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IS ECONOPHYSICS A SOLID SCIENCE?�Zdzisªaw Burda, Jerzy Jurkiewi
z and Ma
iej A. NowakM. Smolu
howski Institute of Physi
s, Jagellonian UniversityReymonta 4, 30-059 Kraków, Poland(Re
eived De
ember 11, 2002)E
onophysi
s is an approa
h to quantitative e
onomy using ideas, mod-els, 
on
eptual and 
omputational methods of statisti
al physi
s. In re
entyears many of physi
al theories like theory of turbulen
e, s
aling, randommatrix theory or renormalization group were su

essfully applied to e
on-omy giving a boost to modern 
omputational te
hniques of data analysis,risk management, arti�
ial markets, ma
ro-e
onomy, et
. E
onophysi
s be-
ame a regular dis
ipline 
overing a large spe
trum of problems of moderne
onomy. It is impossible to review the whole �eld in a short paper. Herewe shall instead attempt to give a �avor of how e
onophysi
s approa
hese
onomi
al problems by dis
ussing one parti
ular issue as an example: theemergen
e and 
onsequen
es of large s
ale regularities, whi
h in parti
ularo

ur in the presen
e of fat tails in probability distributions in ma
ro-e
onomy and quantitative �nan
e.PACS numbers: 02.50.�r, 05.40.�a, 05.70.Fh, 05.90.+m1. Introdu
tionHalf a de
ade ago, a word �e
onophysi
s� started to 
ir
ulate in the
ommunity of physi
ists. In July 1997, �Workshop on E
onophysi
s� wasorganized in Budapest by Imre Kondor and Janos Kertesz [1℄.Followed by several other dedi
ated meetings, the �eld matured, rea
hingthe state when textbooks on the subje
t, written by the pioneers in the �eld,started to appear [2�4℄.The name �e
onophysi
s�, a hybrid of �e
onomy� and �physi
s�, was
oined to des
ribe appli
ations of methods of statisti
al physi
s to e
on-omy in general. In pra
ti
e, majority of the resear
h 
on
erned the �nan
es.� This work has been 
ommissioned by the Editor of A
ta Physi
a Poloni
a B. Ithas been �nan
ed by Stowarzyszenie Zbiorowego Zarz¡dzania Prawami AutorskimiTwór
ów Dzieª Naukowy
h i Te
hni
zny
h KOPIPOL z siedzib¡ w Kiel
a
h, from thein
ome 
oming from implementation of Art. 20 of the law on authorship and relatedto its regulations. (87)
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z, M.A. NowakIn su
h a way, physi
ists entered o�
ially and s
ienti�
ally the �eld of �-nan
ial engineering. On top of similar statisti
al methods used by �nan
ialmathemati
ians (although formulated in not so formal or �high-brow� fash-ion as in the textbooks on �nan
ial mathemati
s), physi
ists 
on
entratedon the analysis of experimental data using tools borrowed from the analysisof real 
omplex systems.Commissioned by the Editorial Board of A
ta Physi
a Poloni
a B to pre-sent an overview of the �e
onophysi
s� oriented towards a physi
ist who neverreally entered this interdis
iplinary area, we fa
ed the danger of an attemptto present the status of the dis
ipline whi
h is still in statu nas
endi, reviewedby authors biased strongly by their personal views related to their (limited)own resear
h in the newborn �eld. Therefore this mini-review is to a largeextent a 
olle
tion of thoughts and results from works of the three authors.As su
h, it is not intended to 
over the whole �eld whi
h has be
ome a largedis
ipline with many sub-bran
hes by now but instead to present a modestsampler of s
ienti�
 methods borrowed from physi
s to des
ribe e
onomi
al�data�. We restri
ted to the methods whi
h were natural extrapolation ofthose used in our own resear
h in fundamental s
ien
e (quantum gravity,random matri
es, random geometry, 
omplex systems). As a guiding linethrough this mini-review we have 
hosen power laws due to their omni-presen
e in e
onomi
al data.The review is organized as follows. We begin with a histori
al intro-du
tion arguing that despite the name �e
onophysi
s� entered the s
ienti�
language only half a de
ade ago, 
onne
tions and interplay between physi
sand e
onomy are more than hundred years old. The o�
ial marriage ofdis
iplines of e
onomy, often understood as an art, and physi
s being an ex-ample of a hard s
ien
e, has been pre
eded by the 
ontinuous developmentof s
ienti�
 methodology for a long time. One 
ould even say that the o�
ialre
ognition of the 
lose links 
ame surprisingly late.In the se
ond part we 
on
entrate on power-laws in e
onomy. Using thesystem size 
riterion we divide the e
onomi
al world into ma
ro-, meso- andmi
ros
opi
 obje
ts: the �rst of whi
h are related to ma
ro-e
onomy, these
ond to sto
k markets and the third to individual 
ompanies. The levelsare intertwined. In ma
ro-e
onomy one observes fat tails in the wealth andin
ome distributions. Analysis of sto
k markets 
learly shows the presen
e oflarge s
ale events, whi
h 
an be des
ribed by probability distributions withfat tails. The same 
on
erns pri
e �u
tuations of individual 
ompanies. Atea
h of these regimes, one uses slightly di�erent tools of the analysis. Aswe shall argue they all have 
ommon roots in the theory of large numbers.We shall start with the ma
ro-e
onomi
al appli
ation where we dis
uss thewealth and in
ome distributions. Then we swit
h to the mi
ro- and meso-s
opi
 regimes where we shall 
on
entrate on statisti
al properties of the
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tuating assets and on a question how the signal 
an be ex-tra
ted in su
h a system. The natural language for the des
ription of su
ha system is provided by the random matrix theory. We shall dis
uss the
entral limit theorem for random matri
es and its 
onsequen
es.In the last, third part we very brie�y mention other a
tive areas of re-sear
h whi
h have re
ently attra
ted attention of the e
onophysi
s 
ommu-nity. We also try to spe
ulate on potential dangers of the approa
h, whi
hmay arise if methods of physi
s are adapted to e
onomy to blindly. We be-lieve that the su

ess of s
ienti�
 methods for e
onomi
 appli
ations requiresbroader s
ienti�
 methodology, borrowing largely not only from physi
s, butalso from other domains of s
ien
e, mainly the theory of adaptive systems,studies of 
omputer networks or the analysis of 
omplex systems. Onlysu

essful evolution of �e
onophysi
s� into �e
onos
ien
e�, a

ompanied byrigid 
onstraints based on 
areful analysis of empiri
al data, gives e
onomya 
han
e to be
ome a predi
tive theory at a high 
on�den
e level, and maya
quire a status of a �hard s
ien
e�. We 
on
lude that a
hievement of thisgoal, although not easy, is 
ertainly possible.2. Histori
al ba
kgroundAt a �rst glan
e, e
onomy and physi
s do not seem to be related. Despitethe fa
t that the literature is full of examples of famous physi
ists beinginterested in e
onomi
 or �nan
ial problems, these examples are usuallytreated as adventures, and are sometimes ane
doti
al. Some well known
ases are:� unsu

essful predi
tions of sto
k pri
es by sir Isaa
 Newton, and in
onsequen
e, his terrible loss in 1720 of 20000 pounds in South Seaspe
ulation bubble [5℄,� su

essful management of the fund for widows of Goetingen professors,performed by Carl Friedri
h Gauss,� explanation of the Brownian random walk and the formulation ofthe Chapman-Kolmogorov 
ondition for Markovian pro
esses by LouisBa
helier in his PhD thesis on the theory of spe
ulation done 5 yearsbefore the Smolu
howski's and Einstein's works on di�usion, on thebasis of the observations of pri
e movements on Paris sto
k-market [6℄and few others. These examples put forward the thesis whi
h may soundrevolutionary for a 
ontemporary e
onophysi
ist: It was the e
onomy whi
hfollowed physi
s, and not vi
e versa � studies of the XVIII and XIX 
entury
lassi
al physi
s made a dramati
 impa
t on e
onomy, and the work was donemostly by the e
onomists, who tried to follow the s
ienti�
 methodology ofphysi
al s
ien
es (see e.g. [7, 8℄).



90 Z. Burda, J. Jurkiewi
z, M.A. NowakAs a �rst example we mention the father of 
lassi
al e
onomy, AdamSmith. In his work �The prin
iples whi
h lead and dire
t philosophi
alenquires: illustrated by the history of astronomy�, Smith exempli�es themethodology of s
ien
e by stressing the role of observing the regularitiesand then 
onstru
ting theories (
alled by Smith �imaginary ma
hines�) re-produ
ing the observations. Using the astronomy as a referen
e point wasnot a

idental � it was the 
elestial me
hani
s, and the impressive amountof astronomi
al data, whi
h dominated s
ien
e in several 
ultures. It israther amazing, that this analysis was done by a person, who is primarilyidenti�ed as an e
onomist, and not as a �physi
al s
ientist�. In the end ofXVIII and in XIX 
entury, Newton's theories were transformed into moremodern language of analyti
al me
hani
s in the works of Lagrange, Hamil-ton and others (a
tually, this is the formulation still used in textbooks ofme
hani
s today). The beauty and power of the analyti
al me
hanism didnot es
ape the attention of the e
onomists. In parti
ular, the 
on
epts ofme
hani
s were 
onsidered as an ideal tool to be used in mathematizationof e
onomy. Again, it is perhaps surprising for a 
ontemporary �nan
ial en-gineer that mathemati
s entered e
onomy through physi
s! E
onomists likeWalras, Jevons, Fisher, Pareto tried to map the formalism of physi
s onto theformalism of e
onomy, repla
ing material points by e
onomi
 agents, �nd-ing the analogy of the potential energy represented by �utility�, and thenevolving the systems by the analogs of prin
iple of minimal a
tion [8℄. Thatfas
ination with me
hani
s went so far, that e
onomists were even buildingme
hani
al models illustrating the 
on
ept of e
onomi
al equilibrium. Theen
hantment with 
lassi
al physi
s dated till the �rst half of the XX 
en-tury. Again, it is surprising for a physi
ist, that the 
on
eptual revolutiondone by Boltzmann (
on
epts of probability) and quantum me
hani
s (an-other meaning of probability), were missed for so long by the e
onomists.Visionary suggestions by Majorana [9℄ in the 30's to use statisti
al physi
sin so
ial s
ien
e were at that time not explored neither by physi
ists nor bye
onomists.It is surprising even more, if we re
all the example of the already men-tioned Louis Ba
helier, who formulated the theory of Brownian motion onthe basis of e
onomi
 data and moreover 5 years before the seminal works byEinstein and Smolu
howski. Almost half a 
entury after the defense of histhesis �Jeu de spe
ulation� (not appre
iated very mu
h by his advisor, HenriPoin
aré), the ideas of Ba
helier were dis
overed in the e
onomy depart-ments of major Ameri
an universities. A slight modi�
ation of the Ba
heliersto
hasti
 pro
ess (basi
ally, 
hanging the additive noise into the multipli
a-tive) lead Osborne and Samuelson [17℄ to the fundamental sto
hasti
 equa-tion governing the evolution of sto
k pri
es and serves as a 
ornerstone ofthe famous theory of Bla
k, S
holes and Merton for 
al
ulating the 
orre
t
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e of an option. Te
hni
ally, the Bla
k�S
holes formula is just the solutionof the heat equation, with a pe
uliar boundary 
ondition. The in
rediblepra
ti
al su

ess of option-pri
ing formulae perhaps lured e
onomists and�nan
ial engineers a bit, and maybe, to some extent, was responsible forthe spe
ta
ular 
rash on Wall Street in August and September 1998 whi
hri
o
heted over the other markets.Taking into a

ount several dis
overies done in physi
s, one 
ould saythat perhaps in the 80' the e
onomists missed a lesson from physi
s. Con-
epts of a random walk were formulated using the assumption of the Gaus-sian 
hara
ter of a sto
hasti
 pro
ess. As su
h, the movement of pri
es was
onsidered as memoryless, with almost negligible e�e
ts of large deviations,exponentially s
reened in the Gaussian world. A
tually already in the 60'Mandelbrot pointed 
ertain selfsimilarity of the behavior of 
ommodities(
otton pri
es) over di�erent time s
ales, interpreted as the appearan
e ofpower law. Today, for a physi
ist, familiar with 
riti
al phenomena, the
on
ept of a power law and large �u
tuations is rather obvious, althoughshe or he may not be familiar with the fa
t that the main 
on
epts of fra
talbehavior, spelled by Mandelbrot in 70', were prede
essed by his study of
otton pri
es, done a de
ade earlier. A
tually, sto
k markets exhibited large�u
tuations (power behavior is usually named as �fat� or �heavy� tail be-havior), but rather a limited interest in this behavior in the 90' was 
ausedto large extent by the reservation of �nan
ial mathemati
s, la
king powerfulmathemati
al methods (like Ito 
al
ulus) suited for pro
esses with divergentmoments.The se
ond major fa
tor, 
hanging the Gaussian world was a 
omputer.In the last 40 years the performan
e of the 
omputers had in
reased by sixorders of magnitude. This fa
t had to have a 
ru
ial impa
t on e
onomy.First, the speed and the range of transa
tions had 
hanged drasti
ally. Insu
h a way 
omputer started involuntarily to serve as an ampli�er of �u
-tuations. Se
ond, the e
onomies and markets started to wat
h ea
h othermore 
losely, sin
e 
omputer possibilities allowed for 
olle
ting exponentiallymore data.In this way, several nontrivial 
ouplings started to appear in e
onomi
alsystems, leading to nonlinearities. Nonlinear behavior and overestimationof the Gaussian prin
iple for �u
tuations were responsible for the Bla
kMonday Crash in 1987, and the 
risis in August and September 1998.That sho
k had however also a positive impa
t visualizing the impor-tan
e of the non-linear e�e
ts. Already Poin
aré has pointed the possibilityof unpredi
tability in a nonlinear dynami
al system, establishing the foun-dations of the 
haoti
 behavior. The study of 
haos turned out to be a majorbran
h of theoreti
al physi
s. It was only a question of time, how fast theseideas will start to appear in e
onomy. Ironi
ally, Poin
aré, who did not
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z, M.A. Nowakappre
iate Ba
helier's results, made himself a large impa
t on real 
omplexsystems as one of the dis
overers of 
haoti
 behavior in dynami
al systems.Nowadays studies of 
haos, self-organized 
riti
ality, 
ellular automata andneural networks are seriously taken into a

ount as e
onomi
al and �nan
ialtools.One of the bene�ts of the 
omputers was that e
onomi
 systems startedto save more and more data. Today markets 
olle
t in
redible amount ofdata (pra
ti
ally they remember every transa
tion). This triggers the needfor new methodologies, able to manage the data. In parti
ular, the datastarted to be analyzed using methods, borrowed widely from physi
s, whereseeking for regularities and for un
onventional 
orrelations is mandatory.It was perhaps the reason, why several institutions (however, more �-nan
ial than devoted to study the problems of ma
roe
onomy) started hir-ing physi
ists as their �quants� or �ro
ket s
ientists�. In the last ten years,another tenden
y appeared � physi
ists started to study e
onomy s
ienti�-
ally. Several edu
ational or resear
h institutions devoted to study 
omplex-ity laun
hed the resear
h programs in e
onomy and �nan
ial engineering.These studies were devoted mostly to quantitative �nan
e. To a large ex-tent, it was triggered by vast amount of data a

essible in this �eld. In su
ha way, physi
s started to play the role of �nan
ial mathemati
s � some-times rephrasing the mathemati
al 
onstru
tions in the language of physi
s,sometimes applying methods developed solely in physi
s, usually at the levelof various e�e
tive theories of 
omplex systems. Name �e
onophysi
s�, oftenattributed to the a
tivity of physi
ists in this �eld, is in our opinion rathermisleading � perhaps �the physi
s of �nan
es� is more adequate or even�statisti
al phynan
e� as J.P. Bou
haud jokes. Moreover, as we spe
ulate inthe 
on
lusions of this work, name �physi
s� may be to restri
tive to in
ludemajority of the tools of �nan
ial analysis.Probably the most 
hallenging questions in e
onomy are those related toma
ro-e
onomy. Extrapolating the histori
al perspe
tive, brie�y sket
hedabove, to the future, one 
an expe
t methods of physi
s, espe
ially thoseused in studies of 
omplex and nonlinear systems, to make an impa
t onthis �eld in the nearest future. In this 
ase the meaning of e
onophysi
swould be similar to �physi
al e
onomy�, and e
onophysi
s 
ould be viewedas a physi
ists' realization of XIX 
entury e
onomists' dream.3. Ma
ro-e
onomyLet us now turn to an example of e
onophysi
al reasoning in ma
ro-e
onomy. The term ma
ro-e
onomy has in general a double meaning: of as
ien
e whi
h deals with large s
ale phenomena in e
onomi
al systems andof a system whi
h is the subje
t of the ma
ro-e
onomi
al studies. Su
h
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e? 93a ma
ro-e
onomi
al system is a 
omplex system whi
h 
onsists of manyindividuals intera
ting with ea
h other. The individuals fun
tion in theba
kground provided by the legal and institutional frames. Individuals di�erin abilities, edu
ation, mentality, histori
al and 
ultural ba
kground et
.They enter the system with di�erent �nan
ial and 
ultural initial 
onditions.Ea
h of them has his own vision of what is important and of what she orhe is willing and able to a
hieve. It is 
lear that one 
annot formulate ageneral theory of needs and �nan
ial possibilities of a single individual orto 
reate an e
onomi
al pro�le of a typi
al member of su
h a 
ompli
atedsystem. There are too many random fa
tors to be taken into a

ount. They
hange in time: sometimes slowly, sometimes faster, sometimes abruptlyand in an unpredi
table way. Every day some individuals leave the system,some new enter it. It is impossible to follow individual 
hanges. One 
anhowever 
ontrol their statisti
s. A
tually, it is the statisti
s whi
h shapes thesystem on large ma
ro-e
onomi
al s
ale and drives the large s
ale phenomenaobserved in the whole ma
ro-system.The aim of ma
ro-e
onomi
al studies is to extra
t important fa
tors,understand their mutual relations and des
ribe the development of pastevents. The ultimate goal is to rea
h a level of understanding whi
h wouldalso permit to predi
t the rea
tion of the system to the 
hange of ma
ro-e
onomi
al parameters in the future. Having su
h a knowledge at hand,ma
ro-e
onomists would be able to stimulate the optimal evolution by ap-propriately adjusting the ma
ro-e
onomi
al parameters. This level of un-derstanding goes far beyond a formal des
ription and requires modeling andunderstanding of fundamental prin
iples whi
h are di�
ult be
ause of the
omplexity of the problem. Clearly, a model whose main ambition would beto realisti
ally take into a

ount all parameters and fa
tors 
hara
terizingthe whole network of dependen
ies in su
h a 
omplex system would fail tobe 
omprehensive and solvable. One would not be able to learn anythingfrom su
h a model. It would be even to 
ompli
ated to properly re�e
t whatit a
tually intends to des
ribe.Obviously, one has to �nd a way of simplifying the underlying 
omplexityto the level whi
h enables a formulation of a treatable model. A danger of asimpli�
ation of a 
omplex and non-linear problem is that by a tiny modi�-
ation one 
an loose an important part of the information or introdu
e somearti�
ial e�e
ts. There are two possible approa
hes to the problem of model-ing 
omplexity. One way is to follow a phenomenologi
al redu
tion s
heme.The �rst step is to introdu
e e�e
tive phenomenologi
al quantities whi
hen
ode the most important part of the redu
ed information. Of 
ourse, itis very di�
ult to quantify many important fa
tors like 
ultural potential,histori
al ba
kground or in�uen
e of a 
hange in parti
ular law whi
h for ex-ample regulates relation between employers and employees et
. Su
h fa
tors
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ru
ial role in the out
oming shape of the ma
ro-system. The next stepis to determine mutual dependen
ies of these quantities. This pro
edure usu-ally leads to a set of non-linear di�erential equations des
ribing evolution ofthe phenomenologi
al quantities as a fun
tion of other parameters. At thislevel a new 
ompli
ation o

urs. It is well known that nonlinear equationsgenerally possess a very 
ompli
ated spe
trum of solutions whose stabilitydepends on pre
ise values of the parameters. Sometimes tiny 
hanges of pa-rameters whi
h are irrelevant, from the point of view of the ma
ro-e
onomy,may be signi�
ant for the underlying mathemati
s, and opposite. In otherwords, a formal mathemati
al solution does not always 
arry a realisti
 e
o-nomi
al information. One has to distinguish between the real and arti�
iale�e
ts. It is not always easy and one should be aware of limitations steamingfrom the 
omplexity and non-linearity.An alternative approa
h is the sear
h for universal laws whi
h govern thebehavior of the 
omplex system. Su
h laws may un
over global regularitieswhi
h are insensitive to tiny 
hanges of parameters within a given 
lass ofparameters. Su
h laws also provide a 
lassi�
ation of possible universal larges
ale behaviors whi
h 
an o

ur in the system and whi
h 
an be used as a�rst order approximation in the 
ourse of gaining insight into the me
hanismsdriving the system.This approa
h has been su

essfully used in theoreti
al physi
s for a longtime where for a given model one is able with the aid of the renormalizationgroup ideas to determine so 
alled �xed points, ea
h of whi
h being relatedto one universality 
lass of the model [10℄. The spa
e of all possible 
lasses ofdi�erent large s
ale behaviors of the model is divided into subspa
es 
alleddomains (or basins) of attra
tion of those �xed points. The universal prop-erties of any theory within a domain of attra
tion of a given �xed pointare entirely determined by the properties of the renormalization group mapin the nearest neighborhood of the �xed point. The number of domains ofattra
tion is usually small. Thus typi
ally one has only a few distin
t uni-versal large s
ale behaviors despite the original theory has in�nitely manydegrees of freedom and in�nitely many 
oupling 
onstants 
ontrolling themutual intera
tions of those degrees of freedom. Ma
ro-e
onomi
al systemsare in this respe
t very similar to �eld theoreti
al ones.Another well known example of the emergen
e of universal laws is the
entral limit theorem. Saying not rigorously, the 
entral limit theorem tellsus that the sum of many independent identi
ally distributed random num-bers polled from a distribution with a �nite average and a �nite varian
eobeys a Gaussian law with the mean and the varian
e whi
h s
ale with thenumber of terms in the sum independently of the parti
ular shape of the dis-tribution. One 
ould say that all distributions with �nite varian
e belong tothe Gaussian basin of attra
tion. The Gaussian distribution is stable. Sta-
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e? 95ble distributions play here the role of �xed points. We see that a regularityemerges for large sums telling us that all details of the original distributionex
ept the mean and the varian
e get forgotten in the 
ourse of enlargingthe number of terms in the sum. Distributions with in�nite varian
e be-long to the Lévy universality 
lasses (or saying equivalently to the basin ofattra
tion of the Lévy distributions) [11, 12℄.One expe
ts the large s
ale phenomena in e
onomy to display a universal
hara
ter be
ause they result from a large number of events whi
h are drivenby laws of the same system and whi
h 
ontribute to the same statisti
s.In this paper we shall take the latter approa
h. We shall be lookingfor general laws whi
h des
ribe large s
ale behavior of e
onomi
al systems.We shall try to dedu
e them from assumptions as simple as possible, whi
hde�ne 
ertain universality 
lasses. Small re�nements and perturbations arebelieved not to 
hange the universality 
lass of the large s
ale behavior. Asan example, in the next se
tion we shall 
on
entrate on the issue of thewealth and in
ome distribution. This issue, addressed already by AdamSmith, still stands in the 
entral pla
e in the ma
ro-e
onomi
al resear
h.4. Wealth and in
ome distributionsAs mentioned above, we argue that the laws governing distributions 
anbe dedu
ed from the mathemati
s of large numbers. A simple assumptionabout the nature of wealth �u
tuations seems to 
apture properly the mi-
ros
opi
al me
hanism whi
h in the large s
ale leads to the emergen
e oflaws known for a long time from empiri
al studies in ma
ro-e
onomy. The�rst law, dis
overed by Pareto more than one hundred years ago [13℄, tellsus that the wealth distribution of the ri
hest part of the so
iety is 
ontrolledby the power-law taildw p(w) � �A�dww1+� for w � w0 : (1)Here p(w)dw stands for a probability that a randomly 
hosen member of thema
ro-e
onomi
al system possesses the wealth between w and w + dw; w0has the meaning of a typi
al value of the individual's wealth in this system.The exponent � is 
alled the Pareto index. Pareto himself suspe
ted thatthere may exist an underlying me
hanism whi
h singles out a parti
ular�xed value of this index. Today we know that it is not true. The value ofthe Pareto index � 
hanges from ma
ro-e
onomy to ma
ro-e
onomy [14℄. Italso varies in time. The empiri
al estimates show that a value of the Paretoindex in real ma
ro-e
onomi
al systems �u
tuates around two.It is worth dis
ussing the 
onsequen
es of the presen
e of the power-lawtail in the probability distribution. An immediate 
onsequen
e is that the
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her part of the so
iety is �times ri
her than another person with wealth wp(�w)p(w) � �1+� (2)is independent of w. This distribution is s
ale-free, re�e
ting a 
ertain self-similarity of the stru
ture of the ri
hest 
lass. A
tually the s
ale appearsin the problem through the parameter w0 whi
h provides the lower 
ut-o�above whi
h w � w0 the power-law part of the distribution sets in. Thes
ale is provided by pri
es of elementary goods whi
h one needs to fun
tionin the system, like for instan
e pri
es of houses, 
ars, et
. Being ri
h meansto be far above this s
ale, to the degree that it does not matter how mu
hthe basi
 things 
ost.Let us take a 
loser look at some values to gain the intuition aboutthe 
onsequen
es of the Pareto. For � = 10 and � = 2, the fa
tor on theright hand side of (2) is 10�3. Thus for � = 2 the Pareto law predi
ts thatthe number of people ten times ri
her is roughly one thousand times smaller.The suppression fa
tor is very sensitive to �. If the value of � moves towardsunity, the suppression fa
tor de
reases, and for � = 10 it is only 10�2. Inother words, in the ma
ro-e
onomy with a smaller value of � the tail of thedistribution is fatter. This leaves more spa
e for ri
h individuals. Thus oneintuitively expe
ts that for smaller � the ma
ro-e
onomy is more liberal. Ina more restri
tive ma
ro-e
onomi
al system the Pareto exponent � is largerand hen
e the ri
her population is suppressed.The presen
e of heavy tails in empiri
al data is relatively easy to dete
t.One just observes 
ases lying far beyond the range suggested by standardestimators of the mean and width of the distribution. What is however di�-
ult is to quantitatively estimate the values of the Pareto index. The reasonfor this is a
tually very simple. As follows from the dis
ussion above, 
aseswith a very large deviation from the mean are relatively rare � mu
h morerare than those in the bulk of the distribution. Thus the statisti
s in thetail is very poor. The e�e
t of small statisti
s is additionally ampli�ed bythe fa
t that for a given ma
ro-e
onomi
al system one 
an 
arry only onemeasurement of the wealth distribution. One thus has only one statisti
allyindependent sample. Se
ondly, the 
rossover between the bulk of the distri-bution 
oming from the lower and middle 
lasses and the tail 
oming fromthe ri
hest is smeared and therefore it is not entirely 
lear where the Paretolaw sets in: the position of the termination point of the Pareto tail is notunique. This un
ertainty introdu
es a bias to the estimators.Moreover, gathering data about personal wealth and in
ome is a deli
atematter. It is te
hni
ally very di�
ult, 
lose to impossible, to 
olle
t theunbiased data, whi
h would be free of personal, so
ial or politi
al fa
tors.
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e? 97Here we shall dis
uss only the di�
ulty related to poor statisti
s. Havingthe wealth distribution p(w)dw one 
an easily estimate the probability thatthe wealth of a random member of the ma
ro-e
onomy ex
eeds a 
ertainvalue W P (W ) = 1ZW dw p(w) : (3)For the parti
ular form of the power law (1) this probability 
an be 
al
ulatedto be P (W ) � � AW �� for W � w0 : (4)In the population of N people the number of individuals whose wealth ex-
eeds W is roughly of the order P (W )N . Thus denoting the wealth of theri
hest by Wmax, one 
an estimate P (Wmax)N � 1 and hen
eWmax � AN1=� : (5)A more involved analysis allows one to determine the distribution of wealthof the ri
hest in the ma
ro-e
onomy with the power-law tail to be given bythe Fré
het distribution [15℄d! pF (!) = d! �!1+� e�!�� = de�!�� ; (6)where ! is a res
aled variable ! = Wmax=AN1=�. The distribution of themaximal wealth inherits thus the power-law tail from the original wealth dis-tribution p(w)dw. This means that in some realizations of the same ma
ro-system the ri
hest may be mu
h ri
her that the ri
hest in other realizations.As a 
onsequen
e, the maximal wealth may undergo strong �u
tuations andso may the whole empiri
al data points in the Pareto tail. This is an addi-tional fa
tor whi
h makes the quantitative analysis of the Pareto tail in thema
ro-e
onomi
al data di�
ult.It is mu
h easier to study empiri
ally the distribution in the range ofsmaller wealths. The statisti
s is mu
h better in this 
ase sin
e the poorand middle 
lass se
tors are more numerous. Also the in
ome de
larationsare statisti
ally more reliable. In e�e
t, the �ow of wealth is mu
h easierto 
ontrol. The statisti
s is thus less biased. Surprisingly the empiri
allaw whi
h governs this part of the in
ome and wealth distributions wasdis
overed only four de
ades after the Pareto law. It was dis
overed byGibrat and named after him [16℄. A

ording to this law the wealth andin
ome distributions for the lower and middle 
lasses obey the log-normallaw dw p(w) = dww 1p2��2 exp� log2 w=w02�2 : (7)
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z, M.A. NowakThe 
umulative probability P (W ) that the wealth of a random member ofthe Gibrat ma
ro-e
onomy ex
eeds W is given byP (W ) = 1ZW dw p(w) = 12erf
� logw=w0p2� � : (8)All moments of the Gibrat distribution are �nite hwki = wn0 exp�2n2=2. Theparameter �2 gives a typi
al width of �u
tuations of the order of magnitudeof w around w0. The values w whi
h deviate from w0 by few � are stronglysuppressed for the Gibrat distribution. Sometimes to distinguish betweenthe Gibrat and Pareto distributions for large W one draws the 
umulativedistributions in the log-log plot [14℄. The plot logP (W ) versus logW has aparaboli
 shape for the Gibrat distribution when W goes to in�nity, whilethe 
orresponding plot for the Pareto distribution is a straight line (seeFig. 1), This makes an enormous di�eren
e between the Pareto and Gibratlaws in the range of large wealths.
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Fig. 1. The power law and the lognormal �ts to the 1998 Japanese in
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es. The 
orresponding data points aredenoted by di�erent symbols in the �gure. See [14℄ for the detailed des
ription.
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ien
e? 99Let us dis
uss mathemati
al me
hanisms whi
h may underlie the Gibratand Pareto laws. Imagine a random individual in the system. Denote her orhis wealth at a time t by wt, and by wt+1 at a later time, separated by oneunit " of time. The wealth 
ould in
rease or de
rease by some fa
tor �t [17℄wt+1 = �t+1wt : (9)In general this fa
tor may itself depend on many fa
tors like whi
h parti
-ular individual we pi
ked up to look at, with whom she or he intera
ts inthe system, what is his or her 
urrent �nan
ial situation et
. In the simplestapproximation, whi
h would be 
alled in physi
s a mean-�eld approxima-tion, we assume this fa
tor to be a random number from the representativedistribution whi
h statisti
ally 
hara
terizes the whole system. Further, thedistribution is assumed to depend neither on time nor on the 
urrent wealth.The �rst assumption means that the pro
ess is stationary, and the se
ondthat it is linear in wealth. Although all this seems to be a 
rude approxi-mation, the essential point is that it may be enough to 
apture the generalproperties of the related universality 
lass. What seems to be signi�
ant inthe assumption is that the variation of the wealth is des
ribed by a multi-pli
ative rather than an additive pro
ess. Hopefully the large s
ale behaviorwhi
h we want to dedu
e from this assumption is representative for a larger
lass in
luding also more 
omplex pro
esses.The assumed multipli
ative nature of 
hanges seems to well re�e
t thee
onomi
al reality in whi
h the primary obje
ts whi
h �u
tuate are the ratesof ex
hange understood in a broad sense: rates between goods, 
urren
ies,money, real estate et
. The pri
es of sto
ks also belong to this 
ategory. The
hange of wealth is proportional to the 
hange of the ex
hange rate whi
himplies the multipli
ative nature of 
hanges. In a diversi�ed portfolios thesituation is a little more 
ompli
ated as we shall dis
uss later.It is 
onvenient to parameterize the 
hanges of the fa
tor s
ale �t by thequantity rt whi
h is related to �t as follows: �t = exp rt or equivalently asrt = log �t = logwt+1 � logwt : (10)When the time unit " between t and t+ 1 is small, the fa
tor �t is 
lose tounity. In this 
ase it 
an be substituted by �t = 1+ rt + : : : whi
h gives themeaning of an instantaneous return to the quantity rt. The parameterization�t = exp rt automati
ally takes 
are of the positive de�niteness of the s
alefa
tor �t: for rt �u
tuating in the range (�1;+1), �t �u
tuates in therange (0;+1). In the simplest model the statisti
al information about thereturns rt is en
oded in a probability distribution �"(r)dr whi
h 
hara
terizesthe system. Su

essive returns rt are assumed to be random numbers polledfrom the same distribution �"(r). The wealth wT and the return RT after
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z, M.A. Nowakthe time � = T" whi
h elapsed from the moment t = 0, is given by theequation RT = log wTw0 = TXt=1 rt (11)as 
an be dire
tly dedu
ed from the equation (9). If the mean and thevarian
e �r = hri" ;�2 = h(r � �r)2i" (12)of the distribution �"(r) are �nite, the distribution of the return RT ap-proa
hes the normal law with the densitydRT PT (RT ) = dRT 1p2�T�2 exp�(RT � T �r)22T�2 (13)as follows from the 
entral limit theorem. We use the relation between thereturn RT and the wealth wT (11) to obtain the distribution of wealthdwT pT (wT ) = dwTwT 1p2�T�2 exp� log2 wT =w0e�rT2T�2 : (14)This is the Gibrat law [16℄. The typi
al wealth of individuals in the sys-tem 
hanges in time as w0e�rT and the range of the order of magnitude of�u
tuations as pT�. A few 
omments are in order. A typi
al wealth ofthe system in
reases in time if the return �r is positive and de
reases if thereturn is negative. It is 
onstant for �r = 0. If one assumes it 
hanges slowly(adiabati
ally) in time one 
an think of R as a sort of an averaged return.Thus in some periods the total wealth may grow and in some diminish.The width of the wealth �u
tuations whi
h is given in the formula (14) by2T�2, grows in the model even if one assumes adiabati
 
hanges: R T dt �2(t).Thus the distribution gets �atter in time, suggesting that the di�eren
esof wealth may only grow with time: the spread between lower and upperend of middle 
lass in
reases. This is what one very often observes if onesurveys a ma
ro-system over years, but not always. There are two reasonsfor this. Firstly, the simple model (9) seems to be inappropriate to des
ribethe wealth evolution in turbulent periods like wars or 
rises. Se
ondly, themean-�eld approximation (9) fails to re�e
t the 
onservation law for thetotal wealth in the ma
ro-system. If one assumes that the total wealth W
hanges mu
h slower in time than the wealths of individuals then in a shortperiod one 
an treat the total wealth as 
onstant in 
omparison with thewealths of individual wi's. This means however that wi's 
annot �u
tuate
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e? 101independently of ea
h other as is assumed in the equation (9) be
ause itwould violate the 
onservation lawW = w1 +w2 + : : :+ wN (15)whi
h tells us that, unless the e
onomy as a whole produ
es a new wealth,�u
tuations of wi are not independent [18℄. This e�e
t does not allow �u
tu-ations of a typi
al order to grow as fast as the equation (14) would suggest.Later we shall dis
uss other 
onsequen
es of the presen
e of the 
onservationlaw.There is another e
onomi
al fa
tor whi
h one should take into a

ountwhen 
onsidering the pro
ess of wealth �u
tuations (9). In ea
h ma
ro-e
onomy there is some threshold wealth whi
h one has to posses to fun
tionin the system to ful�ll minimal needs. In welfare e
onomies it is providedby the so
ial se
urity system. Generally for ea
h ma
ro-e
onomi
al systemone 
an assume the existen
e of a positive 
ut-o� w� > 0 for the minimalwealth of ea
h individual. It is easy to work out 
onsequen
es of imposingthe 
ut-o� [19℄ w > w� (16)on the multipli
ative pro
ess (9). The right-hand side of the equation for thereturn is also given by the sum of independent in
rements as in (11). What
hanges is the boundary 
ondition: in the presen
e of a 
ut-o�, RT 
annotbe smaller than a 
ertain value R�. One 
an think of the equation (11)as of a random walk, whi
h in the 
ase of a 
ut-o� has the lower barrierR�. Mi
ros
opi
ally the model with the barrier and without the barrier areidenti
al. Thus one 
an 
he
k that both 
ases are des
ribed by an identi
aldi�erential equation but with a di�erent boundary 
ondition. The equationreads �PT (RT )�T = ��r�PT (RT )�RT + �2 �2PT (RT )�R2T : (17)By inspe
tion one 
an 
he
k that indeed the probability distribution PT (RT )(13) is a solution of the equation. In physi
s, the 
orresponding equation is
alled the Fokker�Plan
k equation. It des
ribes a random walk with a drift.The two 
onstants �r and �2 in the equation 
orrespond to the drift velo
ityand the di�usion 
onstant and are related to the mean �r and the varian
e�2 of the underlying distribution (12). In the presen
e of the 
ut-o� in theboundary 
ondition: RT > R�. the Fokker�Plan
k equation (17) possessesa stationary solution PT (R) = P (R)�P (R)�T = 0 (18)
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omparing the right-hand side of (17) tozero 
an be solved with the normalization 
ondition1ZR� P (R)dR = 1 : (19)The solution reads P (R) = � exp��(R�R�) ; (20)where � = ��r=�2 > 0. Substituting the return �r by w = w0eR (11) oneeventually obtains the stationary distribution for wealth [19℄p(w)dw = �w��w� dww : (21)Noti
e that it is independent of w0 whi
h disappears from the solution.This is the Pareto law [13℄. When the drift �r is positive the exponent �is negative, the normalization 
ondition (19) 
annot be ful�lled. There isno stationary solution. For positive � the distribution �ows with time andapproa
hes the log-normal law (14) of the Gibrat universality 
lass [16℄. Inthis 
ase the tra
es of the lower limit gradually disappear due to the positivedrift whi
h makes the bulk of the distribution depart from the lower 
ut-o�.Now imagine that the drift 
hanges slowly in time taking sometimes positiveand sometimes negative values. In this 
ase the system os
illates betweenthe Gibrat and Pareto universality 
lasses. For a �nite time of the systemevolution it may e�e
tively lead to a mixed Pareto�Gibrat properties of thedistribution, being in a

ordan
e with empiri
al observations [14℄.What is 
ounter-intuitive in this pi
ture at the �rst glan
e is that thedistribution of average returns �"(r) generates the Pareto tail in the out-
oming distribution of wealth when the drift �r is negative. We see thenthat power-law tails o

ur in the wealth distribution when the system onthe average generates negative returns. Negative returns mean that peopleloose wealth. Thus, paradoxi
ally, when most of the people get poorer someget extremely ri
h, populating the Pareto tail. We shall see this e�e
t moretransparently below when dis
ussing a 
onstraint ma
ro-e
onomy.To summarize this part of the dis
ussion, the theory of large numbersexplains very well the observed empiri
al data. Flu
tuations in the empiri
aldata may be large due to the fa
t that the empiri
al histograms are based onsingle measurements. Flu
tuations may be parti
ularly large in the tail ofthe distribution where there are only few 
ounts in the empiri
al histogramsand where the wealth �u
tuations may be large due to the fat tails (6).
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ondensationOne of the impli
ations of the mean-�eld approximation (9) is that thetotal wealth of the system might �u
tuate with the amplitude proportionalto the amplitude of individual 
hanges and the square root of the numberof individuals, or with a higher power if the fat tail properties be
ome im-portant. In reality the total wealth of the ma
ro-system alternates slowerin time and does not undergo su
h �u
tuations. Therefore it is natural tointrodu
e another time s
ale for 
hanges of the total wealth than for 
hangesof individual wealths. This leads to the 
onstraint of the type (15) in whi
hthe value W on the left hand side 
hanges mu
h slower than wi's on theright-hand side. This means that the �ow of the wealth between individualswithin the system is mu
h faster than the pro
ess of 
hange of the totalwealth. Thus, if one 
onsiders 
hanges of wi's in a short time the 
onstraint(15) means that wi's 
annot be treated as 
ompletely independent sto
has-ti
 variables. In parti
ular if an individual be
omes very ri
h, amassing asubstantial part of the total wealthW a

umulated in the ma
ro-e
onomi
alsystem, this happens at a pri
e of making others poorer. It is instru
tiveto analyze 
onsequen
es resulting from the 
onstraint. We shall do this inthe following way. In statisti
al me
hani
s of quasi-stationary systems oneapproximates averages over time by averages over a statisti
al ensemble.We shall use this approa
h here to represent �u
tuations of the partition ofwealth as a sum over all states in the ensemble of wealth partitions with themi
ro-
anoni
al partition fun
tionZ(W;N) = Xfwi�0g Yi p(wi) Æ W � NXi=1 wi! : (22)The total wealth W (15) is distributed among N individuals. This model isvery 
lose in spirit to the mean-�eld approximation dis
ussed above sin
e itassumes almost entire fa
torization of the probability into independent prob-abilities p(wi) of individuals. One 
ould, of 
ourse, introdu
e intera
tionsbetween di�erent values wi and wj but as dis
ussed above the mean �eldarguments are good enough to explain empiri
al data within the a

ura
yprovided by single observations. We use here the strategy of not introdu
ingre�nements whi
h are not ne
essary. The full fa
torization is weakly violatedby the wealth 
onservation. The individual wealths are bounded from belowwi > w�. For te
hni
al reasons it is 
onvenient to 
onsider integer valuedwi's. From the e
onomi
al point of view this means that there exists aminimal indivisable unit in whi
h one expresses wealth as for example themonetary unit used in the 
ountry. The only thing we shall assume aboutthe probabilities p(w), following the previous se
tion, is that they possess a
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z, M.A. NowakPareto tail (1). As will be
ome 
lear, the details 
on
erning the exa
t shapeof the probability distribution are irrelevant for the universal large s
ale ef-fe
ts of wealth 
ondensation. The only important parameters of the modelare the value of the Pareto exponent � and the mean of the distributionw
r =Xwp(w) : (23)The mean is �nite for � > 1 and in�nite otherwise. In a thermalized e
onomywhere p(w) is 
onstant for a long time this average w
r adjusts itself to theaverage per 
apita �w = WN ; (24)and one has w
r = �w : (25)The mean of the distribution w
r may however depart from w as a result ofsome 
hanges whi
h the system may undergo. For example it may happenthat for some reasons a thermalized stable e
onomy will start to develop,in
reasing the total wealth W . Alternatively the e
onomy may qui
kly godown de
reasing the total wealth W . The question arises how the systemadjusts to the new situation in whi
h �w 6= w
r: how it redistributes thesurplus if �w > w
r or 
overs the de�
it if �w < w
r. A potential dis
repan
ybetween w
r and �w may also o

ur as a result of some stru
tural 
hanges ofthe ma
ro-e
onomi
al framework, like taxation laws, employee rights et
.,whi
h may lead to a 
hange of the distribution p(w) yet before the totalwealth of the e
onomy 
hanges.We shall try to answer this question by investigating the response of thesystem de�ned by (22). This model 
an be solved analyti
ally [18, 20℄. Theresponse of the system 
an be determined from the shape of the e�e
tiveprobability distribution de�ned as an average over all partitions weightedby the partition fun
tion (22)bp(w) = 1N * NXi Æ(wi � w)+ : (26)One 
an show that when w
r = w�, there is a perfe
t mat
hing and thee�e
tive probability bp(w) = p(w) : (27)However, when the wealth per 
apita ex
eeds the 
riti
al value �w > w
r or issmaller than the 
riti
al value: �w < w
r the system enters one of two di�erentphases whi
h we 
all the surplus phase or the de�
it phase respe
tively.



Is E
onophysi
s a Solid S
ien
e? 105In the surplus phase the e�e
tive probability distribution bp(w) nonuni-formly approa
hes p(w) 
reating a peak at the large values. For large systemsN !1 the e�e
tive probability density may be approximated bybp(w) = p(w) + 1N Æ(w �N�w) ; (28)where the se
ond term is the Dira
 delta lo
alized at the value proportionalto the system size N . The proportionality 
oe�
ient �w = �w�w
r is a de-viation of the average wealth from the 
riti
al value. The 
oe�
ient 1=N infront of the delta fun
tion means that the probability related to the peak is1=N , or equivalently that the 
ontribution 
omes from one out of N individ-uals. The wealth of this individual wmax = N�w grows with the system size.He or she takes a �nite fra
tion of the whole wealth. This e�e
t is similar tothe Bose�Einstein 
ondensation for whi
h a �nite fra
tion of all parti
les isin the ground state. The di�eren
e between the two 
ondensations is that inthe Bose�Einstein 
ondensation the ground state is favored by the energy,while here all individuals are identi
al and therefore they have a priori thesame 
han
e that the wealth will 
ondense in their po
ket. The 
ondensationresults from a spontaneous symmetry breaking me
hanism whi
h breaks thepermutation symmetry of N individuals of the original model. In reality,of 
ourse, the position of individuals in the ma
ro-system is not identi
al.This may further enhan
e the e�e
t of 
ondensation observed already in themodel where those di�eren
es are negle
ted.In the de�
it phase ( �w < w
r) the e�e
tive probability distribution bp(w)is given by bp(w) = 
e��wp(w) ; (29)where � is some positive fun
tion whi
h depends on �w = �w � w
r. Thefa
tor 
 is a normalization 
onstant. The exponent � vanishes in the limit�w ! 0�. We see that when the system enters the de�
it phase a sup-pression of the fat tails o

urs: these are the ri
hest who �rst pay for thede�
it.The order of the transition between the de�
it and surplus phases de-pends on �. The transition is of the third or higher order [20℄. The transitionbe
omes weaker when � approa
hes one or in�nity. The 
riti
al value w
rbeing the average of the distribution depends on the whole distribution butit is very sensitive to the tails: the fatter the tail the larger the 
riti
al valuew
r. On the other hand, when the 
riti
al value w
r is larger it is more di�-
ult to enter the surplus phase �w > w
r be
ause the wealth per 
apita mustex
eed this 
riti
al value. This may happen in a very ri
h so
iety. In thelimiting 
ase � = 1, the 
riti
al value w
r is in�nite and the system neverenters the surplus phase.
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z, M.A. NowakWhen the 
riti
al value w
r be
omes smaller it is easier for the wealthper 
apita �w to ex
eed w
r and to enter the surplus phase where the systemhas problems to redistribute the wealth of the ri
hest. If it happens in a ri
hso
iety this means that one individual 
reates a large fortune and the systemis not able to redistribute it qui
kly or at least that su
h a redistribution isnot favored statisti
ally. The wealth 
ondensation be
omes however naturalthen. It is not a shame to be ri
h in a ri
h so
iety as says Confu
ius.Paradoxi
ally, the 
ondensation may also take pla
e in a restri
tive ma
ro-e
onomy. Assume that the total wealth of a poor so
iety is �xed. Addition-ally imagine that the system be
omes more restri
tive, whi
h results in thein
rease of the Pareto index and the de
rease of the 
riti
al value w
r. Ifthis value be
omes smaller than the wealth per 
apita �w, whi
h is �xed,the system enters the surplus phase. The wealth 
ondensates in one po
ketas a result of the surplus anomaly. Some of the ri
hest be
ome ri
her andother poorer. This 
learly reveals the danger of 
orruption of restri
tive poorma
ro-e
onomies.The main 
on
lusion of this se
tion is that large number theory also onthe elementary level explains potential danger of statisti
al instability, whi
hin the 
ase of restri
tive ma
ro-e
onomy may be related to the phenomenonof 
orruption. One 
an avoid this danger by making the ma
ro-e
onomi
alrules more liberal [18, 21℄. For 
ompleteness let us mention that one 
an
onsider a ma
ro-e
onomy in 
onta
t with the external world [21℄. In thelanguage of statisti
al physi
s this 
orresponds to the model de�ned by the
anoni
al version of the partition fun
tion (22). In addition to what we dis-
ussed here, in the 
anoni
al version of the model one 
an observe statisti
ale�e
ts of the attra
tion of the external wealth to the ma
ro-e
onomy, or thewithdrawal of the internal one, depending on whether the ma
ro-e
onomi
alrules inside or outside are more liberal.6. Modeling a �nan
ial marketLet us now turn to the mesos
opi
 s
ale and dis
uss �nan
ial markets.Finan
ial market is a part of the e
onosystem whi
h is easiest to quantify.We shall use a simpli�ed pi
ture of this market in whi
h the only obje
tsare the pri
es of assets, asset being the name 
ommonly used to des
ribea �nan
ial instrument, whi
h 
an be bought or sold, like 
urren
ies, bonds,shares et
. In the following we shall understand assets solely as shares. Asset(or sto
k) pri
es Si(t) are fun
tions of time. A typi
al time step ", when thepri
e is 
hanged is as short as few se
onds. It will be the dynami
s of pri
e
hanges, whi
h we shall dis
uss in this 
hapter.In the analogous way as the quantity rt (10) of the 
hapter about ma
ro-e
onomy we de�ne the instantaneous returns, whi
h we shall alternatively
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all relative pri
e 
hanges of the asset in the period from � to � + "xi(� ; ") = logSi(� + ")� logSi(�): (30)Again the 
ru
ial ingredient of this analysis is the assumption about themultipli
ative nature of pri
e 
hanges. The de�nition of return is indepen-dent of the unit in whi
h the pri
e is given and seems the best to 
apture theessential properties of the pri
e system. Return xi(� ; ") 
an be any positivereal number. Obviously the return over a larger time interval is a sum of all
hanges over its subintervalsxi(� ; "1 + "2) = xi(t; "1) + xi(t+ "1; "2) : (31)Finan
ial databases 
ontain huge number of time series of asset pri
es, sam-pled at various frequen
ies. Phenomenologi
ally one 
an observe that pri
esbehave in a random way: relative pri
e 
hanges xi(t; ") �u
tuate. The empir-i
ally measured time 
orrelations show that these �u
tuations have a rathershort auto
orrelation time, typi
ally of the order of several minutes. Longerauto
orrelation times were observed for the absolute values of �u
tuations.If the frequen
y of sampling " is 
hosen larger than the auto
orrelationtime "0, 
orresponding pri
e 
hanges 
an be viewed as independent randomvariables. The simplest assumption one 
an make is the assumption of sta-tionarity: xit = xi(� = t � "0; "0), where t is an integer, 
an be interpretedas random numbers generated with the same random number generator, in-dependent of time. One 
an derive surprisingly strong predi
tions based onthis simple assumption, using very general properties of this random num-ber generator. Let us assume that the generator is 
hara
terized by thenormalized probability distribution fun
tion (pdf) P (x), with a 
hara
teris-ti
 fun
tion P̂ (z) de�ned by the Fourier transformP̂ (z) = 1Z�1 dxP (x)eixz : (32)De�ne a fun
tion R̂(z) = log P̂ (z). It is straightforward to see that the sumXn = nXi=1 xi (33)of independent random numbers distributed with P is again a random num-ber with a distribution Pn being an n-fold 
onvolution of P (x). In 
onse-quen
e, P̂n(z) = P̂ n(z) and R̂n(z) = nR̂(z) where R̂n(z) = logPn(z).
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ial role is played by stable distributions, whi
h have the propertythat the probability distribution of the sum Pn 
an be mapped into theoriginal distribution by a linear 
hange of the argumentdxPn(x) = d(anx+ bn) P (anx+ bn) ; (34)where an and bn are suitable parameters. Saying di�erently, the stabledistributions are self-similar under the 
onvolution whi
h means that theshape of pdf is preserved up to a s
ale fa
tor and shift. The 
ondition (34)
an be rewritten as a 
ondition for R̂(z) in the formR̂(z) = nR̂(anz) + ibnz : (35)A 
lass of stable distributions is limited. The best known is the Gaussiandistribution, for whi
h R̂(z) = �
z2 + iÆz ; (36)where Æ = hxi and 
 = 12 h(x � Æ)2i. One 
an think of the straightforwardgeneralizations of the last formulaR̂(z) = �
jzj� + iÆz : (37)One 
an 
he
k that they indeed ful�ll the stability 
ondition (35). How-ever only for 0 < � � 2 the 
orresponding 
hara
teristi
 fun
tion P̂ (z) =exp R̂(z) leads after inverting the Fourier transform (32) to a positive de�niteand normalizable fun
tion P (x), whi
h only in this 
ase 
an be interpretedas a probability distribution.It is a spe
ial 
ase of Lévy distributions 
hara
terized by the index 0 <� � 2 whi
h 
an be further generalized to asymmetri
 fun
tions. The mostgeneral form of R̂(z) 
an be shown ( [12℄) to beR̂(z) = �
jzj�(1 + i� tan(��2 )sign(z)) + iÆz ; � 6= 1;R(z) = �
jzj(1 + i� 2� sign(z) ln(
jzj) + iÆz ; � = 1 : (38)The asymmetry parameter � takes values in the range [�1; 1℄. For � = 2 wehave the Gaussian distribution, the asymmetry plays no role in this 
ase asone 
an see from the formula sin
e the �-dependent term drops. Indeed theGaussian distribution has only a symmetri
 realization.One 
an easily 
he
k that for stable distributions the self-similarity pa-rameter s
ales as an = n�1=�. Although R̂(z) is given expli
itly, only in
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ases the 
orresponding pdf P (x) is expressible in terms of simpleanalyti
al expressions. For x! �1 and � < 2dx P (x) / dx A��jxj1+� (39)and the asymmetry parameter� = A�+ �A��A�+ +A�� : (40)This behavior means that Levy distributions are very di�erent from theGaussian distribution. For 1 < � < 2 only the �rst moment hxi is de�ned,all higher moments diverge. For 0 < � � 1 even the �rst moment diverges.The importan
e of the stable distributions is demonstrated by the 
entrallimit theorem. Suppose we start with an arbitrary distribution P (x), notne
essarily stable. Performing the n-fold 
onvolution of this distribution, inthe limit n!1 we ne
essarily end up with one of the stable distributionsdes
ribed above. Typi
ally if P (x) has the asymptoti
 behavior like (39) forarbitrary � > 0 we shall obtain the Lévy distribution if � < 2 or Gaussiandistribution if � � 2. As a 
onsequen
e, if our sampling frequen
y in thepri
e list is large, say one day, we may expe
t to a good approximation therelative pri
e 
hanges measured with this frequen
y to be random numbersobtained from one of the stable distributions.If the idealized assumption of stationarity holds, we 
an represent thehistory of the �nan
ial market as a matrix xit, with the times t measuredin intervals of the sampling unit ", 
orresponding to one day. In this waywe lose information about the short time s
ale �u
tuations, but we mayexpe
t that for ea
h i the entries xit will represent a sequen
e of randomnumbers drawn from the same stable distribution. It is, of 
ourse, a 
ru
ialquestion, whi
h stable distribution is realized in pra
ti
e. We may dedu
ethe properties of this distribution studying a �nite sample of xit on a timewindow T , 
onsisting of many days (say one month).7. Gaussian worldSimplest models assume the distribution to be Gaussian. If this is the
ase, it 
an be 
hara
terized by two parameters: the shift Æi = hxii and thevarian
e �2i = 2
2i = h(xi� Æi)2i. Both parameters 
an be easily determinedempiri
ally from the data on a time window T by the following estimators
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t to a statisti
al error due to the�niteness of the time window. The values of the estimators 
onverge to theexa
t values ~Æi ! Æi, ~�2 ! �2 only in the limit T ! 1. In the Gaussianworld the evolution of the pri
e (or in our 
ase the logarithm of the pri
e)is just a di�usion pro
ess with a drift. Knowledge of the parameters of theGaussian distribution des
ribing pri
e 
hanges in one day 
an be used topredi
t the distribution of the relative pri
e 
hanges on a longer time s
ales.These will again be given by the Gaussian distribution (due to its stability),but with res
aled varian
e and shift.The market 
onsists of many assets (say i = 1; : : : ; N). The number ofassets in the market is typi
ally a large number (the well-known Standardand Poor index SP500 quotes pri
es of 500 
ompanies). The market realityis more 
omplex than suggested by the model of independent stationaryGaussian returns dis
ussed above.The �rst problem is that the market reality is not stationary. One 
an-not expe
t that the pri
es will �u
tuate a

ording to the same law overtwenty years. In this period many things may happen whi
h may a�e
tperforman
es of individual 
ompanies. One has to weaken the stationarityassumption and to substitute it by a sort of quasi-stationarity. In pra
ti
ethis means that the time window T used in the estimators (41) should belimited and so should be the future time in whi
h one uses the value of theestimators. Pra
titioners [22℄ introdu
e further improvements to the estima-tors by weighting past events with weight, whi
h gradually de
reases withtime. Here we shall not dis
uss this issue further, assuming in what followsa quasi-stationarity.The se
ond 
orre
tion whi
h one has to introdu
e to the model dis
ussedabove is that in reality the pri
es of individual sto
ks are mutually 
orrelatedas a result of the existen
e of the network of inter-
ompany dependen
ies.Indeed even by a purely statisti
al analysis of the 
orrelation matrix [23℄ one
an observe and determine the statisti
al 
orrelations of pri
e �u
tuationsof sto
k pri
es of 
ompanies from the same industrial se
tors. Of 
ourse,inter-se
tor 
orrelations also exist. Further, the sto
k market is not a 
losedsystem. The total 
apital invested in the market may shift between the sto
kmarket and other investments like for instan
e the real estate. This leads
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apital into the sto
k market or outof the sto
k market. As a result the pri
es may go up or down, dependingon whether the market attra
ts are repulses the 
apital. This is 
loselyrelated to the e�e
t known in so
iology as herding. The e�e
t of herdingis also 
learly seen in the statisti
al analysis of the matrix whi
h showsthe o

urren
e of an eigenvalue in the spe
trum of the 
orrelation matrixwhi
h is signi�
antly larger than all other. The 
orresponding eigenve
tor isinterpreted as a ve
tor of 
orrelations of 
hanges of individual pri
es to themain market tenden
ies whi
h are often referred to as �-parameters afterthe Capital Asset Pri
ing Model [24℄. We shall 
ome ba
k to this issue later.This dis
ussion shows that a realisti
 approa
h should allow to model theinter-
ompany 
orrelations.A logi
al generalization of the Gaussian model des
ribed above is themodel of 
orrelated asset �u
tuations generated from some multidimensionalGaussian distribution. The probability of generating a ve
tor of returns xit,i = 1; : : : ; N at some time t isYi dxi P (x1; x2; : : : ; xN ) �Yi dxi exp�12Xij (xi � Æi)C�1ij (xj � Æj) : (42)The properties of this generator 
an be assumed, as dis
ussed before, to be
onstant in the period of time for whi
h the shifts Æi and the 
orrelationmatrix Cij are estimated (quasi-stationarity)~Cij = 1T TXt �xit � ~Æi��xjt � ~Æj� : (43)The 
orrelations may be both positive or negative. Knowledge of the 
orre-lation matrix Cij is 
ru
ial in �nan
ial engineering, and in the 
onstru
tionof �optimal portfolios� following the Markowitz re
ipe [25℄. The main idea inthe 
onstru
tion of �optimal portfolios� is to redu
e the risk by diversi�
a-tion. The portfolio is 
onstru
ted by dividing the total invested 
apital intofra
tions pi whi
h are held in di�erent assets: PNi pi = 1. The evolution ofthe return of the portfolio is now given by the sto
hasti
 linearized variableX(~p) =PNi pixi, whi
h produ
es an instantaneous return X(~p)t =PNi pixitat time t. The quintessen
e of the Markowitz idea is to minimize the �u
tu-ations of the random variable X(~p) at a given expe
ted return by optimally
hoosing the pi's. The risk is measured by the varian
e of the sto
hasti
variable X(~p) �2 =Xij piCijpj : (44)Clearly, the information en
oded in Cij is 
ru
ial for the appropriate 
hoi
eof pi's. Intuitively, a diversi�
ation makes only sense when one diversi�es
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omponents and one does not gain too mu
h if oneredistributes 
apital between strongly 
orrelated assets whi
h make 
olle
tivemoves on the market.The 
ovarian
e matrix 
ontains this pre
ious information about the in-dependent 
omponents. The spe
trum of eigenvalues tells us about thestrength of �u
tuations of individual 
omponents, and the 
orrespondingeigenve
tors about the parti
ipation of di�erent assets in this independent
omponents.The fundamental question whi
h arises is how good is the estimate ~Cijgiven by the equation (42) of the underlying 
ovarian
e matrix (43), inparti
ular how good is the risk estimate~�2 =Xij ~pi ~Cij ~pj (45)of risk (44). Although the question looks simple, the answer is not imme-diate. One 
an quantify the answer with the help of the random matrixtheory. We shall sket
h some ideas whi
h one uses in this theory in the nextse
tions. Here we shall only quote the results.To start with, 
onsider the simplest 
ase of 
ompletely un
orrelated as-sets whi
h are equally risky. Further, we assume that they all �u
tuatesymmetri
ally around zero Æi = 0 with the same varian
e �i = 1. The 
or-relation matrix reads in this 
ase Cij = Æij . The spe
trum of eigenvalues ofthis matrix is �(�) = Æ(� � 1) whi
h means that it is entirely lo
alized atunity. For the ideal diversi�
ation pi = 1=N the risk measured by � (44) is� = 1=pN . What shall we obtain if we use in this 
ase the estimate ~Cijinstead?The random matrix theory as we shall see later gives a de�nite answer.The �rst observation is that the quality of the estimator (43) depends onthe time T for whi
h we 
ould measure the 
orrelation matrix. The longertime T , the better quality of the information whi
h 
an be read of from ~Cij:all diagonal elements should approa
h unity, and o�-diagonal ones zero. Inreality, as we mentioned, one never has an in�nite time T at ones disposal.Geometry of the data matrix xit; i = 1; : : : ; N; t = 1; : : : ; T is �nite. It is justa re
tangular matrix with the asymmetry parameter a = N=T < 1. Su
hmatri
es form an ensemble 
alled the Wishart ensemble [26℄. The 
ase a > 1requires a spe
ial treatment and is not relevant in this 
ase. For a largerthan zero we expe
t that the spe
trum of the matrix ~C will be smeared in
omparison with the delta spe
trum of C. Indeed, as we shall see in thenext se
tions using the methods of random matrix theory one �nds~�(�) = 12�ap(�+ � �)(�� ��)� (46)
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trum peakedat unity. This spe
trum is 
al
ulated from the random matrix theory forWishart matri
es as we dis
uss later.Although the empiri
al matrix xit is obtained from a single realizationof a random matrix from the Wishart ensemble, its spe
tral properties arein general very similar to those des
ribed above. This is due to the self-averaging property of large matri
es.We 
an also expli
itly �nd the estimate of risk (45). In doing this oneshould take into a

ount that the optimal 
hoi
e of probabilities ~pi whi
hminimizes the risk ~� depends on ~Cij~pi = PNj ~C�1ijPNjk ~C�1jk : (47)Inserting this solution into the formula (44) we 
an 
al
ulate the minimalvalue of the estimated risk�2 = 1N R d� �(�)��2�R d� �(�)��1�2 (48)whi
h eventually gives � = 1pN 1p1� a : (49)The exa
t relation between the spe
trum of Cij and ~Cij 
an be obtainedin the limit N;T ! 1, a = N=T �xed. Again we skip here the derivationand quote only the result. A simple formula 
an be obtained for the Green'sfun
tion ~G(z) = 1N �Tr 1z � ~C�1�W (50)whi
h relates it to its 
ounterpart, in the T !1 limit:G(t) = 1N Tr 1t� C�1 : (51)The subs
ript W means the average over the Wishart ensemble (42). One�nds [27℄ z ~G(z) = tG(t) ; (52)here z and t are related to ea
h other as:z = t(1� a+ atG(t)) : (53)
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ise way to write in�nitely many relationsbetween the moments of matri
es Cij and ~Cij . Let
k = 1N TrC�k; (54)~
k = 1N hTr ~C�kiW:On �nds ~
1 = 
1 ;~
2 = 
2 + a
21 ;~
3 = 
3 + 3a
1
2 + a2
31� � � (55)At the end of this se
tion let us 
ome to the problem of the large eigen-values observed in the spe
tra of eigenvalues of the �nan
ial 
ovarian
e ma-tri
es ~Cij. The spe
tra 
onsist typi
ally of the random part (46) whi
h isuniversal as dis
ussed above and few large eigenvalues. Among them one isparti
ularly large. Its value is roughly speaking proportional to the numberN of the assets in the market. The 
orresponding eigenve
tor 
ontains the
ontribution from almost all N 
ompanies on the market. This eigenve
toris 
alled the �market�. One 
an relatively easily understand the sour
e ofthe appearan
e of the market in the spe
trum in terms of the herding phe-nomena whi
h we shortly signaled before. Imagine that there is a 
olle
tivebehavior of investors on the market whi
h 
an be driven by some so
iologi
alfa
tors. Mathemati
ally su
h a 
olle
tive movement may be in the simplestversion modeled by the 
oupling of the individual pri
es to some 
ommonba
kground, for example by substituting the generator of the ve
tor of pri
es(42) by a new generator of the formYi dxi P (~x) �Yi dxi exp�12Xij (xi � �imt)C�1ij (xj � �jmt) ; (56)where �i's are some 
onstants, and mt is a 
ommon random variable des
rib-ing the market movements. This is the basi
 idea underlying the CAPMmodel [24℄ mentioned above. One 
an 
he
k that the largest eigenvalue dis-appears from the spe
trum leaving the remaining part inta
t if at ea
h tone subtra
ts from ea
h return the market ba
kground represented as theinstantaneous average over all 
ompanies.
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orrela-tions between 
ompanies. The analysis of the eigenve
tors allows to dividethe market into highly 
orrelated 
lusters, usually 
orresponding to 
ompa-nies from the same industrial se
tor. For example, one 
an see that the gold
ompanies form a 
luster whi
h is anti
orrelated to the market.An example of the eigenvalue spe
trum of the empiri
al 
ovarian
e ma-trix ~C (43), is shown in �gure 2. It is 
al
ulated for the SP500 for the period.
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Fig. 2. The spe
trum of the �nan
ial 
ovarian
e matrix for the daily SP500 forN = 406 sto
ks and for T = 1309 days from 01.01.1991 to 06.03.1996. The leftplot represents the spe
trum of the 
ovarian
e matrix for the normalized returns inthe natural time ordering; the right one for the normalized return in the reshu�edordering. The reshu�ing destroys 
orrelations between entries of the matrix ~Cij .The random matrix predi
tion is plotted in solid line. The large eigenvalues lyingoutside the random matrix spe
trum in the left �gure disappear from the spe
trumfor reshu�ed data shown in the right.The data matrix xit has the sizeN = 406 and T = 1308 whi
h 
orresponds tothe asymmetry parameter a = 0:31. In the spe
tral analysis of the empiri
almatrix one usually uni�es the s
ale of return �u
tuations of di�erent assetsby normalizing them by individual varian
es �i (41): xit ! xit=�i whi
h forea
h asset produ
es �u
tuations of unit width. For su
h normalized �u
tu-ations the formula (46) tells us that that the random part of the spe
trumof the 
ovarian
e matrix should be 
on
entrated between 0:20 and 2:43. We
learly see the presen
e of larger eigenvalues in the spe
trum presented in theleft plot in �gure 3, whi
h as mentioned, 
an be attributed to the inter-asset
orrelations. However, the large eigenvalues disappear when one removes theinter-asset 
orrelation. One 
an do this by random reshu�ing of the timeordering of returns for ea
h individual asset. A random reshu�ing does not
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hange the 
ontent of information stored in ea
h separate row of data but itdestroys the statisti
al information about the 
orrelations between di�erentrows. Indeed as is shown on the right plot in the �gure 2, the larger eigenval-ues disappear from the spe
trum. The resulting spe
trum of the 
ovarian
ematrix of su
h reshu�ed data is perfe
tly des
ribed by the random matrixformula (41).
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Fig. 3. The same as in Fig. 2 but for for the nonnormalized returns: the left �gurefor the data in the natural time ordering and the right for the reshu�ed ordering.In this 
ase reshu�ing does not remove the large eigenvalues from the spe
trumsignaling the presen
e of non-Gaussian e�e
ts in the return statisti
s.The above mentioned normalization of return �u
tuation xit ! xit=�i isnatural if �u
tuations belong to the Gaussian universality 
lass. If the un-derlying distributions governing the return �u
tuations have fat tails, thisnormalization is not appropriate sin
e the varian
e of the distribution doesnot exist. In this 
ase the use of the normalization xit ! xit=�i arti�
iallyfor
es the resulting res
aled quantities to behave as if they belonged to theGaussian universality 
lass of distributions with the unit varian
e. This in-trodu
es a bias to the analysis in 
ase of non-Gaussian statisti
s. Indeed, ifone skips this normalization one observes that 
ovarian
e matri
es for theoriginal SP500 data as well as for the reshu�ed SP500 data both possesslarge eigenvalues in the spe
tra (see Fig. 3). What is the reason that thereshu�ing does not remove them? Is the random matrix predi
tion (46)wrong? The random matrix predi
tion is not wrong of 
ourse but is validonly for matri
es from the Gaussian ensemble. The removal of the normaliza-tion 
ondition revealed the nature of the randomness of return �u
tuationswhi
h 
ontain fat tails. As we shall dis
uss later, the spe
tra of Lévy randommatri
es 
ontain fat tails whi
h means that even a 
ompletely random ma-



Is E
onophysi
s a Solid S
ien
e? 117trix may 
ontain large eigenvalues. The main 
on
lusion of this dis
ussion isthat the large eigenvalues in the spe
trum of �nan
ial 
ovarian
es stem bothfrom inter-asset 
orrelations and from the Lévy statisti
s of return �u
tua-tions and therefore a proper statisti
al analysis of �nan
ial data, in prin
ipleof the eigenvalue 
ontent, would require the new Lévy methodology.8. Lévy worldIndeed on 
loser inspe
tion one �nds that individual pri
e �u
tuationshave rather heavy tails. Empiri
ally one 
an �t their distribution, at leastin the asymptoti
 limit, as a power low of the form (39) with the power� � 1:5 : : : 1:8. Following our earlier dis
ussion this means that one shouldrather 
onsider stable Lévy distributions when dis
ussing the distributionof relative pri
e �u
tuations, for the sampling frequen
y of the order of oneday or more.Models of this type were proposed in the literature. For a single asseti one should in prin
iple determine four parameters (index �i, asymmetry�i, range 
i and mean Æi), whi
h 
hara
terize it's distribution P�i�i
iÆi(xi). Inpra
ti
e su
h a determination is numeri
ally very di�
ult, one 
an assumea value of � to be some �xed number in the range given above. Similarlyone 
an assume the asymmetry �i = 0 (numeri
ally it is very di�
ult todistinguish the e�e
t of asymmetry from that of a non-zero Æi). Even withthese assumptions the determination of the remaining two parameters ismore di�
ult, be
ause for Lévy distributions the se
ond moment diverges.A typi
al time evolution of the logarithm of pri
e will in the Lévy worldbe very di�erent than in the Gaussian world. One observes from time to timevery large jumps, 
alled Lévy �ights. The pra
ti
al 
onsequen
e is a rela-tively large probability of extreme events. Sin
e these events are responsiblefor possible large losses on �nan
ial market, the 
orre
t determination of therisk 
annot be made if their probability is underestimated. Ea
h investmenton a �nan
ial market is risky and investors must know rather a

urately theprobabilities of possible gains and losses.A Lévy market means that we should des
ribe a multidimensional, pos-sibly 
orrelated, Lévy random number generator. A natural assumption,as explained above is a 
ommon value of the index � for all market 
om-ponents. Correlations mean that for a given moment tj , �u
tuations xit
an be de
omposed as linear 
ombinations of independent Lévy 
omponents�k; k = 1; N , with a fa
torizable probability distributionP (f�ig) =Yi P�Bi�i(�i): (57)
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omposition means thatxit = NXk Aik�k (58)and that a probability distribution of this asset is (be
ause Lévy distributionsare stable) parametrized byÆi = Xk Aik�k ;
i =  Xk jAikj�!1=� ; and�i = Pk jAikj�BkPk jAikj� : (59)In the simplest version des
ribed above we may take all Bk = 0 andin 
onsequen
e have all �i = 0. A matrix X with elements xit; i =1; : : : ; N; t = 1; : : : ; T 
an be viewed as a single realization of the gen-eralized Wishart random matrix generated with the Lévy probability distri-bution. Determination of the matrix Aij in this 
ase requires new methods,di�erent than in the Gaussian 
ase and will be dis
ussed elsewhere [28℄.One 
an 
onstru
t the analogue of the 
orrelation matrix ~Cij as~Cij = 1T 2=� TXt xitxjt = 1T 2=� (XXT )ij (60)and dis
uss its spe
tral properties when averaged over the ensemble of Lévymatri
es. The dependen
e on the size of the window T is di�erent than in theGaussian 
ase (whi
h 
orresponds to the limit � ! 2). To understand thereason for that let us 
onsider the un
orrelated Lévy matrix with Aij = Æij.The diagonal elements di = ~Cii are the sums of squares of the randomLévy variables with the index �. It is trivial to realize that su
h squaresare themselves random variables and that their distribution has a fat tailwith the index �=2. Following the arguments of the 
entral limit theoremgiven in the pre
eding se
tions we expe
t that if T is large enough a sumof su
h variables will be distributed a

ording to the 
orresponding Lévydistribution. We may even argue that this distribution should by 
ompletelyasymmetri
 (� = 1), sin
e the squares are all positive. The fa
tor T�2=�is the 
orre
t s
aling fa
tor in this 
ase. Similar arguments 
an be used toshow that the o�-diagonal elements ~Cij ; i 6= j retain the original index �
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trum of the matrix ~Cijis dominated by its diagonal elements. The shape of this spe
trum is givenby the Lévy pdf with the index �=2 and � = 1. This pdf has a power-likebehavior with a relatively low power (�=2 < 1) and 
an easily be responsiblefor large eigenvalues, whi
h in this version have no dynami
al origin.To assess the importan
e of the o�-diagonal entries on the spe
trum for�nite T , we use the standard perturbation theory. For that, we write~Cij = �diÆij + T�1=�aij� : (61)In the zeroth order, the eigenvalues of ~Cij are just di. The �rst order 
or-re
tions are zero be
ause the matrix aij is o�-diagonal. Generi
ally, fora random matrix, di's are not degenerate, so up to the se
ond order, theeigenvalues of ~Cij are�i = di + "2 Xj(6=i) a2ijdj � di = di + T�2=� Xj(6=i) a2ijdj � di : (62)There are N � 1 terms in the sum, ea
h of order unity. Thus the sum
ontributes a fa
tor proportional to N , say � siN , and we have:�i = di + siNT�2=� : (63)The o�-diagonal terms 
ompete with the diagonal ones for N � T 2=�.In the general 
ase, where the matrix Aij is non-trivial, the usefulness ofthe 
orrelation matrix ~Cij to determine the real 
orrelations in the systemis limited. Looking for methods of determination of the Aij is 
ru
ial todistinguish between the noise and signal.In both approa
hes presented above the elements of the matrix xit weretreated as random numbers obtained for ea
h time step t from the samemultidimensional random number generator. This 
an be understood as aparti
ular 
ase of a situation where this generator depends also on t andwhere we have some non-trivial matrix probability measure P (x)Dx. Ex-amples of su
h measures are known in the literature.One 
an spe
ulate that in reality the distribution of xit 
omes from manydi�erent sour
es s and that xit =Xs x(s)it ; (64)where all x(s)it have the same matrix measure. This approa
h leads to the
on
ept of non-
ommutative probability distributions, dis
ussed in the next
hapter.



120 Z. Burda, J. Jurkiewi
z, M.A. Nowak9. Matrix e
onomyIn the previous 
hapters we mentioned several 
onsequen
es of the 
entrallimit theorem, one of the 
ornerstones of the theory of probability. We mayask a question, whi
h at the �rst glan
e looks a
ademi
: Can one formulatean analog of the 
entral limit theorem, if random variables X̂1; X̂2; : : : X̂Nforming the sums ŜN = X̂1 + X̂2 + : : : X̂N (65)do not 
ommute? In other words, we are seeking for a theory of probability,whi
h is non-
ommutative, i.e. X̂i 
an be viewed as operators, but whi
hshould exhibit 
lose similarities to the �
lassi
al� theory of probability. Su
htheories are 
ertainly interesting from the point of view of quantum me-
hani
s or non
ommutative �eld theory, but are they relevant for e
onomi
analysis? The answer is positive. Abstra
t operators may have matri
ialrepresentations. If su
h 
onstru
tion exists, we would have a natural tool offormulating the probabilisti
 analysis dire
tly in the spa
e of matri
es. Con-temporary �nan
ial markets are 
hara
terized by 
olle
ting and pro
essingenormous amount of data. Statisti
ally, they may 
ome from a pro
essesof the type (64) and may obey the matrix 
entral limit theorems. Matrix-valued probability theory is then ideally suited for analyzing the propertiesof arrays of data (like the ones en
ountered in the previous 
hapter), analyz-ing signal to noise ratio and time evolution of large portfolios. It allows alsoto re
ast standard multivariate statisti
al analysis of 
ovarian
es [29℄ intonovel and powerful language. Spe
tral properties of large arrays of data mayalso provide a rather unique tool for studying 
haoti
 properties, unraveling
orrelations and identifying unexpe
ted patterns in very large sets of data.The origins of non-
ommutative probability is linked with abstra
t stud-ies of von Neumann algebras done in the 80'. A new twist was given to thetheory, when it was realized, that non
ommuting abstra
t operators, 
alledfree random variables, 
an be represented as in�nite matri
es [30℄. Only veryre
ently the 
on
ept of FRV started to appear expli
itly in physi
s [31�33℄.In this paper, we abandon a formal way and we shall follow the intuitiveapproa
h, using frequently a physi
al intuition.Our main goal is to study the spe
tral properties of large arrays of data.Su
h analysis turned out to be relevant for the sour
e dete
tion and bearingestimations in many problems related to signal pro
essing [34℄. Sin
e largesto
hasti
 matri
es obey 
entral limit theorems with respe
t to their mea-sure, spe
tral analysis is a powerful tool for establishing a sto
hasti
 featureof the whole set of matrix-ordered data, simply by 
omparing their spe
trato the analyti
ally known results of random matrix theory. Simultaneously,the deviations of empiri
al spe
tral 
hara
teristi
s from the spe
tral 
orre-lations of purely sto
hasti
 matri
es 
an be used as a sour
e of inferring the
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orrelations, not so visible when investigated by other methods.We shall �rst formulate the basi
s of matrix probability theory, and thenwe shall dis
uss a sample appli
ation in the 
ase of a �nan
ial 
ovarian
ematrix, a key ingredient of any theory of investment and/or �nan
ial riskmanagement.Let us assume, that we want to study statisti
al properties of in�niterandom matri
es. We are interested in the spe
tral properties of N � Nmatrix X, (in the limit N !1), whi
h is drawn from a matri
ial measuredX exp�NTrV (X) (66)with a potential V (X) (in general not ne
essarily polynomial). We shallrestri
t ourselves to real symmetri
 matri
es for the moment, sin
e theirspe
trum is real. The average spe
tral density of the matrix X is de�ned as�(�) = 1N hTrÆ(��X)i = 1N *Xi Æ(� � �i)+ ; (67)where h:::i means averaging over the ensemble (66). Using the standardfolklore, that the spe
tral properties are related to the dis
ontinuities of theGreen's fun
tion we may introdu
eG(z) = 1N �Tr 1z �X� ; (68)where z is a 
omplex variable. Due to the known properties of the distribu-tions lim"!0 1�� i" = PV 1� � i�Æ(�) (69)we see that the imaginary part of the Green's fun
tion re
onstru
ts spe
traldensity (67) � 1� lim"!0 Im G(z)jz=�+i" = �(�) : (70)The natural (from the point of view of the physi
ist) Green's fun
tionshall serve us as an auxiliary 
onstru
tion explaining the 
ru
ial 
on
eptsof the theory of matrix (non
ommutative) probability theory. Let us de-�ne a fun
tional inverse of the Green's fun
tion (sometimes 
alled a Blue'sfun
tion [32℄), i.e. G[B(z)℄ = z. The fundamental obje
t in non
ommutativeprobability theory, so-
alled R fun
tion or R-transform, is de�ned asR(z) = B(z)� 1z : (71)
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z, M.A. NowakWith the help of the R-transform we shall now un
over several astonishinganalogies between the 
lassi
al and matri
ial probability theory.We shall start from the analog of the 
entral limit theorem. It reads [30℄:The spe
tral distributions of independent variables X̂i,ŜK = 1pK (X̂1 + : : : + X̂K) (72)ea
h with arbitrary probability measure with zero mean and �nite varian
ehTrX̂2i i = �2, 
onverges towards the distribution with R-transform R(z) =�2z.Let us now �nd the exa
t form of this limiting distribution. Sin
e R(z) =�2z, B(z) = �2z + 1=z, so its fun
tional inverse ful�llsz = �2G(z) + 1=G(z) : (73)The solution of this quadrati
 equation (with proper asymptoti
s G(z)! 1=zfor large z) is G(z) = z �pz2 � 4�22�2 (74)so the spe
tral density, supported by the 
ut of the square root, is�(�) = 12��2p4�2 � �2 : (75)This is the famous Wigner semi-
ir
le [35℄ (a
tually, semi-ellipse) ensemble.The omni-presen
e of this ensemble in various physi
al appli
ations �nds anatural explanation � it is a 
onsequen
e of the 
entral limit theorem fornon-
ommuting random variables. Thus the Wigner ensemble is a non
om-mutative analog of the Gaussian distribution. Indeed, one 
an show, thatthe measure (66) 
orresponding to Green's fun
tion (74) is V (X) = ��2X2.Let us look in more detail, what �independen
e� means for two identi
almatrix valued ensembles, e.g. of the Gaussian type, with zero mean andunit varian
e. We are interested in �nding the dis
ontinuities of the Green'sfun
tionG1+2(z) � Z DX̂1DX̂2e�NTrX̂21 e�NTrX̂22Tr 1z � (X̂1 + X̂2) : (76)In prin
iple, this requires a solution of the 
onvolution, with matrix-valued,non
ommuting entries! Here we 
an see how the R-transform operates. Thisis the transform, whi
h imposes the additive property for the all 
umulants:
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tral 
umulants obey ki(X1 + X2) = ki(X1) + ki(X2), for all i =1; 2; : : : ;1 [30, 36℄.Mathemati
ians 
all su
h a property �freeness�, hen
e the name free ran-dom variables. The R-transform is an analog of the logarithm of the 
har-a
teristi
 fun
tion (32) in the 
lassi
al probability theory, and ful�lls theaddition law [30℄ R1+2(z) = R1(z) +R2(z) : (77)Note that we keep the notation underlying the similarities between the 
las-si
al and non-
ommutative (matri
ial) probability 
al
ulus. In the aboveexample, the matrix valued 
onvolution of two Gaussian ensembles with aunit varian
e gives again a Gaussian ensemble, with the spe
trum (semi-
ir
le) res
aled by p2. Te
hni
ally, it 
omes from the fa
t that R1+2(z) =R1(z)+R2(z) = z+ z = 2z. This is like the usual 
onvolution of two Gaus-sian probability distribution, forming also a Gaussian but with a varian
eres
aled by a fa
tor p2.At this moment one 
an start to really appre
iate the power of the non-
ommutative approa
h to probability. For large matri
es X̂ and Ŷ (exa
tresults hold in the N = 1 limit), the knowledge of their spe
tra is usuallysu�
ient for predi
ting the spe
trum of the sum X̂ + Ŷ .The non
ommutative 
al
ulus allows also to generalize the additive lawfor non-hermitian matri
es [37, 38℄, and even formulate the multipli
ativelaw, i.e. infer the knowledge of all moments of the spe
tral fun
tion of theprodu
t of X̂Ŷ , knowing only the spe
tra of X̂ and Ŷ separately (so-
alled S-transform) [30℄. As su
h, it o�ers a powerful short
ut in analyzing sto
hasti
properties of large ensembles of data. Moreover, the larger the sets thebetter, sin
e �nite size e�e
ts s
ale at least as 1=N .Let us 
he
k the possibility of appearan
e of power-like spe
tra in non-
ommutative probability theory. Motivated by the 
onstru
tion in 
lassi
alprobability, we pose the following problem: What is the most general form ofthe spe
tral distribution of random matrix ensemble, whi
h is stable undermatrix 
onvolution, i.e. has the same fun
tional form as the original distribu-tions, modulo shift and res
aling? Surprisingly, non-
ommutative probabil-ity theory follows from the Lévy�Khin
hine theorem of stability in 
lassi
alprobability. In general, the needed R(z) behaves like z��1, where � 2 (0; 2℄.More pre
isely, the list is exhausted by the following R-transforms [39℄:(i) R(z) = ei��z��1, where � 2 (1; 2℄, � 2 [�� 2; 0℄(ii) R(z) = ei��z��1, where � 2 (0; 1), � 2 [1; 1 + �℄(iii) R(z) = a+ b log z, where a; b are 
omplex and =a � 0 and b � � 1�=a.
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z, M.A. NowakNote that the stability index � is restri
ted to pre
isely the same valuesas in the one-dimensional 
ase (38). The asymptoti
 form of the spe
tra ispower-like, i.e. �(�) � 1=���1. Singular 
ase (iii) 
orresponds, in a sym-metri
 
ase (b = 0), to the Cau
hy distribution. Note that the 
ase (i) with� = 2 
orresponds to the Gaussian ensemble. For spe
tral distributions,several other analogies to Lévy distributions hold. In parti
ular, there is aone-to-one 
orresponden
e for spe
tral analogs of ranges, asymmetries andshifts. Spe
tral distributions exhibit also duality laws (�! 1=�), like their
lassi
al 
ounterparts [40, 41℄To 
onvin
e the reader, how useful the formalism of non-
ommutativeprobability theory 
ould be for the analysis of �nan
ial data, let us re
onsiderthe example from the previous 
hapter.We analyze a time series of pri
es of N 
ompanies, measured at equalsequen
e of T intervals. The returns (here relative daily 
hanges of pri
es)
ould be re
ast into N � T matrix X. This matrix de�nes the empiri
alN �N 
ovarian
e matrix ~C (60). This matrix forms today a 
ornerstone ofevery methodology of measuring the market risk [22℄.We 
an now 
onfront the empiri
al data, assuming the extreme s
enario,that the 
ovarian
e matrix is 
ompletely noisy (no-information), i.e. X =X̂ is sto
hasti
, belonging to e.g. a random matrix ensemble. By 
entrallimit theorems, we 
an 
onsider either matri
ial Gaussian or matri
ial Levy�Khin
hin stability basins. From te
hni
al point of view, the problem of�nding spe
tral distribution for 
ovarian
e matrix redu
es to 
onvolution ofa square T � T matrix X̂2 and a �deterministi
� diagonal proje
tor P , withthe �rst N elements equal to 1, and the remaining (T � N) set to zero.Exa
t formula, 
orresponding to T;N ! 1, N=T = a �xed 
omes from a�ba
k-of the envelope� 
al
ulation [42℄. For symmetri
 Lévy distributions,for 
ompletely random matri
es, the Green's fun
tion is given by~G(z) = 1=z[1 + f(z)℄ ; (78)where f(z) is a multivalued solution of a trans
endental equation(1 + f)(f + a) 1f2=� = z : (79)In the 
ase � = 2, equation is algebrai
 (quadrati
), and the spe
trum islo
alized on a �nite interval. In all other 
ases the range of the spe
trum isin�nite, with the large eigenvalue distribution s
aling as 1=��+1.A reader familiar with methods of multivariate statisti
al analysis im-mediately re
ognizes, that the 
ase � = 2 
orresponds to the spe
tral distri-bution of 
elebrated Wishart distribution. Indeed, the normalized solutionof a quadrati
 equation (i.e. (79) with � = 2) leads to the spe
tral fun
tion
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Fig. 4. Spe
tral densities of the 
ovarian
e matrix of free random Lévy matri
eswith the stability index � = 1=2 and di�erent values of the asymmetry parameterby m = T=N = 1=a (left �gure); and with the given asymmetry parameter m =T=N = 3:22 and di�erent values of the stability index � (right �gure).(46) mentioned already. This result was redis
overed several times in the
ontext of various physi
al appli
ations, with the help of various randommatrix te
hniques [43℄.We would like to stress, how natural and fundamental is this result fromthe point of view of non-
ommutative probability and 
entral limit theorems.From this point of view, it is also puzzling how late the random matri
es(in our language matri
ial probabilities) were used for the analysis of �nan-
ial data. The breakthrough 
ame in 1999, when two groups [44, 45℄ haveanalyzed the spe
tral 
hara
teristi
s of empiri
al 
ovarian
es, 
al
ulated forall 
ompanies belonging to Standard and Poor 500 index, whi
h remainedlisted from 1991 till 1996. The spe
trum of the empiri
al 
ovarian
e ma-trix 
onstru
ted from this matrix was then 
onfronted with the analyti
allyknown spe
trum of a 
ovarian
e matrix 
onstru
ted solely from the maximal-entropy (Gaussian) ensemble with the same number of rows and 
olumns.The unexpe
ted (for many) results showed, that the majority of thespe
trum of empiri
al 
ovarian
e matri
es is populated by noise!In the 
ase of a Gaussian disorder, 94% of empiri
al eigenvalues were
onsistent with random matrix spe
tra [44℄. Only few largest eigenvaluesdid not mat
h the pattern, re�e
ting the appearan
e of large 
lusters of
ompanies, generally 
orresponding to the se
torization of the market andmarket itself [23℄. The analysis done with the power law (� = 1:5) notonly 
on�rmed the dominan
e of sto
hasti
 e�e
ts, but even interpretedthe 
lusters as possible large sto
hasti
 events [46℄. It also pointed at thedangers of using the 
ovarian
e matrix (whi
h assumes impli
itly the �nitedispersion) in the 
ase when power laws are present.
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z, M.A. NowakThe random matrix analysis posed therefore a fundamental questionfor quantitative �nan
es. If empiri
al 
ovarian
e matri
es are so �noisy�,why there are so valuable for pra
titioners? Every industrial appli
ation ofrisk measurement depends heavily on 
ovarian
e matrix formulation. TheMarkowitz's theory of diversi�
ation of investment portfolios depends 
ru-
ially on the information in
luded in the 
ovarian
e matrix [25℄. If indeedthe lower part of the 
ovarian
e matrix spe
trum has pra
ti
ally no infor-mation, the e�e
ts of noise would strongly 
ontaminate the optimal 
hoi
eof the diversi�
ation, resulting in the dangerous underestimation of the riskof the portfolio.Bou
haud and others [47℄ suggested a way out, simply �ltering out thenoisy part of the 
orrelation matrix and repeating the Markowitz analysiswith re�ned matrix. This resulted in a better approximation of the risk.Their analysis did not answer however the fundamental question. Ifthe original matrix is noisy, i.e. has almost no information, how 
ome the
ovarian
e matri
es form the pillars of quantitative �nan
e?We tried to answer this question in the previous se
tion, shedding somelight on a rather nontrivial relation between the true 
ovarian
e matrix Cand its estimator ~C. The relation between the Green's fun
tions G and ~G wasobtained in the framework of Random Matrix Theory. Some other re
entpapers using tools of random matrix theory for investigating the propertiesof 
ovarian
e matri
es are [48�51℄.We would like to point out at this moment, that matrix probabilitytheory seems to be ideally suited tool for better understanding the role of
ovarian
e matrix and a way of quantitatively assessing the role of the noise,important 
orrelations and the stability of the analysis. In our opinion,the full power of random matrix te
hniques was not re
ognized yet by thequantitative �nan
e 
ommunity.Finally, we would like to point out an ex
iting possibility of introdu
ingthe dynami
s formulated in the matrix probability language. The simplestdynami
s of pri
e (S) movement of the asset is 
anoni
ally [17℄ des
ribed bythe sto
hasti
 equationdS = St+dt � St = (�dt+ �d�)St ; (80)where the deterministi
 evolution is governed by the interest rate (drift) �and the sto
hasti
 term is represented by the Wiener measure d�, multipliedby dispersion (
alled in �nan
e volatility) �. The Wiener measure 
ould berealized as pdtN(0; 1), where N(0; 1) is a Gaussian with zero mean and unitvarian
e. Therefore hd�i = 0 and h(d�)2i = dt, re�e
ting the random walk
hara
ter of the pro
ess. Sin
e the pro
ess is multipli
ative, the resultingFokker�Plan
k equation is a heat equation with respe
t to the log S, solved
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ontent asalready written equations (9),(30) for wealth and pri
es, respe
tively.One is tempted to write a similar sto
hasti
 equation for the ve
tor ofpri
es. The standard extension [52℄ readsSt+dt;i = (1 + �idt+pdtAij�j)St;i ; (81)where the noise ve
tor �i obeys h�i�ji � Æij and Aij is the square root of the
orrelation matrix.Note however, that one may write a di�erent equation, but now for thematrix analog of the Wiener measure. It is not di�
ult to see, that the roleof the white noise is now played by Gaussian ensemble of random matri
es,resulting into the matrix evolution for the whole ve
tor of pri
es. Taking the�nite time step, we getSt+dt;i = (Æij + �ijdt+ �pdtXij)St;j ; (82)where � is a deterministi
 matrix and X is a real Gaussian matrix and nota ve
tor. Di�usion takes then pla
e in the spa
e of matri
es. Finite timeevolution results in the in�nite produ
t of large, non-
ommuting matri
es,ordered along the di�usive path, similarly like the 
hronologi
al operators dofor the time evolution of non-
ommuting Hamiltonians. Here, however, theevolution is dissipative (spe
trum is 
omplex). Surprisingly, random matrixte
hniques [53℄ allow to analyze the 
hanges of the spe
trum of su
h sto
kmarket evolution operators as a fun
tion of time t, similarly as in the 
aseof a single asset, where the lognormal pa
ket spreads a

ording to the heatequation.This approa
h, basi
ally equivalent to one of the matrix generalizationsof the Ito-like pro
esses, may allow to study the time properties of the spe
-tra of large sets of �nan
ial data. Moreover, the method seems not to berestri
ted to the Gaussian world, due to the mathemati
al power of matri
ialprobability 
al
ulus and the matrix valued sto
hasti
 di�erential equationsmay turn out to be a powerful tool of time series analysis of large sets ofdata. This �matrix e
onophysi
s� (as a witti
ism, or maybe �witten
ism�,we may use abbreviation M-e
onophysi
s to paraphrase M-theory) may alsogive a rather pre
ise meaning of �quantum e
onomy�, a vague term oftenen
ounter in the literature. In the language of a matrix-valued probability
al
ulus, the �quantum nature� 
omes from the fa
t, that basi
 obje
ts of theprobability 
al
ulus are operators, represented as large, non-
ommuting ma-tri
es, represented in e
onomy by arrays of data. The relevant observablesin this language are related to the statisti
al properties of their spe
tra.
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z, M.A. Nowak10. E
onophysi
s or e
onos
ien
e?In the 
ourse of the presentation, we only brie�y analyzed some sele
tedmethods related to the des
ription of real 
omplex systems su
h as e
onomi
or �nan
ial markets. The idea was to give the reader not familiar with this�eld some sort of a sampler, hopefully an appetizer. We did not mention atall several intriguing attempts to des
ribe �nan
ial 
rashes using the insightfrom physi
s [54℄. Neither did we mention promising attempts to use the
on
epts of 
as
ades and/or turbulen
e for explaining the observed 
orre-lations and multifra
tality in high frequen
y time series [55℄. We omittednatural, from the point of view of the physi
ist, modi�
ations of the optiontheories [3℄. Our presentation of ma
roe
onomi
 appli
ations was restri
tedto simple patterns of wealth distribution, and we ignored the whole dynam-i
s of this pro
ess. We did not dis
uss several other issues, usually 
overedby e
onophysi
s 
onferen
es [56, 57℄.At this moment, instead of 
ontinuing the list of our sins, let us 
omeba
k to the titular question � how �solid� is e
onophysi
s as a s
ien
e? Wewould like to point at few dangers, whi
h in our opinion, every e
onophysi
isthas to take into a

ount.1. First, we believe that laws of physi
s do not 
hange in time. Certainly,this is not true for most of the laws of e
onomy. Most dramati
 arethe �nan
ial markets. Te
hni
al developments (
omputers, Internet)or legal regulations have a major impa
t on the �eld.2. Se
ond, �the material points�, i.e. agents are not passive � they arethinking entities, and sometimes they are very smart. This invali-dates immediately the �stationarity� prin
iple. Methods and strate-gies evolve 
ontinuously in time, and the �quasistationarity� is ratherdue to the traditional 
onservatism of �nan
ial institutions. Abandon-ing this 
onservatism leads to the situation, where more adequate are
on
epts of biologi
al evolutionism mixed with elements of the gametheory. Indeed, this lead is seriously studied nowadays [58,59℄. Takinginto a

ount the 
omplexity of the system, the speed at whi
h the sys-tems may evolve and the multidimensional spa
e of the systems, whosetopology may more re�e
t the virtual network of 
onne
tions than realgeographi
 distan
es [60, 61℄, the need of su
h studies is obvious. Asre
ently pointed [62℄, e
onomy may evolve into 
ybers
ien
e. Then,the role of the methods of physi
s will be redu
ed, and physi
s willserve as a sour
e of 
omplementary methodology with respe
ts to themethods of biology, mathemati
s, psy
hology and 
omputer s
ien
e.3. Even assuming the methods of physi
s are appli
able at 
ertain timehorizons, e
onophysi
s may not be immediately su

essful in the sense
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e? 129of making an impa
t on e
onomi
 or �nan
ial markets. What seemsto be absolutely 
ru
ial is that not only physi
ists should be 
onvin
edthat they understand �markets�, they have also to 
onvin
e about thatthe �market makers�. This requires several ingredients. The �rst isthe quality of the resear
h. The se
ond is the 
ontinuous veri�
ationof models/theories with the data. The third is the 
lose 
ooperationbetween the physi
ists and e
onomists and �nan
ial advisors.All these three ingredients are often di�
ult to ful�ll. The semanti
dis
repan
ies, mu
h too 
arelessly (also by us) usage of physi
ists' slang(like quantum e
onomy, gauge theory, sto
k market Hamiltonian, spin-glassportfolio et
.), some mutual gaps in edu
ation, sometimes la
k of 
ru
ialdata et
., may trigger the situation, where e
onophysi
s may start to evolvein �splendid isolation� from the mainstream of e
onomy.All these dangers may slow down, the however unavoidable on long run,(in our opinion), impa
t of methods of physi
s on e
onomy and �nan
ialmarkets. Histori
al de�nition of e
onomy, as an art of �optimal allo
ationof s
ar
e resour
es to given ends�, needs to be repla
ed by the s
ien
e of�e
onomi
 agents � pro
essors of information� [62℄.We do hope, that this review at least partially 
onvin
ed the s
epti-
al reader, that the 
on
epts of statisti
al physi
s 
an enri
h this s
ien
e,hopefully making even a major impa
t at the fundamental level.The 
ontent of this review was greatly in�uen
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