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We discuss the geometry of trees endowed with a causal structure using
the conventional framework of equilibrium statistical mechanics. We show
how this ensemble is related to popular growing network models. In par-
ticular we demonstrate that on a class of afine attachment kernels the two
models are identical but they can differ substantially for other choice of
weights. We show that causal trees exhibit condensation even for asymp-
totically linear kernels. We derive general formulae describing the degree
distribution, the ancestor—descendant correlation and the probability that
a randomly chosen node lives at a given geodesic distance from the root. It
is shown that the Hausdorff dimension dy of the causal networks is gener-
ically infinite.

PACS numbers: 02.50.Cw, 05.40.-a, 05.50.+q, 87.18.Sn

1. Introduction

The study of networks is becoming increasingly popular (for a recent
review see e.g. [1] and also [2]). The main reason for that is an emergence
of great wealth of data on Internet, WWW, science citation networks, cell
metabolism networks and so on. Most of those networks (if not all) exhibit
features that are not explained by the classical theory of random graphs due
to Erdos and Renyi [3]. Perhaps the most prominent among those features is
the power-like degree distribution. Degree of a vertex is the number of links
connected to it. While classical theory predicts a Poissonian distribution for
the degree of a vertex in a random graph, in many of naturally occurring
networks this distribution was found to have power-like tails. One way to
understand this is based on an ancient observation “For unto every one that
hath shall be given, and he shall have abundance: but from him that hath not
shall be taken away even that which he hath.” [4]: a popular web page is more
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probable to attract more links to it, a frequently cited paper is more likely
to get more citations and so on. In more modern context this principle was
formulated in [5] and adopted to the description of networks in [6] and [7].
This is a diachronic approach concentrating on the description of growing
networks. This is very natural as most of the networks we encounter are a
result of some growth process. The simple models studied in the literature
try to capture the essential features of the growth mechanism.

One can look at the networks in a different way that is also quite nat-
ural as this is the approach taken in statistical mechanics and probability
theory. In this synchronic view we treat each network as a single element of
a statistical ensemble [8]. The ensemble is defined by specifying the “phase
space” that is the class of graphs belonging to it and the weight (or prob-
ability) for each graph in the ensemble. The probabilities can be assigned
ad hoc or, what is more interesting, derived from other principles. In par-
ticular it is clear that each growing network model defines also a statistical
ensemble. The ensemble consists of all the graphs that can be constructed
by the specified growth process and the probability assigned to each graph
is the probability of constructing given graph. Thus the growth mechanism
implicitly defines the probability for each graph. We find it worthwhile to
study what kind of ensembles can be obtained from the growing network
models [9]. The motivation for this is twofold. First using another “toolbox”
one can obtain more insight into original models. Indeed we are in position
to make some general statements about the correlation functions in growing
random networks (GN) models. Secondly while, as stated, natural networks
are usually grown, often we may not have an access to the growth history
and we are effectively left with the statistical ensemble approach.

In this contribution which is mostly based on [9] we will describe a sta-
tistical ensemble that incorporates the causal structure inherent in the GN
models. We will show how it relates to the GN models and derive some
results on correlation functions.

2. Causal trees
2.1. Definition

First we review very quickly the growing random network model |7,10].
In the simplest version we start with a single vertex and then at each stage
we attach a new vertex to one of the already existing ones. The probability
for attaching the new wv,41 vertex to some old one v; depends only on the
degree n; of the node v; and is proportional to A,,;, which is called attachment
kernel.

It is clear that this process produces a rooted, labeled tree, each node
being labeled by the time at which it was inserted into the network and
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the first node being the root. It is also clear that not all the labelings are
possible: the label of the father must be smaller then the label of its child.
We will call trees that satisfy this condition causal.

In order to define the weights we must calculate the probability for con-
structing a given tree 7. To obtain a node ¢ with degree n we must have
attached a new node to the node with degree n — 1. The probability of this
happening at the time ¢ is:

Anfl
ZieT(t—l) Am 7

where T'(t — 1) is the tree at the partial stage of the construction: just
before attaching the new node ¢t. Unfortunately the normalizing factor in
the denominator in general depends on the exact structure of the tree T'(¢).
In consequence the overall probability of building a tree will depend on
the way it was constructed, in particular on the labeling. This problem is
exemplified in the figure 1. This situation, apart from being impossible to
work with, is quite unnatural. What we would like is to have a weight that
depends only on the nodes degree and do factorize:

P(nlt) = (1)

N
p(T):p(n17"'7nN):ani' (2)
=1

It turns out that there exists a class of GN models that is compatible with
the above requirement. Those are the models with afine attachment kernels
i.e. of the form:

A, =n+w, w> -1, (3)

where w is a constant. For such kernels the normalization factor depends
only on the size of the tree:

ZAni:Zni—&—Zw:QN—Q—i—Nw. (4)

For this class of attachment kernels the choice
n—1
dn = q1 H Ak (5)
k=1

leads to a model identical with the original GN model. For other kernels we
will still define our model by the formulas (2) and (5). In this situation we
can only expect some form of asymptotic or qualitative agreement between
the models if any. In fact, as we will show later, the two models can differ
significantly even for very simple non-afine kernels.
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Fig.1. Two ways of constructing the same (non labeled) tree. The labels below
each tree show the probability of obtaining this tree from the precedent one.

2.2. Recursion relation

Most of the properties of the ensemble can be derived from the canonical

partition function:
L(T)
v =Y (), (6)
T

where we sum over all the non labeled trees and L(T') is the number of
distinct causal labelings of the given tree T

We start by deriving a recursion relation for L(T'). It is convenient at
this stage to change to the planted ensemble. This amount to attaching
to the root vertex an additional link: a stem. This does not change in
any way the properties of the ensemble in the large N limit but makes the
calculations easier. From k planted trees 17,...,T; we can construct a new
tree T = T1 ® -+ ® T}, by joining together the stems at a new node (see
figure 2). The number of causal labelings of the resulting tree is:

N! 1
Nyl  Npl k!
with Ny + -+ + N = N. One has to give N + 1 labels to the nodes of the

compound tree. However, the smallest label must be attached to the root.
The remaining N labels are arbitrarily distributed among the trees. This is

L@ ®Ty) = L(Ty) -~ L(Tk) (7)
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the origin of the multinomial factor. Permuting the trees T; does not change

the compound tree. This explains the presence of the factor 1/k!.

Because of the property (2) the weights of the new tree obviously factor-

ize as:
p(T1 @ - & Ty) = pryrp(Ty) - p(Tk) -

(8)

The partition function Zyn 41 can be constructed by summing the trees

of size smaller or equal to N (see figure 3):

o oo 0sb0

Fig. 3. Recursion relation for zn 1.

N1 = 3 Y b
+ N+1'k1T A 1+ +Ng, N
1ol ke

xp(lh @ - &T) LTy & --- & Ty) .

Inserting (7) and (8) and rearranging the terms we arrive at:

1 = Prtl
ZN41 = + Z ONy 4+ N, N HZNk
N+1 k=1 Ni,...;Ng

Adding z; = ¢1 and summing both sides of equation (10) we get

Z Nzye VK =7 ( —qIZ‘rl Z(M)k> ;
~ [

k=0

(11)
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where
Z) = 3 ae (12)
N
is the grand-canonical partition function. Finally
Z(p) = —e " P(Z), (13)
where -
dk k—1
F(Z)= Z5. 14
D=Y 5 ln (14

Equation (13) can be integrated to give

z
dz

) =Gz : 15
: 2= [ 15 (15)
0
The function G(Z) is a positive monotonically growing function of Z, bounded
from above (one can ignore the trivial case where all ¢, except ¢; and ¢
are zero). Hence p is bounded from below: Z(u) has a singularity at some

p = fi. Denote by z the radius of convergence of the series F(Z). The
critical value of p is given by

p=—logG(Z). (16)

This formula holds also when the radius of convergence Z is infinite, since
all terms in the series (14) are positive and the integral in (16) is convergent
in all cases of interest: G(co) < oo. Please note that f is a “free energy”
density:

1
i= lim —1 : 17
p=lim logzy (17)
2.8. Degree distribution

The vertex degree distribution is calculated using:

op
n= e 18
g (18)
which gives .
1 n i dx 1
= n-1l 19
™= G@) (n—l)!/F(x)Qx (19)
0

Again, this formula is also valid when Z = oo.
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Summing over n and using the definitions of F' and G one easily checks
that 7, is normalized to unity, as it should be. One further finds
T
=2— = 20
2= G o
n N——
C
On a tree, the r.h.s. should equal 2. This is the case when F'(x) diverges at
x = Z and hence ¢ = 0. Otherwise one encounters a pathology (anomaly),
which looks similar to that appearing in some maximally random tree models
(and in the so-called balls-in-boxes model, see [8,11]), where in the large N
limit one misses singular node(s) contributing term(s) of the type

N~1(n —cN). (21)

Such nonuniformly behaving terms disappear if one first takes the N — oo
limit in (20). It will be shown later that the average distance between
nodes is finite when F(Z) < oo . This means that singular node(s) — with
unbounded connectivity — are indeed expected to show up.

2.4. Condensation

In order to check if the described anomaly really signals an appearance
of a singular vertex we have studied causal trees with the weights

1 n<d
= = 22
4 {(n—d)! n>d, (22)

where d is an integer greater or equal to two, derived using (5) from the
delayed linear attachment kernel

<
A, = 1 n<d, (23)
n—d+1 n>d.

In this case the coefficients of the power series (14) behave like:

-~ —— for k — oo (24)

The term ¢ in (19) is obviously not zero and its value is found to be ¢ ~
0.584692. In the figure 4 we have plotted the result of simulations of the
model of causal trees with 1000 and 4000 nodes (circles and diamonds).
One can clearly see peaks corresponding to the singular node. The vertical
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Fig. 4. Vertex degree distribution for causal trees (1000 nodes (circles), 4000 nodes
(diamonds)) and GN model (4000 nodes (triangles)) in each case d = 5.

lines mark the positions of those peaks predicted from (21). The perfect
agreement confirms our statement that the “link deficiency” in (20) signals
the existence of a singular node.

It is interesting to ask what is the shape of the vertex degree distribution
for the growing random model which has exactly the same kernel (23). Of
course, in this case the two models are not identical because the kernel is
not afine. The resulting degree distribution for this model is plotted in the
figure 4 (triangles) [12]. The continuous line is the approximate solution
taken from [10]. The observed discrepancy is due to finite size effects. As we
can see the distributions in causal trees and growing networks differ greatly,
in particular there is no singular vertex in the GN model for this choice of
kernel.

2.5. Degree correlations

Now, we turn to the calculation of the ancestor—descendant degree cor-
relation. It is obvious that an ancestor plays the role of the root of the
subgraph involving all its descendants. One can read from (10) the degree
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distribution of the root:

1 QZ
ZZ(N) = N N EN 5N1+ +N_1,N— 1HZN : (25)
1y--5dV]—1

Going over to the grand-canonical ensemble one finds:

zw _
1= W) (26)

which, taking (13) into account and after integration yields

Z $lfl
Z(u(2)) = G 311)! /dxF(m) : (27)
0

Using similar arguments one writes the weight of graphs where the root has
the degree [ and its daughter the degree k as

a
Zlcl(N) = m Z 5N1+~~~+Nl_1,N—1
' Nl:"'lefl
-2
< [T 2w2k(Nisa) . (28)
=1
Hence
dZp (1) @ -2
= — A Z . 2

Integrating the above equation one finally obtains

€2

Z L2
Z(w(2)) = (l—2 ,/de(Qm) /dﬂc
0 0

which is the conditional probability, up to normalization, that a descendant
has the degree k when the ancestor’s degree is [. The normalization is
determined summing over k on the r.h.s. above, with the result (I—1)Z;(u).
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2.6. Fractal dimension

Repeating over and over the iteration process leading to Eq. (30) one
gets

r Z kr—2
4k Ak "
Z Z — J 1 d T
bk ke (4 2) JHQ(k:J ~2)! (ky 1)!0/ T F ()
Ty ey q1—2 x9 ki—1
x x
dwy,_j——— - [ dog =L 31
X/ T () / S F @) (31)
0 0
Summing over node degrees ki, ks,--- , k. one obtains the weight of all

graphs with a point separated by r links from the root, i.e. the two-point
correlation function C(r, ) introduced in Sect. 1.2:

Tr

Z
C(r,u(2)) = /der(m)/dxr_lw...
0

F(z,) J F(x,—1)
T3 F’(l-Q) X9
Xo/dl'g F($2) O/d.fl. (32)

For finite Z, replacing the upper limit of integration over x1 by Z and per-
forming all integrations, one gets

(mF(z)""

C(ru2) <z Y

(33)

Hence, the tail of C'(r, u) falls at least as fast as a Poissonian. Consequently
(r)u grows at most like In F'(Z). Assuming that F(z) has at the most a
power singularity at z = & one concludes that

1
(r), < constln o (34)
and therefore
(r)y < constln N (35)

since du scales like N~!. The argument is rather heuristic, but suggestive
(see also the examples in the section IIF of Ref. [9]). It appears that generi-
cally the causal trees have the small-world property dy = oo, contrary to the
maximum entropy trees whose generic fractal dimension is finite [8,13,14].
This phenomenon is easy to understand intuitively: the causal structure
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suppresses long branches. This can be seen by noting that along a branch
from the root to the leaf no label permutations are possible, hence a tree
with a few long branches admits much less causal labelings then a “short
fat” one.

3. Summary

We have studied a statistical ensemble of tree graphs endowed with a
causal structure. We have derived some general formulas describing the
degree distribution, the ancestor-descendant correlation, and the probability
that a node lives at a given geodesic distance from the root. Using these
last results, we have shown that our causal networks have generically the
small-world property i.e. their Hausdorff dimension is infinite.

We have shown that our model coincides with the growing random model
for an afine class of attachment kernels. Outside this class however the
models can wildly differ. In particular we have demonstrated that while
condensation of links can be observed in causal trees it is not to be seen in
their growing network analogue (i.e. for the same weights).

This work was supported by the Polish State Committee for Scientific
Research (KBN), grant 2P03B 09622 (2002-2004).
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