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RENYI ENTROPIES IN PARTICLE CASCADESA. Bialasa;by, W. Czy»a and A. OstruszkaaaM. Smolu
howski Institute of Physi
s, Jagellonian UniversityReymonta 4, 30-059 Kraków, PolandbH. Niewodni
za«ski Institute of Nu
lear Physi
sRadzikowskiego 152, 31-342 Kraków, Poland(Re
eived O
tober 11, 2002)Renyi entropies for parti
le distributions following from the general
as
ade models are dis
ussed. The p-model and the � distribution intro-du
ed in earlier studies of 
as
ades are dis
ussed in some detail. Somephenomenologi
al 
onsequen
es are pointed out.PACS numbers: 05.10.�a, 13.85.Hd1. Introdu
tionRe
ently, two of us proposed that Renyi entropies [1℄ may provide a use-ful tool for studies of 
orrelations between parti
les 
reated in high-energy
ollisions [2℄. We have also studied these quantities in several models [3, 4℄.In the present paper we 
ontinue this line of resear
h, extending our dis
us-sion to models of parti
le produ
tion based on the multipli
ative 
as
ademe
hanism, 
onsidered earlier by several authors [5�7℄.2. The 
as
ade modelsWe will be 
onsidering a multipli
ative 
as
ade of J steps with twobran
hes at ea
h vertex, i.e. M = 2J bins at the end of the 
as
ade. Ea
h binis labelled by a set of J numbers taking values 0 or 1: (00. . . 0),(10. . . 0),. . . ,(11. . . 1). Thus at ea
h step, ea
h bin is split into two and the density inthe new bins is 
al
ulated by multiplying the density in the parent bin bythe random numbers q:::0 and q:::1 distributed a

ording to the probabilityy e-mail: bialas�th.if.uj.edu.pl (69)



70 A. Bialas, W. Czy», A. Ostruszkap(q:::0; q:::1). This 
onstru
tion leads to the following probability distributionof the parti
le densities e00:::0; : : : ; e11:::1P (J ; e0:::0; : : : ; e1:::1) = Z JYj=1 1Yk1;:::;kj�1=0dqk1:::kj�10dqk1:::kj�11�p(qk1:::kj�10; qk1:::kj�11) 1Yk1;:::;kJ=0 Æ0�ek1:::kJ � JYj=1 qk1:::kj1A : (1)Without any loss of generality we 
an furthermore assume that � on theaverage � in ea
h vertex the density is 
onserved:Z dq0dq1p(q0; q1)(q0 + q1) = hq0i+ hq1i = 1 : (2)The parti
le distribution is obtained as a Poisson transform of (1), i.e.,P (J ;n0:::0; : : : ; n1:::1) = Z de0:::0 : : : de1:::1P (J ; e0:::0; : : : ; e1:::1)� exp(�[e0:::0 +: : :+ e1:::1℄ �N)( �Ne0:::0)n0:::0 : : : ( �Ne1:::1)n1:::1 1n0:::0! : : : n1:::1! ;(3)where �N is the average number of parti
les. This pro
edure does not intro-du
e any new 
orrelations (apart from those whi
h are already present in(1) [5℄).The Æ-fun
tions in (1) allow us to perform the integrations in (3) withthe resultP (J ;n0:::0; :::; n1:::1)= �NN Z JYj=1 1Yk1;:::;kj�1=0 dqk1:::kj�10dqk1:::kj�11p(qk1:::kj�10; qk1:::kj�11)� exp(�[q0q00 : : : q0:::0 + : : :+ q1q11 : : : q1:::1℄ �N)�(q0q00 : : : q0:::0)n0:::0 : : : (q1q11 : : : q1:::1)n1:::1n0:::0! : : : n1:::1! ; (4)whi
h 
an be rewritten asP (J ;n0:::0; : : : ; n1:::1) = W (N)P (J ;N ;n0:::0; : : : ; n1:::1) ; (5)where N = n0:::0 + : : : + n1:::1 (6)
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le Cas
ades 71is the total number of parti
les and W (N) is the Poisson distributionW (N) = e� �N �NNN ! ; (7)and P (J ;N ;n0:::0; :::; n1:::1)= Z JYj=1 1Yk1;:::;kj�1=0 dqk1:::kj�10dqk1:::kj�11p(qk1:::kj�10; qk1:::kj�11)� exp(�[q0q00 : : : q0:::0 + : : :+ q1q11 : : : q1:::1 � 1℄ �N)�N !(q0q00 : : : q0:::0)n0:::0 : : : (q1q11 : : : q1:::1)n1:::1n0:::0! : : : n1:::1! : (8)From the de�nition of the 
oin
iden
e probabilitiesCl(J) = Xn0:::0;:::;n1:::1[P (J;N ;n0:::0; : : : ; n1:::1)℄l ; (9)one easily sees that Cl(J) =XN [W (N)℄lCl(J;N) (10)so that it is enough to 
onsider 
oin
iden
e probabilities for a �xed totalnumber of parti
les Cl(J;N).The a
tual shape of the distribution represented by (8) is determined bythe vertex distribution p(q0; q1). To illustrate that the models we 
onsiderdo indeed span a rather broad 
lass of distributions, it is useful to 
onsidertwo limiting 
ases.(i) At ea
h vertex one bran
h takes the value q = 0 and the other oneq = 1. Consequently, only one �nal bin is o

upied. The probabilitythat this will be any given bin equals 1=2J be
ause all bins are equiv-alent. Consequently, for the 
oin
iden
e probabilities one obtainsCl(J;N) = 2�J(l�1) : (11)The Renyi entropiesHl(J;N) � � logCl(J;N)l � 1 = J log 2 (12)depend neither on l nor on N .



72 A. Bialas, W. Czy», A. Ostruszka(ii) At ea
h vertex the density splits equally into two bran
hes. In this
ase q = 1 � q = 1=2 so that ea
h bin 
ontains the same parti
ledensity. Consequently, for �xed N , the parti
le distribution is the oneof Bernoulli:P (J ;N ;n00:::0; : : : ; n11:::1) = M�N N !n00:::0! : : : n11:::1! ; (13)where we have denoted by M the total number of bins (M = 2J).For large N the 
oin
iden
e probabilities 
an be obtained dire
tly fromthe de�nition, by 
hanging the sum into a (multidimensional) integral andusing the saddle point method [4℄. The result isCl(J;N) = �p2�N�(M�1)(1�l) �pM�M(l�1) �pl�1�M (14)and thusHl(J;N) = M � 12 log�2�NM �� 12 logM + M � 12 log ll � 1 : (15)In this 
ase the dependen
e on the number of steps of the 
as
ade is ex-ponential. One noti
es also the linear dependen
e on the logarithm of theparti
le density. 3. Density 
onservationA signi�
ant simpli�
ation of the distribution (4) is obtained when thedensity is 
onserved in ea
h vertex1:p(q0; q1) = Æ(q0 + q1 � 1)f(q0; q1) : (16)The delta fun
tion simpli�es the problem 
onsiderably, be
ause it impliesthe equality q0q00 : : : q0:::0 + : : :+ q1q11 : : : q1:::1 = 1 (17)and thus there are no �u
tuations in the total parti
le density. In 
onse-quen
e, the integral in (4) fa
torises. One obtainsP (J ;N ;n0:::0; : : : ; n1:::1)= Z JYj=1 1Yk1;:::;kj�1=0 dqk1:::kj�10dqk1:::kj�11p(qk1:::kj�10; qk1:::kj�11)1 This may be 
onsidered as a generalisation of the so�
alled p-model [8℄.
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le Cas
ades 73�(q0q00 : : : q0:::0)n0:::0 : : : (q1q11 : : : q1:::1)n1:::1 N !n0:::0! : : : n1:::1!= M(n0; n1)M(n00; n01)M(n10; n11) : : : M(n1:::10; n1:::11) N !n0:::0! : : : n1:::1! ;(18)where n::: denotes the number of parti
les in a bin labelled by :::. It is simplythe sum of the numbers of parti
les in the �nal bins � after J steps � whi
horiginated from the given bin, e.g.,n0 = n00 + n01; n10 = n100 + n101; n101 = n1010 + n1011 : (19)M(k; l) are the moments of the vertex distribution:M(k; l) = Z dq0dqqp(q0; q1)qk0ql1 = Z dqf(q; 1� q)qk(1� q)l : (20)The fa
torised form of (18) allows us to write down a general formula forthe 
oin
iden
e probabilities:Cl(J;N) = Xn0:::0+:::+n1:::1=N M(n0; n1)lM(n00; n01)l : : :�M(n10; n11)l : : :M(n0:::00; n0:::01)l : : : M(n1:::10; n1:::11)l � N !n0:::0! : : : n1:::1!�l :(21)This formula still looks rather formidable, so we better make use of there
ursive nature of the probabilities (18)P (J + 1;N ;n00:::0; : : : ; n11:::1)= N !n0!n1!M(n0; n1)P (J ;n0;n00:::0; : : : ; n11:::1)P (J ;n1;n10:::0; : : : ; n11:::1) ;(22)sin
e it allows one to write down a re
ursive relation between the 
oin
iden
eprobabilities of 
as
ades of di�erent rankCl(J + 1; N) = Xn0:::+:::+n1:::=N P l(J + 1;N ;n0:::; : : : ; n1:::)= Xn0:::+:::+n1:::=N� N !n0!n1!�l [M(n0; n1)℄lP l(J ;n0;n0::: : : :)P l(J ;n1;n1::: : : :)= Xn0+n1=N� N !n0!n1!�l [M(n0; n1)℄lCl(J; n0)Cl(J; n1) ; (23)



74 A. Bialas, W. Czy», A. Ostruszkawith the initial 
ondition Cl(0; N) = 1 : (24)This formula is more e�e
tive for pra
ti
al appli
ations than the generalexpression (21).Introdu
ing ~Cl(J;N) = 1(N !)lCl(J;N) ; (25)Eq. (23) 
an be rewritten in the simpler form~Cl(J + 1; N) = Xn0+n1=N[M(n0; n1)℄l ~Cl(J; n0) ~Cl(J; n1) ; (26)with ~Cl(0; N) = 1(N !)l : (27)4. The � distributionTo obtain more insight into the stru
ture of the 
as
ade models we havestudied in some detail a spe
ial 
ase of the vertex distribution, the so-
alled� distribution2 for whi
hf(q; 1� q) = � (a+ b)� (a)� (b)qa�1(1� q)b�1 : (28)For symmetri
 distributions we have, of 
ourse, b = a. Using this, we 
anexpli
itly 
al
ulate the moments with the resultM(n0; n1) = � (a+ n0)� (a) � (a+ n1)� (a) � (2a)� (2a+ n0 + n1) : (29)This allows us to simplify somewhat the re
urren
e relation (23). Introdu
-ing Ĉ(J;N) � �� (a+N)N !� (a) �l Cl(J;N) ; (30)we obtainĈl(J + 1; N) = �� (a+N)� (2a)� (2a+N)� (a)�l Xn0+n1=N Ĉl(J; n0)Ĉl(J; n1) ; (31)2 To our knowledge, this distribution was �rst applied to multiparti
le 
as
ades in [9℄.
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le Cas
ades 75with the initial 
onditionĈl(0; N) = �� (a+N)N !� (a) �l : (32)The re
ursive relation (31) with the initial 
ondition (32) allows us to
al
ulate the 
oin
iden
e probabilities of any order for arbitrary J and N .Unfortunately, the expli
it 
losed solution seems to be out of rea
h. Fortu-nately, these relations are well-suited for numeri
al work. In the next se
tionwe show the results of the numeri
al evaluation of C2 in a broad region ofthe parameter a. As every multipli
ative 
as
ade the system is multifra
tal.The degree of fra
tality of the 
as
ade is 
ontrolled by the parameter a. Thefra
tal dimensions Dp is given by [10℄Dp = 1� fpp� 1 ; (33)where fp are intermitten
y exponents [5℄fp = log[hqpi=hqip℄log 2 = log[2pM(p; 0)℄log 2 : (34)For a! 0, Dp ! 0; for a!1, Dp ! 1, i.e. the intermitten
y disappears.5. Numeri
al analysis of the se
ond Renyi entropyNow we des
ribe behaviour of 
oin
iden
e probabilities Cl(J;N) (we �xl = 2 in this se
tion). We will study �rst the dependen
e on the number ofparti
les for a �xed depth of the 
as
ade. Figure 1 presents plots ofH2(J;N)
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Fig. 1. H2(J;N) vs. logN for some values of J . Left subplot is for a = 0:1 whilethe right one is for a = 5.



76 A. Bialas, W. Czy», A. Ostruszkavs logN for two values of parameter a � for the left one a = 0:1 and forthe right a = 5. One sees that for large values of N the Renyi entropyrea
hes its asymptoti
 behaviour � logN (see Se
tion 7 for details). Theasymptoti
 regime is, however, rea
hed mu
h faster for small a than for largea. The se
ond observation is that the Renyi entropy in
reases sharply within
reasing a. This 
on�rms the idea that it 
an be used as a measure of the�errati
ity� [11℄ of the system.The dependen
e on J = log2M for a given N is shown in �gure 2. We seehere a similar pattern as in Fig. 1 with the roles of J and logN ex
hanged.
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Fig. 2. Dependen
e of H2(J;N) on J for some values of N . Left subplot is fora = 0:1 while the right one is for a = 5.In the next two se
tions we dis
uss the asymptoti
 behaviour in detail.6. Asymptoti
 behaviour at large J and �xed NThis limit is of obvious interest sin
e it is easily realized in experiment:one simply has to split a given phase-spa
e region into a large number ofbins, a pro
edure well-known from the studies of intermitten
y [5℄. We studythis limit employing the re
urren
e relation (31).To this end we �rst observe that Eq. (31) 
an be � s
hemati
ally �rewritten in the formĈl(J + 1; N) = 
N hĈl(J;N) +H(J;N)i ; (35)where 
N = 2 �� (a+N)� (2a)� (2a+N)� (a)�l ;H(J;N) = 12 N�1Xn=1 Ĉl(J; n)Ĉl(J;N � n) : (36)Ĉl(0; N) is given by (32), and Ĉl(J; 0) = 1 .
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le Cas
ades 77To solve (35) for a given N we note that H(J;N) 
ontains only Ĉl(J; n)with n < N and thus 
an be 
onsidered as a known fun
tion. With thisremark the solution of (35) is easy to �nd:Ĉl(J;N) = [
N ℄J Ĉl(0; N) + JXj=1 [
N ℄j H(J � j;N) : (37)This allows us to 
onstru
t the solution starting from N = 1 and thenstep-by-step for higher N .In Appendix A the �rst three steps (N = 1; 2; 3) are explained in detail.Here we only summarise the main features of the result.The solution for Ĉl(J;N) is a sum of terms whi
h are proportional to(
i
j : : : 
k)J where the sum of all indi
es is equal to N , but the asymptoti
behaviour is determined only by two of them. If parameter a is smaller thanthat obtained as a solution of the equation 
N = 
N1 then 
N > 
N1 andthe dominating term is of the form 
JN . ThusCl(J;N) ! M��l(N)�l(N) (38)with M = 2J and �l(N) = � log
Nlog 2 ; (39)and �l depends only on N . For larger values of a we have 
N < 
N1 andthe leading term is (
N1 )J so we obtain the formula (38) with�l(N) = � log
N1log 2 = N(l � 1) : (40)For the transition value 
N = 
N1 the asymptoti
 behaviour 
annot bedes
ribed by a simple exponential law. The details for some values of N aregiven in the Appendix A.In Fig. 3 the limiting value (for J = log2M ! 1) of the ratio H2=Jis plotted versus a for several values of N . One sees that it in
reases within
reasing a until a plateau is rea
hed. This shows expli
itly that the Renyientropy in
reases with in
reasing randomisation of the system.It is interesting to note that the value of �l(N) is related to the inter-mitten
y exponent fk of the 
as
ade. Indeed, as shown in [5℄fk = log[hqki=hqik℄log 2 = k � 1 + 1log 2 log �� (a+ k)� (2a+ 1)� (a+ 1)� (2a+ k)� (41)



78 A. Bialas, W. Czy», A. Ostruszkaand thus we obtain the relation�l(N) = Nl � 1� lfN (42)whi
h is valid as long as fN > (N � 1)=l. This is another manifestation ofthe fa
t that the Renyi entropy is very sensitive to multiparti
le 
orrelations.

0 5 10 15
0

5

10

15

20

25

a

H
2/J

N=5

N=10

N=20

N=30

Fig. 3. Asymptoti
 dependen
e of Renyi entropy for large number of bins. Solid linerepresents theoreti
al predi
tions while values obtained from numeri
al 
al
ulations(J up to 5000) are represented by 
ir
les.7. Asymptoti
 behaviour at large N , �xed JThis limit has more theoreti
al than pra
ti
al signi�
an
e, be
ause itis not easily realized in an experiment. Indeed, when the number of binsis �xed, the number of parti
les 
an only be in
reased by in
reasing thebin size. But this means in
reasing the phase-spa
e volume. This 
an berealized only if the region we 
onsider is uniform enough, whi
h is not easyto guarantee.Derivation of the asymptoti
 form for Cl(1; N) is presented in Appendix B.Using the same te
hnique it is not too di�
ult to show by indu
tion thatthe behaviour for arbitrary J is of the form N�� . The value of � dependson the value of a� = [M(J) � 1℄(l � 1) for a > 2J�1(l � 1)=l ; (43)� = [M(j � 1)� 1℄(l � 1) + (J � j + 1)al ;for 2j�1(l � 1)=l > a > 2j�2(l � 1)=l ; J � j � 2 ; (44)� = Jal for a < (l � 1)=l ; (45)where M(j) = 2j .
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le Cas
ades 79It is more di�
ult, however, to determine the 
oe�
ient in front ofthe power law. In Fig. 4 the asymptoti
 value (for N ! 1) of the ra-tio H2= logN is plotted versus a for several values ofM = 2J . One sees thatit in
reases with in
reasing a until a plateau is rea
hed. One 
an make twointeresting observations.
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Fig. 4. Asymptoti
 dependen
e of Renyi entropy for large number of parti
les.Solid line represents theoreti
al predi
tions while values obtained from numeri
al
al
ulations (N up to 500000) are represented by 
ir
les.(a) Although H2= logN is, for ea
h M , a 
ontinuous fun
tion of a, itsderivative is not. There are �phase transitions� at a = 2j�2, j = 1; : : : ; J .(b) The asymptoti
 value at large a di�ers by fa
tor 2 from that obtainedfor Bernoulli distribution [2℄. Thus the approa
h of the 
as
ade model tothe Bernoulli limit is not uniform: the order in whi
h one takes the limita!1 is important. 8. Con
lusionsIn summary, we have investigated the Renyi entropy for systems of par-ti
les 
reated by a multipli
ative 
as
ade me
hanism. A general formula forbinary 
as
ades was written down and some spe
ial 
ases were studied inmore detail. Our main 
on
lusions 
an be summarized as follows:(i) It was shown that when parti
le density is 
onserved at ea
h vertexof the 
as
ade, the 
orresponding probability distribution fa
torises.Consequently, a relatively simple (albeit non�linear) re
urren
e rela-tion for 
oin
iden
e probabilities 
an be written down. This re
urren
erelation, 
onne
ting 
oin
iden
e probability for a 
as
ade of the lengthJ to those of length J � 1, simpli�es 
onsiderably the detailed studiesof their properties.



80 A. Bialas, W. Czy», A. Ostruszka(ii) The 
as
ade of the ��distribution in the vertexf(q) = � (2a)� 2(a) [q(1� q)℄a�1 (46)was 
onsidered in some detail. The asymptoti
 behaviour at largeparti
le densities and/or at large lengths of the 
as
ade was shown tobe of the form(a) for J !1, N �xed Hl(J;N) � �l(N; a)J ; (47)(b) for N !1, J �xedHl(J;N) � �l(N; a) logN: (48)The fun
tions �l(N; a) and �l(N; a) are des
ribed in Se
tions 6 and 7where also some interesting dis
ontinuities are pointed out.(iii) In parti
ular, although it may seem that for a!1 the 
as
ade me
h-anism should tend to the one des
ribed by the simple Bernoulli law,it turns out that this limit is not uniform. As a result, the limitsa ! 1 
annot be inter
hanged with the limits J ! 1, N �xedand/or N !1, J �xed.(iv) An interesting relation between �l(N; a) and the intermitten
y expo-nents was found.This investigation was supported in part by the Subsydium of Foundationfor Polish S
ien
e NP 1/99 and by the Polish State Committee for S
ienti�
Resear
h (KBN) Grant No 2 P03 B 09322.Appendix AAsymptoti
s at large J for N = 1; 2; 3N = 1 
1 = 21�l; Ĉl(0; 1) = al; H(J; 1) = 0 (A.1)so that Ĉl(J; 1) = 
J1 Ĉl(0; 1) ! Cl(J; 1) = 
J1 = M1�l (A.2)
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le Cas
ades 81N = 2 
2 = 21�l � a+ 12a+ 1�l ; Ĉl(0; 2) = �a(a+ 1)2 �l ;H(J; 2) = 12 Ĉl(J; 1)2 = 12(
21)J Ĉl(0; 1)2 (A.3)and thus Ĉl(J; 2) = 
J2 Ĉl(0; 2) + 12 Ĉl(0; 1)2 (
21)J �
J2
21 �
2 
2 (A.4)and Cl(J; 2) =  1� 12 Ĉl(0; 1)2Ĉl(0; 2) 
2
21 �
2!M��+12 Ĉl(0; 1)2Ĉl(0; 2) 
2
21 �
2M�2(l�1) (A.5)with � = � log
2= log 2. The asymptoti
 behaviour at large J depends
ru
ially on the value of a. For small values of a (su
h that 
21 < 
2) theasymptoti
s is given by the �rst term in (A.5) sin
e l � 1 < � < 2(l � 1)whereas for larger values of a (2(l�1) < � < 2l�1) the asymptoti
 behaviouris governed by the se
ond term. When � is equal to 2(l� 1) �a = 21=l�22�21=l+1�then Cl(J; 2) is given byCl(J; 2) =  1 + 12J Ĉl(0; 1)2Ĉl(0; 2) !M�2(l�1) (A.6)N = 3
3 = 21�l � (a+ 2)(a+ 1)(2a+ 2)(2a + 1)�l ; Ĉl(0; 3) = �a(a+ 1)(a + 2)6 �l : (A.7)In the following we will 
on
entrate only on generi
 solution � that is forvalues of a that does not satisfy any of the equations: 
21 = 
2, 
31 = 
3,
2
1 = 
3 � handling those 
ases would give us a lot of formulas with nonew insight. H(J; 3) is given thus byH(J; 3) = 
J1 Ĉl(0; 1) �
J2 Ĉl(0; 2) + 12 Ĉl(0; 1)2 (
21)J �
J2
21 �
2 
2� (A.8)



82 A. Bialas, W. Czy», A. Ostruszkaand 
onsequentlyĈl(J; 3) = 
J3 �Ĉl(0; 3)Ĉl(0; 1)Ĉl(0; 2) 
3
1
2 �
3�12 Ĉl(0; 1)3 
2
21 �
2 
3
31 �
3+ 12 Ĉl(0; 1)3 
2
21 �
2 
3
1
2 �
3�+(
1
2)J �Ĉl(0; 1)Ĉl(0; 2) 
3
1
2 �
3� 12 Ĉl(0; 1)3 
2
21 �
2 
3
1
2 �
3�+(
31)J 12 Ĉl(0; 1)3 
2
21 �
2 
3
31 �
3 : (A.9)Sin
e one 
an show that 
1
2 � max(
3; 
31) then the asymptoti
 be-haviour will only depend either on 
J3 or (
31)J so for a smaller than thesolution of 
31 = 
3, the asymptoti
 value will be given by the �rst termin (A.9) whereas for larger values of a the asymptoti
s is governed by thelast term.Let us generalise: from (36) and (37) one 
an see that Ĉl(J;N) is a sumof terms whi
h all are of the form(
i
j : : : 
k)JBl(N ; i; j; : : : ; k) ; (A.10)where i+j+ : : :+k = N and Bl(N ; i; j; : : : ; k) is a 
oe�
ient whi
h does notdepend on J (in generi
 
ase). It is not di�
ult to give re
ursive expressionfor 
oe�
ients Bl(N + 1; : : :) in terms of Bl(n; : : :) where n = 1; 2; : : : ; Nwith the initial 
ondition Bl(1; 1) = Ĉl(0; 1) = al. In order to explain it
learly we introdu
e now the following notation:� 'n will denote set of numbers i1; : : : ; ik (k = 1; : : : ; n) su
h that theirsum is equal to n,� 'n [ 'm is a sum of two su
h sets (of 
ourse 'n [ 'm is a 'n+m),� if 'n = i; j; : : : ; k then 
'n = 
i
j : : : 
k.Using this notation we have the following expressions for 
oe�
ientsB(N ;'N 6= N)= 120�N�1Xn=1 X'n['N�n='NB(n;'n)B(N � n;'N�n)1A 
N
'N �
N ;(A.11)
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ades 83and B(N ;N) = Ĉ(0; N) � X'N 6=N B(N ;'N ) : (A.12)Sin
e lima!1
N = 21�Nl ; (A.13)lima!0
N = 21�l = 
1 (A.14)one 
an see that for small values of a, term 
JN will dominate whereas forlarge a, (
N1 )J will be dominating. We were not able to prove that for allvalues of a, N and l the asymptoti
 behaviour is governed either by the
JN or by (
N1 )J but the numeri
al results do indi
ate so. Example of thissituation is presented in Fig. 5 where we used N = 5 and l = 2.
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Fig. 5. Dependen
e of all 
i
j : : : 
k on a for N = 5 and l = 2.Appendix BAsymptoti
s at large N for J = 1We again use Eq. (31) and taking into a

ount its symmetry we writeĈl(J + 1; N) = 2 �� (a+N)� (2a)� (2a+N)� (a)�l N=2Xn=0 Ĉl(J; n)Ĉl(J;N � n) : (B.1)



84 A. Bialas, W. Czy», A. OstruszkaAt large N we 
an approximate this formula byĈl(J + 1; N) = 2 �� (2a)� (a) �lN�al N=2Xn=0 Ĉl(J; n)Ĉl(J;N � n) : (B.2)As the �rst step we analyse Cl(1; N). At large N the initial 
ondition (32)gives Ĉl(0; N) = �Na�1� (a) �l : (B.3)When substituted into (B.2) it givesĈl(1; N) = 2 �� (2a)� 3(a)�lN�alN l(a�1) N=2Xn=0 Ĉl(0; n)[(1 � n=N)� (a)℄l(a�1) :(B.4)The behaviour of this expression at large N depends on the 
onvergen
e ofthe series. If l(a� 1) > �1; i:e; a > (l � 1)=l (B.5)the series is divergent, and we haveN=2Xn=0 Ĉl(0; n) �(1� n=N)a�1� (a)�l ! 12N l(a�1)+1 Z 10 duul(a�1)(1� u)l(a�1)= 12N l(a�1)+1 � 2[l(a� 1) + 1℄� [2l(a� 1) + 2℄ ; (B.6)and thus denoting Zl(a) = � l(2a)� 2l(a) ; (B.7)Ĉl(1; N) = Zl(a)� 2[l(a� 1) + 1℄� l(a)� [2l(a� 1) + 2℄N la�2l+1 : (B.8)From this we �nally obtainCl(1; N) = � l(a)N l(1�a)Ĉl(1; N) = Zl(a)� 2[l(a� 1) + 1℄� [2l(a� 1) + 2℄ N1�l: (B.9)Note that for l = 1 we re
over C1 = 1. Ifa < l � 1l ; (B.10)



Renyi Entropies in Parti
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ades 85the series in (B.4) is 
onvergent and thus does not depend on N for largeN . Denoting �l(a) = 2 1Xn=0 �� (N + a)N !� (a) �l ; (B.11)we obtain̂Cl(1; N) = Zl(a)�l(a)� l(a) N�laN l(a�1) = Zl(a)�l(a)� l(a) N�l (B.12)and thus Cl(1; N) = Zl(a)�l(a)N�al: (B.13)Note that this is the result for a < 1 � 1=l whi
h is not possible for l = 1,so there is no 
ontradi
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