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1. Introduction

Matrix models have been very useful in the study of the “quantum
geometry” of two-dimensional quantum gravity. In [1] this program was
extended to three-dimensional quantum gravity. It was shown how the
so-called ABAB two-matrix model describes the transfer matrix of tree-
dimensional quantum gravity. More precisely a non-perturbative, back-
ground independent definition of quantum gravity, which emphasizes the
causal structure of space-time and which allows rotations between Lorentzian
and Euclidean signature, was proposed in [2,3], generalizing an explicit solv-
able two-dimensional model with these features [4]. In the model, which has
an UV lattice cut off a which should be taken to zero in the continuum
limit, one can define the concept of proper time. In the Euclidean sector the
corresponding evolution operator is defined in terms of the transfer matrix
T̂ describing the transition between quantum states at (proper) time n · a
and (proper) time (n+1) · a. The transfer matrix is related to the quantum
Hamiltonian of the system by

T̂ = e−aĤ . (1.1)

The ABAB model is defined by the

Z(α1, α2, β) = e−N2F (α1,α2,β)

=

∫

dAdB e−Ntr ( 1
2
(A2+B2)−

α1
4

A4−
α2
4

B4−β

2
ABAB). (1.2)

Under the assumption discussed in [1] the free energy F (α1, α2, β) is related

to the matrix elements of the transfer matrix T̂ in a way reviewed in the next
section. The matrix model (1.2) has a scaling limit for α1 = α2 which was
analyzed in [5]. This allowed us in [1] to determine the corresponding phase
diagram for the three-dimensional quantum gravity model and to map the
bare coupling constants of the gravity model to the matrix model coupling
constants α1 =α2 and β [7]. However, in order to study details of the scaling
relevant to three-dimensional quantum gravity we have to study the matrix
model for α1 6= α2. In the scaling limit of interest for us both α1 and α2

will scale to a critical value αc, but independently. Since we are interested
only in the behavior of the theory near the symmetric solution we need only
the perturbative expansion around this solution rather than the complete
solution in the asymmetric case1.

1 While writing this article the asymmetric ABAB matrix model has been solved by
Paul Zinn-Justin [8]. The behavior close to the symmetric line α1 = α2 is the same
as the one reported here and to extract it one has to expand the elliptic functions
which appear in the solution, an effort comparable to the one used here.
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The rest of this article is organized as follows. In Sec. 2 we review shortly
the non-perturbative definition of three-dimensional Lorentzian quantum
gravity [2,3] and its relation to the ABAB matrix model. In Sec. 3 we review
the machinery needed to solve the ABAB matrix model for a symmetric
choice of coupling constants [5]. In Sec. 4 we discuss the solution of the
general ABAB matrix model, and in Sec. 5 we expand around the symmetric
critical point relevant for three-dimensional quantum gravity. In Sec. 6 we
discuss how to extract information about the transfer matrix of 3D gravity,
knowing the free energy of the asymmetric ABAB matrix model.

2. Quantum gravity and the ABAB matrix model

Simplicial Lorentzian quantum gravity is defined in the following way:
the spatial hypersurfaces of constant proper-time are two-dimensional equi-
lateral triangulations. Such triangulations define uniquely a two-dimensional
geometry. It is known that this class of geometries describes correctly the
quantum aspects of two-dimensional Euclidean gravity. It is also known
that the description of two-dimensional Euclidean quantum gravity in terms
of the class of (generalized) triangulations is quite robust. In [2] we used
this universality in the following way: the two-dimensional geometry of the
spatial hypersurfaces is represented by quadrangulations and it was shown
that it is possible to connect any such pair of quadrangulations by a set
of three-dimensional “simplexes”. More precisely, let a be the lattice spac-
ing separating two neighboring spatial hypersurfaces a (proper)-time t and
t + a. Then each square at t is connected to a vertex at t + a and each
square at t + a is connected to a vertex at proper-time t. A further needed
three-dimensional building block is a tetrahedron connecting a spatial link
at t to a spatial link at t+a. The proper-time propagator for (regularized)
three-dimensional quantum gravity between two spatial hypersurfaces sepa-
rated by a proper time T =n · a is obtained by inserting n−1 intermediate
spatial hypersurfaces and summing over all possible geometries constructed
as described above, The weight of each geometry is given by the Einstein
action, here conveniently the Regge action for piecewise linear geometries.
The naive continuum limit is obtained by scaling the lattice spacing a → 0
while keeping T =n · a fixed. However, different scaling relations between T
and a might in principle be possible2.

Let gt and gt+a be spatial two-geometries at t and t+a, i.e. two quad-

rangulations and let 〈gt+a|T̂ |gt〉 be the transition amplitude or proper time

2 In two-dimensional Euclidean quantum gravity the proper-time T scales anomalously
and one has to keep n

√

a fixed. This is in contrast to the situation in two-dimensional
Lorentzian quantum gravity as defined in [4] where the proper-time T scales canoni-
cally. The relation between the two models is well understood [9].
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propagator from t to t+a. By definition, T̂ is the transfer matrix in the
sense of Euclidean lattice theory, and it satisfies the axioms of a transfer
matrix [3]. In the case where the spatial topology is that of S2 it was argued
in [1] that the continuum limit could be obtained as the large N scaling limit
of the matrix model (1.2). Let Nt and Nt+a denote the number of squares
in the quadrangulations associated with gt and gt+a. The two-volumes of
the corresponding geometries are thus Nta

2 and Nt+aa
2, respectively, and

the relation to F (α1, α2, β) defined by (1.2) is

F (α1, α2, β) =
∑

gt,gt+a

e−ztNt−zt+aNt+a〈gt+a|T̂ |gt〉, (2.1)

where zt and zt+a are dimensionless boundary cosmological constants. The
naive relation between the matrix model coupling constants and the bare
gravitational and cosmological coupling constants GN and Λ of three-di-
mensional gravity is as follows:

α1 = ek̃−λ̃−zt, α2 = ek̃−λ̃−zt+a, β = e−( 1
2
λ̃+k̃), (2.2)

where

k̃ =
a

4πGN

(

−π + 2cos−1 1

3
+ sin−1 2

√
2

3

)

, λ̃ =
a3Λ

24
√

2GN

. (2.3)

In this paper we shall discuss the non-perturbative renormalization of the
coupling constants. In principle we are interested in the limit zt =zt+a = 0,
i.e. α1 =α2. However, in order to be able to extract the information about
the scaling of the boundary cosmological constants we have to keep zt and
zt+a different from zero at intermediate steps. Thus these boundary cos-

mological constants should be viewed as source terms for boundary area
operator.

3. The symmetric case: α1 = α2 = α

Let us for later convenience shortly review the technique for solving the
matrix model (1.2) used in [5] (based on earlier results [6]).

By a character expansion of the term e
1
2
βtr ABAB one can write

Z(α1, α2, β) ∼
∑

{h}

(Mβ

2

)

∑

hi−
N(N−1)

2
c{h} R{h}(α1)R{h}(α2), (3.1)

where the sum is over the representations of GL(M), characterized by the
shifted highest weights hi = mi + M − i, (i = 1, . . . ,M), where the mi are
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the standard highest weights and where the large M limit of the coefficient
c{h} is

log c{h} = −
∑

i

hi

2

(

log
hi

2
− 1
)

− 1

2
log ∆(h), ∆(h) =

∏

i<j

(hi −hj). (3.2)

Finally, if χ{h} denotes the character associated with {h},

R{h}(α) =

∫

dA χ{h}(A) exp M
(

− 1

2
tr A2 +

α

4
tr A4

)

. (3.3)

It is now possible to perform a double saddle point expansion of (3.1) and
(3.3). In order to describe the formalism let us introduce the notation

ℜf(z) ≡ f(z + i0) + f(z − i0)

2
, ℑf(z) =

f(z + i0) − f(z − i0)

2
. (3.4)

This notation is useful when f(z) has cuts. The saddle point expansion as-
sumes the existence of an eigenvalue density ρ̃(λ), or equivalently a resolvent
associated with the matrix integral (3.3):

ω(λ) =
1

M

∑

k

1

λ − λk
, − πiρ̃(λ) = ℑω(λ), (3.5)

and (after rescaling h → Mh) a density of highest weights ρ(h), or the
corresponding “resolvent” H(h):

H(h) =
1

M

∑

k

1

h − hk
, − πiρ(h) = ℑH(h). (3.6)

In Ref. [5] the double saddle point expansion is analyzed in the case
α1 = α2 = α. The density ρ(h) was assumed to be different from zero in
the interval [0, h2[, and equal to 1 in the interval [0, h1]. Further, for a given
eigenvalue distribution λk of the matrix A coming from the saddle point of
(3.3) one can define a function L(h), with same cut as H by

ℜL(hj) =
2

M

∂

∂hj
log χ{h}(A(λk)). (3.7)

The analysis of [5] shows that L(h) = H(h) + F (h) where F (h) is analytic
on the cut of H(h) but has an additional cut [h3,∞[ where

2ℜL(h) = log
h

α
+ H(h). (3.8)



4672 J. Ambjørn et al.

It can now be shown that the function D(h) = 2L(h) − H(h) − 3 log h +
log(h − h1) only has square root type cuts on [h1, h2] and [h3,∞[ and on
these cuts satisfies the following equations:

ℜD(h) = log
h − h1

βh2
, h ∈ I0 = [h1, h2] , (3.9)

ℜD(h) = log
h − h1

αh2
, h ∈ I1 = [h3,∞[. (3.10)

Eqs. (3.9)–(3.10) constitute a standard Hilbert problem and the inversion
formula is unique [10]. The function holomorphic in the plane with cuts I0

and I1 is given by

D(h) = log
h − h1

βh2
− log β/α

iπ
r(h)

∞
∫

h3

dh
1

(h − h′)r(h′)

+r(h)

h1
∫

−∞

dh′ 1

(h − h′)r(h′)
− 2r(h)

0
∫

−∞

dh′ 1

(h − h′)r(h′)
, (3.11)

where

r(h) =
√

(h − h1)(h − h2)(h − h3) (3.12)

and where we have chosen the cut structure shown in Fig. 1. Following [10]
the meaning of r(h′) on the cut is r(h′+i0), i.e. the function on the “left
side” of the cut. The integrals can be expressed in terms of standard elliptic
functions. However, we do not need the explicit expressions here.

−1

+1h h1 2

−i i +1

−1h30

Fig. 1. The cut structure of r(h) in the complex h-plane.

From D(h) we can derive the expression for ρ(h) which is

ρ(h) = −ℑH(h)

iπ
= −ℑD(h)

iπ
, h ∈]h1, h2[. (3.13)



3D Lorentzian Quantum Gravity from the Asymmetric. . . 4673

We have (h always h+i0 if ambiguities) :

ρ(h) =
−r(h)

π

h1
∫

−∞

dh′

(h − h′)ir(h′)
− (−2r(h))

π

0
∫

−∞

dh′

(h − h′)ir(h′)

+
log β/α

π2
(−r(h))

∞
∫

h3

dh

(h − h′)r(h′)
. (3.14)

Note that the derivative of D(h) and ρ(h) after hi are elementary func-
tions of h. For instance, differentiating after h3 we have

∂D(h)

∂h3
=

ir(h)

h − h3

∂W

∂h3
=

ir(h)F3

2(h − h3)
= −iπ

∂ρ(h)

∂h3
, (3.15)

where the last equality is valid for h ∈ I0 and where W (h1, h2, h3) and
F3(h1, h2, h3) are defined below (Eqs. (3.19) and (3.22)). Thus we can write

D(h;h3 + δ) = D(h;h3) + δ
ir(h)F3(h3)

2(h − h3)

+δ2 ir(h)

4(h − h3)

(

F ′
3(h3) +

F3(h3)

2(h − h3)

)

+ · · · (3.16)

and similarly for ρ(h). The function F3(h1, h2, h3) is a sum of elliptic inte-
grals.

3.1. Boundary conditions for KZ

The starting formula for D(h) is (3.11). The general large h behavior of
this function is

c1h
1/2 − log(−αh) + c2h

−1/2 + O(1/h). (3.17)

However, according to the analysis in [5] c1 = 0 and c2 =−(−α)−1/2. This
gives two boundary conditions for the constants h1, h2, h3 which appear in
r(h) and thus in D(h). The coefficients c1 and c2 can be identified by
expanding the integrand in (3.11) in powers of 1/h and one obtains the
boundary conditions:

c1 = iW (h1, h2, h3) = 0, c2 = iΩ =
i√
α

, (3.18)
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where we have used the first of the equations (3.18) to simplify the second,
and where

W (h1, h2, h3) =
log β/α

π

∞
∫

h3

dh′

r(h′)
+

h1
∫

−∞

dh′

ir(h′)
− 2

0
∫

−∞

dh′

ir(h′)
, (3.19)

Ω(h1, h2, h3) = − log β/α

π

h2
∫

h1

h′dh′

r(h′)
+

h3
∫

h2

h′dh′

ir(h′)
+ 2

h1
∫

0

h′dh′

ir(h′)
. (3.20)

We will not need the explicit expressions for the integrals.
The final boundary condition is

h2
∫

h1

dh ρ(h) = 1 − h1, (3.21)

where ρ(h) is given by (3.14).
For a given choice of α and β we have a solution (h1, h2, h3) of the three

boundary conditions (3.18) and (3.21) and this in principle gives a solution
of the matrix integral. Using the parametrization in terms of (h1, h2, h3) we
see that the model is defined on a two-dimensional hyper-surface in a three-
dimensional parameter space. Singularities of the map between variables
(α, β) and some parametrization of this surface (say in terms of (h2, h3)
after eliminating h1) represent critical points (lines) of the model.

3.2. The critical line

The generic behavior of D(h) when h → h3 is clearly (h−h3)
1/2, simply

coming from the term r(h) in the representation (3.11). However, this be-
havior can change to (h − h3)

3/2 along a curve αc(β) in the (β, α) coupling
constant plane. According to [5] this is the critical line of phase A of the
ABAB matrix model and according to [1] this is there the continuum limit
of 3D gravity should be found. Similarly the criticality in the B phase is
derived from the behavior or D(h) when h → h2, when a generic behavior
(h − h2)

1/2 changes to (h − h2)
3/2.

We now study the change of (h1, h2, h3) as α and β change infinitesimally.
For simplicity we first present the result when α/β is constant.

Let us first identify the coefficient of
√

h − h3 in D(h). Using (3.15) in
the expression for D(h) the coefficient can be written as

ir0(h3)F3(h1, h2, h3), r0(h) ≡
√

(h − h1)(h − h2), (3.22)
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One has
∂W (h1, h2, h3)

∂h3
=

1

2
F3(h1, h2, h3). (3.23)

We define F1 and F2 similarly to F3 and have relations like (3.23). From the
boundary conditions (3.18) it follows that the variation of h1, h2, h3 as α, β
change with the ratio α/β fixed satisfy

F1δh1 + F2δh2 + F3δh3 = 0 , (3.24)

g̃1F1δh1+g̃2F2δh2+g̃3F3δh3 = 2
δα

α3/2
, (3.25)

where g̃i = 2hi −
∑3

j=1 h3.

The final boundary condition involves the density. Since ρ(h1) = 1 and
ρ(h2)=0 the variation of (3.21) just becomes:

h2
∫

h1

dh
( ∂ρ

∂h1
δh1 +

∂ρ

∂h2
δh2 +

∂ρ

∂h3
δh3

)

= 0, (3.26)

and after some partial integrations (3.26) can be written as

E1F1δh1 + E2F2δh2 + E3F3δh3 = 0 , (3.27)

where
h2
∫

h1

dh r(h)

hi − h
= Ei, i = 1, 2, 3 (3.28)

are elliptic integrals. It is easy to repeat the derivation in the case where
the ratio α/β is not assumed constant. The only change is that the RHS of
(3.24), (3.25) and (3.27) change to include contributions where all entries are
proportional to δα and δβ times coefficients Ai and Bi which are (calculable)
functions of h1, h2, h3.

Summarizing, the complete set of equations thus reads





F1 F2 F3

g̃1F1 g̃2F2 g̃3F3

E1F1 E2F2 E3F3









δh1

δh2

δh3



 =





A1

A2

A3



 δα +





B1

B2

B3



 δβ. (3.29)

It is easy to see that the Jacobian of the transformation (3.29) is proportional
to F1F2F3 and in general is non-zero, except at points where F3 =0 (phase A)
or where F2 =0 (phase B).
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Consequently in general the solution to (3.29) will be of the form:

δhi ∼ δα, δβ i = 1, 2, 3. (3.30)

However the critical line of phase A is characterized by F3(h
c
1, h

c
2, h

c
3)= 0,

determining a critical line on the surface in the (h1, h2, h3) parameter space.
Let us now discuss a situation when we want to study infinitesimal displace-
ment from this line. In this case we have two possible situations. For a
particular choice of (δα, δβ) the rank of (3.29) is two and δh3 can be only
determined from higher-order terms. This means that following this par-
ticular direction in the parameter space we still have the behavior given
by (3.30). This special direction corresponds to a displacement along the
critical line. For any other direction in (δα, δβ) plane we have

δh1, δh2 ∼ δα, δβ (δh3)
2 ∼ δα, δβ. (3.31)

We shall come back to this discussion later.
Criticality of type B can be discussed along the same lines, except that

in this case F2(h
c
1, h

c
2, h

c
3) = 0 and we should exchange δh3 with δh2. It is

important to go to the asymmetric case to understand the physical difference
between the two phases.

4. The asymmetric case α1 6= α2

As mentioned the construction of the transfer matrix requires that we
perturb away from α1 = α2. Let us discuss the general structure of the
matrix model with α1 6= α2 (as explained above we will only need an in-
finitesimal perturbation away from α1 = α2 in the continuum limit)3. The
main difference in the analysis of the matrix model with α1 6= α2 compared
to the situation α1 = α2 = α is that the saddle point solution involves two
eigenvalue densities ρ̃1(λ) and ρ̃2(λ) corresponding to the two one-matrix
integrals (3.3) with α=α1 and α=α2. Similarly, we will have two functions
L1(h) and L2(h) corresponding to (3.7) since the eigenvalue densities ρ̃1(λ)
and ρ̃2(λ) appear via the matrix A(λ) in (3.7). On other hand we have only
one density ρ(h) coming from the saddle point of (3.1). In order to solve
the saddle point equations it is natural to follow the same strategy as in [5]
and make an educated guess about the analytic structure of the functions
involved and then show the self-consistency of the solution. Since we have
two functions Li(h), associated with the same ρ(h) but different ρ̃(λ)’s, and
the cut of L(h) from [h3,∞[ can be traced to the saddle point equation for
ρ̃(λ) (see [5] for a discussion), it is natural to assume that L1(h) and L2(h)

3 As already mentioned an explicit solution of the asymmetric ABAB model has been
published while this manuscript was being completed [8].
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have a cut from [0, h2] (with ρ(h)=1 in [0, h1]), and that they have separate

cuts [h
(1)
3 ,∞[ and [h

(2)
3 ,∞[. In the case where β=0 this structure is indeed

realized 4.
We can now write down the generalization of (3.9)–(3.10)

ℜ[D1(h)] = log
h − h1

h2β
+ ℜ[f(h)] ∀h ∈ I0 ≡ [h1, h2] , (4.1)

ℜ[D1(h)] = log
h − h1

h2α1
∀h ∈ I1 ≡ [h

(1)
3 ,∞[ , (4.2)

and

ℜ[D2(h)] = log
h − h1

h2β
−ℜ[f(h)] ∀h ∈ I0 ≡ [h1, h2] , (4.3)

ℜ[D2(h)] = log
h − h1

h2α2
∀h ∈ I2 ≡ [h

(2)
3 ,∞[ . (4.4)

In (4.1)–(4.4) the D’s are related to the L’s and the function H as below
Eq. (3.8):

Di(h) = 2Li(h) − H(h) − 3 log h + log(h − h1), i = 1, 2, (4.5)

where the subtractions of the log’s are made to ensure that the functions
Di’s have square root cuts. As in the case of a single α, we assume that
Li(h) = Fi(h) + H(h) where Fi(h) is analytic on the cut I0 of H(h). The
function

f(z) ≡ F1(z) − F2(z) = L1(z) − L2(z) (4.6)

is at this point unknown, but we can write ℜ[f(z)]=f(z) on I0. If we assume
f(z) is known on I0, Eqs. (4.1)–(4.2) and (4.3)–(4.4) are standard singular
integral equations of the Hilbert type and can readily be solved and one can
write

D1(z) = Dkz
1 (z) + r1(z)

∮

I0

dt

2πi

f(t)

(z − t)r1(t)
, (4.7)

D2(z) = Dkz
2 (z) − r2(z)

∮

I0

dt

2πi

f(t)

(z − t)r2(t)
, (4.8)

where Dkz
1,2(z) are given by formula (3.11) with α, h3 = α1, h

(1)
3 and α, h3 =

α2, h
(2)
3 , respectively.

4 And this is also cut-structure assumed in the solution of the asymmetric ABAB
matrix model reported in [8].
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We have
ℑ[Dk(h)] = −iπρ(h), k = 1, 2 . (4.9)

Therefore, the “imaginary” parts of Eqs. (4.7) and (4.8) are

iπρ(h) = iπρkz
1 (h) − r1(h)−

∫

I0

dt

πi

f(t)

(t − h)r1(t)
, ∀h ∈ I0 (4.10)

iπρ(h) = iπρkz
2 (h) + r2(h)−

∫

I0

dt

πi

f(t)

(t − h)r2(t)
, ∀h ∈ I0 (4.11)

where −
∫

is the principal value of the integral. Eqs. (4.10)–(4.11) determine

f(z) and ρ(h) in terms of the densities ρkz
1 , ρkz

2 (Eq. (4.17)), corresponding

to α=α1, h3 =h
(1)
3 and α=α2 , h3 =h

(2)
3 .

We can obtain an equation for f(z) by subtracting (4.10) and (4.11):

iπ(ρkz
1 (h) − ρkz

2 (h)) = −
∫

I0

dt f(t)

πi(t − h)

(

r1(h)

r1(t)
+

r2(h)

r2(t)

)

. (4.12)

4.1. Uniqueness of the solution

Let us discuss the solution of (4.12). It is a singular integral equation.
In order to bring it into a standard form of singular integral equations, and
for convenience of later applications, we introduce the notation

∆ρkz(h) ≡ iπ

2

(

ρkz
2 (h) − ρkz

1 (h)
)

, (4.13)

and

(t − h) k(h, t) ≡ 1

2





√

√

√

√

h − h
(1)
3

t − h
(1)
3

+

√

√

√

√

h − h
(2)
3

t − h
(2)
3

− 2

√

h − h3

t − h3



 , (4.14)

where h3 in following always will refer to the value

h3 =
1

2
(h

(1)
3 + h

(2)
3 ), (4.15)

and the function r(h) will refer to (3.12) with h3 given by (4.15).
The function k(h, t) is regular at h= t. Let us further introduce

∆ρr(h) ≡ ∆ρkz(h)

2r(h)
, fr(t) ≡

f(t)

r(t)
. (4.16)
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We can now write Eq. (4.12) as

−
∫

I0

dt

πi

fr(t)

t − h
+

∫

I0

dt

πi
k(h, t)fr(t) = ∆ρr(h) , (4.17)

where only the first integral is singular. The so-called dominant part of this
singular integral equation is given by

−
∫

I0

dt

πi

f̃r(t)

t − h
= ∆ρr(h) . (4.18)

This equation has precisely one zero mode:

f̃r(t) =
1

r0(t)
−
∫

I0

dh

πi

r0(h)∆ρr(h)

h − t
+

C

r0(t)
, (4.19)

where r0(t) =
√

(t − h1)(t − h2). Expressed in terms of f(t) we have

f̃(t) =
√

t − h3



−
∫

I0

dh

πi

∆ρ(h)

(h − t)
√

h − h3
+ C



 . (4.20)

By moving the k-term in Eq. (4.17) to the rhs, we can repeat the steps
leading to (4.20), and moving the k-term back to the lhs we finally obtain:

f(t) +

∫

I0

dsN(t, s) f(s) =
√

t − h3



−
∫

I0

dh

πi

∆ρ(h)

(h − t)
√

h − h3
+ C



 , (4.21)

where the kernel N(t, s) is a Fredholm kernel:

N(t, s) = −
√

t − h3

r(s)
−
∫

I0

dh

π2

k(h, s)r0(h)

h − t
. (4.22)

In general the solution to the Fredholm equation (4.21) will be unique [10].
We thus have a one-parameter family of solutions fC(t).

In order to determine the four parameters h1, h2, h
(1)
3 , h

(2)
3 and the con-

stant C we need four boundary conditions and one more condition, which
in this case will be the normalization condition for ρ:

h1 +

h2
∫

h1

ρ(t)dt = 1 . (4.23)
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The boundary conditions are again obtained by the requirement that large
h asymptotics of Dj(h) contains no h1/2 term while the coefficient of the

h−1/2 term is (−αj)
−1/2. As we show below, consistency of the boundary

conditions to the order studied in this paper permits a simple elimination of
the parameter C. Thus (3.18) is replaced by the four equations:

W (j) + (−1)j
∫

I0

dt

π

f(t)

rj(t)
= 0 , (4.24)

Ω(j) + (−1)j
∫

I0

dt

π

f(t)t

rj(t)
=

1
√

αj
, (4.25)

where j = 1, 2, W (j) = W (j)(h1, h2, h
(j)
3 ) and Ω(j) = Ω(j)(h1, h2, h

(j)
3 ). In

Eqs. (4.24) and (4.25) the function f(t) is the solution to (4.21) for a par-
ticular value of C.

The set of boundary conditions means that in the asymmetric case a the-
ory is defined on a three-dimensional hyper-surface in the four-dimensional

parameter space (h1, h2, h
(1)
3 , h

(2)
3 ). Singular points of the map between pa-

rameters (α(1), α(2), β) and some particular parametrization of this hyper-

surface (say in terms of (h2, h
(1)
3 , h

(2)
3 ), after eliminating h1) will correspond

to critical points of the theory.

5. Expanding around α1 = α2

We do not need to solve the asymmetric ABAB model explicitly. As
explained above, in the context of 3d quantum gravity we need only to
study the infinitesimal variation around the symmetric point α1 = α2 = ᾱ,
β = β̄ to which corresponds the hi values h̄1, h̄2, h̄3.

Let us introduce the notation

α ≡ √
α1α2 = ᾱ − δα, h3 =

h
(1)
3 + h

(2)
3

2
. (5.1)

We now assume that α1 is close to α2, i.e. the two branch points h
(1)
3 and

h
(2)
3 are close, and expand in the difference. It is convenient to write

h3 = h̄3+∆, h
(1)
3 = h̄3+δ1 =h3+δ, h

(2)
3 = h̄3+δ2 =h3−δ, (5.2)

where

∆ =
δ1 + δ2

2
, δ =

δ1 − δ2

2
, (5.3)
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as well as
log α(1) = log α + ǫ, log α(2) = log α − ǫ. (5.4)

In the following we will study the the relation between ǫ, δ and ∆ imposed
by the boundary conditions (4.24) and (4.25), since this is what determines
the continuum physics.

5.1. Finding f(t) and D1,2(h)

Recall the integral equation (4.21) which determines f(t). The function
k(t, h) has an expansion

k(t, h) = δ2k1(t, h) + δ4k2(t, h) + · · · . (5.5)

Thus knowing ∆ρ(h) allows us to calculate f(t) perturbatively in δ. We
can also expand ∆ρ(h) in δ and ε. This makes the integration on the LHS
of Eq. (4.21) possible order by order in terms of elementary functions. The
expansion of ∆ρ(h) is based on the following two observations: first we have

Dkz(h;α + ε) = Dkz(h;α) + εG(h), (5.6)

G(h) = − ε

iπ
r(h)

∞
∫

h3

dh
1

(h − h′)r(h′)
. (5.7)

Next Dkz(h;h3 + δ) and G(h) have expansions of the form (3.16). Thus
∆ρkz(h) has an expansion

∆ρkz(h) = (a1δ + b1ε) + (a2δ + b2ε)δ
2 + · · · , (5.8)

where only b1 is not an elementary function of h. Explicitly we have

∆ρkz(h) =

(

−δ
r(h)

h − h3
F3(h3) − ǫG(h, h3)

)

+ · · · . (5.9)

Here and in the following we use the shorthand notation F3(h3) for the
function F3(h1, h2, h3, α, β̄). The integral in (4.21) can now be performed
and one obtains

f(t) =

(

C ′
√

t − h3 + δ
r0(h3)√
t − h3

F3(h3) − ǫ

)

+ · · · , (5.10)

where C ′ = C + δF3(h3) + ǫ 1
iπ

∞
∫

h3

dh′

r(h′) .
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Finally we can insert f(t) in (4.7) and (4.8) to obtain D1,2(h). To order
in ε and δ2 we obtain

Dj(h;h1, h2, h
j
3;αj , β̄) = Dkz(h;h1, h2, h3;α, β̄)

∓ε ± C ′
(

√

h − h3 + O(δ)
)

± δ
ir0(h3)F3(h3)

2
√

h − h3

+
δ2

4

ir0(h)√
h − h3

(

dF3(h3)

dh3
+

F3(h3)

2(h − h3)
+

F3(h3)

2(h3 − h1)
+

F3(h3)

2(h3 − h2)

)

. . . (5.11)

Notice that at this order ε only appears as a constant to ensure the behavior
log(h − h1)/h

2αj at the cut of Dj(h).

5.2. The critical surface

The form of the boundary conditions (4.23), (4.24) and (4.25) to the
order δ2 can easily be obtained from the expansion above. From (4.9) we
get

1

2
(ℑ[D1(h) + D2(h)] = −iπρ(h), h ∈ I0, (5.12)

which implies that

ρ(h) = ρkz(h;h1, h2, h3;α, β̄) + O(δ2) (5.13)

and the form of the O(δ2) corrections can be explicitly obtained from (5.11).
The generic large h behavior of Dj(h) is, as in the symmetric case,

Dj(h) ∼ iWjh
1/2 − log αjh + iΩjh

−1/2 + O(1/h) . (5.14)

By the same argument we must have Wj = 0 and Ωj = 1/
√

αj. From the
boundary conditions it follows that C ′ = 0 to this order since otherwise it
would be impossible to satisfy the large h asymptotics for both Dj(h). In
effect we get

Wj = W = W kz(h1, h2, h3, α, β̄) (5.15)

+
δ2

4

(

dF3(h3)

dh3
+

F3(h3)

2(h3 − h1)
+

F3(h3)

2(h3 − h2)

)

· · · = 0.

In a similar way we obtain explicit expressions for Ωj to this order in δ.
As in the symmetric case we expect the critical behavior to be signaled

by the change in the generic behavior of Dj(h) when h → h
(j)
3 = h3 ± δ

(phase A) or when h → h2 (phase B). At a first glance the expansion (5.11)
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looks singular when h → h3. It is however a simple exercise to prove that
the generic behavior

Dj(h) = Cj

(

h − h
(j)
3

)1/2
+ O

(

(

h − h
(j)
3

)3/2
)

(5.16)

is preserved and singular terms can be absorbed into the expansion of h
(j)
3

around h3. The coefficients Cj have a non-trivial dependence on j (the
expansion in δ starts with O(δ)) and consequently there are two possible
hypersurfaces Cj = 0 in the parameter space. These two hypersurfaces
cross along a line in the parameter space, corresponding to δ = 0.

For h → h2 situation is different. Here the generic behavior is

Dj(h) = C̃j(h − h2)
1/2 + O

(

(h − h2)
3/2
)

. (5.17)

To the order presented in this paper we find that C̃j = C̃ is a symmetric
function of δ and in consequence we have a unique critical hyper-surface.

To illustrate the difference between the two phases let us consider the

effect of an infinitesimal shift in αi and β̄ on h1, h2, h
(i)
3 . Let us consider the

neighborhood of a symmetric solution where δh1, δh2, δ and ∆ are all of the
same order. It is convenient to parametrize the displacement by δα and ǫ








F1 F2 F3 0
g̃1F1 g̃2F2 g̃3F3 0
E1F1 E2F2 E3F3 0

0 0 0 g̃4F3

















δh1

δh2

∆
δ









=









A1

A2

A3

0









δα+









0
0
0

A4









ǫ+









B1

B2

B3

0









δβ̄.

(5.18)
which should be compared with (3.29) for the symmetric case. The Jacobian
of this transformation is proportional to F1F2F

2
3 and is in general nonzero,

except at critical points where either F3 = 0 (phase A) or F2 = 0 (phase B).
In phase A we can choose a particular direction in (δα, δβ̄, ǫ) space along

which the rank of (5.18) is two. The corresponding value of ǫ must be zero
in this case and the direction follows the one-dimensional critical line of
the symmetric case. For any other direction in (δα, δβ̄, ǫ) space we need
higher-order terms in the expansion and we get

δh1, δh2 ∼ δα, δβ,

∆2 + δ2 ∼ aδα + bδβ̄ = δα̃,

∆ · δ ∼ ǫ. (5.19)

These relations can be diagonalized to give

(∆ ± δ)2 ∼ Aδα̃ ± Bǫ (5.20)
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representing the critical behavior related to the approach to two critical
surfaces discussed above.

The situation is different in phase B. In this case we can chose a two-
parameter family of directions in the (δα, δβ̄, ǫ) space, where the rank of
(5.18) is three. This two-dimensional object corresponds to displacements
along the critical surface of the B phase. For a displacement not in this
plane we need again higher order terms proportional to δh2

2. The generic
situation in this case is

δh1, ∆, δ ∼ δα, δβ̄, ǫ, δh2
2 ∼ δα, δβ̄, ǫ. (5.21)

5.3. The scaling relations and renormalization of 3D gravity

We want to relate the scaling limit of the matrix model discussed above
to the continuum limit of the discretized 3D gravity.

(Euclidean) quantum field theories can be defined as the scaling limit of
suitable discretized statistical theories. The continuum coupling constants
are then defined by a specific approach to a critical point of the statistical
theory. Different approaches to the critical point might lead to different
coupling constants or even different continuum theories. In our case we want
to show that it is possible to approach a critical point in such away that the
canonical scaling expected from a theory of 3D gravity is reproduced.

A natural parametrization of the asymmetric model, as discussed above,

is in terms of four parameters h1, h2, h
(i)
3 and the theory is defined on a

three-dimensional hyper-surface in this parameter space. Let us consider a

line going through a specific point hc
1, h

c
2, h

(i)
3 = hc

3 on a critical surface of
the model and parametrized by a dimension-full parameter a. This curve
can be mapped on a corresponding curve in the (αi, β) space and we are
interested in a behavior

log αi = log αc +
c1a

GN
+ Zia

2 +
c2Λ

GN
a3 , (5.22)

log β = log βc +
c3a

GN
+

c4Λ

GN
a3

for a → 0. In (5.22) log αc, log βc represent an additive renormalization
of the inverse gravitational constant and GN is a renormalized gravitational
constant. Similarly Zi will have an interpretation of the renormalized surface
cosmological constants and Λ of the cosmological constant.

In the context of 3D gravity α1 = α2 and α1 6= α2 is only a technical
devise in order to obtain information about the transfer matrix. Thus we are
led to consider critical points with α1 = α2. These fall in two classes: phase
A and phase B, which look quite different viewed from the larger surface
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of the asymmetric ABAB matrix model, as described above. As discussed
in [1] only phase A is relevant for conventional canonical quantum gravity.
In this way we are naturally led to consider a critical point lying on the part
of the critical line corresponding to phase A. As discussed in the preceding
section this line is an intersection of two critical surfaces, where a particular
combination ∆ ± δ vanishes. Only on this line we may expect both the in-
and out- states of the transfer matrix to have a non-trivial scaling in the
continuum limit.

As shown above a generic behavior for infinitesimal deviations around
this point is given by (5.19). This is clearly not consistent with the scaling
(5.22). The only possible direction consistent with the lowest-order scaling
is exactly along a critical line αi = αc(β). This means that the ratio c1/c3

is a uniquely defined function of a position on a critical line. To this order
the asymmetry α1 − α2 = 0.

Changing a position of a point along the critical line corresponds in this
interpretation to a finite change of the renormalized gravitational constant,
or in other words to a change of the scale parameter a. Consequently this
should be irrelevant for the continuum properties of the theory and we should
get the same continuum limit independently of the particular choice of a
point on the critical line αi = αc(β) as long as we stay in phase A. The crit-
ical line itself in the neighborhood of a critical point admits a parametriza-
tion in terms of the scale parameter a. By a suitable redefinition of the scale
parameter we can simplify (5.22) to

δβ = β − βc =
aβc

GN
(5.23)

shifting the a dependence of the curve to the β dependence.
The scaling limit of a theory is defined by the approach to a critical point

along the scaling curve αi = αi(δβ) with δβ parametrized by (5.23). The
scaling curve αi = αi(δβ) touches the critical line αi = ac(β) at β = βc,
corresponding to δβ = 0. At this point the tangents of the two curves have
to coincide in order for (5.19) and (5.22) to be consistent, and the curve
αi = αi(∆β) deviates from the critical line αi = αc(β) only by higher order
terms

δαi = αi(δβ) − αc(δβ) ∝ Zia
2. (5.24)

The deviation of the scaling curve from the critical line will determine the
scaling limit of the theory through the singular behavior of the free energy
F (αi, β). Let us split δαi into a symmetric part δα and asymmetric part ǫ.
From (5.20) we get

(∆ ± δ)2 ∝ Aδα ± Bǫ. (5.25)

This quantity becomes singular when Aδα ± Bǫ = 0, corresponding to the
two critical surfaces in the A phase. Let us recall that we discuss here
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a critical behavior of the quantity F (αi, β) closely related to the transfer
matrix. The two possible critical limits correspond to either the in- or out-
state of the transfer matrix becoming critical. However, we are interested
in a limit which ensures that the in- and the out-states become critical
simultaneously. This can only be done if δα and ǫ scale differently, an
attractive possibility being

δα ∝ a2 , (5.26)

ǫ ∝ a3 ,

and consequently

∆ ∝ a , (5.27)

δ ∝ a2 .

Notice that this means that asymmetry ǫ contributes at exactly the same
level as the cosmological term Λ. The scaling curve corresponding to this
particular choice would deviate from the symmetry plane α1 = α2 only by
O(a3) terms. As we shall discuss in the next section this scaling is also
attractive when expanding the transfer matrix in powers of a in order to
extract the Hamiltonian of 3D quantum gravity.

We should note here that the limit Zi → 0 is singular. This corresponds
to a symmetric deviation and we expect only a contribution from the cosmo-
logical term in the scaling analysis. Since in this limit δ = 0 we necessarily
have

∆2 ∝ a3ΛGN . (5.28)

We discussed this limit in [7].

6. The transfer matrix

The transfer matrix contains the information necessary to derive the
Hamiltonian of 3D gravity. From the free energy of the asymmetric ABAB
model we can extract some information about the transfer matrix as is clear
from formula (2.1). Let us be more precise about this (see [1] for a detailed
discussion). The free energy of the asymmetric ABAB matrix model involves
according to (2.1) a summation over the individual geometric states |g〉 which
label in- and out-states. However, one can use the free energy to extract
information about the the areas Nin and Nout (the number of squares in the
in- and out-quadrangulations) of the in- and out-states |gin〉 and |gout〉. We
expect this quantity to capture the essential part of physical information
about the time evolution of a two-dimensional universe (cf. e.g. [12]). Let
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us consider the state

|N〉 =
1

√

N (N)

∑

gt

δN,N(gt)|gt〉 , (6.1)

where N (N) is the number of quadrangulations of given area N . The norm
of such state is

〈N ′|N〉 = δN,N ′ , (6.2)

since states |g1〉 and |g2〉 with different quandrangulations are orthogonal.
The number of quadrangulations constructed from N squares grows expo-
nentially as

N (N) = N−7/2 eµ0N (1 + O(1/N2)), (6.3)

where µ0 is known. The sum 2.1 can now be written as

F (α1, α2, β)=
∑

Nt,Nt+a

e−ztNt−zt+aNt+a〈Nt+a|T̂ |Nt〉
√

N (Nt)N (Nt+a). (6.4)

The exponential part of
√

N (Nt)(Nt+a) can be absorbed in additive renor-
malizations of the boundary cosmological constants zt and zt+a (i.e. additive
renormalizations of log αi, recall (2.1)). It follows that in the scaling limit,
i.e. for large N where we can use (6.3), the Laplace transforms of the matrix

elements 〈N1|T̂ |N2〉 are equal to the “7/2” fractional derivative5 of the free
energy F (α1, α2, β):

∑

Nt,Nt+a

e−ztNt−zt+aNt+a〈Nt+a|T̂ |Nt〉 =

(

∂

∂zt

∂

∂zt+a

)7/4

F (α1, α2, β) , (6.5)

where ∂
∂z = ∂

∂ log α as is clear from (2.1).

The scaling limit, and thus the continuum physics, is determined by the
singular part of the free energy. The leading behavior of of this singular
part when we approach a critical point as described in the previous Section,
is given by F (α1, α2, β) ∝ (δα)5/2. It is now straightforward to apply (6.5)
and one finds

(

∂

∂ log α1

)7/4( ∂

∂ log α2

)7/4

F (α1, α2, β)α ≈ 1

δα
. (6.6)

This is exactly the leading-order behavior we expect for the transfer matrix
when a → 0 from (1.1):

〈N1|e−aĤ |N2〉 → 〈N1|Î |N2〉 = δN1,N2, (6.7)

5 There are standard ways to define the concept of a fractional derivative, see for
instance [11].
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and the Laplace transform of δN1,N2 is (for large N ’s)

1

δα1 + δα2
=

1

a2(Z1 + Z2)
(1 + O(a)). (6.8)

It would be very interesting to expand to next order in a and thus obtain
information of Ĥ. These terms come from the O(a3) terms discussed in the
previous Section. Of course it would only give us information about the
matrix elements related to the states of the form (6.1), but as discussed
in detail in [1] we expect that this is the only information relevant in the
continuum limit of 3D gravity if the topology of space is spherical.

All authors acknowledge support by the EU network on “Discrete Ran-
dom Geometry”, grant HPRN-CT-1999-00161. In addition, J.A. and J.J.
were supported by “MaPhySto”, the Center of Mathematical Physics and
Stochastics, financed by the National Danish Research Foundation. J.J. ac-
knowledges support by the Polish State Committee for Scientific Research
(KBN) grant 2 P03B 096 22 (2002-2004).

REFERENCES

[1] J. Ambjorn, J. Jurkiewicz, R. Loll, J. High Energy Phys. 0109, 022 (2001).

[2] J. Ambjørn, J. Jurkiewicz, R. Loll, Phys. Rev. Lett. 85, 924 (2000).

[3] J. Ambjorn, J. Jurkiewicz, R. Loll, Phys. Rev. D64, 044011 (2001).

[4] J. Ambjørn, R. Loll, Nucl. Phys. B536, 407 (1998).

[5] V.A. Kazakov, P. Zinn-Justin, Nucl. Phys. B546, 647 (1999).

[6] V.A. Kazakov, M. Staudacher, T. Wynter, Nucl. Phys. B471, 309 (1996);
Commun. Math. Phys. 179, 235 (1996); Commun. Math. Phys. 177, 451
(1996); P. Zinn-Justin, Nucl. Phys. B497, 725 (1997).

[7] J. Ambjorn, J. Jurkiewicz, R. Loll, [hep-th/0307263].

[8] P. Zinn-Justin, [hep-th/0308132].

[9] J. Ambjørn, J. Correia, C. Kristjansen, R. Loll, Phys. Lett. B475, 24 (2000).

[10] N.I. Muskhelishvili, Singular Integral Equations, Dover Publ. 1992.

[11] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives:
Theory and Applications, Gordon & Breach, 1987.

[12] S. Carlip, Quantum Gravity in 2+1 Dimensions, Cambridge, UK: Univ. Press,
1998, p. 276.


