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IS ECONOPHYSICS A SOLID SCIENCE?�Zdzisªaw Burda, Jerzy Jurkiewiz and Maiej A. NowakM. Smoluhowski Institute of Physis, Jagellonian UniversityReymonta 4, 30-059 Kraków, Poland(Reeived Deember 11, 2002)Eonophysis is an approah to quantitative eonomy using ideas, mod-els, oneptual and omputational methods of statistial physis. In reentyears many of physial theories like theory of turbulene, saling, randommatrix theory or renormalization group were suessfully applied to eon-omy giving a boost to modern omputational tehniques of data analysis,risk management, arti�ial markets, maro-eonomy, et. Eonophysis be-ame a regular disipline overing a large spetrum of problems of moderneonomy. It is impossible to review the whole �eld in a short paper. Herewe shall instead attempt to give a �avor of how eonophysis approaheseonomial problems by disussing one partiular issue as an example: theemergene and onsequenes of large sale regularities, whih in partiularour in the presene of fat tails in probability distributions in maro-eonomy and quantitative �nane.PACS numbers: 02.50.�r, 05.40.�a, 05.70.Fh, 05.90.+m1. IntrodutionHalf a deade ago, a word �eonophysis� started to irulate in theommunity of physiists. In July 1997, �Workshop on Eonophysis� wasorganized in Budapest by Imre Kondor and Janos Kertesz [1℄.Followed by several other dediated meetings, the �eld matured, reahingthe state when textbooks on the subjet, written by the pioneers in the �eld,started to appear [2�4℄.The name �eonophysis�, a hybrid of �eonomy� and �physis�, wasoined to desribe appliations of methods of statistial physis to eon-omy in general. In pratie, majority of the researh onerned the �nanes.� This work has been ommissioned by the Editor of Ata Physia Polonia B. Ithas been �naned by Stowarzyszenie Zbiorowego Zarz¡dzania Prawami AutorskimiTwórów Dzieª Naukowyh i Tehniznyh KOPIPOL z siedzib¡ w Kielah, from theinome oming from implementation of Art. 20 of the law on authorship and relatedto its regulations. (87)



88 Z. Burda, J. Jurkiewiz, M.A. NowakIn suh a way, physiists entered o�ially and sienti�ally the �eld of �-nanial engineering. On top of similar statistial methods used by �nanialmathematiians (although formulated in not so formal or �high-brow� fash-ion as in the textbooks on �nanial mathematis), physiists onentratedon the analysis of experimental data using tools borrowed from the analysisof real omplex systems.Commissioned by the Editorial Board of Ata Physia Polonia B to pre-sent an overview of the �eonophysis� oriented towards a physiist who neverreally entered this interdisiplinary area, we faed the danger of an attemptto present the status of the disipline whih is still in statu nasendi, reviewedby authors biased strongly by their personal views related to their (limited)own researh in the newborn �eld. Therefore this mini-review is to a largeextent a olletion of thoughts and results from works of the three authors.As suh, it is not intended to over the whole �eld whih has beome a largedisipline with many sub-branhes by now but instead to present a modestsampler of sienti� methods borrowed from physis to desribe eonomial�data�. We restrited to the methods whih were natural extrapolation ofthose used in our own researh in fundamental siene (quantum gravity,random matries, random geometry, omplex systems). As a guiding linethrough this mini-review we have hosen power laws due to their omni-presene in eonomial data.The review is organized as follows. We begin with a historial intro-dution arguing that despite the name �eonophysis� entered the sienti�language only half a deade ago, onnetions and interplay between physisand eonomy are more than hundred years old. The o�ial marriage ofdisiplines of eonomy, often understood as an art, and physis being an ex-ample of a hard siene, has been preeded by the ontinuous developmentof sienti� methodology for a long time. One ould even say that the o�ialreognition of the lose links ame surprisingly late.In the seond part we onentrate on power-laws in eonomy. Using thesystem size riterion we divide the eonomial world into maro-, meso- andmirosopi objets: the �rst of whih are related to maro-eonomy, theseond to stok markets and the third to individual ompanies. The levelsare intertwined. In maro-eonomy one observes fat tails in the wealth andinome distributions. Analysis of stok markets learly shows the presene oflarge sale events, whih an be desribed by probability distributions withfat tails. The same onerns prie �utuations of individual ompanies. Ateah of these regimes, one uses slightly di�erent tools of the analysis. Aswe shall argue they all have ommon roots in the theory of large numbers.We shall start with the maro-eonomial appliation where we disuss thewealth and inome distributions. Then we swith to the miro- and meso-sopi regimes where we shall onentrate on statistial properties of the



Is Eonophysis a Solid Siene? 89system of �utuating assets and on a question how the signal an be ex-trated in suh a system. The natural language for the desription of suha system is provided by the random matrix theory. We shall disuss theentral limit theorem for random matries and its onsequenes.In the last, third part we very brie�y mention other ative areas of re-searh whih have reently attrated attention of the eonophysis ommu-nity. We also try to speulate on potential dangers of the approah, whihmay arise if methods of physis are adapted to eonomy to blindly. We be-lieve that the suess of sienti� methods for eonomi appliations requiresbroader sienti� methodology, borrowing largely not only from physis, butalso from other domains of siene, mainly the theory of adaptive systems,studies of omputer networks or the analysis of omplex systems. Onlysuessful evolution of �eonophysis� into �eonosiene�, aompanied byrigid onstraints based on areful analysis of empirial data, gives eonomya hane to beome a preditive theory at a high on�dene level, and mayaquire a status of a �hard siene�. We onlude that ahievement of thisgoal, although not easy, is ertainly possible.2. Historial bakgroundAt a �rst glane, eonomy and physis do not seem to be related. Despitethe fat that the literature is full of examples of famous physiists beinginterested in eonomi or �nanial problems, these examples are usuallytreated as adventures, and are sometimes anedotial. Some well knownases are:� unsuessful preditions of stok pries by sir Isaa Newton, and inonsequene, his terrible loss in 1720 of 20000 pounds in South Seaspeulation bubble [5℄,� suessful management of the fund for widows of Goetingen professors,performed by Carl Friedrih Gauss,� explanation of the Brownian random walk and the formulation ofthe Chapman-Kolmogorov ondition for Markovian proesses by LouisBahelier in his PhD thesis on the theory of speulation done 5 yearsbefore the Smoluhowski's and Einstein's works on di�usion, on thebasis of the observations of prie movements on Paris stok-market [6℄and few others. These examples put forward the thesis whih may soundrevolutionary for a ontemporary eonophysiist: It was the eonomy whihfollowed physis, and not vie versa � studies of the XVIII and XIX enturylassial physis made a dramati impat on eonomy, and the work was donemostly by the eonomists, who tried to follow the sienti� methodology ofphysial sienes (see e.g. [7, 8℄).



90 Z. Burda, J. Jurkiewiz, M.A. NowakAs a �rst example we mention the father of lassial eonomy, AdamSmith. In his work �The priniples whih lead and diret philosophialenquires: illustrated by the history of astronomy�, Smith exempli�es themethodology of siene by stressing the role of observing the regularitiesand then onstruting theories (alled by Smith �imaginary mahines�) re-produing the observations. Using the astronomy as a referene point wasnot aidental � it was the elestial mehanis, and the impressive amountof astronomial data, whih dominated siene in several ultures. It israther amazing, that this analysis was done by a person, who is primarilyidenti�ed as an eonomist, and not as a �physial sientist�. In the end ofXVIII and in XIX entury, Newton's theories were transformed into moremodern language of analytial mehanis in the works of Lagrange, Hamil-ton and others (atually, this is the formulation still used in textbooks ofmehanis today). The beauty and power of the analytial mehanism didnot esape the attention of the eonomists. In partiular, the onepts ofmehanis were onsidered as an ideal tool to be used in mathematizationof eonomy. Again, it is perhaps surprising for a ontemporary �nanial en-gineer that mathematis entered eonomy through physis! Eonomists likeWalras, Jevons, Fisher, Pareto tried to map the formalism of physis onto theformalism of eonomy, replaing material points by eonomi agents, �nd-ing the analogy of the potential energy represented by �utility�, and thenevolving the systems by the analogs of priniple of minimal ation [8℄. Thatfasination with mehanis went so far, that eonomists were even buildingmehanial models illustrating the onept of eonomial equilibrium. Theenhantment with lassial physis dated till the �rst half of the XX en-tury. Again, it is surprising for a physiist, that the oneptual revolutiondone by Boltzmann (onepts of probability) and quantum mehanis (an-other meaning of probability), were missed for so long by the eonomists.Visionary suggestions by Majorana [9℄ in the 30's to use statistial physisin soial siene were at that time not explored neither by physiists nor byeonomists.It is surprising even more, if we reall the example of the already men-tioned Louis Bahelier, who formulated the theory of Brownian motion onthe basis of eonomi data and moreover 5 years before the seminal works byEinstein and Smoluhowski. Almost half a entury after the defense of histhesis �Jeu de speulation� (not appreiated very muh by his advisor, HenriPoinaré), the ideas of Bahelier were disovered in the eonomy depart-ments of major Amerian universities. A slight modi�ation of the Bahelierstohasti proess (basially, hanging the additive noise into the multiplia-tive) lead Osborne and Samuelson [17℄ to the fundamental stohasti equa-tion governing the evolution of stok pries and serves as a ornerstone ofthe famous theory of Blak, Sholes and Merton for alulating the orret



Is Eonophysis a Solid Siene? 91prie of an option. Tehnially, the Blak�Sholes formula is just the solutionof the heat equation, with a peuliar boundary ondition. The inrediblepratial suess of option-priing formulae perhaps lured eonomists and�nanial engineers a bit, and maybe, to some extent, was responsible forthe spetaular rash on Wall Street in August and September 1998 whihrioheted over the other markets.Taking into aount several disoveries done in physis, one ould saythat perhaps in the 80' the eonomists missed a lesson from physis. Con-epts of a random walk were formulated using the assumption of the Gaus-sian harater of a stohasti proess. As suh, the movement of pries wasonsidered as memoryless, with almost negligible e�ets of large deviations,exponentially sreened in the Gaussian world. Atually already in the 60'Mandelbrot pointed ertain selfsimilarity of the behavior of ommodities(otton pries) over di�erent time sales, interpreted as the appearane ofpower law. Today, for a physiist, familiar with ritial phenomena, theonept of a power law and large �utuations is rather obvious, althoughshe or he may not be familiar with the fat that the main onepts of fratalbehavior, spelled by Mandelbrot in 70', were predeessed by his study ofotton pries, done a deade earlier. Atually, stok markets exhibited large�utuations (power behavior is usually named as �fat� or �heavy� tail be-havior), but rather a limited interest in this behavior in the 90' was ausedto large extent by the reservation of �nanial mathematis, laking powerfulmathematial methods (like Ito alulus) suited for proesses with divergentmoments.The seond major fator, hanging the Gaussian world was a omputer.In the last 40 years the performane of the omputers had inreased by sixorders of magnitude. This fat had to have a ruial impat on eonomy.First, the speed and the range of transations had hanged drastially. Insuh a way omputer started involuntarily to serve as an ampli�er of �u-tuations. Seond, the eonomies and markets started to wath eah othermore losely, sine omputer possibilities allowed for olleting exponentiallymore data.In this way, several nontrivial ouplings started to appear in eonomialsystems, leading to nonlinearities. Nonlinear behavior and overestimationof the Gaussian priniple for �utuations were responsible for the BlakMonday Crash in 1987, and the risis in August and September 1998.That shok had however also a positive impat visualizing the impor-tane of the non-linear e�ets. Already Poinaré has pointed the possibilityof unpreditability in a nonlinear dynamial system, establishing the foun-dations of the haoti behavior. The study of haos turned out to be a majorbranh of theoretial physis. It was only a question of time, how fast theseideas will start to appear in eonomy. Ironially, Poinaré, who did not



92 Z. Burda, J. Jurkiewiz, M.A. Nowakappreiate Bahelier's results, made himself a large impat on real omplexsystems as one of the disoverers of haoti behavior in dynamial systems.Nowadays studies of haos, self-organized ritiality, ellular automata andneural networks are seriously taken into aount as eonomial and �nanialtools.One of the bene�ts of the omputers was that eonomi systems startedto save more and more data. Today markets ollet inredible amount ofdata (pratially they remember every transation). This triggers the needfor new methodologies, able to manage the data. In partiular, the datastarted to be analyzed using methods, borrowed widely from physis, whereseeking for regularities and for unonventional orrelations is mandatory.It was perhaps the reason, why several institutions (however, more �-nanial than devoted to study the problems of maroeonomy) started hir-ing physiists as their �quants� or �roket sientists�. In the last ten years,another tendeny appeared � physiists started to study eonomy sienti�-ally. Several eduational or researh institutions devoted to study omplex-ity launhed the researh programs in eonomy and �nanial engineering.These studies were devoted mostly to quantitative �nane. To a large ex-tent, it was triggered by vast amount of data aessible in this �eld. In suha way, physis started to play the role of �nanial mathematis � some-times rephrasing the mathematial onstrutions in the language of physis,sometimes applying methods developed solely in physis, usually at the levelof various e�etive theories of omplex systems. Name �eonophysis�, oftenattributed to the ativity of physiists in this �eld, is in our opinion rathermisleading � perhaps �the physis of �nanes� is more adequate or even�statistial phynane� as J.P. Bouhaud jokes. Moreover, as we speulate inthe onlusions of this work, name �physis� may be to restritive to inludemajority of the tools of �nanial analysis.Probably the most hallenging questions in eonomy are those related tomaro-eonomy. Extrapolating the historial perspetive, brie�y skethedabove, to the future, one an expet methods of physis, espeially thoseused in studies of omplex and nonlinear systems, to make an impat onthis �eld in the nearest future. In this ase the meaning of eonophysiswould be similar to �physial eonomy�, and eonophysis ould be viewedas a physiists' realization of XIX entury eonomists' dream.3. Maro-eonomyLet us now turn to an example of eonophysial reasoning in maro-eonomy. The term maro-eonomy has in general a double meaning: of asiene whih deals with large sale phenomena in eonomial systems andof a system whih is the subjet of the maro-eonomial studies. Suh



Is Eonophysis a Solid Siene? 93a maro-eonomial system is a omplex system whih onsists of manyindividuals interating with eah other. The individuals funtion in thebakground provided by the legal and institutional frames. Individuals di�erin abilities, eduation, mentality, historial and ultural bakground et.They enter the system with di�erent �nanial and ultural initial onditions.Eah of them has his own vision of what is important and of what she orhe is willing and able to ahieve. It is lear that one annot formulate ageneral theory of needs and �nanial possibilities of a single individual orto reate an eonomial pro�le of a typial member of suh a ompliatedsystem. There are too many random fators to be taken into aount. Theyhange in time: sometimes slowly, sometimes faster, sometimes abruptlyand in an unpreditable way. Every day some individuals leave the system,some new enter it. It is impossible to follow individual hanges. One anhowever ontrol their statistis. Atually, it is the statistis whih shapes thesystem on large maro-eonomial sale and drives the large sale phenomenaobserved in the whole maro-system.The aim of maro-eonomial studies is to extrat important fators,understand their mutual relations and desribe the development of pastevents. The ultimate goal is to reah a level of understanding whih wouldalso permit to predit the reation of the system to the hange of maro-eonomial parameters in the future. Having suh a knowledge at hand,maro-eonomists would be able to stimulate the optimal evolution by ap-propriately adjusting the maro-eonomial parameters. This level of un-derstanding goes far beyond a formal desription and requires modeling andunderstanding of fundamental priniples whih are di�ult beause of theomplexity of the problem. Clearly, a model whose main ambition would beto realistially take into aount all parameters and fators haraterizingthe whole network of dependenies in suh a omplex system would fail tobe omprehensive and solvable. One would not be able to learn anythingfrom suh a model. It would be even to ompliated to properly re�et whatit atually intends to desribe.Obviously, one has to �nd a way of simplifying the underlying omplexityto the level whih enables a formulation of a treatable model. A danger of asimpli�ation of a omplex and non-linear problem is that by a tiny modi�-ation one an loose an important part of the information or introdue somearti�ial e�ets. There are two possible approahes to the problem of model-ing omplexity. One way is to follow a phenomenologial redution sheme.The �rst step is to introdue e�etive phenomenologial quantities whihenode the most important part of the redued information. Of ourse, itis very di�ult to quantify many important fators like ultural potential,historial bakground or in�uene of a hange in partiular law whih for ex-ample regulates relation between employers and employees et. Suh fators



94 Z. Burda, J. Jurkiewiz, M.A. Nowakplay ruial role in the outoming shape of the maro-system. The next stepis to determine mutual dependenies of these quantities. This proedure usu-ally leads to a set of non-linear di�erential equations desribing evolution ofthe phenomenologial quantities as a funtion of other parameters. At thislevel a new ompliation ours. It is well known that nonlinear equationsgenerally possess a very ompliated spetrum of solutions whose stabilitydepends on preise values of the parameters. Sometimes tiny hanges of pa-rameters whih are irrelevant, from the point of view of the maro-eonomy,may be signi�ant for the underlying mathematis, and opposite. In otherwords, a formal mathematial solution does not always arry a realisti eo-nomial information. One has to distinguish between the real and arti�iale�ets. It is not always easy and one should be aware of limitations steamingfrom the omplexity and non-linearity.An alternative approah is the searh for universal laws whih govern thebehavior of the omplex system. Suh laws may unover global regularitieswhih are insensitive to tiny hanges of parameters within a given lass ofparameters. Suh laws also provide a lassi�ation of possible universal largesale behaviors whih an our in the system and whih an be used as a�rst order approximation in the ourse of gaining insight into the mehanismsdriving the system.This approah has been suessfully used in theoretial physis for a longtime where for a given model one is able with the aid of the renormalizationgroup ideas to determine so alled �xed points, eah of whih being relatedto one universality lass of the model [10℄. The spae of all possible lasses ofdi�erent large sale behaviors of the model is divided into subspaes alleddomains (or basins) of attration of those �xed points. The universal prop-erties of any theory within a domain of attration of a given �xed pointare entirely determined by the properties of the renormalization group mapin the nearest neighborhood of the �xed point. The number of domains ofattration is usually small. Thus typially one has only a few distint uni-versal large sale behaviors despite the original theory has in�nitely manydegrees of freedom and in�nitely many oupling onstants ontrolling themutual interations of those degrees of freedom. Maro-eonomial systemsare in this respet very similar to �eld theoretial ones.Another well known example of the emergene of universal laws is theentral limit theorem. Saying not rigorously, the entral limit theorem tellsus that the sum of many independent identially distributed random num-bers polled from a distribution with a �nite average and a �nite varianeobeys a Gaussian law with the mean and the variane whih sale with thenumber of terms in the sum independently of the partiular shape of the dis-tribution. One ould say that all distributions with �nite variane belong tothe Gaussian basin of attration. The Gaussian distribution is stable. Sta-



Is Eonophysis a Solid Siene? 95ble distributions play here the role of �xed points. We see that a regularityemerges for large sums telling us that all details of the original distributionexept the mean and the variane get forgotten in the ourse of enlargingthe number of terms in the sum. Distributions with in�nite variane be-long to the Lévy universality lasses (or saying equivalently to the basin ofattration of the Lévy distributions) [11, 12℄.One expets the large sale phenomena in eonomy to display a universalharater beause they result from a large number of events whih are drivenby laws of the same system and whih ontribute to the same statistis.In this paper we shall take the latter approah. We shall be lookingfor general laws whih desribe large sale behavior of eonomial systems.We shall try to dedue them from assumptions as simple as possible, whihde�ne ertain universality lasses. Small re�nements and perturbations arebelieved not to hange the universality lass of the large sale behavior. Asan example, in the next setion we shall onentrate on the issue of thewealth and inome distribution. This issue, addressed already by AdamSmith, still stands in the entral plae in the maro-eonomial researh.4. Wealth and inome distributionsAs mentioned above, we argue that the laws governing distributions anbe dedued from the mathematis of large numbers. A simple assumptionabout the nature of wealth �utuations seems to apture properly the mi-rosopial mehanism whih in the large sale leads to the emergene oflaws known for a long time from empirial studies in maro-eonomy. The�rst law, disovered by Pareto more than one hundred years ago [13℄, tellsus that the wealth distribution of the rihest part of the soiety is ontrolledby the power-law taildw p(w) � �A�dww1+� for w � w0 : (1)Here p(w)dw stands for a probability that a randomly hosen member of themaro-eonomial system possesses the wealth between w and w + dw; w0has the meaning of a typial value of the individual's wealth in this system.The exponent � is alled the Pareto index. Pareto himself suspeted thatthere may exist an underlying mehanism whih singles out a partiular�xed value of this index. Today we know that it is not true. The value ofthe Pareto index � hanges from maro-eonomy to maro-eonomy [14℄. Italso varies in time. The empirial estimates show that a value of the Paretoindex in real maro-eonomial systems �utuates around two.It is worth disussing the onsequenes of the presene of the power-lawtail in the probability distribution. An immediate onsequene is that the



96 Z. Burda, J. Jurkiewiz, M.A. Nowakprobability that a random person from the riher part of the soiety is �times riher than another person with wealth wp(�w)p(w) � �1+� (2)is independent of w. This distribution is sale-free, re�eting a ertain self-similarity of the struture of the rihest lass. Atually the sale appearsin the problem through the parameter w0 whih provides the lower ut-o�above whih w � w0 the power-law part of the distribution sets in. Thesale is provided by pries of elementary goods whih one needs to funtionin the system, like for instane pries of houses, ars, et. Being rih meansto be far above this sale, to the degree that it does not matter how muhthe basi things ost.Let us take a loser look at some values to gain the intuition aboutthe onsequenes of the Pareto. For � = 10 and � = 2, the fator on theright hand side of (2) is 10�3. Thus for � = 2 the Pareto law predits thatthe number of people ten times riher is roughly one thousand times smaller.The suppression fator is very sensitive to �. If the value of � moves towardsunity, the suppression fator dereases, and for � = 10 it is only 10�2. Inother words, in the maro-eonomy with a smaller value of � the tail of thedistribution is fatter. This leaves more spae for rih individuals. Thus oneintuitively expets that for smaller � the maro-eonomy is more liberal. Ina more restritive maro-eonomial system the Pareto exponent � is largerand hene the riher population is suppressed.The presene of heavy tails in empirial data is relatively easy to detet.One just observes ases lying far beyond the range suggested by standardestimators of the mean and width of the distribution. What is however di�-ult is to quantitatively estimate the values of the Pareto index. The reasonfor this is atually very simple. As follows from the disussion above, aseswith a very large deviation from the mean are relatively rare � muh morerare than those in the bulk of the distribution. Thus the statistis in thetail is very poor. The e�et of small statistis is additionally ampli�ed bythe fat that for a given maro-eonomial system one an arry only onemeasurement of the wealth distribution. One thus has only one statistiallyindependent sample. Seondly, the rossover between the bulk of the distri-bution oming from the lower and middle lasses and the tail oming fromthe rihest is smeared and therefore it is not entirely lear where the Paretolaw sets in: the position of the termination point of the Pareto tail is notunique. This unertainty introdues a bias to the estimators.Moreover, gathering data about personal wealth and inome is a deliatematter. It is tehnially very di�ult, lose to impossible, to ollet theunbiased data, whih would be free of personal, soial or politial fators.



Is Eonophysis a Solid Siene? 97Here we shall disuss only the di�ulty related to poor statistis. Havingthe wealth distribution p(w)dw one an easily estimate the probability thatthe wealth of a random member of the maro-eonomy exeeds a ertainvalue W P (W ) = 1ZW dw p(w) : (3)For the partiular form of the power law (1) this probability an be alulatedto be P (W ) � � AW �� for W � w0 : (4)In the population of N people the number of individuals whose wealth ex-eeds W is roughly of the order P (W )N . Thus denoting the wealth of therihest by Wmax, one an estimate P (Wmax)N � 1 and heneWmax � AN1=� : (5)A more involved analysis allows one to determine the distribution of wealthof the rihest in the maro-eonomy with the power-law tail to be given bythe Fréhet distribution [15℄d! pF (!) = d! �!1+� e�!�� = de�!�� ; (6)where ! is a resaled variable ! = Wmax=AN1=�. The distribution of themaximal wealth inherits thus the power-law tail from the original wealth dis-tribution p(w)dw. This means that in some realizations of the same maro-system the rihest may be muh riher that the rihest in other realizations.As a onsequene, the maximal wealth may undergo strong �utuations andso may the whole empirial data points in the Pareto tail. This is an addi-tional fator whih makes the quantitative analysis of the Pareto tail in themaro-eonomial data di�ult.It is muh easier to study empirially the distribution in the range ofsmaller wealths. The statistis is muh better in this ase sine the poorand middle lass setors are more numerous. Also the inome delarationsare statistially more reliable. In e�et, the �ow of wealth is muh easierto ontrol. The statistis is thus less biased. Surprisingly the empiriallaw whih governs this part of the inome and wealth distributions wasdisovered only four deades after the Pareto law. It was disovered byGibrat and named after him [16℄. Aording to this law the wealth andinome distributions for the lower and middle lasses obey the log-normallaw dw p(w) = dww 1p2��2 exp� log2 w=w02�2 : (7)



98 Z. Burda, J. Jurkiewiz, M.A. NowakThe umulative probability P (W ) that the wealth of a random member ofthe Gibrat maro-eonomy exeeds W is given byP (W ) = 1ZW dw p(w) = 12erf� logw=w0p2� � : (8)All moments of the Gibrat distribution are �nite hwki = wn0 exp�2n2=2. Theparameter �2 gives a typial width of �utuations of the order of magnitudeof w around w0. The values w whih deviate from w0 by few � are stronglysuppressed for the Gibrat distribution. Sometimes to distinguish betweenthe Gibrat and Pareto distributions for large W one draws the umulativedistributions in the log-log plot [14℄. The plot logP (W ) versus logW has aparaboli shape for the Gibrat distribution when W goes to in�nity, whilethe orresponding plot for the Pareto distribution is a straight line (seeFig. 1), This makes an enormous di�erene between the Pareto and Gibratlaws in the range of large wealths.
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Fig. 1. The power law and the lognormal �ts to the 1998 Japanese inome data.The solid line represents the lognormal �t with x0 = 4 million yen and � = 2:68.The straight dashed line represents the power law �t with � = 2:06. Reprintedfrom the paper [14℄ with the kind permission of the author. The data sets presentedin the �gure ome from three di�erent soures. The orresponding data points aredenoted by di�erent symbols in the �gure. See [14℄ for the detailed desription.



Is Eonophysis a Solid Siene? 99Let us disuss mathematial mehanisms whih may underlie the Gibratand Pareto laws. Imagine a random individual in the system. Denote her orhis wealth at a time t by wt, and by wt+1 at a later time, separated by oneunit " of time. The wealth ould inrease or derease by some fator �t [17℄wt+1 = �t+1wt : (9)In general this fator may itself depend on many fators like whih parti-ular individual we piked up to look at, with whom she or he interats inthe system, what is his or her urrent �nanial situation et. In the simplestapproximation, whih would be alled in physis a mean-�eld approxima-tion, we assume this fator to be a random number from the representativedistribution whih statistially haraterizes the whole system. Further, thedistribution is assumed to depend neither on time nor on the urrent wealth.The �rst assumption means that the proess is stationary, and the seondthat it is linear in wealth. Although all this seems to be a rude approxi-mation, the essential point is that it may be enough to apture the generalproperties of the related universality lass. What seems to be signi�ant inthe assumption is that the variation of the wealth is desribed by a multi-pliative rather than an additive proess. Hopefully the large sale behaviorwhih we want to dedue from this assumption is representative for a largerlass inluding also more omplex proesses.The assumed multipliative nature of hanges seems to well re�et theeonomial reality in whih the primary objets whih �utuate are the ratesof exhange understood in a broad sense: rates between goods, urrenies,money, real estate et. The pries of stoks also belong to this ategory. Thehange of wealth is proportional to the hange of the exhange rate whihimplies the multipliative nature of hanges. In a diversi�ed portfolios thesituation is a little more ompliated as we shall disuss later.It is onvenient to parameterize the hanges of the fator sale �t by thequantity rt whih is related to �t as follows: �t = exp rt or equivalently asrt = log �t = logwt+1 � logwt : (10)When the time unit " between t and t+ 1 is small, the fator �t is lose tounity. In this ase it an be substituted by �t = 1+ rt + : : : whih gives themeaning of an instantaneous return to the quantity rt. The parameterization�t = exp rt automatially takes are of the positive de�niteness of the salefator �t: for rt �utuating in the range (�1;+1), �t �utuates in therange (0;+1). In the simplest model the statistial information about thereturns rt is enoded in a probability distribution �"(r)dr whih haraterizesthe system. Suessive returns rt are assumed to be random numbers polledfrom the same distribution �"(r). The wealth wT and the return RT after



100 Z. Burda, J. Jurkiewiz, M.A. Nowakthe time � = T" whih elapsed from the moment t = 0, is given by theequation RT = log wTw0 = TXt=1 rt (11)as an be diretly dedued from the equation (9). If the mean and thevariane �r = hri" ;�2 = h(r � �r)2i" (12)of the distribution �"(r) are �nite, the distribution of the return RT ap-proahes the normal law with the densitydRT PT (RT ) = dRT 1p2�T�2 exp�(RT � T �r)22T�2 (13)as follows from the entral limit theorem. We use the relation between thereturn RT and the wealth wT (11) to obtain the distribution of wealthdwT pT (wT ) = dwTwT 1p2�T�2 exp� log2 wT =w0e�rT2T�2 : (14)This is the Gibrat law [16℄. The typial wealth of individuals in the sys-tem hanges in time as w0e�rT and the range of the order of magnitude of�utuations as pT�. A few omments are in order. A typial wealth ofthe system inreases in time if the return �r is positive and dereases if thereturn is negative. It is onstant for �r = 0. If one assumes it hanges slowly(adiabatially) in time one an think of R as a sort of an averaged return.Thus in some periods the total wealth may grow and in some diminish.The width of the wealth �utuations whih is given in the formula (14) by2T�2, grows in the model even if one assumes adiabati hanges: R T dt �2(t).Thus the distribution gets �atter in time, suggesting that the di�erenesof wealth may only grow with time: the spread between lower and upperend of middle lass inreases. This is what one very often observes if onesurveys a maro-system over years, but not always. There are two reasonsfor this. Firstly, the simple model (9) seems to be inappropriate to desribethe wealth evolution in turbulent periods like wars or rises. Seondly, themean-�eld approximation (9) fails to re�et the onservation law for thetotal wealth in the maro-system. If one assumes that the total wealth Whanges muh slower in time than the wealths of individuals then in a shortperiod one an treat the total wealth as onstant in omparison with thewealths of individual wi's. This means however that wi's annot �utuate



Is Eonophysis a Solid Siene? 101independently of eah other as is assumed in the equation (9) beause itwould violate the onservation lawW = w1 +w2 + : : :+ wN (15)whih tells us that, unless the eonomy as a whole produes a new wealth,�utuations of wi are not independent [18℄. This e�et does not allow �utu-ations of a typial order to grow as fast as the equation (14) would suggest.Later we shall disuss other onsequenes of the presene of the onservationlaw.There is another eonomial fator whih one should take into aountwhen onsidering the proess of wealth �utuations (9). In eah maro-eonomy there is some threshold wealth whih one has to posses to funtionin the system to ful�ll minimal needs. In welfare eonomies it is providedby the soial seurity system. Generally for eah maro-eonomial systemone an assume the existene of a positive ut-o� w� > 0 for the minimalwealth of eah individual. It is easy to work out onsequenes of imposingthe ut-o� [19℄ w > w� (16)on the multipliative proess (9). The right-hand side of the equation for thereturn is also given by the sum of independent inrements as in (11). Whathanges is the boundary ondition: in the presene of a ut-o�, RT annotbe smaller than a ertain value R�. One an think of the equation (11)as of a random walk, whih in the ase of a ut-o� has the lower barrierR�. Mirosopially the model with the barrier and without the barrier areidential. Thus one an hek that both ases are desribed by an identialdi�erential equation but with a di�erent boundary ondition. The equationreads �PT (RT )�T = ��r�PT (RT )�RT + �2 �2PT (RT )�R2T : (17)By inspetion one an hek that indeed the probability distribution PT (RT )(13) is a solution of the equation. In physis, the orresponding equation isalled the Fokker�Plank equation. It desribes a random walk with a drift.The two onstants �r and �2 in the equation orrespond to the drift veloityand the di�usion onstant and are related to the mean �r and the variane�2 of the underlying distribution (12). In the presene of the ut-o� in theboundary ondition: RT > R�. the Fokker�Plank equation (17) possessesa stationary solution PT (R) = P (R)�P (R)�T = 0 (18)



102 Z. Burda, J. Jurkiewiz, M.A. Nowakif �r < 0. The equation obtained by omparing the right-hand side of (17) tozero an be solved with the normalization ondition1ZR� P (R)dR = 1 : (19)The solution reads P (R) = � exp��(R�R�) ; (20)where � = ��r=�2 > 0. Substituting the return �r by w = w0eR (11) oneeventually obtains the stationary distribution for wealth [19℄p(w)dw = �w��w� dww : (21)Notie that it is independent of w0 whih disappears from the solution.This is the Pareto law [13℄. When the drift �r is positive the exponent �is negative, the normalization ondition (19) annot be ful�lled. There isno stationary solution. For positive � the distribution �ows with time andapproahes the log-normal law (14) of the Gibrat universality lass [16℄. Inthis ase the traes of the lower limit gradually disappear due to the positivedrift whih makes the bulk of the distribution depart from the lower ut-o�.Now imagine that the drift hanges slowly in time taking sometimes positiveand sometimes negative values. In this ase the system osillates betweenthe Gibrat and Pareto universality lasses. For a �nite time of the systemevolution it may e�etively lead to a mixed Pareto�Gibrat properties of thedistribution, being in aordane with empirial observations [14℄.What is ounter-intuitive in this piture at the �rst glane is that thedistribution of average returns �"(r) generates the Pareto tail in the out-oming distribution of wealth when the drift �r is negative. We see thenthat power-law tails our in the wealth distribution when the system onthe average generates negative returns. Negative returns mean that peopleloose wealth. Thus, paradoxially, when most of the people get poorer someget extremely rih, populating the Pareto tail. We shall see this e�et moretransparently below when disussing a onstraint maro-eonomy.To summarize this part of the disussion, the theory of large numbersexplains very well the observed empirial data. Flutuations in the empirialdata may be large due to the fat that the empirial histograms are based onsingle measurements. Flutuations may be partiularly large in the tail ofthe distribution where there are only few ounts in the empirial histogramsand where the wealth �utuations may be large due to the fat tails (6).



Is Eonophysis a Solid Siene? 1035. Wealth ondensationOne of the impliations of the mean-�eld approximation (9) is that thetotal wealth of the system might �utuate with the amplitude proportionalto the amplitude of individual hanges and the square root of the numberof individuals, or with a higher power if the fat tail properties beome im-portant. In reality the total wealth of the maro-system alternates slowerin time and does not undergo suh �utuations. Therefore it is natural tointrodue another time sale for hanges of the total wealth than for hangesof individual wealths. This leads to the onstraint of the type (15) in whihthe value W on the left hand side hanges muh slower than wi's on theright-hand side. This means that the �ow of the wealth between individualswithin the system is muh faster than the proess of hange of the totalwealth. Thus, if one onsiders hanges of wi's in a short time the onstraint(15) means that wi's annot be treated as ompletely independent stohas-ti variables. In partiular if an individual beomes very rih, amassing asubstantial part of the total wealthW aumulated in the maro-eonomialsystem, this happens at a prie of making others poorer. It is instrutiveto analyze onsequenes resulting from the onstraint. We shall do this inthe following way. In statistial mehanis of quasi-stationary systems oneapproximates averages over time by averages over a statistial ensemble.We shall use this approah here to represent �utuations of the partition ofwealth as a sum over all states in the ensemble of wealth partitions with themiro-anonial partition funtionZ(W;N) = Xfwi�0g Yi p(wi) Æ W � NXi=1 wi! : (22)The total wealth W (15) is distributed among N individuals. This model isvery lose in spirit to the mean-�eld approximation disussed above sine itassumes almost entire fatorization of the probability into independent prob-abilities p(wi) of individuals. One ould, of ourse, introdue interationsbetween di�erent values wi and wj but as disussed above the mean �eldarguments are good enough to explain empirial data within the aurayprovided by single observations. We use here the strategy of not introduingre�nements whih are not neessary. The full fatorization is weakly violatedby the wealth onservation. The individual wealths are bounded from belowwi > w�. For tehnial reasons it is onvenient to onsider integer valuedwi's. From the eonomial point of view this means that there exists aminimal indivisable unit in whih one expresses wealth as for example themonetary unit used in the ountry. The only thing we shall assume aboutthe probabilities p(w), following the previous setion, is that they possess a



104 Z. Burda, J. Jurkiewiz, M.A. NowakPareto tail (1). As will beome lear, the details onerning the exat shapeof the probability distribution are irrelevant for the universal large sale ef-fets of wealth ondensation. The only important parameters of the modelare the value of the Pareto exponent � and the mean of the distributionwr =Xwp(w) : (23)The mean is �nite for � > 1 and in�nite otherwise. In a thermalized eonomywhere p(w) is onstant for a long time this average wr adjusts itself to theaverage per apita �w = WN ; (24)and one has wr = �w : (25)The mean of the distribution wr may however depart from w as a result ofsome hanges whih the system may undergo. For example it may happenthat for some reasons a thermalized stable eonomy will start to develop,inreasing the total wealth W . Alternatively the eonomy may quikly godown dereasing the total wealth W . The question arises how the systemadjusts to the new situation in whih �w 6= wr: how it redistributes thesurplus if �w > wr or overs the de�it if �w < wr. A potential disrepanybetween wr and �w may also our as a result of some strutural hanges ofthe maro-eonomial framework, like taxation laws, employee rights et.,whih may lead to a hange of the distribution p(w) yet before the totalwealth of the eonomy hanges.We shall try to answer this question by investigating the response of thesystem de�ned by (22). This model an be solved analytially [18, 20℄. Theresponse of the system an be determined from the shape of the e�etiveprobability distribution de�ned as an average over all partitions weightedby the partition funtion (22)bp(w) = 1N * NXi Æ(wi � w)+ : (26)One an show that when wr = w�, there is a perfet mathing and thee�etive probability bp(w) = p(w) : (27)However, when the wealth per apita exeeds the ritial value �w > wr or issmaller than the ritial value: �w < wr the system enters one of two di�erentphases whih we all the surplus phase or the de�it phase respetively.



Is Eonophysis a Solid Siene? 105In the surplus phase the e�etive probability distribution bp(w) nonuni-formly approahes p(w) reating a peak at the large values. For large systemsN !1 the e�etive probability density may be approximated bybp(w) = p(w) + 1N Æ(w �N�w) ; (28)where the seond term is the Dira delta loalized at the value proportionalto the system size N . The proportionality oe�ient �w = �w�wr is a de-viation of the average wealth from the ritial value. The oe�ient 1=N infront of the delta funtion means that the probability related to the peak is1=N , or equivalently that the ontribution omes from one out of N individ-uals. The wealth of this individual wmax = N�w grows with the system size.He or she takes a �nite fration of the whole wealth. This e�et is similar tothe Bose�Einstein ondensation for whih a �nite fration of all partiles isin the ground state. The di�erene between the two ondensations is that inthe Bose�Einstein ondensation the ground state is favored by the energy,while here all individuals are idential and therefore they have a priori thesame hane that the wealth will ondense in their poket. The ondensationresults from a spontaneous symmetry breaking mehanism whih breaks thepermutation symmetry of N individuals of the original model. In reality,of ourse, the position of individuals in the maro-system is not idential.This may further enhane the e�et of ondensation observed already in themodel where those di�erenes are negleted.In the de�it phase ( �w < wr) the e�etive probability distribution bp(w)is given by bp(w) = e��wp(w) ; (29)where � is some positive funtion whih depends on �w = �w � wr. Thefator  is a normalization onstant. The exponent � vanishes in the limit�w ! 0�. We see that when the system enters the de�it phase a sup-pression of the fat tails ours: these are the rihest who �rst pay for thede�it.The order of the transition between the de�it and surplus phases de-pends on �. The transition is of the third or higher order [20℄. The transitionbeomes weaker when � approahes one or in�nity. The ritial value wrbeing the average of the distribution depends on the whole distribution butit is very sensitive to the tails: the fatter the tail the larger the ritial valuewr. On the other hand, when the ritial value wr is larger it is more di�-ult to enter the surplus phase �w > wr beause the wealth per apita mustexeed this ritial value. This may happen in a very rih soiety. In thelimiting ase � = 1, the ritial value wr is in�nite and the system neverenters the surplus phase.



106 Z. Burda, J. Jurkiewiz, M.A. NowakWhen the ritial value wr beomes smaller it is easier for the wealthper apita �w to exeed wr and to enter the surplus phase where the systemhas problems to redistribute the wealth of the rihest. If it happens in a rihsoiety this means that one individual reates a large fortune and the systemis not able to redistribute it quikly or at least that suh a redistribution isnot favored statistially. The wealth ondensation beomes however naturalthen. It is not a shame to be rih in a rih soiety as says Confuius.Paradoxially, the ondensation may also take plae in a restritive maro-eonomy. Assume that the total wealth of a poor soiety is �xed. Addition-ally imagine that the system beomes more restritive, whih results in theinrease of the Pareto index and the derease of the ritial value wr. Ifthis value beomes smaller than the wealth per apita �w, whih is �xed,the system enters the surplus phase. The wealth ondensates in one poketas a result of the surplus anomaly. Some of the rihest beome riher andother poorer. This learly reveals the danger of orruption of restritive poormaro-eonomies.The main onlusion of this setion is that large number theory also onthe elementary level explains potential danger of statistial instability, whihin the ase of restritive maro-eonomy may be related to the phenomenonof orruption. One an avoid this danger by making the maro-eonomialrules more liberal [18, 21℄. For ompleteness let us mention that one anonsider a maro-eonomy in ontat with the external world [21℄. In thelanguage of statistial physis this orresponds to the model de�ned by theanonial version of the partition funtion (22). In addition to what we dis-ussed here, in the anonial version of the model one an observe statistiale�ets of the attration of the external wealth to the maro-eonomy, or thewithdrawal of the internal one, depending on whether the maro-eonomialrules inside or outside are more liberal.6. Modeling a �nanial marketLet us now turn to the mesosopi sale and disuss �nanial markets.Finanial market is a part of the eonosystem whih is easiest to quantify.We shall use a simpli�ed piture of this market in whih the only objetsare the pries of assets, asset being the name ommonly used to desribea �nanial instrument, whih an be bought or sold, like urrenies, bonds,shares et. In the following we shall understand assets solely as shares. Asset(or stok) pries Si(t) are funtions of time. A typial time step ", when theprie is hanged is as short as few seonds. It will be the dynamis of priehanges, whih we shall disuss in this hapter.In the analogous way as the quantity rt (10) of the hapter about maro-eonomy we de�ne the instantaneous returns, whih we shall alternatively



Is Eonophysis a Solid Siene? 107all relative prie hanges of the asset in the period from � to � + "xi(� ; ") = logSi(� + ")� logSi(�): (30)Again the ruial ingredient of this analysis is the assumption about themultipliative nature of prie hanges. The de�nition of return is indepen-dent of the unit in whih the prie is given and seems the best to apture theessential properties of the prie system. Return xi(� ; ") an be any positivereal number. Obviously the return over a larger time interval is a sum of allhanges over its subintervalsxi(� ; "1 + "2) = xi(t; "1) + xi(t+ "1; "2) : (31)Finanial databases ontain huge number of time series of asset pries, sam-pled at various frequenies. Phenomenologially one an observe that priesbehave in a random way: relative prie hanges xi(t; ") �utuate. The empir-ially measured time orrelations show that these �utuations have a rathershort autoorrelation time, typially of the order of several minutes. Longerautoorrelation times were observed for the absolute values of �utuations.If the frequeny of sampling " is hosen larger than the autoorrelationtime "0, orresponding prie hanges an be viewed as independent randomvariables. The simplest assumption one an make is the assumption of sta-tionarity: xit = xi(� = t � "0; "0), where t is an integer, an be interpretedas random numbers generated with the same random number generator, in-dependent of time. One an derive surprisingly strong preditions based onthis simple assumption, using very general properties of this random num-ber generator. Let us assume that the generator is haraterized by thenormalized probability distribution funtion (pdf) P (x), with a harateris-ti funtion P̂ (z) de�ned by the Fourier transformP̂ (z) = 1Z�1 dxP (x)eixz : (32)De�ne a funtion R̂(z) = log P̂ (z). It is straightforward to see that the sumXn = nXi=1 xi (33)of independent random numbers distributed with P is again a random num-ber with a distribution Pn being an n-fold onvolution of P (x). In onse-quene, P̂n(z) = P̂ n(z) and R̂n(z) = nR̂(z) where R̂n(z) = logPn(z).



108 Z. Burda, J. Jurkiewiz, M.A. NowakA speial role is played by stable distributions, whih have the propertythat the probability distribution of the sum Pn an be mapped into theoriginal distribution by a linear hange of the argumentdxPn(x) = d(anx+ bn) P (anx+ bn) ; (34)where an and bn are suitable parameters. Saying di�erently, the stabledistributions are self-similar under the onvolution whih means that theshape of pdf is preserved up to a sale fator and shift. The ondition (34)an be rewritten as a ondition for R̂(z) in the formR̂(z) = nR̂(anz) + ibnz : (35)A lass of stable distributions is limited. The best known is the Gaussiandistribution, for whih R̂(z) = �z2 + iÆz ; (36)where Æ = hxi and  = 12 h(x � Æ)2i. One an think of the straightforwardgeneralizations of the last formulaR̂(z) = �jzj� + iÆz : (37)One an hek that they indeed ful�ll the stability ondition (35). How-ever only for 0 < � � 2 the orresponding harateristi funtion P̂ (z) =exp R̂(z) leads after inverting the Fourier transform (32) to a positive de�niteand normalizable funtion P (x), whih only in this ase an be interpretedas a probability distribution.It is a speial ase of Lévy distributions haraterized by the index 0 <� � 2 whih an be further generalized to asymmetri funtions. The mostgeneral form of R̂(z) an be shown ( [12℄) to beR̂(z) = �jzj�(1 + i� tan(��2 )sign(z)) + iÆz ; � 6= 1;R(z) = �jzj(1 + i� 2� sign(z) ln(jzj) + iÆz ; � = 1 : (38)The asymmetry parameter � takes values in the range [�1; 1℄. For � = 2 wehave the Gaussian distribution, the asymmetry plays no role in this ase asone an see from the formula sine the �-dependent term drops. Indeed theGaussian distribution has only a symmetri realization.One an easily hek that for stable distributions the self-similarity pa-rameter sales as an = n�1=�. Although R̂(z) is given expliitly, only in



Is Eonophysis a Solid Siene? 109very few ases the orresponding pdf P (x) is expressible in terms of simpleanalytial expressions. For x! �1 and � < 2dx P (x) / dx A��jxj1+� (39)and the asymmetry parameter� = A�+ �A��A�+ +A�� : (40)This behavior means that Levy distributions are very di�erent from theGaussian distribution. For 1 < � < 2 only the �rst moment hxi is de�ned,all higher moments diverge. For 0 < � � 1 even the �rst moment diverges.The importane of the stable distributions is demonstrated by the entrallimit theorem. Suppose we start with an arbitrary distribution P (x), notneessarily stable. Performing the n-fold onvolution of this distribution, inthe limit n!1 we neessarily end up with one of the stable distributionsdesribed above. Typially if P (x) has the asymptoti behavior like (39) forarbitrary � > 0 we shall obtain the Lévy distribution if � < 2 or Gaussiandistribution if � � 2. As a onsequene, if our sampling frequeny in theprie list is large, say one day, we may expet to a good approximation therelative prie hanges measured with this frequeny to be random numbersobtained from one of the stable distributions.If the idealized assumption of stationarity holds, we an represent thehistory of the �nanial market as a matrix xit, with the times t measuredin intervals of the sampling unit ", orresponding to one day. In this waywe lose information about the short time sale �utuations, but we mayexpet that for eah i the entries xit will represent a sequene of randomnumbers drawn from the same stable distribution. It is, of ourse, a ruialquestion, whih stable distribution is realized in pratie. We may deduethe properties of this distribution studying a �nite sample of xit on a timewindow T , onsisting of many days (say one month).7. Gaussian worldSimplest models assume the distribution to be Gaussian. If this is thease, it an be haraterized by two parameters: the shift Æi = hxii and thevariane �2i = 22i = h(xi� Æi)2i. Both parameters an be easily determinedempirially from the data on a time window T by the following estimators



110 Z. Burda, J. Jurkiewiz, M.A. Nowak~Æi = 1T TXt xit ;~�2i = 1T TXt �xit � ~Æi�2 : (41)Obviously these numbers would be subjet to a statistial error due to the�niteness of the time window. The values of the estimators onverge to theexat values ~Æi ! Æi, ~�2 ! �2 only in the limit T ! 1. In the Gaussianworld the evolution of the prie (or in our ase the logarithm of the prie)is just a di�usion proess with a drift. Knowledge of the parameters of theGaussian distribution desribing prie hanges in one day an be used topredit the distribution of the relative prie hanges on a longer time sales.These will again be given by the Gaussian distribution (due to its stability),but with resaled variane and shift.The market onsists of many assets (say i = 1; : : : ; N). The number ofassets in the market is typially a large number (the well-known Standardand Poor index SP500 quotes pries of 500 ompanies). The market realityis more omplex than suggested by the model of independent stationaryGaussian returns disussed above.The �rst problem is that the market reality is not stationary. One an-not expet that the pries will �utuate aording to the same law overtwenty years. In this period many things may happen whih may a�etperformanes of individual ompanies. One has to weaken the stationarityassumption and to substitute it by a sort of quasi-stationarity. In pratiethis means that the time window T used in the estimators (41) should belimited and so should be the future time in whih one uses the value of theestimators. Pratitioners [22℄ introdue further improvements to the estima-tors by weighting past events with weight, whih gradually dereases withtime. Here we shall not disuss this issue further, assuming in what followsa quasi-stationarity.The seond orretion whih one has to introdue to the model disussedabove is that in reality the pries of individual stoks are mutually orrelatedas a result of the existene of the network of inter-ompany dependenies.Indeed even by a purely statistial analysis of the orrelation matrix [23℄ onean observe and determine the statistial orrelations of prie �utuationsof stok pries of ompanies from the same industrial setors. Of ourse,inter-setor orrelations also exist. Further, the stok market is not a losedsystem. The total apital invested in the market may shift between the stokmarket and other investments like for instane the real estate. This leads



Is Eonophysis a Solid Siene? 111to the observed periods of �ows of the apital into the stok market or outof the stok market. As a result the pries may go up or down, dependingon whether the market attrats are repulses the apital. This is loselyrelated to the e�et known in soiology as herding. The e�et of herdingis also learly seen in the statistial analysis of the matrix whih showsthe ourrene of an eigenvalue in the spetrum of the orrelation matrixwhih is signi�antly larger than all other. The orresponding eigenvetor isinterpreted as a vetor of orrelations of hanges of individual pries to themain market tendenies whih are often referred to as �-parameters afterthe Capital Asset Priing Model [24℄. We shall ome bak to this issue later.This disussion shows that a realisti approah should allow to model theinter-ompany orrelations.A logial generalization of the Gaussian model desribed above is themodel of orrelated asset �utuations generated from some multidimensionalGaussian distribution. The probability of generating a vetor of returns xit,i = 1; : : : ; N at some time t isYi dxi P (x1; x2; : : : ; xN ) �Yi dxi exp�12Xij (xi � Æi)C�1ij (xj � Æj) : (42)The properties of this generator an be assumed, as disussed before, to beonstant in the period of time for whih the shifts Æi and the orrelationmatrix Cij are estimated (quasi-stationarity)~Cij = 1T TXt �xit � ~Æi��xjt � ~Æj� : (43)The orrelations may be both positive or negative. Knowledge of the orre-lation matrix Cij is ruial in �nanial engineering, and in the onstrutionof �optimal portfolios� following the Markowitz reipe [25℄. The main idea inthe onstrution of �optimal portfolios� is to redue the risk by diversi�a-tion. The portfolio is onstruted by dividing the total invested apital intofrations pi whih are held in di�erent assets: PNi pi = 1. The evolution ofthe return of the portfolio is now given by the stohasti linearized variableX(~p) =PNi pixi, whih produes an instantaneous return X(~p)t =PNi pixitat time t. The quintessene of the Markowitz idea is to minimize the �utu-ations of the random variable X(~p) at a given expeted return by optimallyhoosing the pi's. The risk is measured by the variane of the stohastivariable X(~p) �2 =Xij piCijpj : (44)Clearly, the information enoded in Cij is ruial for the appropriate hoieof pi's. Intuitively, a diversi�ation makes only sense when one diversi�es



112 Z. Burda, J. Jurkiewiz, M.A. Nowakbetween independent omponents and one does not gain too muh if oneredistributes apital between strongly orrelated assets whih make olletivemoves on the market.The ovariane matrix ontains this preious information about the in-dependent omponents. The spetrum of eigenvalues tells us about thestrength of �utuations of individual omponents, and the orrespondingeigenvetors about the partiipation of di�erent assets in this independentomponents.The fundamental question whih arises is how good is the estimate ~Cijgiven by the equation (42) of the underlying ovariane matrix (43), inpartiular how good is the risk estimate~�2 =Xij ~pi ~Cij ~pj (45)of risk (44). Although the question looks simple, the answer is not imme-diate. One an quantify the answer with the help of the random matrixtheory. We shall sketh some ideas whih one uses in this theory in the nextsetions. Here we shall only quote the results.To start with, onsider the simplest ase of ompletely unorrelated as-sets whih are equally risky. Further, we assume that they all �utuatesymmetrially around zero Æi = 0 with the same variane �i = 1. The or-relation matrix reads in this ase Cij = Æij . The spetrum of eigenvalues ofthis matrix is �(�) = Æ(� � 1) whih means that it is entirely loalized atunity. For the ideal diversi�ation pi = 1=N the risk measured by � (44) is� = 1=pN . What shall we obtain if we use in this ase the estimate ~Cijinstead?The random matrix theory as we shall see later gives a de�nite answer.The �rst observation is that the quality of the estimator (43) depends onthe time T for whih we ould measure the orrelation matrix. The longertime T , the better quality of the information whih an be read of from ~Cij:all diagonal elements should approah unity, and o�-diagonal ones zero. Inreality, as we mentioned, one never has an in�nite time T at ones disposal.Geometry of the data matrix xit; i = 1; : : : ; N; t = 1; : : : ; T is �nite. It is justa retangular matrix with the asymmetry parameter a = N=T < 1. Suhmatries form an ensemble alled the Wishart ensemble [26℄. The ase a > 1requires a speial treatment and is not relevant in this ase. For a largerthan zero we expet that the spetrum of the matrix ~C will be smeared inomparison with the delta spetrum of C. Indeed, as we shall see in thenext setions using the methods of random matrix theory one �nds~�(�) = 12�ap(�+ � �)(�� ��)� (46)



Is Eonophysis a Solid Siene? 113with �� = (1�pa)2. Only in the limit a! 0 we get the spetrum peakedat unity. This spetrum is alulated from the random matrix theory forWishart matries as we disuss later.Although the empirial matrix xit is obtained from a single realizationof a random matrix from the Wishart ensemble, its spetral properties arein general very similar to those desribed above. This is due to the self-averaging property of large matries.We an also expliitly �nd the estimate of risk (45). In doing this oneshould take into aount that the optimal hoie of probabilities ~pi whihminimizes the risk ~� depends on ~Cij~pi = PNj ~C�1ijPNjk ~C�1jk : (47)Inserting this solution into the formula (44) we an alulate the minimalvalue of the estimated risk�2 = 1N R d� �(�)��2�R d� �(�)��1�2 (48)whih eventually gives � = 1pN 1p1� a : (49)The exat relation between the spetrum of Cij and ~Cij an be obtainedin the limit N;T ! 1, a = N=T �xed. Again we skip here the derivationand quote only the result. A simple formula an be obtained for the Green'sfuntion ~G(z) = 1N �Tr 1z � ~C�1�W (50)whih relates it to its ounterpart, in the T !1 limit:G(t) = 1N Tr 1t� C�1 : (51)The subsript W means the average over the Wishart ensemble (42). One�nds [27℄ z ~G(z) = tG(t) ; (52)here z and t are related to eah other as:z = t(1� a+ atG(t)) : (53)



114 Z. Burda, J. Jurkiewiz, M.A. NowakThese two relations are in fat a onise way to write in�nitely many relationsbetween the moments of matries Cij and ~Cij . Letk = 1N TrC�k; (54)~k = 1N hTr ~C�kiW:On �nds ~1 = 1 ;~2 = 2 + a21 ;~3 = 3 + 3a12 + a231� � � (55)At the end of this setion let us ome to the problem of the large eigen-values observed in the spetra of eigenvalues of the �nanial ovariane ma-tries ~Cij. The spetra onsist typially of the random part (46) whih isuniversal as disussed above and few large eigenvalues. Among them one ispartiularly large. Its value is roughly speaking proportional to the numberN of the assets in the market. The orresponding eigenvetor ontains theontribution from almost all N ompanies on the market. This eigenvetoris alled the �market�. One an relatively easily understand the soure ofthe appearane of the market in the spetrum in terms of the herding phe-nomena whih we shortly signaled before. Imagine that there is a olletivebehavior of investors on the market whih an be driven by some soiologialfators. Mathematially suh a olletive movement may be in the simplestversion modeled by the oupling of the individual pries to some ommonbakground, for example by substituting the generator of the vetor of pries(42) by a new generator of the formYi dxi P (~x) �Yi dxi exp�12Xij (xi � �imt)C�1ij (xj � �jmt) ; (56)where �i's are some onstants, and mt is a ommon random variable desrib-ing the market movements. This is the basi idea underlying the CAPMmodel [24℄ mentioned above. One an hek that the largest eigenvalue dis-appears from the spetrum leaving the remaining part intat if at eah tone subtrats from eah return the market bakground represented as theinstantaneous average over all ompanies.



Is Eonophysis a Solid Siene? 115The other large eigenvalues an be attributed to the real strong orrela-tions between ompanies. The analysis of the eigenvetors allows to dividethe market into highly orrelated lusters, usually orresponding to ompa-nies from the same industrial setor. For example, one an see that the goldompanies form a luster whih is antiorrelated to the market.An example of the eigenvalue spetrum of the empirial ovariane ma-trix ~C (43), is shown in �gure 2. It is alulated for the SP500 for the period.
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Fig. 2. The spetrum of the �nanial ovariane matrix for the daily SP500 forN = 406 stoks and for T = 1309 days from 01.01.1991 to 06.03.1996. The leftplot represents the spetrum of the ovariane matrix for the normalized returns inthe natural time ordering; the right one for the normalized return in the reshu�edordering. The reshu�ing destroys orrelations between entries of the matrix ~Cij .The random matrix predition is plotted in solid line. The large eigenvalues lyingoutside the random matrix spetrum in the left �gure disappear from the spetrumfor reshu�ed data shown in the right.The data matrix xit has the sizeN = 406 and T = 1308 whih orresponds tothe asymmetry parameter a = 0:31. In the spetral analysis of the empirialmatrix one usually uni�es the sale of return �utuations of di�erent assetsby normalizing them by individual varianes �i (41): xit ! xit=�i whih foreah asset produes �utuations of unit width. For suh normalized �utu-ations the formula (46) tells us that that the random part of the spetrumof the ovariane matrix should be onentrated between 0:20 and 2:43. Welearly see the presene of larger eigenvalues in the spetrum presented in theleft plot in �gure 3, whih as mentioned, an be attributed to the inter-assetorrelations. However, the large eigenvalues disappear when one removes theinter-asset orrelation. One an do this by random reshu�ing of the timeordering of returns for eah individual asset. A random reshu�ing does not



116 Z. Burda, J. Jurkiewiz, M.A. Nowakhange the ontent of information stored in eah separate row of data but itdestroys the statistial information about the orrelations between di�erentrows. Indeed as is shown on the right plot in the �gure 2, the larger eigenval-ues disappear from the spetrum. The resulting spetrum of the ovarianematrix of suh reshu�ed data is perfetly desribed by the random matrixformula (41).
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Fig. 3. The same as in Fig. 2 but for for the nonnormalized returns: the left �gurefor the data in the natural time ordering and the right for the reshu�ed ordering.In this ase reshu�ing does not remove the large eigenvalues from the spetrumsignaling the presene of non-Gaussian e�ets in the return statistis.The above mentioned normalization of return �utuation xit ! xit=�i isnatural if �utuations belong to the Gaussian universality lass. If the un-derlying distributions governing the return �utuations have fat tails, thisnormalization is not appropriate sine the variane of the distribution doesnot exist. In this ase the use of the normalization xit ! xit=�i arti�iallyfores the resulting resaled quantities to behave as if they belonged to theGaussian universality lass of distributions with the unit variane. This in-trodues a bias to the analysis in ase of non-Gaussian statistis. Indeed, ifone skips this normalization one observes that ovariane matries for theoriginal SP500 data as well as for the reshu�ed SP500 data both possesslarge eigenvalues in the spetra (see Fig. 3). What is the reason that thereshu�ing does not remove them? Is the random matrix predition (46)wrong? The random matrix predition is not wrong of ourse but is validonly for matries from the Gaussian ensemble. The removal of the normaliza-tion ondition revealed the nature of the randomness of return �utuationswhih ontain fat tails. As we shall disuss later, the spetra of Lévy randommatries ontain fat tails whih means that even a ompletely random ma-



Is Eonophysis a Solid Siene? 117trix may ontain large eigenvalues. The main onlusion of this disussion isthat the large eigenvalues in the spetrum of �nanial ovarianes stem bothfrom inter-asset orrelations and from the Lévy statistis of return �utua-tions and therefore a proper statistial analysis of �nanial data, in prinipleof the eigenvalue ontent, would require the new Lévy methodology.8. Lévy worldIndeed on loser inspetion one �nds that individual prie �utuationshave rather heavy tails. Empirially one an �t their distribution, at leastin the asymptoti limit, as a power low of the form (39) with the power� � 1:5 : : : 1:8. Following our earlier disussion this means that one shouldrather onsider stable Lévy distributions when disussing the distributionof relative prie �utuations, for the sampling frequeny of the order of oneday or more.Models of this type were proposed in the literature. For a single asseti one should in priniple determine four parameters (index �i, asymmetry�i, range i and mean Æi), whih haraterize it's distribution P�i�iiÆi(xi). Inpratie suh a determination is numerially very di�ult, one an assumea value of � to be some �xed number in the range given above. Similarlyone an assume the asymmetry �i = 0 (numerially it is very di�ult todistinguish the e�et of asymmetry from that of a non-zero Æi). Even withthese assumptions the determination of the remaining two parameters ismore di�ult, beause for Lévy distributions the seond moment diverges.A typial time evolution of the logarithm of prie will in the Lévy worldbe very di�erent than in the Gaussian world. One observes from time to timevery large jumps, alled Lévy �ights. The pratial onsequene is a rela-tively large probability of extreme events. Sine these events are responsiblefor possible large losses on �nanial market, the orret determination of therisk annot be made if their probability is underestimated. Eah investmenton a �nanial market is risky and investors must know rather aurately theprobabilities of possible gains and losses.A Lévy market means that we should desribe a multidimensional, pos-sibly orrelated, Lévy random number generator. A natural assumption,as explained above is a ommon value of the index � for all market om-ponents. Correlations mean that for a given moment tj , �utuations xitan be deomposed as linear ombinations of independent Lévy omponents�k; k = 1; N , with a fatorizable probability distributionP (f�ig) =Yi P�Bi�i(�i): (57)



118 Z. Burda, J. Jurkiewiz, M.A. Nowakand a unit range �i = 1. Suh a deomposition means thatxit = NXk Aik�k (58)and that a probability distribution of this asset is (beause Lévy distributionsare stable) parametrized byÆi = Xk Aik�k ;i =  Xk jAikj�!1=� ; and�i = Pk jAikj�BkPk jAikj� : (59)In the simplest version desribed above we may take all Bk = 0 andin onsequene have all �i = 0. A matrix X with elements xit; i =1; : : : ; N; t = 1; : : : ; T an be viewed as a single realization of the gen-eralized Wishart random matrix generated with the Lévy probability distri-bution. Determination of the matrix Aij in this ase requires new methods,di�erent than in the Gaussian ase and will be disussed elsewhere [28℄.One an onstrut the analogue of the orrelation matrix ~Cij as~Cij = 1T 2=� TXt xitxjt = 1T 2=� (XXT )ij (60)and disuss its spetral properties when averaged over the ensemble of Lévymatries. The dependene on the size of the window T is di�erent than in theGaussian ase (whih orresponds to the limit � ! 2). To understand thereason for that let us onsider the unorrelated Lévy matrix with Aij = Æij.The diagonal elements di = ~Cii are the sums of squares of the randomLévy variables with the index �. It is trivial to realize that suh squaresare themselves random variables and that their distribution has a fat tailwith the index �=2. Following the arguments of the entral limit theoremgiven in the preeding setions we expet that if T is large enough a sumof suh variables will be distributed aording to the orresponding Lévydistribution. We may even argue that this distribution should by ompletelyasymmetri (� = 1), sine the squares are all positive. The fator T�2=�is the orret saling fator in this ase. Similar arguments an be used toshow that the o�-diagonal elements ~Cij ; i 6= j retain the original index �



Is Eonophysis a Solid Siene? 119and therefore in the limit T !1 the eigenvalue spetrum of the matrix ~Cijis dominated by its diagonal elements. The shape of this spetrum is givenby the Lévy pdf with the index �=2 and � = 1. This pdf has a power-likebehavior with a relatively low power (�=2 < 1) and an easily be responsiblefor large eigenvalues, whih in this version have no dynamial origin.To assess the importane of the o�-diagonal entries on the spetrum for�nite T , we use the standard perturbation theory. For that, we write~Cij = �diÆij + T�1=�aij� : (61)In the zeroth order, the eigenvalues of ~Cij are just di. The �rst order or-retions are zero beause the matrix aij is o�-diagonal. Generially, fora random matrix, di's are not degenerate, so up to the seond order, theeigenvalues of ~Cij are�i = di + "2 Xj(6=i) a2ijdj � di = di + T�2=� Xj(6=i) a2ijdj � di : (62)There are N � 1 terms in the sum, eah of order unity. Thus the sumontributes a fator proportional to N , say � siN , and we have:�i = di + siNT�2=� : (63)The o�-diagonal terms ompete with the diagonal ones for N � T 2=�.In the general ase, where the matrix Aij is non-trivial, the usefulness ofthe orrelation matrix ~Cij to determine the real orrelations in the systemis limited. Looking for methods of determination of the Aij is ruial todistinguish between the noise and signal.In both approahes presented above the elements of the matrix xit weretreated as random numbers obtained for eah time step t from the samemultidimensional random number generator. This an be understood as apartiular ase of a situation where this generator depends also on t andwhere we have some non-trivial matrix probability measure P (x)Dx. Ex-amples of suh measures are known in the literature.One an speulate that in reality the distribution of xit omes from manydi�erent soures s and that xit =Xs x(s)it ; (64)where all x(s)it have the same matrix measure. This approah leads to theonept of non-ommutative probability distributions, disussed in the nexthapter.



120 Z. Burda, J. Jurkiewiz, M.A. Nowak9. Matrix eonomyIn the previous hapters we mentioned several onsequenes of the entrallimit theorem, one of the ornerstones of the theory of probability. We mayask a question, whih at the �rst glane looks aademi: Can one formulatean analog of the entral limit theorem, if random variables X̂1; X̂2; : : : X̂Nforming the sums ŜN = X̂1 + X̂2 + : : : X̂N (65)do not ommute? In other words, we are seeking for a theory of probability,whih is non-ommutative, i.e. X̂i an be viewed as operators, but whihshould exhibit lose similarities to the �lassial� theory of probability. Suhtheories are ertainly interesting from the point of view of quantum me-hanis or nonommutative �eld theory, but are they relevant for eonomianalysis? The answer is positive. Abstrat operators may have matriialrepresentations. If suh onstrution exists, we would have a natural tool offormulating the probabilisti analysis diretly in the spae of matries. Con-temporary �nanial markets are haraterized by olleting and proessingenormous amount of data. Statistially, they may ome from a proessesof the type (64) and may obey the matrix entral limit theorems. Matrix-valued probability theory is then ideally suited for analyzing the propertiesof arrays of data (like the ones enountered in the previous hapter), analyz-ing signal to noise ratio and time evolution of large portfolios. It allows alsoto reast standard multivariate statistial analysis of ovarianes [29℄ intonovel and powerful language. Spetral properties of large arrays of data mayalso provide a rather unique tool for studying haoti properties, unravelingorrelations and identifying unexpeted patterns in very large sets of data.The origins of non-ommutative probability is linked with abstrat stud-ies of von Neumann algebras done in the 80'. A new twist was given to thetheory, when it was realized, that nonommuting abstrat operators, alledfree random variables, an be represented as in�nite matries [30℄. Only veryreently the onept of FRV started to appear expliitly in physis [31�33℄.In this paper, we abandon a formal way and we shall follow the intuitiveapproah, using frequently a physial intuition.Our main goal is to study the spetral properties of large arrays of data.Suh analysis turned out to be relevant for the soure detetion and bearingestimations in many problems related to signal proessing [34℄. Sine largestohasti matries obey entral limit theorems with respet to their mea-sure, spetral analysis is a powerful tool for establishing a stohasti featureof the whole set of matrix-ordered data, simply by omparing their spetrato the analytially known results of random matrix theory. Simultaneously,the deviations of empirial spetral harateristis from the spetral orre-lations of purely stohasti matries an be used as a soure of inferring the



Is Eonophysis a Solid Siene? 121important orrelations, not so visible when investigated by other methods.We shall �rst formulate the basis of matrix probability theory, and thenwe shall disuss a sample appliation in the ase of a �nanial ovarianematrix, a key ingredient of any theory of investment and/or �nanial riskmanagement.Let us assume, that we want to study statistial properties of in�niterandom matries. We are interested in the spetral properties of N � Nmatrix X, (in the limit N !1), whih is drawn from a matriial measuredX exp�NTrV (X) (66)with a potential V (X) (in general not neessarily polynomial). We shallrestrit ourselves to real symmetri matries for the moment, sine theirspetrum is real. The average spetral density of the matrix X is de�ned as�(�) = 1N hTrÆ(��X)i = 1N *Xi Æ(� � �i)+ ; (67)where h:::i means averaging over the ensemble (66). Using the standardfolklore, that the spetral properties are related to the disontinuities of theGreen's funtion we may introdueG(z) = 1N �Tr 1z �X� ; (68)where z is a omplex variable. Due to the known properties of the distribu-tions lim"!0 1�� i" = PV 1� � i�Æ(�) (69)we see that the imaginary part of the Green's funtion reonstruts spetraldensity (67) � 1� lim"!0 Im G(z)jz=�+i" = �(�) : (70)The natural (from the point of view of the physiist) Green's funtionshall serve us as an auxiliary onstrution explaining the ruial oneptsof the theory of matrix (nonommutative) probability theory. Let us de-�ne a funtional inverse of the Green's funtion (sometimes alled a Blue'sfuntion [32℄), i.e. G[B(z)℄ = z. The fundamental objet in nonommutativeprobability theory, so-alled R funtion or R-transform, is de�ned asR(z) = B(z)� 1z : (71)



122 Z. Burda, J. Jurkiewiz, M.A. NowakWith the help of the R-transform we shall now unover several astonishinganalogies between the lassial and matriial probability theory.We shall start from the analog of the entral limit theorem. It reads [30℄:The spetral distributions of independent variables X̂i,ŜK = 1pK (X̂1 + : : : + X̂K) (72)eah with arbitrary probability measure with zero mean and �nite varianehTrX̂2i i = �2, onverges towards the distribution with R-transform R(z) =�2z.Let us now �nd the exat form of this limiting distribution. Sine R(z) =�2z, B(z) = �2z + 1=z, so its funtional inverse ful�llsz = �2G(z) + 1=G(z) : (73)The solution of this quadrati equation (with proper asymptotis G(z)! 1=zfor large z) is G(z) = z �pz2 � 4�22�2 (74)so the spetral density, supported by the ut of the square root, is�(�) = 12��2p4�2 � �2 : (75)This is the famous Wigner semi-irle [35℄ (atually, semi-ellipse) ensemble.The omni-presene of this ensemble in various physial appliations �nds anatural explanation � it is a onsequene of the entral limit theorem fornon-ommuting random variables. Thus the Wigner ensemble is a nonom-mutative analog of the Gaussian distribution. Indeed, one an show, thatthe measure (66) orresponding to Green's funtion (74) is V (X) = ��2X2.Let us look in more detail, what �independene� means for two identialmatrix valued ensembles, e.g. of the Gaussian type, with zero mean andunit variane. We are interested in �nding the disontinuities of the Green'sfuntionG1+2(z) � Z DX̂1DX̂2e�NTrX̂21 e�NTrX̂22Tr 1z � (X̂1 + X̂2) : (76)In priniple, this requires a solution of the onvolution, with matrix-valued,nonommuting entries! Here we an see how the R-transform operates. Thisis the transform, whih imposes the additive property for the all umulants:



Is Eonophysis a Solid Siene? 123all spetral umulants obey ki(X1 + X2) = ki(X1) + ki(X2), for all i =1; 2; : : : ;1 [30, 36℄.Mathematiians all suh a property �freeness�, hene the name free ran-dom variables. The R-transform is an analog of the logarithm of the har-ateristi funtion (32) in the lassial probability theory, and ful�lls theaddition law [30℄ R1+2(z) = R1(z) +R2(z) : (77)Note that we keep the notation underlying the similarities between the las-sial and non-ommutative (matriial) probability alulus. In the aboveexample, the matrix valued onvolution of two Gaussian ensembles with aunit variane gives again a Gaussian ensemble, with the spetrum (semi-irle) resaled by p2. Tehnially, it omes from the fat that R1+2(z) =R1(z)+R2(z) = z+ z = 2z. This is like the usual onvolution of two Gaus-sian probability distribution, forming also a Gaussian but with a varianeresaled by a fator p2.At this moment one an start to really appreiate the power of the non-ommutative approah to probability. For large matries X̂ and Ŷ (exatresults hold in the N = 1 limit), the knowledge of their spetra is usuallysu�ient for prediting the spetrum of the sum X̂ + Ŷ .The nonommutative alulus allows also to generalize the additive lawfor non-hermitian matries [37, 38℄, and even formulate the multipliativelaw, i.e. infer the knowledge of all moments of the spetral funtion of theprodut of X̂Ŷ , knowing only the spetra of X̂ and Ŷ separately (so-alled S-transform) [30℄. As suh, it o�ers a powerful shortut in analyzing stohastiproperties of large ensembles of data. Moreover, the larger the sets thebetter, sine �nite size e�ets sale at least as 1=N .Let us hek the possibility of appearane of power-like spetra in non-ommutative probability theory. Motivated by the onstrution in lassialprobability, we pose the following problem: What is the most general form ofthe spetral distribution of random matrix ensemble, whih is stable undermatrix onvolution, i.e. has the same funtional form as the original distribu-tions, modulo shift and resaling? Surprisingly, non-ommutative probabil-ity theory follows from the Lévy�Khinhine theorem of stability in lassialprobability. In general, the needed R(z) behaves like z��1, where � 2 (0; 2℄.More preisely, the list is exhausted by the following R-transforms [39℄:(i) R(z) = ei��z��1, where � 2 (1; 2℄, � 2 [�� 2; 0℄(ii) R(z) = ei��z��1, where � 2 (0; 1), � 2 [1; 1 + �℄(iii) R(z) = a+ b log z, where a; b are omplex and =a � 0 and b � � 1�=a.



124 Z. Burda, J. Jurkiewiz, M.A. NowakNote that the stability index � is restrited to preisely the same valuesas in the one-dimensional ase (38). The asymptoti form of the spetra ispower-like, i.e. �(�) � 1=���1. Singular ase (iii) orresponds, in a sym-metri ase (b = 0), to the Cauhy distribution. Note that the ase (i) with� = 2 orresponds to the Gaussian ensemble. For spetral distributions,several other analogies to Lévy distributions hold. In partiular, there is aone-to-one orrespondene for spetral analogs of ranges, asymmetries andshifts. Spetral distributions exhibit also duality laws (�! 1=�), like theirlassial ounterparts [40, 41℄To onvine the reader, how useful the formalism of non-ommutativeprobability theory ould be for the analysis of �nanial data, let us reonsiderthe example from the previous hapter.We analyze a time series of pries of N ompanies, measured at equalsequene of T intervals. The returns (here relative daily hanges of pries)ould be reast into N � T matrix X. This matrix de�nes the empirialN �N ovariane matrix ~C (60). This matrix forms today a ornerstone ofevery methodology of measuring the market risk [22℄.We an now onfront the empirial data, assuming the extreme senario,that the ovariane matrix is ompletely noisy (no-information), i.e. X =X̂ is stohasti, belonging to e.g. a random matrix ensemble. By entrallimit theorems, we an onsider either matriial Gaussian or matriial Levy�Khinhin stability basins. From tehnial point of view, the problem of�nding spetral distribution for ovariane matrix redues to onvolution ofa square T � T matrix X̂2 and a �deterministi� diagonal projetor P , withthe �rst N elements equal to 1, and the remaining (T � N) set to zero.Exat formula, orresponding to T;N ! 1, N=T = a �xed omes from a�bak-of the envelope� alulation [42℄. For symmetri Lévy distributions,for ompletely random matries, the Green's funtion is given by~G(z) = 1=z[1 + f(z)℄ ; (78)where f(z) is a multivalued solution of a transendental equation(1 + f)(f + a) 1f2=� = z : (79)In the ase � = 2, equation is algebrai (quadrati), and the spetrum isloalized on a �nite interval. In all other ases the range of the spetrum isin�nite, with the large eigenvalue distribution saling as 1=��+1.A reader familiar with methods of multivariate statistial analysis im-mediately reognizes, that the ase � = 2 orresponds to the spetral distri-bution of elebrated Wishart distribution. Indeed, the normalized solutionof a quadrati equation (i.e. (79) with � = 2) leads to the spetral funtion
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Fig. 4. Spetral densities of the ovariane matrix of free random Lévy matrieswith the stability index � = 1=2 and di�erent values of the asymmetry parameterby m = T=N = 1=a (left �gure); and with the given asymmetry parameter m =T=N = 3:22 and di�erent values of the stability index � (right �gure).(46) mentioned already. This result was redisovered several times in theontext of various physial appliations, with the help of various randommatrix tehniques [43℄.We would like to stress, how natural and fundamental is this result fromthe point of view of non-ommutative probability and entral limit theorems.From this point of view, it is also puzzling how late the random matries(in our language matriial probabilities) were used for the analysis of �nan-ial data. The breakthrough ame in 1999, when two groups [44, 45℄ haveanalyzed the spetral harateristis of empirial ovarianes, alulated forall ompanies belonging to Standard and Poor 500 index, whih remainedlisted from 1991 till 1996. The spetrum of the empirial ovariane ma-trix onstruted from this matrix was then onfronted with the analytiallyknown spetrum of a ovariane matrix onstruted solely from the maximal-entropy (Gaussian) ensemble with the same number of rows and olumns.The unexpeted (for many) results showed, that the majority of thespetrum of empirial ovariane matries is populated by noise!In the ase of a Gaussian disorder, 94% of empirial eigenvalues wereonsistent with random matrix spetra [44℄. Only few largest eigenvaluesdid not math the pattern, re�eting the appearane of large lusters ofompanies, generally orresponding to the setorization of the market andmarket itself [23℄. The analysis done with the power law (� = 1:5) notonly on�rmed the dominane of stohasti e�ets, but even interpretedthe lusters as possible large stohasti events [46℄. It also pointed at thedangers of using the ovariane matrix (whih assumes impliitly the �nitedispersion) in the ase when power laws are present.



126 Z. Burda, J. Jurkiewiz, M.A. NowakThe random matrix analysis posed therefore a fundamental questionfor quantitative �nanes. If empirial ovariane matries are so �noisy�,why there are so valuable for pratitioners? Every industrial appliation ofrisk measurement depends heavily on ovariane matrix formulation. TheMarkowitz's theory of diversi�ation of investment portfolios depends ru-ially on the information inluded in the ovariane matrix [25℄. If indeedthe lower part of the ovariane matrix spetrum has pratially no infor-mation, the e�ets of noise would strongly ontaminate the optimal hoieof the diversi�ation, resulting in the dangerous underestimation of the riskof the portfolio.Bouhaud and others [47℄ suggested a way out, simply �ltering out thenoisy part of the orrelation matrix and repeating the Markowitz analysiswith re�ned matrix. This resulted in a better approximation of the risk.Their analysis did not answer however the fundamental question. Ifthe original matrix is noisy, i.e. has almost no information, how ome theovariane matries form the pillars of quantitative �nane?We tried to answer this question in the previous setion, shedding somelight on a rather nontrivial relation between the true ovariane matrix Cand its estimator ~C. The relation between the Green's funtions G and ~G wasobtained in the framework of Random Matrix Theory. Some other reentpapers using tools of random matrix theory for investigating the propertiesof ovariane matries are [48�51℄.We would like to point out at this moment, that matrix probabilitytheory seems to be ideally suited tool for better understanding the role ofovariane matrix and a way of quantitatively assessing the role of the noise,important orrelations and the stability of the analysis. In our opinion,the full power of random matrix tehniques was not reognized yet by thequantitative �nane ommunity.Finally, we would like to point out an exiting possibility of introduingthe dynamis formulated in the matrix probability language. The simplestdynamis of prie (S) movement of the asset is anonially [17℄ desribed bythe stohasti equationdS = St+dt � St = (�dt+ �d�)St ; (80)where the deterministi evolution is governed by the interest rate (drift) �and the stohasti term is represented by the Wiener measure d�, multipliedby dispersion (alled in �nane volatility) �. The Wiener measure ould berealized as pdtN(0; 1), where N(0; 1) is a Gaussian with zero mean and unitvariane. Therefore hd�i = 0 and h(d�)2i = dt, re�eting the random walkharater of the proess. Sine the proess is multipliative, the resultingFokker�Plank equation is a heat equation with respet to the log S, solved



Is Eonophysis a Solid Siene? 127by the log normal distribution. Note, that (80) has the same ontent asalready written equations (9),(30) for wealth and pries, respetively.One is tempted to write a similar stohasti equation for the vetor ofpries. The standard extension [52℄ readsSt+dt;i = (1 + �idt+pdtAij�j)St;i ; (81)where the noise vetor �i obeys h�i�ji � Æij and Aij is the square root of theorrelation matrix.Note however, that one may write a di�erent equation, but now for thematrix analog of the Wiener measure. It is not di�ult to see, that the roleof the white noise is now played by Gaussian ensemble of random matries,resulting into the matrix evolution for the whole vetor of pries. Taking the�nite time step, we getSt+dt;i = (Æij + �ijdt+ �pdtXij)St;j ; (82)where � is a deterministi matrix and X is a real Gaussian matrix and nota vetor. Di�usion takes then plae in the spae of matries. Finite timeevolution results in the in�nite produt of large, non-ommuting matries,ordered along the di�usive path, similarly like the hronologial operators dofor the time evolution of non-ommuting Hamiltonians. Here, however, theevolution is dissipative (spetrum is omplex). Surprisingly, random matrixtehniques [53℄ allow to analyze the hanges of the spetrum of suh stokmarket evolution operators as a funtion of time t, similarly as in the aseof a single asset, where the lognormal paket spreads aording to the heatequation.This approah, basially equivalent to one of the matrix generalizationsof the Ito-like proesses, may allow to study the time properties of the spe-tra of large sets of �nanial data. Moreover, the method seems not to berestrited to the Gaussian world, due to the mathematial power of matriialprobability alulus and the matrix valued stohasti di�erential equationsmay turn out to be a powerful tool of time series analysis of large sets ofdata. This �matrix eonophysis� (as a wittiism, or maybe �wittenism�,we may use abbreviation M-eonophysis to paraphrase M-theory) may alsogive a rather preise meaning of �quantum eonomy�, a vague term oftenenounter in the literature. In the language of a matrix-valued probabilityalulus, the �quantum nature� omes from the fat, that basi objets of theprobability alulus are operators, represented as large, non-ommuting ma-tries, represented in eonomy by arrays of data. The relevant observablesin this language are related to the statistial properties of their spetra.



128 Z. Burda, J. Jurkiewiz, M.A. Nowak10. Eonophysis or eonosiene?In the ourse of the presentation, we only brie�y analyzed some seletedmethods related to the desription of real omplex systems suh as eonomior �nanial markets. The idea was to give the reader not familiar with this�eld some sort of a sampler, hopefully an appetizer. We did not mention atall several intriguing attempts to desribe �nanial rashes using the insightfrom physis [54℄. Neither did we mention promising attempts to use theonepts of asades and/or turbulene for explaining the observed orre-lations and multifratality in high frequeny time series [55℄. We omittednatural, from the point of view of the physiist, modi�ations of the optiontheories [3℄. Our presentation of maroeonomi appliations was restritedto simple patterns of wealth distribution, and we ignored the whole dynam-is of this proess. We did not disuss several other issues, usually overedby eonophysis onferenes [56, 57℄.At this moment, instead of ontinuing the list of our sins, let us omebak to the titular question � how �solid� is eonophysis as a siene? Wewould like to point at few dangers, whih in our opinion, every eonophysiisthas to take into aount.1. First, we believe that laws of physis do not hange in time. Certainly,this is not true for most of the laws of eonomy. Most dramati arethe �nanial markets. Tehnial developments (omputers, Internet)or legal regulations have a major impat on the �eld.2. Seond, �the material points�, i.e. agents are not passive � they arethinking entities, and sometimes they are very smart. This invali-dates immediately the �stationarity� priniple. Methods and strate-gies evolve ontinuously in time, and the �quasistationarity� is ratherdue to the traditional onservatism of �nanial institutions. Abandon-ing this onservatism leads to the situation, where more adequate areonepts of biologial evolutionism mixed with elements of the gametheory. Indeed, this lead is seriously studied nowadays [58,59℄. Takinginto aount the omplexity of the system, the speed at whih the sys-tems may evolve and the multidimensional spae of the systems, whosetopology may more re�et the virtual network of onnetions than realgeographi distanes [60, 61℄, the need of suh studies is obvious. Asreently pointed [62℄, eonomy may evolve into ybersiene. Then,the role of the methods of physis will be redued, and physis willserve as a soure of omplementary methodology with respets to themethods of biology, mathematis, psyhology and omputer siene.3. Even assuming the methods of physis are appliable at ertain timehorizons, eonophysis may not be immediately suessful in the sense



Is Eonophysis a Solid Siene? 129of making an impat on eonomi or �nanial markets. What seemsto be absolutely ruial is that not only physiists should be onvinedthat they understand �markets�, they have also to onvine about thatthe �market makers�. This requires several ingredients. The �rst isthe quality of the researh. The seond is the ontinuous veri�ationof models/theories with the data. The third is the lose ooperationbetween the physiists and eonomists and �nanial advisors.All these three ingredients are often di�ult to ful�ll. The semantidisrepanies, muh too arelessly (also by us) usage of physiists' slang(like quantum eonomy, gauge theory, stok market Hamiltonian, spin-glassportfolio et.), some mutual gaps in eduation, sometimes lak of ruialdata et., may trigger the situation, where eonophysis may start to evolvein �splendid isolation� from the mainstream of eonomy.All these dangers may slow down, the however unavoidable on long run,(in our opinion), impat of methods of physis on eonomy and �nanialmarkets. Historial de�nition of eonomy, as an art of �optimal alloationof sare resoures to given ends�, needs to be replaed by the siene of�eonomi agents � proessors of information� [62℄.We do hope, that this review at least partially onvined the septi-al reader, that the onepts of statistial physis an enrih this siene,hopefully making even a major impat at the fundamental level.The ontent of this review was greatly in�uened by our ollaborators,with whom some of the original work was done and with whom we hadextensive disussions. In partiular we would like to thank Piotr Bialas, EwaGudowska-Nowak, Romuald Janik, Des Johnston, Marek Kami«ski, AndrzejKrzywiki, Gabor Papp and Ismail Zahed. We thank Wataru Souma forthe orrespondene and kind permission for reprinting the �gure from hispaper. This work was supported in part by the grant 2 P03B 096 22 of thePolish State Committee for Sienti� Researh (KBN) in years 2002�2004,EC Information Soiety Tehnologies Programme IST-2001-37259 ComputerPhysis Interdisiplinary Researh and Appliations and a speial dediatedgrant of KOPIPOL. REFERENCES[1℄ I. Kondor and J. Kértesz (eds), Eonophysis: An Emerging Siene, Kluwer,Dordreht 1999.[2℄ R.N. Mantegna, G.E. Stanley, An Introdution to Eonophysis: Correlationsand Complexity in Finane, Cambridge Univ. Press, Cambridge 1999.[3℄ J.P. Bouhaud, M. Potters, Theory of Finanial Risks, Cambridge Univ. Press,Cambrodge 2001.
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