(a+N)7!
Cy(0,N) = [ NI ] (32)
The recursive relation (31) with the initial condition (32) allows us to
calculate the coincidence probabilities of any order for arbitrary J and N.
Unfortunately, the explicit closed solution seems to be out of reach. Fortu-
nately, these relations are well-suited for numerical work. In the next section
we show the results of the numerical evaluation of Cy in a broad region of
the parameter a. As every multiplicative cascade the system is multifractal.
The degree of fractality of the cascade is controlled by the parameter a. The
fractal dimensions D), is given by [10]

Iy
D,=1-—
p p— 1 ’ (33)
where f, are intermittency exponents [5]
log[{q?)/{q)P log[2P M (p, 0
;. Losll)/(a)”] _ losf2? M(p.0)] -

log 2 log 2

For a — 0, D, — 0; for a — 0o, D, — 1, i.e. the intermittency disappears.

5. Numerical analysis of the second Renyi entropy

Now we describe behaviour of coincidence probabilities Cj(.J, N) (we fix
[ = 2 in this section). We will study first the dependence on the number of
particles for a fixed depth of the cascade. Figure 1 presents plots of Hy(J, N)

14 T " 60 ! ,
J=4 J=4 J=3
12+ sol
10+ 3=3
- 40+
Z s =
= -
Sl - ;—_>,N30
I T
al | 20t
J=1 _
o ] 10 / 1
0 : : 0 : :
0 5 10 15 0 5 10 15
log(N) log(N)

Fig.1. Hy(J,N) vs. log N for some values of J. Left subplot is for a = 0.1 while
the right one is for a = 5.
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vs log N for two values of parameter ¢ — for the left one a = 0.1 and for
the right @ = 5. One sees that for large values of N the Renyi entropy
reaches its asymptotic behaviour ~ log N (see Section 7 for details). The
asymptotic regime is, however, reached much faster for small ¢ than for large
a. The second observation is that the Renyi entropy increases sharply with
increasing a. This confirms the idea that it can be used as a measure of the
“erraticity” [11] of the system.

The dependence on J = logy M for a given N is shown in figure 2. We see
here a similar pattern as in Fig. 1 with the roles of J and log N exchanged.

100+ N=100 N=50

N=10
N=1
8ol
Z 6o}
2
o
T 40!
207 N1
0 20 40 60 80 100 % 5 10 15 20
J=IogZ(M) J=IogZ(M)

Fig.2. Dependence of Ha(J,N) on J for some values of N. Left subplot is for
a = 0.1 while the right one is for a = 5.

In the next two sections we discuss the asymptotic behaviour in detail.

6. Asymptotic behaviour at large J and fixed NV

This limit is of obvious interest since it is easily realized in experiment:
one simply has to split a given phase-space region into a large number of
bins, a procedure well-known from the studies of intermittency [5]. We study
this limit employing the recurrence relation (31).

To this end we first observe that Eq. (31) can be — schematically —
rewritten in the form

where Ci(J +1,N) = 2y [él(Ja N)+ H(J, N)} ) (35)
[T+ NI
v =2 [F(2a+N)F(a)] ’
| Nl
=3 2 Ci( Ci(J,N —n). (36)

Cy(0,N) is given by (32), and C)(J,0) = 1.
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To solve (35) for a given N we note that H(.J, N) contains only C;(.J,n)
with n < N and thus can be considered as a known function. With this
remark the solution of (35) is easy to find:

J
Ci(J,N) = [25])" Ci(0,N) + > [2n) H(J - j,N) . (37)
Jj=1
This allows us to construct the solution starting from N = 1 and then

step-by-step for higher N.

In Appendix A the first three steps (N = 1,2, 3) are explained in detail.
Here we only summarise the main features of the result.

The solution for Cj(J, N) is a sum of terms which are proportional to
(£2;82; ... ;)7 where the sum of all indices is equal to N, but the asymptotic
behaviour is determined only by two of them. If parameter a is smaller than
that obtained as a solution of the equation 2y = ¥ then 2y > 2V and
the dominating term is of the form (2¢;. Thus

Ci(J,N) — M MNg(N) (38)
with M = 27 and o 0
ogisn
N) = —
v(N) og2 (39)

and &; depends only on N. For larger values of a we have 2y < 2{¥ and
the leading term is (£2{)”7 so we obtain the formula (38) with

log 2V

y(N) = — 10g21 =N(I-1). (40)

For the transition value £2y = £2{¥ the asymptotic behaviour cannot be
described by a simple exponential law. The details for some values of N are
given in the Appendix A.

In Fig. 3 the limiting value (for J = logy M — o0) of the ratio Hy/.J
is plotted versus a for several values of N. One sees that it increases with
increasing a until a plateau is reached. This shows explicitly that the Renyi
entropy increases with increasing randomisation of the system.

It is interesting to note that the value of (V) is related to the inter-
mittency exponent fj of the cascade. Indeed, as shown in [5]

logl(a)/(@)"] _, [Ila+ B+ )
log 2 log 2 & I'la+1)I'(2a+ k)

fr =

(41)
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and thus we obtain the relation
y(N)=NIl—-1-Ifn (42)

which is valid as long as fxy > (N — 1)/l. This is another manifestation of
the fact that the Renyi entropy is very sensitive to multiparticle correlations.

25
N=30
201
15 0 1
- N=20
\N
I
10f
N=10
N=5
10 15

a

Fig. 3. Asymptotic dependence of Renyi entropy for large number of bins. Solid line
represents theoretical predictions while values obtained from numerical calculations
(J up to 5000) are represented by circles.

7. Asymptotic behaviour at large IV, fixed J

This limit has more theoretical than practical significance, because it
is not easily realized in an experiment. Indeed, when the number of bins
is fixed, the number of particles can only be increased by increasing the
bin size. But this means increasing the phase-space volume. This can be
realized only if the region we consider is uniform enough, which is not easy
to guarantee.

Derivation of the asymptotic form for Cj(1, N) is presented in Appendix B.
Using the same technique it is not too difficult to show by induction that
the behaviour for arbitrary J is of the form N~7. The value of 7 depends
on the value of a

= [MUJ)-10-1) for a>2""11-1)/1, (43)
T =[M@G-1)=1)1-1)+(J—j+1)al,

for 27N I-1D)/l>a>221-1))1, J>j>2, (44
T = Jal for a<(l-1)/1, (45)

where M(j) = 27.
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It is more difficult, however, to determine the coefficient in front of
the power law. In Fig. 4 the asymptotic value (for N — oo) of the ra-
tio Ha/log N is plotted versus a for several values of M = 27. One sees that
it increases with increasing a until a plateau is reached. One can make two
interesting observations.

15
J=4
_1or
£
D
o =3
\(\I
T
5 b
J=2
=1
0 L L L
0 1 2 3 4

a

Fig.4. Asymptotic dependence of Renyi entropy for large number of particles.
Solid line represents theoretical predictions while values obtained from numerical
calculations (N up to 500000) are represented by circles.

(a) Although Hy/log N is, for each M, a continuous function of a, its
derivative is not. There are “phase transitions” at a = 2072, j =1,...,J.

(b) The asymptotic value at large a differs by factor 2 from that obtained
for Bernoulli distribution [2]. Thus the approach of the cascade model to
the Bernoulli limit is not uniform: the order in which one takes the limit
a — o0 is important.

8. Conclusions

In summary, we have investigated the Renyi entropy for systems of par-
ticles created by a multiplicative cascade mechanism. A general formula for
binary cascades was written down and some special cases were studied in
more detail. Our main conclusions can be summarized as follows:

(i) Tt was shown that when particle density is conserved at each vertex
of the cascade, the corresponding probability distribution factorises.
Consequently, a relatively simple (albeit non-linear) recurrence rela-
tion for coincidence probabilities can be written down. This recurrence
relation, connecting coincidence probability for a cascade of the length
J to those of length J — 1, simplifies considerably the detailed studies
of their properties.
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(i) The cascade of the S-distribution in the vertex

(iii)

(i)

_ I'(2a)
= %)

fla) [q(1 — g)]** (46)

was considered in some detail. The asymptotic behaviour at large
particle densities and/or at large lengths of the cascade was shown to
be of the form

(a) for J — oo, N fixed
Hy(J,N) ~ v(N,a)J; (47)

(b) for N — oo, J fixed
Hi(J,N) ~ 7(N,a)log N. (48)

The functions v(N,a) and 7;(N,a) are described in Sections 6 and 7
where also some interesting discontinuities are pointed out.

In particular, although it may seem that for @ — oo the cascade mech-
anism should tend to the one described by the simple Bernoulli law,
it turns out that this limit is not uniform. As a result, the limits
a — oo cannot be interchanged with the limits J — oo, N fixed
and/or N — oo, J fixed.

An interesting relation between v;(N,a) and the intermittency expo-
nents was found.

This investigation was supported in part by the Subsydium of Foundation
for Polish Science NP 1/99 and by the Polish State Committee for Scientific
Research (KBN) Grant No 2 P03 B 09322.

Appendix A
Asymptotics at large J for N =1,2,3

N=1

Q=2 C0,1)=d', H(J,1)=0 (A1)

so that

Ci(J,1) = 2{C0,1) — C(J,1) =] = M+ (A.2)
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N =2
_ +1\' . a(a+1)\
Q=211 (2 9) =
2 <2a+1) 3 Cl(oa ) < 2 3
14 1 R
H(J,2) = 5Ci(J:1)* = 5 (21) Ci(0,1)” (A-3)
and thus
. . 1 . QQ J _ QJ
Gi(7,2) = 2060,2) + 2a0,12 ) " Z g, (ay)
2 25 — $2
and
10,12 _
Ci(J,2) = |[1—-—=—= MY
12 ( 261(0,2) 2~
_ M= A5
2 Ci(0,2) & - 2 A9
with v = —log(2,/log2. The asymptotic behaviour at large J depends

crucially on the value of a. For small values of a (such that 27 < () the
asymptotics is given by the first term in (A.5) since [ — 1 < v < 2(l — 1)
whereas for larger values of a (2(/—1) < v < 2]—1) the asymptotic behaviour

is governed by the second term. When v is equal to 2(I — 1) (a = %)
then Cy(J,2) is given by
1. Cy(0,1)?
Ci(J,2) =1+ L GODTN ppaaey (A.6)
2 Cl(oa 2)

N =3

l l
[ = AT [T e

In the following we will concentrate only on generic solution — that is for
values of a that does not satisfy any of the equations: 27 = (25, 23 = 23,
{250y = {23 — handling those cases would give us a lot of formulas with no
new insight. H(.J,3) is given thus by

AR -9,

~ N 1.
J J
H(Ja 3) = ‘Ql Cl(oa 1) |:‘92 Cl(052) + 501(07 1) .Q% — .QQ

| s
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and consequently

23
0125 — 005

Ci(J.3) = {01(0,3)01(0,1)01(0,2)
£29 {23

.Ql .QQ — 93
2 2
m—%m%—%}
2 7
B0

+UAQQJ{@GLUQGL%

1.
i 1)3
QCZ(Oa )

HRY SG0,1)? (4.9)

Since one can show that 212 < max({23,§2}) then the asymptotic be-
haviour will only depend either on (2§ or (£23)7 so for a smaller than the
solution of 23 = (23, the asymptotic value will be given by the first term
in (A.9) whereas for larger values of a the asymptotics is governed by the
last term. A

Let us generalise: from (36) and (37) one can see that Cj(J, N) is a sum
of terms which all are of the form

(QZQ].Qk)JBl(N,Z,j,,k), (AlO)

where i+j+...+k = N and B;(N;i,7,...,k) is a coefficient which does not
depend on J (in generic case). It is not difficult to give recursive expression
for coefficients B;(N + 1;...) in terms of By(n;...) where n = 1,2,..., N
with the initial condition B;(1;1) = ;(0,1) = a’. In order to explain it
clearly we introduce now the following notation:
e ¢, will denote set of numbers iq,...,7; (k=1,...,n) such that their
sum is equal to n,

e o, Uy, is a sum of two such sets (of course ¢, U ¢p, is a ©nim),
o if o, =4,7,...,k then £2, = (;02;...02.
Using this notation we have the following expressions for coefficients
B(N;pn # N)
2y

W=
=3 > Y Bm;en)B(N —n;on_n) 0 — 0o

5o (A1)
n=1 pnUpN_n=0N $N T 4N
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and
B(N;N)=C(0,N) - Y B(N;pn). (A.12)
PNEN
Since
lim Qy = 27N, (A.13)
a— 00
lim 2y = 217 =2, (A.14)
a—0

one can see that for small values of a, term QJ{, will dominate whereas for
large a, (£2))7 will be dominating. We were not able to prove that for all
values of a, N and [ the asymptotic behaviour is governed either by the
2% or by (£28)7 but the numerical results do indicate so. Example of this
situation is presented in Fig. 5 where we used N =5 and [ = 2.

0.15

0.1r

0.05 -

Fig. 5. Dependence of all (2;§2;...(2; on a for N =5 and | = 2.

Appendix B
Asymptotics at large N for J =1

We again use Eq. (31) and taking into account its symmetry we write

1 N/2
> C(J,n)Cy(J,N —n).  (B.1)

n=0

. . [I(a+ N)I'(2q)
G(T+1.N) =2 [F(2a + N)F(a)]



84 A. Biavas, W. Czvz, A. OSTRUSZKA

At large N we can approximate this formula by

1 N/2
Cy(J +1,N) =2 [1;((2;))] NN G, m)Cy(J.N —n). (B.2)
n=0

As the first step we analyse Cj(1, N). At large N the initial condition (32)
gives

a—171
C)(0,N) = []l\f(—a)l] . (B.3)
When substituted into (B.2) it gives
C _ 5[ 1'(2a) : —al p7l(a—1) A A _ I(a—1)
(1, N) =2 [I’3(a)] N~ 4N ;q(o,n)[u n/N)I'(a)] :

(B.4)

The behaviour of this expression at large N depends on the convergence of
the series. If

lla—1)>-1, de, a>(1-1)/I (B.5)

the series is divergent, and we have

N/2 .
> G0 [(1= /W) 11 (@) - G0 [auae D e
n=0 0

1 I'l(a—1)+1]
— _Nl(a—1)+1 B
2 Mia-1+2 &0
and thus denoting
I'(2a)
Zl(a’) - 1—12[(0/) ) (B 7)
A Zy(a)T?[l(a = 1) +1] oo
1,N) = Nla=2i41 B.
G, N) T'(a)T[2l(a — 1) + 2] (B.8)
From this we finally obtain
o A Zy(@)?[l(a —1)+1]
1,N) = I'(a)N' =9 ¢y (1, N) = 2 N'-l. (B.
Cl( 3 ) (a) Cl( 3 ) F[21(a — 1) +2] ( 9)
Note that for [ = 1 we recover C; = 1. If
a < =1 , (B.10)

l
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the series in (B.4) is convergent and thus does not depend on N for large

N. Denoting
(N +a
22[ NT(a ] , (B.11)
we obtain
A Zi(a)®i(a) —1a nri(a—1) _ Zi(@)Pi(a)
and thus
Ci(1,N) = Zj(a)®;(a)N . (B.13)

Note that this is the result for @ < 1 — 1/l which is not possible for [ = 1,
so there is no contradiction.
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