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The density of states contains all informations on energetic quantities
of a statistical system, such as the mean energy, free energy, entropy, and
specific heat. As a specific application, we consider in this work a simple
lattice model for heteropolymers that is widely used for studying statisti-
cal properties of proteins. For short chains, we have derived exact results
from conformational enumeration, while for longer ones we developed a
multicanonical Monte Carlo variant of the nPERM-based chain growth
method in order to directly simulate the density of states. For simplifi-
cation, only two types of monomers with respective hydrophobic (H) and
polar (P) residues are regarded and only the next-neighbour interaction be-
tween hydrophobic monomers, being nonadjacent along the chain, is taken
into account. This is known as the HP model for the folding of lattice
proteins.

PACS numbers: 05.10.–a, 87.15.Aa, 87.15.Cc

1. Introduction

Proteins perform numerous functions in a biological cell system, e.g. con-
trolling of transport processes of organelles, stabilisation of the cell structure,
enzymatic catalysis of chemical reactions, etc. It is well established that the
three-dimensional conformation of a protein within an aqueous environment
determines its biological function. Due to the enormous number of tasks
to be necessarily fulfilled to ensure the stability of a biological system, a
large number of various proteins exists. All of them are built up of chains of
amino acid residues, linked by peptide bonds. Since 20 different amino acids
are known from nature, a protein with N monomers is, in principle, formed
from 20N possible sequences. Only a small number of so-called designing
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sequences, however, is actually realised in equilibrium. The reason is that
the protein must be stable against thermal fluctuations and may not fold
into a different shape leading to a loss of its associated function. Therefore,
real proteins are supposed to possess a funnel-like deep global minimum in
a rough free energy landscape [1]. It is one of the essential goals of com-
putational protein research to identify the native state associated with the
global free energy minimum of a protein with a given sequence of amino acid
residues. Since the sequence of amino acids is known to be responsible for
the resulting fold, it is also interesting to analyse what properties sequences
of such favoured proteins have.

Unfortunately, computer simulations of real proteins are extremely dif-
ficult due to the relatively big number of degrees of freedom influenced by
electrostatic, Lennard–Jones, hydrogen bond, torsional, and environmental
interactions (for a review see, e.g., Ref. [2]). In order to qualitatively study
the folding behaviour of proteins and also for sequence analysis, simple lat-
tice models seem to be very practical. Nevertheless, the determination of
the lowest-energy states and their degeneracies remains challenging. In fact,
it was shown [3] that folding proteins within the HP model [4], the most
simple lattice model for proteins, is an NP-complete problem. On the nu-
merical side, one technical problem is that the polymers are required to be
self-avoiding. Thus, updating the conformation in a Monte Carlo simulation
is quite involved. Two completely different methods are widely used, first
the application of a move set consisting of transformations that allow the
change of a conformation of total length N , while in the second method,
chain growth, a new monomer is attached to the end of a partial chain
of length n < N until the total chain length is reached. Both techniques
work well in computer simulations of polymers at comparatively high tem-
peratures, for example the investigation of the Θ -point transition between
compact globule polymer states and random coils [5]. For studying the low-
temperature behaviour of heteropolymers, however, the application of move
sets is not very suitable, since transformations that usually belong to a move
set, e.g. end and corner flips, crankshafts, and pivot rotations are inefficient
for the creation of very dense conformations. The transition between lowest-
energy states and compact globules represents a “conformational barrier” at
low temperatures that is much better circumvented with chain-growth based
algorithms such as PERM [6] and its new variants nPERMis

ss [7].

We are interested in the energetic thermodynamic properties of het-
eropolymers for all temperatures and therefore we proposed a multicanonical
chain growth algorithm [8] which allows an explicit sampling of the density
of states. The density of states is identical with the canonical distribution
at infinite temperature. Nevertheless, we also obtain very accurate results
in the low-temperature region which in effect is due to the capacity of the
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multicanonical sampling [9] which spreads the canonical distribution to a
flat histogram, such that all energetic states are, in principle, equally prob-
able within the simulation. At the end, the canonical distribution at any
temperature and thus all thermodynamic functions can be obtained by a
simple reweighting procedure. This is only possible since the multicanonical
method allows a sampling of the entire space of states, including such events
that are canonically suppressed by many orders of magnitude. In our simu-
lations of the HP model for lattice proteins with more than 40 monomers, we
were also required to sample the lowest-energy states having a probability
of realization in the density of states of the order of 10−25, since these states
dominate the low-temperature behaviour of the protein. Another problem is
that the conformational transition between ground states and globules just
appears in this temperature region, causing a conformational barrier that
is avoided best, as described above, by using an adequate chain growth
algorithm. Therefore we combined the multicanonical method with the
new PERM variants for simple and importance sampling, nPERMss and
nPERMis [7], respectively, to obtain densities of states with high and uni-
form accuracies for all energies.

2. Density of states of HP lattice proteins

For simplicity, we investigate lattice proteins that consist of only two
types of monomers: hydrophobic (H) and polar (P). This choice is made
since most of the amino acids occurring in nature can be grouped into these
two classes. Moreover it is assumed that the protein mainly folds due to an
effective hydrophobic interaction. This means that a core of hydrophobic
monomers is formed which is screened from the aqueous solvent by a shell
of polar (or hydrophilic) residues. The simplest form of the HP model takes
into account only the attractive interaction between next-neighbouring H
monomers being nonadjacent along the chain [4]:

E = −
∑

〈i,j<i−1〉

σiσj, (1)

where σi = 0 (1) if the ith monomer is polar (hydrophobic). The partition
sum of a HP lattice protein with fixed sequence at temperature T is then
given by Z =

∑

{x} exp{−E({x})/kBT}, where the sum is taken over all
admissible conformations of the polymer. Sorting all conformational states
with respect to their energies, the partition sum can also be expressed in
terms of the density (or degeneracy) g(E) of states with energy E:

Z =
∑

i

g(Ei) exp

{

−
Ei

kBT

}

. (2)
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Knowing g(E), the mean energy 〈E〉 of the system can be calculated by

〈E〉(T ) =

∑

i Ei g(Ei) exp{− Ei

kBT
}

∑

i g(Ei) exp{− Ei

kBT
}

(3)

and the specific heat is given by the fluctuation formula

CV (T ) =
1

kBT 2

(

〈E2〉 − 〈E〉2
)

. (4)

Other energetic quantities being related to the density of states are the
Helmholtz free energy

F (T ) = −kBT ln
∑

i

g(Ei) exp

{

−
Ei

kBT

}

(5)

and the entropy

S(T ) =
1

T
[〈E〉(T ) − F (T )] . (6)

3. Exact enumeration of 14mers

As a first example we have investigated HP proteins with 14 monomers
by enumerating all possible conformations. This study is quite interesting,
because there is only one sequence (HPHPH2PHPH2P2H, in the following
denoted as 14.1) that is designing, i.e. the ground state of the associated
lattice protein is unique (up to translational, rotational, and one reflection
symmetry). It possesses nH = 8 hydrophobic monomers and the ground-
state energy is Emin = −8, since there are 8 hydrophobic contacts (see
Fig. 1). In order to understand the particular properties of such a protein

Fig. 1. Unique ground state of the 14mer with designing sequence 14.1 (dark

spheres: hydrophobic residues, light spheres: polar monomers).
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with the lowest ground-state degeneracy among all the 214 different 14mers,
we compare it with three other ones having similar properties (nH = 8,
Emin = −8), but different sequences and therefore different ground-state de-
generacies. The degeneracy of the lowest-energy state of the sequences 14.2
(H2P2HPHPH2PHPH) and 14.3 (H2PHPHP2HPHPH2) is twice that of the
designing sequence 14.1, while sequence 14.4 (H2PHP2HPHPH2PH) is even
four times higher degenerated. Figure 2 shows the densities of states for
the four sequences. Since the densities of the excited states do not consid-
erably differ (see Table I), the low-temperature behaviour of these proteins
can only vary due to the different ground-state degeneracies. Indeed, the
specific heat shown in Fig. 3 exhibits a pronounced low-temperature peak
only for the designing sequence 14.1, while it is largely suppressed for the
other proteins. This peak indicates the transition from the ground states
to compact globule states. At higher temperatures, the globules unfold and
form random coil conformations.

TABLE I

Exact total densities of the states with energy E for the 14mers. The entries
of the table include all states that contribute to the partition function Z∞

for 14mers at infinite temperature (except translations) which counts the
number of self-avoiding random walks with (14 − 1) = 13 steps.

sequence

E 14.1 14.2 14.3 14.4

−8 48 96 96 192

−7 12 576 10 560 9 576 11 136

−6 162 120 140 496 126 240 160 536

−5 1 349 808 1 089 792 1 053 744 1 259 040

−4 8 434 536 6 661 032 6 028 944 7 831 752

−3 36 120 840 29 943 792 28 329 504 38 367 360

−2 118 052 520 100 663 488 109 433 232 129 351 360

−1 312 691 992 273 343 176 305 911 056 314 705 352

0 467 150 070 532 122 078 493 082 118 452 287 782

Z∞ 943 974 510 943 974 510 943 974 510 943 974 510
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Fig. 2. Exact densities of states of exemplified 14mers with similar properties

(nH = 8, Emin = −8) but different sequences.
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Fig. 3. Specific heat of the 14mers.

4. Simulation of a 42mer: lattice model of pectate lyase C

For lattice proteins with more than 20 monomers, enumeration becomes
exhausting, since the number of conformations grows exponentially with the
number of monomers [10]. More sophisticated search algorithms are required
to sample the phase space. For this reason, we developed a multicanonical
chain growth algorithm [8] that combines the advantages of avoiding confor-



Density of States for HP Lattice Proteins 4695

mational barriers by using a PERM-based chain growth method [6,7] and the
capacity of a flat histogram technique allowing the sampling of the entire en-
ergy space [9]. In order to achieve this, the canonical distributions provided
by PERM at each intermediate length of the growing chain must be flat-
tened. As usual, the multicanonical weights are determined by an iterative
procedure [9]. We applied this method to calculate the density of states of a
lattice 42mer with sequence PH2PHPH2PHPHP2H3PHPH2PHPH3P2HPH-
PH2PHPH2P which was designed to simulate the ground-state properties of
the parallel β helix of the protein pectate lyase C [11–13]. The ground state
is known to be low-degenerated. Up to translations, rotations, and reflec-
tions there are only 4 ground-state conformations with energy Emin = −34.
The density of states ranges over 25 orders of magnitude, and the ground
states were hit frequently with our simulation method such that the low-
temperature properties of this protein could be investigated with good ac-
curacy. In Fig. 4, we show the specific heat and the mean energy of the
42mer. The specific heat has two peaks, the low-temperature ground-state-
globule transition occurs near T0 ≈ 0.27 and the transition between globules
and random coils at T1 ≈ 0.53.

In Ref. [8], we have also compared two 48mers with different ground-state
degeneracies and found also there that a pronounced low-temperature peak
in the specific heat only appears for the example with the lower degeneracy
of the ground state (which was about 5000 in that case).

T
hEi(T )NCV (T )N

1.51.00.50.0-0.5-1.01.00.90.80.70.60.50.40.30.20.10.0

1.51.00.50.0-0.5-1.0

ground-states globules random oilsCV (T )=N
hEi(T )=N

Fig. 4. Specific heat and mean energy of the 42mer.
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5. Summary

We have discussed the relation between the low degeneracy of the low-
lying energy states and the appearance of a low-temperature transition be-
tween compact globules and ground states of HP lattice proteins with 14
and 42 monomers, respectively. For this purpose, we calculated the density
of states of the 14mers by exact enumeration of all possible conformations.
In order to simulate the density of states of the 42mer with necessarily high
accuracy, we developed a multicanonical chain growth algorithm that en-
abled us to sample the density of states over the entire energy space. As the
main qualitative conclusion we find a correlation between the degeneracy
of low-lying states and the sharpness of the transition to compact globule
states.

This work is partially supported by the German–Israel-Foundation (GIF)
under grant No. I-653-181.14/1999 and the EU-Network HPRN-CT-1999-
000161 “Discrete Random Geometries: From Solid State Physics to Quantum
Gravity”.
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