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Econophysics is an approach to quantitative economy using ideas, mod-
els, conceptual and computational methods of statistical physics. In recent
years many of physical theories like theory of turbulence, scaling, random
matrix theory or renormalization group were successfully applied to econ-
omy giving a boost to modern computational techniques of data analysis,
risk management, artificial markets, macro-economy, etc. Econophysics be-
came a regular discipline covering a large spectrum of problems of modern
economy. It is impossible to review the whole field in a short paper. Here
we shall instead attempt to give a flavor of how econophysics approaches
economical problems by discussing one particular issue as an example: the
emergence and consequences of large scale regularities, which in particular
occur in the presence of fat tails in probability distributions in macro-
economy and quantitative finance.

PACS numbers: 02.50.-r, 05.40.—a, 05.70.Fh, 05.90.4+m

1. Introduction

Half a decade ago, a word “econophysics” started to circulate in the
community of physicists. In July 1997, “Workshop on Econophysics” was
organized in Budapest by Imre Kondor and Janos Kertesz [1].

Followed by several other dedicated meetings, the field matured, reaching
the state when textbooks on the subject, written by the pioneers in the field,
started to appear [2—4].

The name “econophysics”, a hybrid of “economy” and “physics”, was
coined to describe applications of methods of statistical physics to econ-
omy in general. In practice, majority of the research concerned the finances.

* This work has been commissioned by the Editor of Acta Physica Polonica B. It
has been financed by Stowarzyszenie Zbiorowego Zarzadzania Prawami Autorskimi
Tworcow Dziel Naukowych i Technicznych KOPIPOL z siedziba w Kielcach, from the
income coming from implementation of Art. 20 of the law on authorship and related
to its regulations.
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In such a way, physicists entered officially and scientifically the field of fi-
nancial engineering. On top of similar statistical methods used by financial
mathematicians (although formulated in not so formal or “high-brow” fash-
ion as in the textbooks on financial mathematics), physicists concentrated
on the analysis of experimental data using tools borrowed from the analysis
of real complex systems.

Commissioned by the Editorial Board of Acta Physica Polonica B to pre-
sent an overview of the “econophysics” oriented towards a physicist who never
really entered this interdisciplinary area, we faced the danger of an attempt
to present the status of the discipline which is still in statu nascendi, reviewed
by authors biased strongly by their personal views related to their (limited)
own research in the newborn field. Therefore this mini-review is to a large
extent a collection of thoughts and results from works of the three authors.
As such, it is not intended to cover the whole field which has become a large
discipline with many sub-branches by now but instead to present a modest
sampler of scientific methods borrowed from physics to describe economical
“data”. We restricted to the methods which were natural extrapolation of
those used in our own research in fundamental science (quantum gravity,
random matrices, random geometry, complex systems). As a guiding line
through this mini-review we have chosen power laws due to their omni-
presence in economical data.

The review is organized as follows. We begin with a historical intro-
duction arguing that despite the name “econophysics” entered the scientific
language only half a decade ago, connections and interplay between physics
and economy are more than hundred years old. The official marriage of
disciplines of economy, often understood as an art, and physics being an ex-
ample of a hard science, has been preceded by the continuous development
of scientific methodology for a long time. One could even say that the official
recognition of the close links came surprisingly late.

In the second part we concentrate on power-laws in economy. Using the
system size criterion we divide the economical world into macro-, meso- and
microscopic objects: the first of which are related to macro-economy, the
second to stock markets and the third to individual companies. The levels
are intertwined. In macro-economy one observes fat tails in the wealth and
income distributions. Analysis of stock markets clearly shows the presence of
large scale events, which can be described by probability distributions with
fat tails. The same concerns price fluctuations of individual companies. At
each of these regimes, one uses slightly different tools of the analysis. As
we shall argue they all have common roots in the theory of large numbers.
We shall start with the macro-economical application where we discuss the
wealth and income distributions. Then we switch to the micro- and meso-
scopic regimes where we shall concentrate on statistical properties of the
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system of fluctuating assets and on a question how the signal can be ex-
tracted in such a system. The natural language for the description of such
a system is provided by the random matrix theory. We shall discuss the
central limit theorem for random matrices and its consequences.

In the last, third part we very briefly mention other active areas of re-
search which have recently attracted attention of the econophysics commu-
nity. We also try to speculate on potential dangers of the approach, which
may arise if methods of physics are adapted to economy to blindly. We be-
lieve that the success of scientific methods for economic applications requires
broader scientific methodology, borrowing largely not only from physics, but
also from other domains of science, mainly the theory of adaptive systems,
studies of computer networks or the analysis of complex systems. Only
successful evolution of “econophysics” into “econoscience”, accompanied by
rigid constraints based on careful analysis of empirical data, gives economy
a chance to become a predictive theory at a high confidence level, and may
acquire a status of a “hard science”. We conclude that achievement of this
goal, although not easy, is certainly possible.

2. Historical background

At a first glance, economy and physics do not seem to be related. Despite
the fact that the literature is full of examples of famous physicists being
interested in economic or financial problems, these examples are usually
treated as adventures, and are sometimes anecdotical. Some well known
cases are:

e unsuccessful predictions of stock prices by sir Isaac Newton, and in
consequence, his terrible loss in 1720 of 20000 pounds in South Sea
speculation bubble [5],

e successful management of the fund for widows of Goetingen professors,
performed by Carl Friedrich Gauss,

e explanation of the Brownian random walk and the formulation of
the Chapman-Kolmogorov condition for Markovian processes by Louis
Bachelier in his PhD thesis on the theory of speculation done 5 years
before the Smoluchowski’s and Einstein’s works on diffusion, on the
basis of the observations of price movements on Paris stock-market [6]

and few others. These examples put forward the thesis which may sound
revolutionary for a contemporary econophysicist: It was the economy which
followed physics, and not vice versa — studies of the XVIII and XIX century
classical physics made a dramatic impact on economy, and the work was done
mostly by the economists, who tried to follow the scientific methodology of
physical sciences (see e.g. |[7,8]).
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As a first example we mention the father of classical economy, Adam
Smith. In his work “The principles which lead and direct philosophical
enquires: illustrated by the history of astronomy”, Smith exemplifies the
methodology of science by stressing the role of observing the regularities
and then constructing theories (called by Smith “imaginary machines”) re-
producing the observations. Using the astronomy as a reference point was
not accidental — it was the celestial mechanics, and the impressive amount
of astronomical data, which dominated science in several cultures. It is
rather amazing, that this analysis was done by a person, who is primarily
identified as an economist, and not as a “physical scientist”. In the end of
XVIIT and in XIX century, Newton’s theories were transformed into more
modern language of analytical mechanics in the works of Lagrange, Hamil-
ton and others (actually, this is the formulation still used in textbooks of
mechanics today). The beauty and power of the analytical mechanism did
not escape the attention of the economists. In particular, the concepts of
mechanics were considered as an ideal tool to be used in mathematization
of economy. Again, it is perhaps surprising for a contemporary financial en-
gineer that mathematics entered economy through physics! Economists like
Walras, Jevons, Fisher, Pareto tried to map the formalism of physics onto the
formalism of economy, replacing material points by economic agents, find-
ing the analogy of the potential energy represented by “utility”, and then
evolving the systems by the analogs of principle of minimal action [8]. That
fascination with mechanics went so far, that economists were even building
mechanical models illustrating the concept of economical equilibrium. The
enchantment with classical physics dated till the first half of the XX cen-
tury. Again, it is surprising for a physicist, that the conceptual revolution
done by Boltzmann (concepts of probability) and quantum mechanics (an-
other meaning of probability), were missed for so long by the economists.
Visionary suggestions by Majorana [9] in the 30’s to use statistical physics
in social science were at that time not explored neither by physicists nor by
economists.

It is surprising even more, if we recall the example of the already men-
tioned Louis Bachelier, who formulated the theory of Brownian motion on
the basis of economic data and moreover 5 years before the seminal works by
Einstein and Smoluchowski. Almost half a century after the defense of his
thesis “Jeu de speculation” (not appreciated very much by his advisor, Henri
Poincaré), the ideas of Bachelier were discovered in the economy depart-
ments of major American universities. A slight modification of the Bachelier
stochastic process (basically, changing the additive noise into the multiplica-
tive) lead Osborne and Samuelson [17] to the fundamental stochastic equa-
tion governing the evolution of stock prices and serves as a cornerstone of
the famous theory of Black, Scholes and Merton for calculating the correct
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price of an option. Technically, the Black—Scholes formula is just the solution
of the heat equation, with a peculiar boundary condition. The incredible
practical success of option-pricing formulae perhaps lured economists and
financial engineers a bit, and maybe, to some extent, was responsible for
the spectacular crash on Wall Street in August and September 1998 which
ricocheted over the other markets.

Taking into account several discoveries done in physics, one could say
that perhaps in the 80’ the economists missed a lesson from physics. Con-
cepts of a random walk were formulated using the assumption of the Gaus-
sian character of a stochastic process. As such, the movement of prices was
considered as memoryless, with almost negligible effects of large deviations,
exponentially screened in the Gaussian world. Actually already in the 60’
Mandelbrot pointed certain selfsimilarity of the behavior of commodities
(cotton prices) over different time scales, interpreted as the appearance of
power law. Today, for a physicist, familiar with critical phenomena, the
concept of a power law and large fluctuations is rather obvious, although
she or he may not be familiar with the fact that the main concepts of fractal
behavior, spelled by Mandelbrot in 70’, were predecessed by his study of
cotton prices, done a decade earlier. Actually, stock markets exhibited large
fluctuations (power behavior is usually named as “fat” or “heavy” tail be-
havior), but rather a limited interest in this behavior in the 90’ was caused
to large extent by the reservation of financial mathematics, lacking powerful
mathematical methods (like Ito calculus) suited for processes with divergent
moments.

The second major factor, changing the Gaussian world was a computer.
In the last 40 years the performance of the computers had increased by six
orders of magnitude. This fact had to have a crucial impact on economy.
First, the speed and the range of transactions had changed drastically. In
such a way computer started involuntarily to serve as an amplifier of fluc-
tuations. Second, the economies and markets started to watch each other
more closely, since computer possibilities allowed for collecting exponentially
more data.

In this way, several nontrivial couplings started to appear in economical
systems, leading to nonlinearities. Nonlinear behavior and overestimation
of the Gaussian principle for fluctuations were responsible for the Black
Monday Crash in 1987, and the crisis in August and September 1998.

That shock had however also a positive impact visualizing the impor-
tance of the non-linear effects. Already Poincaré has pointed the possibility
of unpredictability in a nonlinear dynamical system, establishing the foun-
dations of the chaotic behavior. The study of chaos turned out to be a major
branch of theoretical physics. It was only a question of time, how fast these
ideas will start to appear in economy. Ironically, Poincaré, who did not
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appreciate Bachelier’s results, made himself a large impact on real complex
systems as one of the discoverers of chaotic behavior in dynamical systems.
Nowadays studies of chaos, self-organized criticality, cellular automata and
neural networks are seriously taken into account as economical and financial
tools.

One of the benefits of the computers was that economic systems started
to save more and more data. Today markets collect incredible amount of
data (practically they remember every transaction). This triggers the need
for new methodologies, able to manage the data. In particular, the data
started to be analyzed using methods, borrowed widely from physics, where
seeking for regularities and for unconventional correlations is mandatory.

It was perhaps the reason, why several institutions (however, more fi-
nancial than devoted to study the problems of macroeconomy) started hir-
ing physicists as their “quants” or “rocket scientists”. In the last ten years,
another tendency appeared — physicists started to study economy scientifi-
cally. Several educational or research institutions devoted to study complex-
ity launched the research programs in economy and financial engineering.
These studies were devoted mostly to quantitative finance. To a large ex-
tent, it was triggered by vast amount of data accessible in this field. In such
a way, physics started to play the role of financial mathematics — some-
times rephrasing the mathematical constructions in the language of physics,
sometimes applying methods developed solely in physics, usually at the level
of various effective theories of complex systems. Name “econophysics”, often
attributed to the activity of physicists in this field, is in our opinion rather
misleading — perhaps “the physics of finances” is more adequate or even
“statistical phynance” as J.P. Bouchaud jokes. Moreover, as we speculate in
the conclusions of this work, name “physics” may be to restrictive to include
majority of the tools of financial analysis.

Probably the most challenging questions in economy are those related to
macro-economy. Extrapolating the historical perspective, briefly sketched
above, to the future, one can expect methods of physics, especially those
used in studies of complex and nonlinear systems, to make an impact on
this field in the nearest future. In this case the meaning of econophysics
would be similar to “physical economy”, and econophysics could be viewed
as a physicists’ realization of XIX century economists’ dream.

3. Macro-economy

Let us now turn to an example of econophysical reasoning in macro-
economy. The term macro-economy has in general a double meaning: of a
science which deals with large scale phenomena in economical systems and
of a system which is the subject of the macro-economical studies. Such
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a macro-economical system is a complex system which consists of many
individuals interacting with each other. The individuals function in the
background provided by the legal and institutional frames. Individuals differ
in abilities, education, mentality, historical and cultural background etc.
They enter the system with different financial and cultural initial conditions.
Each of them has his own vision of what is important and of what she or
he is willing and able to achieve. It is clear that one cannot formulate a
general theory of needs and financial possibilities of a single individual or
to create an economical profile of a typical member of such a complicated
system. There are too many random factors to be taken into account. They
change in time: sometimes slowly, sometimes faster, sometimes abruptly
and in an unpredictable way. Every day some individuals leave the system,
some new enter it. It is impossible to follow individual changes. One can
however control their statistics. Actually, it is the statistics which shapes the
system on large macro-economical scale and drives the large scale phenomena
observed in the whole macro-system.

The aim of macro-economical studies is to extract important factors,
understand their mutual relations and describe the development of past
events. The ultimate goal is to reach a level of understanding which would
also permit to predict the reaction of the system to the change of macro-
economical parameters in the future. Having such a knowledge at hand,
macro-economists would be able to stimulate the optimal evolution by ap-
propriately adjusting the macro-economical parameters. This level of un-
derstanding goes far beyond a formal description and requires modeling and
understanding of fundamental principles which are difficult because of the
complexity of the problem. Clearly, a model whose main ambition would be
to realistically take into account all parameters and factors characterizing
the whole network of dependencies in such a complex system would fail to
be comprehensive and solvable. One would not be able to learn anything
from such a model. It would be even to complicated to properly reflect what
it actually intends to describe.

Obviously, one has to find a way of simplifying the underlying complexity
to the level which enables a formulation of a treatable model. A danger of a
simplification of a complex and non-linear problem is that by a tiny modifi-
cation one can loose an important part of the information or introduce some
artificial effects. There are two possible approaches to the problem of model-
ing complexity. One way is to follow a phenomenological reduction scheme.
The first step is to introduce effective phenomenological quantities which
encode the most important part of the reduced information. Of course, it
is very difficult to quantify many important factors like cultural potential,
historical background or influence of a change in particular law which for ex-
ample regulates relation between employers and employees etc. Such factors
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play crucial role in the outcoming shape of the macro-system. The next step
is to determine mutual dependencies of these quantities. This procedure usu-
ally leads to a set of non-linear differential equations describing evolution of
the phenomenological quantities as a function of other parameters. At this
level a new complication occurs. It is well known that nonlinear equations
generally possess a very complicated spectrum of solutions whose stability
depends on precise values of the parameters. Sometimes tiny changes of pa-
rameters which are irrelevant, from the point of view of the macro-economy,
may be significant for the underlying mathematics, and opposite. In other
words, a formal mathematical solution does not always carry a realistic eco-
nomical information. One has to distinguish between the real and artificial
effects. It is not always easy and one should be aware of limitations steaming
from the complexity and non-linearity.

An alternative approach is the search for universal laws which govern the
behavior of the complex system. Such laws may uncover global regularities
which are insensitive to tiny changes of parameters within a given class of
parameters. Such laws also provide a classification of possible universal large
scale behaviors which can occur in the system and which can be used as a
first order approximation in the course of gaining insight into the mechanisms
driving the system.

This approach has been successfully used in theoretical physics for a long
time where for a given model one is able with the aid of the renormalization
group ideas to determine so called fixed points, each of which being related
to one universality class of the model [10]. The space of all possible classes of
different large scale behaviors of the model is divided into subspaces called
domains (or basins) of attraction of those fixed points. The universal prop-
erties of any theory within a domain of attraction of a given fixed point
are entirely determined by the properties of the renormalization group map
in the nearest neighborhood of the fixed point. The number of domains of
attraction is usually small. Thus typically one has only a few distinct uni-
versal large scale behaviors despite the original theory has infinitely many
degrees of freedom and infinitely many coupling constants controlling the
mutual interactions of those degrees of freedom. Macro-economical systems
are in this respect very similar to field theoretical ones.

Another well known example of the emergence of universal laws is the
central limit theorem. Saying not rigorously, the central limit theorem tells
us that the sum of many independent identically distributed random num-
bers polled from a distribution with a finite average and a finite variance
obeys a Gaussian law with the mean and the variance which scale with the
number of terms in the sum independently of the particular shape of the dis-
tribution. One could say that all distributions with finite variance belong to
the Gaussian basin of attraction. The Gaussian distribution is stable. Sta-
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ble distributions play here the role of fixed points. We see that a regularity
emerges for large sums telling us that all details of the original distribution
except the mean and the variance get forgotten in the course of enlarging
the number of terms in the sum. Distributions with infinite variance be-
long to the Lévy universality classes (or saying equivalently to the basin of
attraction of the Lévy distributions) [11,12].

One expects the large scale phenomena in economy to display a universal
character because they result from a large number of events which are driven
by laws of the same system and which contribute to the same statistics.

In this paper we shall take the latter approach. We shall be looking
for general laws which describe large scale behavior of economical systems.
We shall try to deduce them from assumptions as simple as possible, which
define certain universality classes. Small refinements and perturbations are
believed not to change the universality class of the large scale behavior. As
an example, in the next section we shall concentrate on the issue of the
wealth and income distribution. This issue, addressed already by Adam
Smith, still stands in the central place in the macro-economical research.

4. Wealth and income distributions

As mentioned above, we argue that the laws governing distributions can
be deduced from the mathematics of large numbers. A simple assumption
about the nature of wealth fluctuations seems to capture properly the mi-
croscopical mechanism which in the large scale leads to the emergence of
laws known for a long time from empirical studies in macro-economy. The
first law, discovered by Pareto more than one hundred years ago [13], tells
us that the wealth distribution of the richest part of the society is controlled
by the power-law tail

[0}

dw p(w) ~ % for w > wg. (1)
Here p(w)dw stands for a probability that a randomly chosen member of the
macro-economical system possesses the wealth between w and w + dw; wq
has the meaning of a typical value of the individual’s wealth in this system.
The exponent « is called the Pareto index. Pareto himself suspected that
there may exist an underlying mechanism which singles out a particular
fixed value of this index. Today we know that it is not true. The value of
the Pareto index « changes from macro-economy to macro-economy [14]. It
also varies in time. The empirical estimates show that a value of the Pareto

index in real macro-economical systems fluctuates around two.
It is worth discussing the consequences of the presence of the power-law
tail in the probability distribution. An immediate consequence is that the
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probability that a random person from the richer part of the society is A
times richer than another person with wealth w

p()\w) ~ Mt
p(w) g @

is independent of w. This distribution is scale-free, reflecting a certain self-
similarity of the structure of the richest class. Actually the scale appears
in the problem through the parameter wy which provides the lower cut-off
above which w > wg the power-law part of the distribution sets in. The
scale is provided by prices of elementary goods which one needs to function
in the system, like for instance prices of houses, cars, etc. Being rich means
to be far above this scale, to the degree that it does not matter how much
the basic things cost.

Let us take a closer look at some values to gain the intuition about
the consequences of the Pareto. For A = 10 and a = 2, the factor on the
right hand side of (2) is 1073. Thus for a = 2 the Pareto law predicts that
the number of people ten times richer is roughly one thousand times smaller.
The suppression factor is very sensitive to a. If the value of @ moves towards
unity, the suppression factor decreases, and for A = 10 it is only 10~2. In
other words, in the macro-economy with a smaller value of « the tail of the
distribution is fatter. This leaves more space for rich individuals. Thus one
intuitively expects that for smaller « the macro-economy is more liberal. In
a more restrictive macro-economical system the Pareto exponent « is larger
and hence the richer population is suppressed.

The presence of heavy tails in empirical data is relatively easy to detect.
One just observes cases lying far beyond the range suggested by standard
estimators of the mean and width of the distribution. What is however diffi-
cult is to quantitatively estimate the values of the Pareto index. The reason
for this is actually very simple. As follows from the discussion above, cases
with a very large deviation from the mean are relatively rare — much more
rare than those in the bulk of the distribution. Thus the statistics in the
tail is very poor. The effect of small statistics is additionally amplified by
the fact that for a given macro-economical system one can carry only one
measurement of the wealth distribution. One thus has only one statistically
independent sample. Secondly, the crossover between the bulk of the distri-
bution coming from the lower and middle classes and the tail coming from
the richest is smeared and therefore it is not entirely clear where the Pareto
law sets in: the position of the termination point of the Pareto tail is not
unique. This uncertainty introduces a bias to the estimators.

Moreover, gathering data about personal wealth and income is a delicate
matter. It is technically very difficult, close to impossible, to collect the
unbiased data, which would be free of personal, social or political factors.
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Here we shall discuss only the difficulty related to poor statistics. Having
the wealth distribution p(w)dw one can easily estimate the probability that
the wealth of a random member of the macro-economy exceeds a certain
value W

o0

P(W) = / dw p(w). (3)
w

For the particular form of the power law (1) this probability can be calculated

to be
A

«
PW) ~ <W) for W > wy. (4)
In the population of N people the number of individuals whose wealth ex-
ceeds W is roughly of the order P(W)N. Thus denoting the wealth of the

richest by Wiax, one can estimate P(Wiyax)N =~ 1 and hence
Wmax ~ ANl/a . (5)

A more involved analysis allows one to determine the distribution of wealth
of the richest in the macro-economy with the power-law tail to be given by
the Fréchet distribution [15]

-

a o —
dw pp(w) = dw Cira® @l =de™" (6)

where w is a rescaled variable w = Wax /AN l/e  The distribution of the
maximal wealth inherits thus the power-law tail from the original wealth dis-
tribution p(w)dw. This means that in some realizations of the same macro-
system the richest may be much richer that the richest in other realizations.
As a consequence, the maximal wealth may undergo strong fluctuations and
so may the whole empirical data points in the Pareto tail. This is an addi-
tional factor which makes the quantitative analysis of the Pareto tail in the
macro-economical data difficult.

It is much easier to study empirically the distribution in the range of
smaller wealths. The statistics is much better in this case since the poor
and middle class sectors are more numerous. Also the income declarations
are statistically more reliable. In effect, the flow of wealth is much easier
to control. The statistics is thus less biased. Surprisingly the empirical
law which governs this part of the income and wealth distributions was
discovered only four decades after the Pareto law. It was discovered by
Gibrat and named after him [16]. According to this law the wealth and
income distributions for the lower and middle classes obey the log-normal

law ) /
_dw 1 log” w/wq
dw p(w) = v Voot exp 552 (7)
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The cumulative probability P(W) that the wealth of a random member of
the Gibrat macro-economy exceeds W is given by

PW) :VZodw p(w) = %erfc <1‘)g}#) . (8)

All moments of the Gibrat distribution are finite (w*) = w exp 0?n?/2. The
parameter o gives a typical width of fluctuations of the order of magnitude
of w around wgy. The values w which deviate from wq by few o are strongly
suppressed for the Gibrat distribution. Sometimes to distinguish between
the Gibrat and Pareto distributions for large W one draws the cumulative
distributions in the log-log plot [14]. The plot log P(W) versus log W has a
parabolic shape for the Gibrat distribution when W goes to infinity, while
the corresponding plot for the Pareto distribution is a straight line (see
Fig. 1), This makes an enormous difference between the Pareto and Gibrat
laws in the range of large wealths.
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Fig.1. The power law and the lognormal fits to the 1998 Japanese income data.
The solid line represents the lognormal fit with zo = 4 million yen and § = 2.68.
The straight dashed line represents the power law fit with a = 2.06. Reprinted
from the paper [14] with the kind permission of the author. The data sets presented
in the figure come from three different sources. The corresponding data points are
denoted by different symbols in the figure. See [14] for the detailed description.
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Let us discuss mathematical mechanisms which may underlie the Gibrat
and Pareto laws. Imagine a random individual in the system. Denote her or
his wealth at a time ¢ by w;, and by w41 at a later time, separated by one
unit ¢ of time. The wealth could increase or decrease by some factor A; [17]

Wty1 = )\let . (9)

In general this factor may itself depend on many factors like which partic-
ular individual we picked up to look at, with whom she or he interacts in
the system, what is his or her current financial situation etc. In the simplest
approximation, which would be called in physics a mean-field approxima-
tion, we assume this factor to be a random number from the representative
distribution which statistically characterizes the whole system. Further, the
distribution is assumed to depend neither on time nor on the current wealth.
The first assumption means that the process is stationary, and the second
that it is linear in wealth. Although all this seems to be a crude approxi-
mation, the essential point is that it may be enough to capture the general
properties of the related universality class. What seems to be significant in
the assumption is that the variation of the wealth is described by a multi-
plicative rather than an additive process. Hopefully the large scale behavior
which we want to deduce from this assumption is representative for a larger
class including also more complex processes.

The assumed multiplicative nature of changes seems to well reflect the
economical reality in which the primary objects which fluctuate are the rates
of exchange understood in a broad sense: rates between goods, currencies,
money, real estate etc. The prices of stocks also belong to this category. The
change of wealth is proportional to the change of the exchange rate which
implies the multiplicative nature of changes. In a diversified portfolios the
situation is a little more complicated as we shall discuss later.

It is convenient to parameterize the changes of the factor scale A; by the
quantity r; which is related to A; as follows: Ay = expr; or equivalently as

ry = log Ay = log wy41 — logwy . (10)

When the time unit € between ¢ and ¢ + 1 is small, the factor X; is close to
unity. In this case it can be substituted by Ay = 1+ 4 ... which gives the
meaning of an instantaneous return to the quantity r;. The parameterization
A+ = exp 1y automatically takes care of the positive definiteness of the scale
factor \;: for r; fluctuating in the range (—oo,+00), A; fluctuates in the
range (0,+00). In the simplest model the statistical information about the
returns 7y is encoded in a probability distribution p.(r)dr which characterizes
the system. Successive returns r; are assumed to be random numbers polled
from the same distribution p.(r). The wealth wr and the return Rp after
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the time 7 = Te which elapsed from the moment ¢ = 0, is given by the
equation

T
wT
RTZIO _— = T 11
gwo tg_lt (11)

as can be directly deduced from the equation (9). If the mean and the
variance

T = (r).,
o? = ((r—7)%) (12)

of the distribution p.(r) are finite, the distribution of the return Ry ap-
proaches the normal law with the density

1 (R — T7)?
Varto? P T gt (13)

as follows from the central limit theorem. We use the relation between the
return R7 and the wealth wr (11) to obtain the distribution of wealth

dRr Pr(Rr) = dRy

dwr 1 log? wr /woe™

dwr pr(wr) = wr ol exp oTo?

This is the Gibrat law [16]. The typical wealth of individuals in the sys-
tem changes in time as wge”’ and the range of the order of magnitude of
fluctuations as vVTo. A few comments are in order. A typical wealth of
the system increases in time if the return 7 is positive and decreases if the
return is negative. It is constant for 7 = 0. If one assumes it changes slowly
(adiabatically) in time one can think of R as a sort of an averaged return.
Thus in some periods the total wealth may grow and in some diminish.
The width of the wealth fluctuations which is given in the formula (14) by

(14)

2T o2, grows in the model even if one assumes adiabatic changes: fT dt o%(t).
Thus the distribution gets flatter in time, suggesting that the differences
of wealth may only grow with time: the spread between lower and upper
end of middle class increases. This is what one very often observes if one
surveys a macro-system over years, but not always. There are two reasons
for this. Firstly, the simple model (9) seems to be inappropriate to describe
the wealth evolution in turbulent periods like wars or crises. Secondly, the
mean-field approximation (9) fails to reflect the conservation law for the
total wealth in the macro-system. If one assumes that the total wealth W
changes much slower in time than the wealths of individuals then in a short
period one can treat the total wealth as constant in comparison with the
wealths of individual w;’s. This means however that w;’s cannot fluctuate
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independently of each other as is assumed in the equation (9) because it
would violate the conservation law

W=w+wy+...+wn (15)

which tells us that, unless the economy as a whole produces a new wealth,
fluctuations of w; are not independent [18]. This effect does not allow fluctu-
ations of a typical order to grow as fast as the equation (14) would suggest.
Later we shall discuss other consequences of the presence of the conservation
law.

There is another economical factor which one should take into account
when considering the process of wealth fluctuations (9). In each macro-
economy there is some threshold wealth which one has to posses to function
in the system to fulfill minimal needs. In welfare economies it is provided
by the social security system. Generally for each macro-economical system
one can assume the existence of a positive cut-off w, > 0 for the minimal
wealth of each individual. It is easy to work out consequences of imposing
the cut-off [19]

on the multiplicative process (9). The right-hand side of the equation for the
return is also given by the sum of independent increments as in (11). What
changes is the boundary condition: in the presence of a cut-off, Ry cannot
be smaller than a certain value R,. One can think of the equation (11)
as of a random walk, which in the case of a cut-off has the lower barrier
R.. Microscopically the model with the barrier and without the barrier are
identical. Thus one can check that both cases are described by an identical
differential equation but with a different boundary condition. The equation
reads

OPr(Rr) _OPr(Rr)  ,0%Pr(Ry)
il kL . 1
T "orRy 7 oRZ (17)

By inspection one can check that indeed the probability distribution Pr(Rr)
(13) is a solution of the equation. In physics, the corresponding equation is
called the Fokker—Planck equation. It describes a random walk with a drift.
The two constants 7 and o2 in the equation correspond to the drift velocity
and the diffusion constant and are related to the mean r and the variance
02 of the underlying distribution (12). In the presence of the cut-off in the
boundary condition: Ry > R,. the Fokker—Planck equation (17) possesses
a stationary solution Pr(R) = P(R)

OP(R)
aT

=0 (18)
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if 7 < 0. The equation obtained by comparing the right-hand side of (17) to
zero can be solved with the normalization condition

(o¢]
/P(R)dR ~1. (19)
R.
The solution reads
P(R) = aexp—a(R — R,), (20)
where o = —7/0% > 0. Substituting the return 7 by w = wgef® (11) one

eventually obtains the stationary distribution for wealth [19]

plw)dw = 22290 (21)

we  w

Notice that it is independent of wy which disappears from the solution.
This is the Pareto law [13]. When the drift 7 is positive the exponent «
is negative, the normalization condition (19) cannot be fulfilled. There is
no stationary solution. For positive « the distribution flows with time and
approaches the log-normal law (14) of the Gibrat universality class [16]. In
this case the traces of the lower limit gradually disappear due to the positive
drift which makes the bulk of the distribution depart from the lower cut-off.
Now imagine that the drift changes slowly in time taking sometimes positive
and sometimes negative values. In this case the system oscillates between
the Gibrat and Pareto universality classes. For a finite time of the system
evolution it may effectively lead to a mixed Pareto—Gibrat properties of the
distribution, being in accordance with empirical observations [14].

What is counter-intuitive in this picture at the first glance is that the
distribution of average returns p.(r) generates the Pareto tail in the out-
coming distribution of wealth when the drift 7 is negative. We see then
that power-law tails occur in the wealth distribution when the system on
the average generates negative returns. Negative returns mean that people
loose wealth. Thus, paradoxically, when most of the people get poorer some
get extremely rich, populating the Pareto tail. We shall see this effect more
transparently below when discussing a constraint macro-economy.

To summarize this part of the discussion, the theory of large numbers
explains very well the observed empirical data. Fluctuations in the empirical
data may be large due to the fact that the empirical histograms are based on
single measurements. Fluctuations may be particularly large in the tail of
the distribution where there are only few counts in the empirical histograms
and where the wealth fluctuations may be large due to the fat tails (6).
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5. Wealth condensation

One of the implications of the mean-field approximation (9) is that the
total wealth of the system might fluctuate with the amplitude proportional
to the amplitude of individual changes and the square root of the number
of individuals, or with a higher power if the fat tail properties become im-
portant. In reality the total wealth of the macro-system alternates slower
in time and does not undergo such fluctuations. Therefore it is natural to
introduce another time scale for changes of the total wealth than for changes
of individual wealths. This leads to the constraint of the type (15) in which
the value W on the left hand side changes much slower than w;’s on the
right-hand side. This means that the flow of the wealth between individuals
within the system is much faster than the process of change of the total
wealth. Thus, if one considers changes of w;’s in a short time the constraint
(15) means that w;’s cannot be treated as completely independent stochas-
tic variables. In particular if an individual becomes very rich, amassing a
substantial part of the total wealth W accumulated in the macro-economical
system, this happens at a price of making others poorer. It is instructive
to analyze consequences resulting from the constraint. We shall do this in
the following way. In statistical mechanics of quasi-stationary systems one
approximates averages over time by averages over a statistical ensemble.
We shall use this approach here to represent fluctuations of the partition of
wealth as a sum over all states in the ensemble of wealth partitions with the
micro-canonical partition function

N
ZW,N) = Y Hp(wi)5(W—Zwi>- (22)
i=1

{w;>0} i

The total wealth W (15) is distributed among N individuals. This model is
very close in spirit to the mean-field approximation discussed above since it
assumes almost entire factorization of the probability into independent prob-
abilities p(w;) of individuals. One could, of course, introduce interactions
between different values w; and w; but as discussed above the mean field
arguments are good enough to explain empirical data within the accuracy
provided by single observations. We use here the strategy of not introducing
refinements which are not necessary. The full factorization is weakly violated
by the wealth conservation. The individual wealths are bounded from below
w; > w,. For technical reasons it is convenient to consider integer valued
w;’s. From the economical point of view this means that there exists a
minimal indivisable unit in which one expresses wealth as for example the
monetary unit used in the country. The only thing we shall assume about
the probabilities p(w), following the previous section, is that they possess a
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Pareto tail (1). As will become clear, the details concerning the exact shape
of the probability distribution are irrelevant for the universal large scale ef-
fects of wealth condensation. The only important parameters of the model
are the value of the Pareto exponent o and the mean of the distribution

Wer = Z wp(w) : (23)

The mean is finite for & > 1 and infinite otherwise. In a thermalized economy
where p(w) is constant for a long time this average w¢, adjusts itself to the
average per capita

0= — 24

b= (24
and one has

Wer = W . (25)

The mean of the distribution w. may however depart from w as a result of
some changes which the system may undergo. For example it may happen
that for some reasons a thermalized stable economy will start to develop,
increasing the total wealth W. Alternatively the economy may quickly go
down decreasing the total wealth W. The question arises how the system
adjusts to the new situation in which w # wc: how it redistributes the
surplus if @ > we or covers the deficit if w < we. A potential discrepancy
between w; and w may also occur as a result of some structural changes of
the macro-economical framework, like taxation laws, employee rights etc.,
which may lead to a change of the distribution p(w) yet before the total
wealth of the economy changes.

We shall try to answer this question by investigating the response of the
system defined by (22). This model can be solved analytically [18,20]. The
response of the system can be determined from the shape of the effective
probability distribution defined as an average over all partitions weighted
by the partition function (22)

1 N
plw) =+ <Z &(wi — w)> : (26)

One can show that when we = wy, there is a perfect matching and the
effective probability

p(w) = p(w). (27)

However, when the wealth per capita exceeds the critical value w > we, or is
smaller than the critical value: w < we, the system enters one of two different
phases which we call the surplus phase or the deficit phase respectively.
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In the surplus phase the effective probability distribution p(w) nonuni-
formly approaches p(w) creating a peak at the large values. For large systems
N — oo the effective probability density may be approximated by

Fw) = p(w) + %5(10 _ NAw), (28)

where the second term is the Dirac delta localized at the value proportional
to the system size N. The proportionality coefficient Aw = w — we, is a de-
viation of the average wealth from the critical value. The coefficient 1/N in
front of the delta function means that the probability related to the peak is
1/N, or equivalently that the contribution comes from one out of N individ-
uals. The wealth of this individual wmax = NAw grows with the system size.
He or she takes a finite fraction of the whole wealth. This effect is similar to
the Bose—Einstein condensation for which a finite fraction of all particles is
in the ground state. The difference between the two condensations is that in
the Bose—Einstein condensation the ground state is favored by the energy,
while here all individuals are identical and therefore they have a priori the
same chance that the wealth will condense in their pocket. The condensation
results from a spontaneous symmetry breaking mechanism which breaks the
permutation symmetry of N individuals of the original model. In reality,
of course, the position of individuals in the macro-system is not identical.
This may further enhance the effect of condensation observed already in the
model where those differences are neglected.
In the deficit phase (w < wey) the effective probability distribution p(w)
is given by
p(w) = ce *p(w), (29)

where p is some positive function which depends on Aw = w — we,. The
factor ¢ is a normalization constant. The exponent p vanishes in the limit
Aw — 07. We see that when the system enters the deficit phase a sup-
pression of the fat tails occurs: these are the richest who first pay for the
deficit.

The order of the transition between the deficit and surplus phases de-
pends on . The transition is of the third or higher order [20]. The transition
becomes weaker when « approaches one or infinity. The critical value we,
being the average of the distribution depends on the whole distribution but
it is very sensitive to the tails: the fatter the tail the larger the critical value
wer- On the other hand, when the critical value we, is larger it is more diffi-
cult to enter the surplus phase 0 > w.- because the wealth per capita must
exceed this critical value. This may happen in a very rich society. In the
limiting case @ = 1, the critical value w; is infinite and the system never
enters the surplus phase.
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When the critical value we becomes smaller it is easier for the wealth
per capita W to exceed wer and to enter the surplus phase where the system
has problems to redistribute the wealth of the richest. If it happens in a rich
society this means that one individual creates a large fortune and the system
is not able to redistribute it quickly or at least that such a redistribution is
not favored statistically. The wealth condensation becomes however natural
then. It is not a shame to be rich in a rich society as says Confucius.

Paradoxically, the condensation may also take place in a restrictive macro-
economy. Assume that the total wealth of a poor society is fixed. Addition-
ally imagine that the system becomes more restrictive, which results in the
increase of the Pareto index and the decrease of the critical value we,. If
this value becomes smaller than the wealth per capita w, which is fixed,
the system enters the surplus phase. The wealth condensates in one pocket
as a result of the surplus anomaly. Some of the richest become richer and
other poorer. This clearly reveals the danger of corruption of restrictive poor
macro-economies.

The main conclusion of this section is that large number theory also on
the elementary level explains potential danger of statistical instability, which
in the case of restrictive macro-economy may be related to the phenomenon
of corruption. One can avoid this danger by making the macro-economical
rules more liberal [18,21]. For completeness let us mention that one can
consider a macro-economy in contact with the external world [21]. In the
language of statistical physics this corresponds to the model defined by the
canonical version of the partition function (22). In addition to what we dis-
cussed here, in the canonical version of the model one can observe statistical
effects of the attraction of the external wealth to the macro-economy, or the
withdrawal of the internal one, depending on whether the macro-economical
rules inside or outside are more liberal.

6. Modeling a financial market

Let us now turn to the mesoscopic scale and discuss financial markets.
Financial market is a part of the econosystem which is easiest to quantify.
We shall use a simplified picture of this market in which the only objects
are the prices of assets, asset being the name commonly used to describe
a financial instrument, which can be bought or sold, like currencies, bonds,
shares etc. In the following we shall understand assets solely as shares. Asset
(or stock) prices S;(t) are functions of time. A typical time step e, when the
price is changed is as short as few seconds. It will be the dynamics of price
changes, which we shall discuss in this chapter.

In the analogous way as the quantity r; (10) of the chapter about macro-
economy we define the instantaneous returns, which we shall alternatively
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call relative price changes of the asset in the period from 7 to 7 4+ ¢
zi(1;€) = log Si(T + €) — log S;(7). (30)

Again the crucial ingredient of this analysis is the assumption about the
multiplicative nature of price changes. The definition of return is indepen-
dent of the unit in which the price is given and seems the best to capture the
essential properties of the price system. Return z;(7;¢) can be any positive
real number. Obviously the return over a larger time interval is a sum of all
changes over its subintervals

zi(Tie1 + €2) = wi(tie1) + xi(t + €13€2) . (31)

Financial databases contain huge number of time series of asset prices, sam-
pled at various frequencies. Phenomenologically one can observe that prices
behave in a random way: relative price changes x;(t, ¢) fluctuate. The empir-
ically measured time correlations show that these fluctuations have a rather
short autocorrelation time, typically of the order of several minutes. Longer
autocorrelation times were observed for the absolute values of fluctuations.

If the frequency of sampling e is chosen larger than the autocorrelation
time €g, corresponding price changes can be viewed as independent random
variables. The simplest assumption one can make is the assumption of sta-
tionarity: x; = x;(7 = t * €0;€0), where ¢ is an integer, can be interpreted
as random numbers generated with the same random number generator, in-
dependent of time. One can derive surprisingly strong predictions based on
this simple assumption, using very general properties of this random num-
ber generator. Let us assume that the generator is characterized by the
normalized probability distribution function (pdf) P(z), with a characteris-

tic function P(z) defined by the Fourier transform

o

P(z) = / dz P(x)e®? . (32)

— 00

Define a function R(z) = log P(z). It is straightforward to see that the sum
n

=3 s (3)
i=1

of independent random numbers distributed with P is again a random num-
ber with a distribution P, being an n-fold convolution of P(z). In conse-
quence, P,(z) = P"(z) and R, (z) = nR(z) where R,(z) = log P,(z).



108 7. BURDA, J. JURKIEWICZ, M.A. NOWAK

A special role is played by stable distributions, which have the property
that the probability distribution of the sum P, can be mapped into the
original distribution by a linear change of the argument

dz Py(z) = d(anz + by) Plapx + by) , (34)

where a, and b, are suitable parameters. Saying differently, the stable
distributions are self-similar under the convolution which means that the
shape of pdf is preserved up to a scale factor and shift. The condition (34)
can be rewritten as a condition for R(z) in the form

R(2) = nR(anz) + ibpz . (35)

A class of stable distributions is limited. The best known is the Gaussian
distribution, for which

R(z) = 2% +idz, (36)

where § = (z) and v = 3((z — §)?). One can think of the straightforward
generalizations of the last formula

R(z) = —7|z|* + idz. (37)

One can check that they indeed fulfill the stability condition (35). How-
ever only for 0 < a < 2 the corresponding characteristic function P(z) =
exp R(z) leads after inverting the Fourier transform (32) to a positive definite
and normalizable function P(z), which only in this case can be interpreted
as a probability distribution.

It is a special case of Lévy distributions characterized by the index 0 <
a < 2 which can be further generalized to asymmetric functions. The most
general form of R(z) can be shown ( [12]) to be

R(z) = —v|z|*(1 +1ip tan(%)sign(z)) +idz, a#1,
R(z) = —v|z|(1 + iﬁ%sign(z) In(vy|z|) + idz, a=1. (38)

The asymmetry parameter /3 takes values in the range [—1,1]. For a = 2 we
have the Gaussian distribution, the asymmetry plays no role in this case as
one can see from the formula since the S-dependent term drops. Indeed the
Gaussian distribution has only a symmetric realization.

One can easily check that for stable distributions the self-similarity pa-
rameter scales as a, = n~'/®. Although I:Z(z) is given explicitly, only in
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very few cases the corresponding pdf P(z) is expressible in terms of simple
analytical expressions. For £ — o0 and a < 2

AL
dz P(z) o dz e (39)
and the asymmetry parameter
[ Sty (40)
A% + A2

This behavior means that Levy distributions are very different from the
Gaussian distribution. For 1 < a < 2 only the first moment (z) is defined,
all higher moments diverge. For 0 < o < 1 even the first moment diverges.

The importance of the stable distributions is demonstrated by the central
limit theorem. Suppose we start with an arbitrary distribution P(x), not
necessarily stable. Performing the n-fold convolution of this distribution, in
the limit n — oo we necessarily end up with one of the stable distributions
described above. Typically if P(z) has the asymptotic behavior like (39) for
arbitrary « > 0 we shall obtain the Lévy distribution if & < 2 or Gaussian
distribution if @ > 2. As a consequence, if our sampling frequency in the
price list is large, say one day, we may expect to a good approximation the
relative price changes measured with this frequency to be random numbers
obtained from one of the stable distributions.

If the idealized assumption of stationarity holds, we can represent the
history of the financial market as a matrix z;;, with the times ¢ measured
in intervals of the sampling unit ¢, corresponding to one day. In this way
we lose information about the short time scale fluctuations, but we may
expect that for each i the entries x;; will represent a sequence of random
numbers drawn from the same stable distribution. It is, of course, a crucial
question, which stable distribution is realized in practice. We may deduce
the properties of this distribution studying a finite sample of z; on a time
window 7', consisting of many days (say one month).

7. Gaussian world

Simplest models assume the distribution to be Gaussian. If this is the
case, it can be characterized by two parameters: the shift §; = (x;) and the
variance o2 = 272 = ((x; — 6;)%). Both parameters can be easily determined
empirically from the data on a time window T by the following estimators
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57 = %Z (mu - &-)2 : (41)

Obviously these numbers would be subject to a statistical error due to the
finiteness of the time window. The values of the estimators converge to the
exact values ; — 6;, 6° — o2 only in the limit 7 — oo. In the Gaussian
world the evolution of the price (or in our case the logarithm of the price)
is just a diffusion process with a drift. Knowledge of the parameters of the
Gaussian distribution describing price changes in one day can be used to
predict the distribution of the relative price changes on a longer time scales.
These will again be given by the Gaussian distribution (due to its stability),
but with rescaled variance and shift.

The market consists of many assets (say 4 = 1,..., N). The number of
assets in the market is typically a large number (the well-known Standard
and Poor index SP500 quotes prices of 500 companies). The market reality
is more complex than suggested by the model of independent stationary
Gaussian returns discussed above.

The first problem is that the market reality is not stationary. One can-
not expect that the prices will fluctuate according to the same law over
twenty years. In this period many things may happen which may affect
performances of individual companies. One has to weaken the stationarity
assumption and to substitute it by a sort of quasi-stationarity. In practice
this means that the time window 7' used in the estimators (41) should be
limited and so should be the future time in which one uses the value of the
estimators. Practitioners [22] introduce further improvements to the estima-
tors by weighting past events with weight, which gradually decreases with
time. Here we shall not discuss this issue further, assuming in what follows
a quasi-stationarity.

The second correction which one has to introduce to the model discussed
above is that in reality the prices of individual stocks are mutually correlated
as a result of the existence of the network of inter-company dependencies.
Indeed even by a purely statistical analysis of the correlation matrix [23] one
can observe and determine the statistical correlations of price fluctuations
of stock prices of companies from the same industrial sectors. Of course,
inter-sector correlations also exist. Further, the stock market is not a closed
system. The total capital invested in the market may shift between the stock
market and other investments like for instance the real estate. This leads
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to the observed periods of flows of the capital into the stock market or out
of the stock market. As a result the prices may go up or down, depending
on whether the market attracts are repulses the capital. This is closely
related to the effect known in sociology as herding. The effect of herding
is also clearly seen in the statistical analysis of the matrix which shows
the occurrence of an eigenvalue in the spectrum of the correlation matrix
which is significantly larger than all other. The corresponding eigenvector is
interpreted as a vector of correlations of changes of individual prices to the
main market tendencies which are often referred to as [-parameters after
the Capital Asset Pricing Model [24]. We shall come back to this issue later.
This discussion shows that a realistic approach should allow to model the
inter-company correlations.

A logical generalization of the Gaussian model described above is the
model of correlated asset fluctuations generated from some multidimensional
Gaussian distribution. The probability of generating a vector of returns z;,
1=1,..., N at some time ¢ is

1 _
Hd.’I}i P(iEl,iﬁg, e ,.’I,'N) ~ H diEi exp —5 Z(.’I}Z - 5i)Cij1($j - (5]) . (42)
i i ij
The properties of this generator can be assumed, as discussed before, to be
constant in the period of time for which the shifts §; and the correlation
matrix Cj; are estimated (quasi-stationarity)

oy=1t Z (0~ ) (20— 3) 3

The correlations may be both positive or negative. Knowledge of the corre-
lation matrix Cj; is crucial in financial engineering, and in the construction
of “optimal portfolios” following the Markowitz recipe [25]. The main idea in
the construction of “optimal portfolios” is to reduce the risk by diversifica-
tion. The portfolio is constructed by dividing the total invested capital into
fractions p; which are held in different assets: va p; = 1. The evolution of
the return of the portfolio is now given by the stochastic linearized variable
X(p) = va pix;, which produces an instantaneous return X (p); = Ziv DiTit
at time ¢t. The quintessence of the Markowitz idea is to minimize the fluctu-
ations of the random variable X (p) at a given expected return by optimally
choosing the p;’s. The risk is measured by the variance of the stochastic
variable X (p)

2= sz-cijpj . (44)
1j

Clearly, the information encoded in Cj; is crucial for the appropriate choice
of p;’s. Intuitively, a diversification makes only sense when one diversifies
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between independent components and one does not gain too much if one
redistributes capital between strongly correlated assets which make collective
moves on the market.

The covariance matrix contains this precious information about the in-
dependent components. The spectrum of eigenvalues tells us about the
strength of fluctuations of individual components, and the corresponding
eigenvectors about the participation of different assets in this independent
components. ~

The fundamental question which arises is how good is the estimate Cj;
given by the equation (42) of the underlying covariance matrix (43), in
particular how good is the risk estimate

52 =% 5iCijp (45)
ij

of risk (44). Although the question looks simple, the answer is not imme-
diate. One can quantify the answer with the help of the random matrix
theory. We shall sketch some ideas which one uses in this theory in the next
sections. Here we shall only quote the results.

To start with, consider the simplest case of completely uncorrelated as-
sets which are equally risky. Further, we assume that they all fluctuate
symmetrically around zero §; = 0 with the same variance o; = 1. The cor-
relation matrix reads in this case Cj; = d;;. The spectrum of eigenvalues of
this matrix is p(A\) = §(A — 1) which means that it is entirely localized at
unity. For the ideal diversification p; = 1/N the risk measured by X' (44) is
¥ = 1/v/N. What shall we obtain if we use in this case the estimate é’ij
instead?

The random matrix theory as we shall see later gives a definite answer.
The first observation is that the quality of the estimator (43) depends on
the time T' for which we could measure the correlation matrix. The longer
time 7', the better quality of the information which can be read of from Cj;:
all diagonal elements should approach unity, and off-diagonal ones zero. In
reality, as we mentioned, one never has an infinite time 7" at ones disposal.
Geometry of the data matrix z;,4 =1,...,N,t = 1,...,T is finite. It is just
a rectangular matrix with the asymmetry parameter a = N/T < 1. Such
matrices form an ensemble called the Wishart ensemble [26]. The case a > 1
requires a special treatment and is not relevant in this case. For a larger
than zero we expect that the spectrum of the matrix C will be smeared in
comparison with the delta spectrum of C. Indeed, as we shall see in the
next sections using the methods of random matrix theory one finds

1 V/Os N0 -
2ma A

pN) = (46)
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with A+ = (1 £+/a)%. Only in the limit ¢ — 0 we get the spectrum peaked
at unity. This spectrum is calculated from the random matrix theory for
Wishart matrices as we discuss later.

Although the empirical matrix z; is obtained from a single realization
of a random matrix from the Wishart ensemble, its spectral properties are
in general very similar to those described above. This is due to the self-
averaging property of large matrices.

We can also explicitly find the estimate of risk (45). In doing this one
should take into account that the optimal choice of probabilities p; which
minimizes the risk X depends on Cj;

N A—1

5 = 2.5 Cij
v N ~A—1"°

>k Ci

Inserting this solution into the formula (44) we can calculate the minimal
value of the estimated risk

(47)

1 dX p(A)A 2
w2 o L T pA (48)
N (fdx p()AY)
which eventually gives
1 1
(49)

E:ﬁ e

The exact relation between the spectrum of C;; and C’ij can be obtained
in the limit N,T — oo, a = N/T fixed. Again we skip here the derivation
and quote only the result. A simple formula can be obtained for the Green’s
function

5 1 1
0= 5 {"—a7), (50)
which relates it to its counterpart, in the T" — oo limit:
1 1
t) = =—Tr———. 1
G(1) = Tr—5 (51)

The subscript W means the average over the Wishart ensemble (42). One
finds [27]

2G(z) = tG(t), (52)
here z and t are related to each other as:

z = t(l—a+atg(t)). (53)
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These two relations are in fact a concise way to write infinitely many relations
between the moments of matrices Cj; and Cj;. Let

[y

cr = NI&C*’“, (54)
1 -
G = ~—(TrC M.
= 5 Yw
On finds
é(1 = (1,
Co = 02+ac%,

c3 = c3+ 3acice + 0,20:{’
(55)

At the end of this section let us come to the problem of the large eigen-
values observed in the spectra of eigenvalues of the financial covariance ma-
trices Cj;. The spectra consist typically of the random part (46) which is
universal as discussed above and few large eigenvalues. Among them one is
particularly large. Its value is roughly speaking proportional to the number
N of the assets in the market. The corresponding eigenvector contains the
contribution from almost all N companies on the market. This eigenvector
is called the “market”. One can relatively easily understand the source of
the appearance of the market in the spectrum in terms of the herding phe-
nomena which we shortly signaled before. Imagine that there is a collective
behavior of investors on the market which can be driven by some sociological
factors. Mathematically such a collective movement may be in the simplest
version modeled by the coupling of the individual prices to some common
background, for example by substituting the generator of the vector of prices
(42) by a new generator of the form

H dz; P(Z) ~ H dz; exp —% Z(Iz — Bimi)Cy; ' (xj — Bimy),  (56)

ij

where (3;’s are some constants, and my is a common random variable describ-
ing the market movements. This is the basic idea underlying the CAPM
model |24] mentioned above. One can check that the largest eigenvalue dis-
appears from the spectrum leaving the remaining part intact if at each ¢
one subtracts from each return the market background represented as the
instantaneous average over all companies.
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The other large eigenvalues can be attributed to the real strong correla-
tions between companies. The analysis of the eigenvectors allows to divide
the market into highly correlated clusters, usually corresponding to compa-
nies from the same industrial sector. For example, one can see that the gold
companies form a cluster which is anticorrelated to the market.

An example of the eigenvalue spectrum of the empirical covariance ma-
trix C' (43), is shown in figure 2. It is calculated for the SP500 for the period.

p(A)

50 |

Fig.2. The spectrum of the financial covariance matrix for the daily SP500 for
N = 406 stocks and for T = 1309 days from 01.01.1991 to 06.03.1996. The left
plot represents the spectrum of the covariance matrix for the normalized returns in
the natural time ordering; the right one for the normalized return in the reshuffled
ordering. The reshuffling destroys correlations between entries of the matrix éij.
The random matrix prediction is plotted in solid line. The large eigenvalues lying
outside the random matrix spectrum in the left figure disappear from the spectrum
for reshuffled data shown in the right.

The data matrix z;; has the size N = 406 and T' = 1308 which corresponds to
the asymmetry parameter ¢ = 0.31. In the spectral analysis of the empirical
matrix one usually unifies the scale of return fluctuations of different assets
by normalizing them by individual variances o; (41): x;; — /0 which for
each asset produces fluctuations of unit width. For such normalized fluctu-
ations the formula (46) tells us that that the random part of the spectrum
of the covariance matrix should be concentrated between 0.20 and 2.43. We
clearly see the presence of larger eigenvalues in the spectrum presented in the
left plot in figure 3, which as mentioned, can be attributed to the inter-asset
correlations. However, the large eigenvalues disappear when one removes the
inter-asset correlation. One can do this by random reshuffling of the time
ordering of returns for each individual asset. A random reshuffling does not
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change the content of information stored in each separate row of data but it
destroys the statistical information about the correlations between different
rows. Indeed as is shown on the right plot in the figure 2, the larger eigenval-
ues disappear from the spectrum. The resulting spectrum of the covariance
matrix of such reshuffled data is perfectly described by the random matrix
formula (41).

P(A)

Fig. 3. The same as in Fig. 2 but for for the nonnormalized returns: the left figure
for the data in the natural time ordering and the right for the reshuffled ordering.
In this case reshuffling does not remove the large eigenvalues from the spectrum
signaling the presence of non-Gaussian effects in the return statistics.

The above mentioned normalization of return fluctuation x;; — x;/0; is
natural if fluctuations belong to the Gaussian universality class. If the un-
derlying distributions governing the return fluctuations have fat tails, this
normalization is not appropriate since the variance of the distribution does
not exist. In this case the use of the normalization z;; — x;/0; artificially
forces the resulting rescaled quantities to behave as if they belonged to the
Gaussian universality class of distributions with the unit variance. This in-
troduces a bias to the analysis in case of non-Gaussian statistics. Indeed, if
one skips this normalization one observes that covariance matrices for the
original SP500 data as well as for the reshufled SP500 data both possess
large eigenvalues in the spectra (see Fig. 3). What is the reason that the
reshuffling does not remove them? Is the random matrix prediction (46)
wrong? The random matrix prediction is not wrong of course but is valid
only for matrices from the Gaussian ensemble. The removal of the normaliza-
tion condition revealed the nature of the randomness of return fluctuations
which contain fat tails. As we shall discuss later, the spectra of Lévy random
matrices contain fat tails which means that even a completely random ma-



Is Econophysics a Solid Science? 117

trix may contain large eigenvalues. The main conclusion of this discussion is
that the large eigenvalues in the spectrum of financial covariances stem both
from inter-asset correlations and from the Lévy statistics of return fluctua-
tions and therefore a proper statistical analysis of financial data, in principle
of the eigenvalue content, would require the new Lévy methodology.

8. Lévy world

Indeed on closer inspection one finds that individual price fluctuations
have rather heavy tails. Empirically one can fit their distribution, at least
in the asymptotic limit, as a power low of the form (39) with the power
a =~ 1.5...1.8. Following our earlier discussion this means that one should
rather consider stable Lévy distributions when discussing the distribution
of relative price fluctuations, for the sampling frequency of the order of one
day or more.

Models of this type were proposed in the literature. For a single asset
i one should in principle determine four parameters (index «;, asymmetry
Bi, range ; and mean §;), which characterize it’s distribution P/?ZZ% 5 (z;). In
practice such a determination is numerically very difficult, one can assume
a value of o to be some fixed number in the range given above. Similarly
one can assume the asymmetry 3; = 0 (numerically it is very difficult to
distinguish the effect of asymmetry from that of a non-zero ¢;). Even with
these assumptions the determination of the remaining two parameters is
more difficult, because for Lévy distributions the second moment diverges.

A typical time evolution of the logarithm of price will in the Lévy world
be very different than in the Gaussian world. One observes from time to time
very large jumps, called Lévy flights. The practical consequence is a rela-
tively large probability of extreme events. Since these events are responsible
for possible large losses on financial market, the correct determination of the
risk cannot be made if their probability is underestimated. Each investment
on a financial market is risky and investors must know rather accurately the
probabilities of possible gains and losses.

A Lévy market means that we should describe a multidimensional, pos-
sibly correlated, Lévy random number generator. A natural assumption,
as explained above is a common value of the index « for all market com-
ponents. Correlations mean that for a given moment £;, fluctuations z;
can be decomposed as linear combinations of independent Lévy components
Ap, k=1,N, with a factorizable probability distribution

P({AY) = [T P, (40 67)
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and a unit range I; = 1. Such a decomposition means that
N
Ty = Ay (58)
k

and that a probability distribution of this asset is (because Lévy distributions
are stable) parametrized by

5 = > Auplg,
k
1/a
Y = <Z|Aik|a> , and
k
Aig|*B
B = Zk| zk| k_ (59)
>k |Air]®
In the simplest version described above we may take all By = 0 and
in consequence have all 5; = 0. A matrix X with elements z;, 1 =
1,....,N, t=1,...,T can be viewed as a single realization of the gen-

eralized Wishart random matrix generated with the Lévy probability distri-

bution. Determination of the matrix A;; in this case requires new methods,

different than in the Gaussian case and will be discussed elsewhere [28].
One can construct the analogue of the correlation matrix C’ij as

T

. 1 1 .

Cij = Ta/a >z = Taja (XX )ij (60)
t

and discuss its spectral properties when averaged over the ensemble of Lévy
matrices. The dependence on the size of the window T is different than in the
Gaussian case (which corresponds to the limit a — 2). To understand the
reason for that let us consider the uncorrelated Lévy matrix with A;; = d;;.
The diagonal elements d; = C’ZZ are the sums of squares of the random
Lévy variables with the index a. It is trivial to realize that such squares
are themselves random variables and that their distribution has a fat tail
with the index a/2. Following the arguments of the central limit theorem
given in the preceding sections we expect that if T' is large enough a sum
of such variables will be distributed according to the corresponding Lévy
distribution. We may even argue that this distribution should by completely
asymmetric (8 = 1), since the squares are all positive. The factor T2/
is the correct scaling factor in this case. Similar arguments can be used to

show that the off-diagonal elements C;;, ¢ # j retain the original index «a
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and therefore in the limit 7" — oo the eigenvalue spectrum of the matrix C’ij
is dominated by its diagonal elements. The shape of this spectrum is given
by the Lévy pdf with the index «/2 and § = 1. This pdf has a power-like
behavior with a relatively low power (a/2 < 1) and can easily be responsible
for large eigenvalues, which in this version have no dynamical origin.

To assess the importance of the off-diagonal entries on the spectrum for
finite T', we use the standard perturbation theory. For that, we write

Cij = (di(sz-j +T*1/aa,-j) . (61)

In the zeroth order, the eigenvalues of é’ij are just d;. The first order cor-
rections are zero because the matrix a;; is off-diagonal. Generically, for
a random matrix, d;’s are not degenerate, so up to the second order, the
eigenvalues of Cj; are

2

4 62
d; — d; (62)

2
as.
R 2 1] 9. -2/«
No=di+e Z T d =i+ Ty
(#1) J(#1)
There are N — 1 terms in the sum, each of order unity. Thus the sum
contributes a factor proportional to IV, say = s;IN, and we have:

A =d; +s;NT~?/. (63)

The off-diagonal terms compete with the diagonal ones for N ~ T2/,

In the general case, where the matrix A;; is non-trivial, the usefulness of
the correlation matrix C~’Z~j to determine the real correlations in the system
is limited. Looking for methods of determination of the A;; is crucial to
distinguish between the noise and signal.

In both approaches presented above the elements of the matrix x;; were
treated as random numbers obtained for each time step ¢ from the same
multidimensional random number generator. This can be understood as a
particular case of a situation where this generator depends also on ¢ and
where we have some non-trivial matrix probability measure P(xz)Dz. Ex-
amples of such measures are known in the literature.

One can speculate that in reality the distribution of z;; comes from many
different sources s and that

i =Yy, (64)
S

where all ng ) have the same matrix measure. This approach leads to the

concept of non-commutative probability distributions, discussed in the next
chapter.
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9. Matrix economy

In the previous chapters we mentioned several consequences of the central
limit theorem, one of the cornerstones of the theory of probability. We may
ask a question, which at the first glance looks academic: Can one formulate
an analog of the central limit theorem, if random variables X1,X2, X N
forming the sums

SN:X1+X2+...XN (65)

do not commute? In other words, we are seeking for a theory of probability,
which is non-commutative, i.e. X; can be viewed as operators, but which
should exhibit close similarities to the “classical” theory of probability. Such
theories are certainly interesting from the point of view of quantum me-
chanics or noncommutative field theory, but are they relevant for economic
analysis? The answer is positive. Abstract operators may have matricial
representations. If such construction exists, we would have a natural tool of
formulating the probabilistic analysis directly in the space of matrices. Con-
temporary financial markets are characterized by collecting and processing
enormous amount of data. Statistically, they may come from a processes
of the type (64) and may obey the matrix central limit theorems. Matrix-
valued probability theory is then ideally suited for analyzing the properties
of arrays of data (like the ones encountered in the previous chapter), analyz-
ing signal to noise ratio and time evolution of large portfolios. It allows also
to recast standard multivariate statistical analysis of covariances [29] into
novel and powerful language. Spectral properties of large arrays of data may
also provide a rather unique tool for studying chaotic properties, unraveling
correlations and identifying unexpected patterns in very large sets of data.

The origins of non-commutative probability is linked with abstract stud-
ies of von Neumann algebras done in the 80’. A new twist was given to the
theory, when it was realized, that noncommuting abstract operators, called
free random variables, can be represented as infinite matrices [30]. Only very
recently the concept of FRV started to appear explicitly in physics [31-33].

In this paper, we abandon a formal way and we shall follow the intuitive
approach, using frequently a physical intuition.

Our main goal is to study the spectral properties of large arrays of data.
Such analysis turned out to be relevant for the source detection and bearing
estimations in many problems related to signal processing [34]. Since large
stochastic matrices obey central limit theorems with respect to their mea-
sure, spectral analysis is a powerful tool for establishing a stochastic feature
of the whole set of matrix-ordered data, simply by comparing their spectra
to the analytically known results of random matrix theory. Simultaneously,
the deviations of empirical spectral characteristics from the spectral corre-
lations of purely stochastic matrices can be used as a source of inferring the
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important correlations, not so visible when investigated by other methods.
We shall first formulate the basics of matrix probability theory, and then
we shall discuss a sample application in the case of a financial covariance
matrix, a key ingredient of any theory of investment and/or financial risk
management.

Let us assume, that we want to study statistical properties of infinite
random matrices. We are interested in the spectral properties of N x N
matrix X, (in the limit N — o), which is drawn from a matricial measure

dX exp—-NTrV(X) (66)

with a potential V(X) (in general not necessarily polynomial). We shall
restrict ourselves to real symmetric matrices for the moment, since their
spectrum is real. The average spectral density of the matrix X is defined as

p(N) = 1 (Trd(A — X)) = <Z 5Or Ai)> , (67)

where (...) means averaging over the ensemble (66). Using the standard
folklore, that the spectral properties are related to the discontinuities of the
Green’s function we may introduce

G(2) :%<fﬁz_1X>, (68)

where z is a complex variable. Due to the known properties of the distribu-
tions

1 1 .
21_{% P PVX Fimd(N) (69)

we see that the imaginary part of the Green’s function reconstructs spectral
density (67)

1 lim Im G(2)|,=atic = p(A) . (70)
T e—0

The natural (from the point of view of the physicist) Green’s function
shall serve us as an auxiliary construction explaining the crucial concepts
of the theory of matrix (noncommutative) probability theory. Let us de-
fine a functional inverse of the Green’s function (sometimes called a Blue’s
function [32]), i.e. G[B(z)] = z. The fundamental object in noncommutative

probability theory, so-called R function or R-transform, is defined as

R(z) = B(z) — —. (71)
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With the help of the R-transform we shall now uncover several astonishing
analogies between the classical and matricial probability theory.

We shall start from the analog of the central limit theorem. It reads [30]:
The spectral distributions of independent variables Xi,

S’K:L(Xl—i-...-i-)?]() (72)

VK

each with arbitrary probability measure with zero mean and finite variance
(TrX?) = o2, converges towards the distribution with R-transform R(z) =
0°z.

Let us now find the exact form of this limiting distribution. Since R(z) =
02z, B(z) = 0%z + 1/ 2, so its functional inverse fulfills

z=0°G(2) +1/G(2). (73)

The solution of this quadratic equation (with proper asymptotics G(z) — 1/z
for large z) is

G(z) = z = V72 —4do® (74)

202

so the spectral density, supported by the cut of the square root, is

p(N) ! Vido? — N2, (75)

2702

This is the famous Wigner semi-circle [35] (actually, semi-ellipse) ensemble.
The omni-presence of this ensemble in various physical applications finds a
natural explanation — it is a consequence of the central limit theorem for
non-commuting random variables. Thus the Wigner ensemble is a noncom-
mutative analog of the Gaussian distribution. Indeed, one can show, that
the measure (66) corresponding to Green’s function (74) is V(X) = o 2X2.

Let us look in more detail, what “independence” means for two identical
matrix valued ensembles, e.g. of the Gaussian type, with zero mean and
unit variance. We are interested in finding the discontinuities of the Green’s
function

1

z— (X1 + Xo) (76)

g1+2(z) ~ /DXlDXge_NTrX%e_NTngrPr

In principle, this requires a solution of the convolution, with matrix-valued,
noncommuting entries! Here we can see how the R-transform operates. This
is the transform, which imposes the additive property for the all cumulants:
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all spectral cumulants obey k;(X1 + X2) = ki(X1) + ki(X2), for all 1 =
1,2,...,00 [30,36].

Mathematicians call such a property “freeness”, hence the name free ran-
dom variables. The R-transform is an analog of the logarithm of the char-
acteristic function (32) in the classical probability theory, and fulfills the
addition law [30]

R1+2(Z) =Ry (Z) + RQ(Z) . (77)

Note that we keep the notation underlying the similarities between the clas-
sical and non-commutative (matricial) probability calculus. In the above
example, the matrix valued convolution of two Gaussian ensembles with a
unit variance gives again a Gaussian ensemble, with the spectrum (semi-
circle) rescaled by v/2. Technically, it comes from the fact that Ry o(2) =
R1(2) +Ro(2) = 2+ z = 2z. This is like the usual convolution of two Gaus-
sian probability distribution, forming also a Gaussian but with a variance
rescaled by a factor v/2.

At this moment one can start to really appreciate the power of the non-
commutative approach to probability. For large matrices X and Y (exact
results hold in the N = oo limit), the knowledge of their spectra is usually
sufficient for predicting the spectrum of the sum X+V.

The noncommutative calculus allows also to generalize the additive law
for non-hermitian matrices [37, 38|, and even formulate the multiplicative
law, i.e. infer the knowledge of all moments of the spectral function of the
product of X Y, knowing only the spectra of X andY separately (so-called S-
transform) [30]. As such, it offers a powerful shortcut in analyzing stochastic
properties of large ensembles of data. Moreover, the larger the sets the
better, since finite size effects scale at least as 1/N.

Let us check the possibility of appearance of power-like spectra in non-
commutative probability theory. Motivated by the construction in classical
probability, we pose the following problem: What is the most general form of
the spectral distribution of random matrix ensemble, which is stable under
matrix convolution, i.e. has the same functional form as the original distribu-
tions, modulo shift and rescaling? Surprisingly, non-commutative probabil-
ity theory follows from the Lévy—Khinchine theorem of stability in classical
probability. In general, the needed R(z) behaves like 20!, where « € (0, 2].
More precisely, the list is exhausted by the following R-transforms [39]:

(i) R(z) = ™21 where a € (1,2], ¢ € [a — 2,0]

(ii) R(z) = ™21 where a € (0,1), ¢ € [1,1 + @]

(iii) R(2) = a+blog z, where a,b are complex and Ja > 0 and b > —1Ga.
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Note that the stability index « is restricted to precisely the same values
as in the one-dimensional case (38). The asymptotic form of the spectra is
power-like, i.e. p(A\) ~ 1/A* L. Singular case (i) corresponds, in a sym-
metric case (b = 0), to the Cauchy distribution. Note that the case (i) with
a = 2 corresponds to the Gaussian ensemble. For spectral distributions,
several other analogies to Lévy distributions hold. In particular, there is a
one-to-one correspondence for spectral analogs of ranges, asymmetries and
shifts. Spectral distributions exhibit also duality laws (« — 1/a), like their
classical counterparts [40,41]

To convince the reader, how useful the formalism of non-commutative
probability theory could be for the analysis of financial data, let us reconsider
the example from the previous chapter.

We analyze a time series of prices of N companies, measured at equal
sequence of T intervals. The returns (here relative daily changes of prices)
could be recast into N X T" matrix X. This matrix defines the empirical
N x N covariance matrix C' (60). This matrix forms today a cornerstone of
every methodology of measuring the market risk [22].

We can now confront the empirical data, assuming the extreme scenario,
that the covariance matrix is completely noisy (no-information), v.e. X =
X is stochastic, belonging to e.g. a random matrix ensemble. By central
limit theorems, we can consider either matricial Gaussian or matricial Levy—
Khinchin stability basins. From technical point of view, the problem of
finding spectral distribution for covariance matrix reduces to convolution of
a square T' x T matrix X? and a “deterministic” diagonal projector P, with
the first N elements equal to 1, and the remaining (T — N) set to zero.
Exact formula, corresponding to T, N — oo, N/T = a fixed comes from a
“back-of the envelope” calculation [42]. For symmetric Lévy distributions,
for completely random matrices, the Green’s function is given by

G(z) = 1/2[1 + f(2)], (78)
where f(z) is a multivalued solution of a transcendental equation
1
(1+f)(f+a)m:2’ (79)

In the case @ = 2, equation is algebraic (quadratic), and the spectrum is
localized on a finite interval. In all other cases the range of the spectrum is
infinite, with the large eigenvalue distribution scaling as 1/A®*1.

A reader familiar with methods of multivariate statistical analysis im-
mediately recognizes, that the case o = 2 corresponds to the spectral distri-
bution of celebrated Wishart distribution. Indeed, the normalized solution
of a quadratic equation (i.e. (79) with o = 2) leads to the spectral function
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Fig.4. Spectral densities of the covariance matrix of free random Lévy matrices
with the stability index o = 1/2 and different values of the asymmetry parameter
by m = T/N = 1/a (left figure); and with the given asymmetry parameter m =
T/N = 3.22 and different values of the stability index «a (right figure).

(46) mentioned already. This result was rediscovered several times in the
context of various physical applications, with the help of various random
matrix techniques [43].

We would like to stress, how natural and fundamental is this result from
the point of view of non-commutative probability and central limit theorems.

From this point of view, it is also puzzling how late the random matrices
(in our language matricial probabilities) were used for the analysis of finan-
cial data. The breakthrough came in 1999, when two groups [44,45] have
analyzed the spectral characteristics of empirical covariances, calculated for
all companies belonging to Standard and Poor 500 index, which remained
listed from 1991 till 1996. The spectrum of the empirical covariance ma-
trix constructed from this matrix was then confronted with the analytically
known spectrum of a covariance matrix constructed solely from the maximal-
entropy (Gaussian) ensemble with the same number of rows and columns.

The unexpected (for many) results showed, that the majority of the
spectrum of empirical covariance matrices is populated by noise!

In the case of a Gaussian disorder, 94% of empirical eigenvalues were
consistent with random matrix spectra [44]. Only few largest eigenvalues
did not match the pattern, reflecting the appearance of large clusters of
companies, generally corresponding to the sectorization of the market and
market itself [23]. The analysis done with the power law (o = 1.5) not
only confirmed the dominance of stochastic effects, but even interpreted
the clusters as possible large stochastic events [46]. It also pointed at the
dangers of using the covariance matrix (which assumes implicitly the finite
dispersion) in the case when power laws are present.
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The random matrix analysis posed therefore a fundamental question
for quantitative finances. If empirical covariance matrices are so “noisy”,
why there are so valuable for practitioners? Every industrial application of
risk measurement depends heavily on covariance matrix formulation. The
Markowitz’s theory of diversification of investment portfolios depends cru-
cially on the information included in the covariance matrix [25]. If indeed
the lower part of the covariance matrix spectrum has practically no infor-
mation, the effects of noise would strongly contaminate the optimal choice
of the diversification, resulting in the dangerous underestimation of the risk
of the portfolio.

Bouchaud and others [47] suggested a way out, simply filtering out the
noisy part of the correlation matrix and repeating the Markowitz analysis
with refined matrix. This resulted in a better approximation of the risk.

Their analysis did not answer however the fundamental question. If
the original matrix is noisy, i.e. has almost no information, how come the
covariance matrices form the pillars of quantitative finance?

We tried to answer this question in the previous section, shedding some
light on a rather nontrivial relation between the true covariance matrix C
and its estimator C'. The relation between the Green’s functions G and G was
obtained in the framework of Random Matrix Theory. Some other recent
papers using tools of random matrix theory for investigating the properties
of covariance matrices are [48-51].

We would like to point out at this moment, that matrix probability
theory seems to be ideally suited tool for better understanding the role of
covariance matrix and a way of quantitatively assessing the role of the noise,
important correlations and the stability of the analysis. In our opinion,
the full power of random matrix techniques was not recognized yet by the
quantitative finance community.

Finally, we would like to point out an exciting possibility of introducing
the dynamics formulated in the matrix probability language. The simplest
dynamics of price (S) movement of the asset is canonically [17] described by
the stochastic equation

ds = St—i—dt - St = (,U,dt + O'd’l?)St, (80)

where the deterministic evolution is governed by the interest rate (drift) p
and the stochastic term is represented by the Wiener measure dn, multiplied
by dispersion (called in finance volatility) o. The Wiener measure could be
realized as VdtN(0,1), where N(0,1) is a Gaussian with zero mean and unit
variance. Therefore (dn) = 0 and ((dn)?) = dt, reflecting the random walk
character of the process. Since the process is multiplicative, the resulting
Fokker-Planck equation is a heat equation with respect to the log .S, solved



Is Econophysics a Solid Science? 127

by the log normal distribution. Note, that (80) has the same content as
already written equations (9),(30) for wealth and prices, respectively.

One is tempted to write a similar stochastic equation for the wector of
prices. The standard extension [52| reads

Sivars = (14 pidt + VdtAijn;)Si; , (81)

where the noise vector n; obeys (n;n;) ~ 0;; and A;; is the square root of the
correlation matrix.

Note however, that one may write a different equation, but now for the
matriz analog of the Wiener measure. It is not difficult to see, that the role
of the white noise is now played by Gaussian ensemble of random matrices,
resulting into the matrix evolution for the whole vector of prices. Taking the
finite time step, we get

Sivari = (855 4 pejdt + oVdtX ;) Sy , (82)

where p is a deterministic matrix and X is a real Gaussian matrix and not
a vector. Diffusion takes then place in the space of matrices. Finite time
evolution results in the infinite product of large, non-commuting matrices,
ordered along the diffusive path, similarly like the chronological operators do
for the time evolution of non-commuting Hamiltonians. Here, however, the
evolution is dissipative (spectrum is complex). Surprisingly, random matrix
techniques [53] allow to analyze the changes of the spectrum of such stock
market evolution operators as a function of time ¢, similarly as in the case
of a single asset, where the lognormal packet spreads according to the heat
equation.

This approach, basically equivalent to one of the matrix generalizations
of the Ito-like processes, may allow to study the time properties of the spec-
tra of large sets of financial data. Moreover, the method seems not to be
restricted to the Gaussian world, due to the mathematical power of matricial
probability calculus and the matrix valued stochastic differential equations
may turn out to be a powerful tool of time series analysis of large sets of
data. This “matrix econophysics” (as a witticism, or maybe “wittencism”,
we may use abbreviation M-econophysics to paraphrase M-theory) may also
give a rather precise meaning of “quantum economy”, a vague term often
encounter in the literature. In the language of a matrix-valued probability
calculus, the “quantum nature” comes from the fact, that basic objects of the
probability calculus are operators, represented as large, non-commuting ma-
trices, represented in economy by arrays of data. The relevant observables
in this language are related to the statistical properties of their spectra.
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10. Econophysics or econoscience?

In the course of the presentation, we only briefly analyzed some selected
methods related to the description of real complex systems such as economic
or financial markets. The idea was to give the reader not familiar with this
field some sort of a sampler, hopefully an appetizer. We did not mention at
all several intriguing attempts to describe financial crashes using the insight
from physics [54]. Neither did we mention promising attempts to use the
concepts of cascades and/or turbulence for explaining the observed corre-
lations and multifractality in high frequency time series [55]. We omitted
natural, from the point of view of the physicist, modifications of the option
theories [3]. Our presentation of macroeconomic applications was restricted
to simple patterns of wealth distribution, and we ignored the whole dynam-
ics of this process. We did not discuss several other issues, usually covered
by econophysics conferences [56,57].

At this moment, instead of continuing the list of our sins, let us come
back to the titular question — how “solid” is econophysics as a science? We
would like to point at few dangers, which in our opinion, every econophysicist
has to take into account.

1. First, we believe that laws of physics do not change in time. Certainly,
this is not true for most of the laws of economy. Most dramatic are
the financial markets. Technical developments (computers, Internet)
or legal regulations have a major impact on the field.

2. Second, “the material points”, i.e. agents are not passive — they are
thinking entities, and sometimes they are very smart. This invali-
dates immediately the “stationarity” principle. Methods and strate-
gies evolve continuously in time, and the “quasistationarity” is rather
due to the traditional conservatism of financial institutions. Abandon-
ing this conservatism leads to the situation, where more adequate are
concepts of biological evolutionism mixed with elements of the game
theory. Indeed, this lead is seriously studied nowadays [58,59]. Taking
into account the complexity of the system, the speed at which the sys-
tems may evolve and the multidimensional space of the systems, whose
topology may more reflect the virtual network of connections than real
geographic distances [60,61], the need of such studies is obvious. As
recently pointed [62], economy may evolve into cyberscience. Then,
the role of the methods of physics will be reduced, and physics will
serve as a source of complementary methodology with respects to the
methods of biology, mathematics, psychology and computer science.

3. Even assuming the methods of physics are applicable at certain time
horizons, econophysics may not be immediately successful in the sense



Is Econophysics a Solid Science? 129

of making an impact on economic or financial markets. What seems
to be absolutely crucial is that not only physicists should be convinced
that they understand “markets”, they have also to convince about that
the “market makers”. This requires several ingredients. The first is
the quality of the research. The second is the continuous verification
of models/theories with the data. The third is the close cooperation
between the physicists and economists and financial advisors.

All these three ingredients are often difficult to fulfill. The semantic
discrepancies, much too carelessly (also by us) usage of physicists’ slang
(like quantum economy, gauge theory, stock market Hamiltonian, spin-glass
portfolio etc.), some mutual gaps in education, sometimes lack of crucial
data etc., may trigger the situation, where econophysics may start to evolve
in “splendid isolation” from the mainstream of economy.

All these dangers may slow down, the however unavoidable on long run,
(in our opinion), impact of methods of physics on economy and financial
markets. Historical definition of economy, as an art of “optimal allocation
of scarce resources to given ends”, needs to be replaced by the science of
“economic agents — processors of information” [62].

We do hope, that this review at least partially convinced the scepti-
cal reader, that the concepts of statistical physics can enrich this science,
hopefully making even a major impact at the fundamental level.

The content of this review was greatly influenced by our collaborators,
with whom some of the original work was done and with whom we had
extensive discussions. In particular we would like to thank Piotr Bialas, Ewa
Gudowska-Nowak, Romuald Janik, Des Johnston, Marek Kamiriski, Andrzej
Krzywicki, Gabor Papp and Ismail Zahed. We thank Wataru Souma for
the correspondence and kind permission for reprinting the figure from his
paper. This work was supported in part by the grant 2 P03B 096 22 of the
Polish State Committee for Scientific Research (KBN) in years 2002-2004,
EC Information Society Technologies Programme IST-2001-37259 Computer
Physics Interdisciplinary Research and Applications and a special dedicated
grant of KOPIPOL.
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