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In the recent years, field theory on non-commutative (NC) spaces has
attracted a lot of attention. Most literature on this subject deals with per-
turbation theory, although the latter runs into grave problems beyond one
loop. Here we present results from a fully non-perturbative approach. In
particular, we performed numerical simulations of the λφ4 model with two
NC spatial coordinates, and a commutative Euclidean time. This theory is
lattice discretized and then mapped onto a matrix model. The simulation
results reveal a phase diagram with various types of ordered phases. We
discuss the suitable order parameters, as well as the spatial and temporal
correlators. The dispersion relation clearly shows a trend towards the ex-
pected IR singularity. Its parameterization provides the tool to extract the
continuum limit.

PACS numbers: 11.10.Nx, 11.30.Cp, 05.50.+q

1. Field theory on a non-commutative space

The simplest way to introduce non-commutative (NC) coordinates is to
impose the relation

[x̂µ, x̂ν ] = iΘµν , (1.1)

Θ being a constant, anti-symmetric tensor, while x̂µ are Hermitian coordi-
nate operators (which cannot be diagonalized simultaneously). This relation
leads to an uncertainty in c-space, ∆xµ∆xν > 0 (µ 6= ν). The pre-history
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of this idea involves private communication among celebrities like Heisen-
berg, Peierls, Pauli and Oppenheimer. The latter asked his student Snyder
to work it out, which yielded the first publication about physics on a NC
space [1], followed immediately by Ref. [2].

The mathematical framework for the formulation of field theory on NC
spaces was worked out in the eighties [3]. However, a real boom of interest
was triggered only in the late nineties by the observation that string and M
theory at low energy in a magnetic background field can be identified with
NC field theory [4]1. This boom persists up to now, as is manifest from new
preprints on this subjects appearing day after day.

The identification of Refs. [4, 5] transforms the background field into a
Θ term. The same idea has been around in solid state physics long before,
where it led to a new description of the quantum Hall effect [6]. The origin of
this idea goes back to Peierls: an electron in a strong magnetic background
field has an obvious description by NC coordinates, where the magnetic field
is replaced by non-commutativity, with an extent inverse to the magnetic
field strength.

To illustrate this fundamental property in the simplest possible way, we consider
an electron moving in a plane, with position ~x = (x1, x2, 0), exposed to a magnetic

field ~B = (0, 0, B). If this field is strong, the Lagrangian

L[~x, ~̇x] =
m

2
~̇x 2 + eBεijxiẋj , (i, j = 1, 2) (1.2)

can be reduced to the second term, so that the canonical momentum reads

Πj =
∂L

∂ẋj
= eBεijxi . (1.3)

Applying now the canonical quantization rule

[x̂i, Π̂j ] = i~δij (1.4)

we arrive at
[x̂i, Π̂i] = eBεij [x̂i, x̂j ] . (1.5)

Indeed, together with Eq. (1.3) this corresponds to the NC relation

[x̂i, x̂j ] = iΘij , Θij =
~

e

1

B
εij := θεij . (1.6)

This illustration of Peierls’ map, along with a more precise derivation based on the

Hamiltonian formalism, is explained for instance in Ref. [7].

1 Strictly speaking, also that observation occurred in the literature much earlier [5].



The Non-Commutative λφ4 Model 4713

Hence one motivation to study NC field theory is simply its application
as a formalism to describe certain effects in the commutative world. Such
effects are typically related to a background field, which is then transformed
away by going non-commutative.

However, in addition to that concept, the present fashion also includes
studying the possibility of a really NC space-time. A deep, qualitative dif-
ference from the commutative space-time is the occurrence of a non-locality
of the range

√

‖Θ‖. Obviously this feature raises conceptual problems, but
from the optimistic point of view it is a source of hope for a link to quantum
gravity.

In fact, there is a claim that attempts to merge quantum theory and grav-
itation imply quite generally a NC space. To illustrate this line of thought,
we quote a simple Gedankenexperiment.

Some event is measured with accuracy ∆x, ∆y, ∆z, ∆t. This requires an
energy concentration, which implies a gravitational field. In the extreme case,
the latter imposes an event horizon beyond the uncertainty, so that the event is
effectively invisible. One may now evaluate the condition for avoiding this, i.e.
for dealing with actually detectable events. On the Planck scale, an estimate in
Ref. [8] suggests the constraints

∆x∆y + ∆x∆z + ∆y∆z ≥ 1 ,

(∆x+ ∆y + ∆z)∆t ≥ 1 , (1.7)

so that the NC space seems indeed natural as soon as gravity is involved.

However, this argument should come along with at least one remark of cau-

tion: much of the literature excludes time from the non-commutativity, including

the remainder of this article. Otherwise the problems related to causality [9] are

especially severe. From the above argument, however, this step would not be jus-

tified.

The last point is also related to the question if and how the Wick rotation
from an Euclidean to a Minkowski signature can be performed in the NC
world. This is not ultimately settled yet, but in our case of a commutative
time the issue seems less problematic. Anyhow, here we work in Euclidean
space, and we are happy there, without worrying about the details of the
transition to the NC Minkowski space.

Since the idea that our space could really be NC is fashionable, of course
there are already numerous speculations about possible measurements of Θ .

One suggestion is based on the deformation of the photon dispersion relation

due to Θ [10]. Blazers (highly active galactic nuclei) emit bursts of photons over a

broad energy spectrum. Assuming this emission to be simultaneous, a relative de-

lay could in principle establish bounds on Θ . However, in addition to experimental

difficulties, the knowledge about the deformed dispersion is also limited to a one

loop calculation [11].



4714 W. Bietenholz, F. Hofheinz, J. Nishimura

The last limitation is especially worrisome in the light of the fact that
most higher loop calculations are not feasible yet — no systematic machine
is known for them. Perturbation theory is even more complicated than in the
good old commutative space, which is in striking contradiction to the original
hope that Θ would simplify the perturbative renormalization [1]. It is true
that part of the UV singularities are removed due to the non-commutativity,
but others remain, in particular those in the planar diagrams [12]. What
makes the situation worse is that the non-planar divergences do not just
disappear, but they are rather turned into IR singularities with respect to
external momenta. This effect is denoted as UV/IR mixing [13]. At this
point we want to give again just a simple intuitive reason; we will be some-
what more explicit below in the framework of the λφ4 model.

We return to simple natural units ~ = 1, without involving the Planck scale any
more. If we combine Heisenberg’s uncertainty ∆xj ∼ 1/∆pj with the NC relation

∆xj ∼ Θij/∆xi ∼ Θij∆pi , (i 6= j) (1.8)

we see that for ∆pj → 0 the other momentum components explode, ∆pi → ∞, and

vice versa. This also suggests that in addition to the Heisenberg term, ∆xj picks

up a term linear in the ∆pi, which may be denoted as a “string modification” of

the uncertainty principle.

In the work to be presented here we are going to consider a 3d Euclidean
space with a commutative Euclidean time t and two NC spatial coordinates,
which obey

[x̂µ, x̂ν ] = iθεµν . (1.9)

We are happy to avoid the horror of NC perturbation theory by taking the
fully non-perturbative approach of numerical simulations. To this end, the
space should first be lattice discretized, as in the commutative world. Here
we also need a second step, namely a mapping of the lattice field theory onto
a matrix model, which will be described in Section 2. At this point we only
comment on the general structure of a 2d NC lattice of spacing a, following
Ref. [14].

The restriction of the spectrum of x̂µ to the lattice sites corresponds to the
operator identity

exp
(

i
2π

a
x̂µ

)

= 1̂ . (1.10)

As in the commutative case, we want the momentum components kµ to be periodic
over the Brillouin zone,

exp

(

i
[

kµ +
2π

a

]

x̂µ

)

= exp(ikµx̂µ) . (1.11)
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Multiplying both sides by the factor exp(−ikν x̂ν) now leads to consistency with
Eq. (1.10), iff

θ

2a
kµ ∈ Z , (1.12)

which has amazing consequences: any NC lattice is automatically periodic, say
over a lattice volume L× L. Then the discrete momenta k(n) = 2π

aLn occur, where
nµ ∈ Z. The non-commutativity parameter can be identified as

θ =
1

π
a2L . (1.13)

We see that the continuum limit a → 0 and the thermodynamic limit L → ∞
are manifestly entangled, which is again an aspect of UV/IR mixing. Taking these

two limits simultaneously in such a way that θ remains constant is denoted as the

double scaling limit.

2. The non-commutative λφ4 model

NC field theories can be formulated in a form which looks similar to the
commutative world, if all the fields are multiplied by the star product (or
Moyal product),

f(x) ⋆ g(x) := exp

(

1

2
iΘµν

∂

∂xµ

∂

∂yν

)

f(x) g(y)|x=y . (2.1)

In the particular case of bilinear terms in an action, the star product is
equivalent to the ordinary product, hence in these terms the star product is
not needed.

Based on these rules, we can write down for instance the action of the
NC λφ4 model,

S[φ] =

∫

ddx
[1

2
∂µφ∂µφ+

m2

2
φ2 +

λ

4
φ ⋆ φ ⋆ φ ⋆ φ

]

. (2.2)

Since only the self-interaction term involves Θ , the coupling strength λ also
determines the extent of NC effects in this model.

To render the above star product rules plausible, we consider the composition
of plane wave operators,

eipµx̂µ · eiqν x̂ν = exp
(

− i

2
pµΘµνqν

)

ei(p+q)µx̂µ . (2.3)
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This provides a prescription for the translation from the commutative product
eipxeiqx into a NC formulation in terms of x, i.e. without using the operator x̂,

eipxeiqx → e−
i
2

pµΘµνqν ei(p+q)x := eipx ⋆ eiqx . (2.4)

More generally, we can adopt this translation rule to the product of fields, which
can be decomposed into plane waves,

φ(x)ψ(x) → φ(x) e
i
2

←

∂µΘµν

→

∂ν ψ(x) := φ(x) ⋆ ψ(x) . (2.5)

Turning now to the peculiarity of bilinear terms, it is easy to see that in

∫

ddxφ(x) ⋆ ψ(x) =

∫

ddxφ(x)
[

1 − i

2

←

∂µΘµν

→

∂ν + . . .
]

ψ(x)
!
=

∫

ddxφ(x)ψ(x)

all the terms in the square bracket which involve Θ cannot contribute, based on

partial integration and Θµν = −Θνµ.

The one loop level of this model is suitable for the illustration of the
general properties of NC perturbation theory that we mentioned in Section 1.

To this end, we consider the one loop level of the one particle irreducible 2-point
function to the action (2.2), i.e. the n = 1 contribution to

〈φ(p)φ(−p)〉 =

∞
∑

n=0

λn
Γ

(n)(p) . (2.6)

It contains a planar and a non-planar term,

Γ
(1)
planar =

1

3

∫

ddk

(2π)d

1

k2 +m2
, Γ

(1)
non−planar =

1

6

∫

ddk

(2π)d

exp(ikµΘµνpν)

k2 +m2
, (2.7)

which are illustrated in Fig. 1. We see that the planar part is independent of

-&%
'$-

p
k

planar

-

&%
'$-

p
k

non–planar

Fig. 1. The planar and non-planar one loop contribution to the two–point function

(2.6), given in Eqs. (2.7).

Θ [12], whereas the non-planar part is affected by UV/IR mixing [13]. To reveal
what this means, we introduce a momentum cut-off Λ and obtain [14] (for m > 0)

Γ
(1)
non−planar(p) =

m(d−2)/2

6 (2π)d/2

( 4

Λ2
− pµΘ

2
µνpν

)(2−d)/4

K d−2

2

(

m

√

4

Λ2
− pµΘ2

µνpν

)

,
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where Θ2
µν = ΘµρΘρν and K is the modified Bessel function. In particular in d = 4

the divergent part is given by

Γ
(1)
non−planar(p) =

1

96π2

(

Λ
2
eff −m2 ln

(

Λ2
eff

m2

)

)

+ finite terms ,

Λ
2
eff =

1
1
Λ2 − pµΘ2

µνpν

. (2.8)

In general the effective cut-off Λeff remains finite in the UV limit Λ → ∞, but it

diverges if we take simultaneously the IR limit p→ 0.

A comprehensive one loop study of the NC λφ4 model in various dimen-
sions has been performed in Ref. [15]. That work dealt with a self-consistent
Hartree–Fock type approximation, which would be exact for the O(N) model
at large N . The authors assumed its validity also for the N = 1 scalar the-
ory and conjectured in particular a prediction for the phase diagram. As
a general feature, the system undergoes some ordering at m2 ≪ 0, which
corresponds in some sense to a very low temperature. If m2 is lowered to
that point, Gubser and Sondhi predict in d = 3 and d = 4 the following
behavior:

• At small θ, there is an Ising transition to a uniform order, as in the
commutative case.

• At larger θ, the ordered state has a structure of stripes or even more
complicated patterns.

Note that the formation of such a stripe order implies the spontaneous
breaking of translation invariance. Therefore Gubser and Sondhi did not
expect this phase in d = 2.

The same question was also studied by means of a renormalization group
analysis [16].

Our goal was a non-perturbative, quantitative verification of that quali-
tative conjecture, and our methods are Monte Carlo simulations. The lattice
formulation (cf. Section 1) is not hard to write down, but it is very hard to
simulate due to the star product. The way out which enabled efficient simu-
lations is a mapping onto a dimensionally reduced matrix model, as suggested
in Ref. [17]. This method is a refinement of the matrix model approach to
NC gauge theory in the continuum [18].

Assume the field φ(~x, t) to be defined on a N2×T lattice of unit spacing.
According to Ref. [17] the following action is equivalent to the lattice action:

S[φ̄] = NTr

T
∑

t=1

[1

2

2
∑

µ=1

(

Γµφ̄(t)Γ †
µ − φ̄(t)

)2

+
1

2

(

φ̄(t+ 1) − φ̄(t)
)

2

+
m2

2
φ̄2(t) +

λ

4
φ̄4(t)

]

. (2.9)
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Here φ̄(t) (t = 1 . . . T ) are Hermitian N×N matrices. In the (commutative)
time direction the kinetic term takes the ordinary discrete form. The quar-
tic term — which is in the original formulation plagued by repeated star
products — looks relatively simple now, although it should be noted that
these matrices are not sparse (in contrast to typical lattice formulations of
commutative field theory), hence the fourth power requires some computa-
tion. However, much of the complication due to the NC geometry is now
manifest in the non-standard kinetic term in the spatial directions. The
so-called twist eaters Γµ provide the shift which corresponds to one lattice
unit, if they obey the ’t Hooft algebra

ΓµΓν = ZνµΓνΓµ . (2.10)

The tensor Zµν = Z∗
νµ is called the twist factor. In general it may have the

form Z12 = e2πik/N , where k ∈ Z. 2 The representation of the twist eaters
that we choose [20, 21] requires the twist to have the specific form

Z12 = exp
(

i
N + 1

N
π
)

, (2.11)

as we are going to sketch below. Comparison with the general form shows
that then N has to be odd. The lattice model and the matrix model are
connected by Morita equivalence, which means that their algebras are fully
identical.

Let us go back to the NC lattice formulation discussed in Section 1. Since the
momenta are discrete, we should not use the (unbounded) operators x̂µ, µ = 1, 2

to describe the lattice sites. Instead we introduce the unitary operators Ẑµ =
exp( 2π

La ix̂µ), which obey the commutation relation

ẐµẐν = exp
(

− 4π2

a2L2
iΘµν

)

ẐνẐµ = exp
(

− 4π

L
iεµν

)

ẐνẐµ , (2.12)

where we used Θµν = θεµν and Eq. (1.13). The lattice translation operator D̂µ =

exp(a∂̂µ) is supposed to fulfill the relation

D̂µẐνD̂
†
µ = e2πaiδµν /LẐν . (2.13)

The issue is now to find a matrix solution for the conditions (2.12) and (2.13). This
solution is unique only up to symmetry transformations, hence one may end up
with different twist factors. We assumed the unitary twist eaters to take the form

Γ1 =















0 1 0 . . .
0 . 1 . . .
. . . 1 . .
. . . . . .
. . . . . 1
1 . . . . 0















, Γ2 =















1 0 . . . .
0 Z21 0 . . .
0 0 Z2

21 . . .
. . . Z3

21 . .
. . . . . .
0 . . . . .















2 Its standard form, which occurs for instance in the “twisted Eguchi-Kawai Model” [19],
uses k = 1.
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where Z12 = Z∗21 characterizes the twist. This ansatz solves indeed the conditions

(2.12) and (2.13), iff we choose the twist of Eq. (2.11) [21]. However, a different

ansatz for D̂µ resp. Ẑµ may lead to an alternative solution with a modified twist,

see e.g. Ref. [22].

3. Numerical results

An overview of our numerical results is given by the phase diagram in
Fig. 2. Indeed, for a suitable rescaling of the axis, this diagram stabilizes
with increasing N = T . At strongly negative m2 (corresponding to a very
low temperature) the system seeks some order. At small self-interaction
λ the non-commutativity is not much amplified and the systems behaves
as in the commutative world, i.e. it is ordered uniformly. At larger λ a
new striped phase sets in, in the spirit of Ref. [15]. Such a phase is not
known in the commutative λφ4 model, but similar phenomena appear in
solid state physics, see for instance Ref. [23]. In that phase, a non-zero
mode condenses, so that the ground states correspond to a stripe pattern,
or to more complicated checker-field-type patterns. Typical examples for
the various cases are shown in Fig. 3.

N = 15N = 25N = 35N = 45

phasestripeduniformp
hase disordered phase

N2�
N2 m2

8007006005004003002001000

0-100-200-300-400
Fig. 2. The phase diagram of the NC λφ4 model, explored by means of numerical

simulations. Since it contains a new type of phase we conclude: this diagram of

phases simply amazes.

The transition from disorder to order can be localized well and it appears
to be second order. On the other hand, the transition between the uniform
and the striped phase is more difficult to localize and it is expected to be of
first order.

The order parameter that was used here is based on the spatial Fourier
transform of the scalar field, φ̃(~p, t). We average over the time direction and
turn it such that an eventually condensated mode can be detected optimally.
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= −0.011
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0
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3020100

30

20

10

0 50250

50
25
0

N = 45, λ = 0.22, N = 35, λ = 10, N = 55, λ = 50,

m2
= −0.2 m2

= −4 m2
= −22

Fig. 3. Snapshots of typical, well thermalized configurations in different sectors of

the phase diagram: uniformly ordered and disordered (above), and patterns of two

stripes parallel to an axis, two diagonal stripes and finally four stripes (below).

The dark and bright areas correspond to φ > 0, φ < 0.

This is done be introducing the function

M(k) =
1

NT
max

k=|~p|N/2π

∣

∣

∣

∣

∣

T
∑

t=1

φ̃(~p, t)

∣

∣

∣

∣

∣

, (3.1)

and its expectation value is our order parameter, sensitive to the mode k.
In particular, 〈M(0)〉 is the standard order parameter for the Z2 symmetry,
〈M(1)〉 is the staggered order parameter that detects patterns of two stripes
parallel to one of the axes as in Fig. 3 below on the left, 〈M(

√
2)〉 detects a

diagonal two-stripe pattern as in Fig. 3 below in the center, 〈M(2)〉 detects
a pattern of four stripes parallel to one of the axes as in Fig. 3 below on the
right, etc. We also measured the connected two-point functions of M(k),
the peak of which allowed us to localize the order–disorder phase transition
in the diagram of Fig. 2 to a high precision.

Next we consider the spatial correlator at a fixed time,

C(~x) = 〈φ(~0, t)φ(~x, t)〉 . (3.2)
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As it can be expected, in the disordered phase this decay is fast, but in
contrast to our daily experience in the commutative world, it is in general
not exponential (nor polynomial), as Fig. 4 (on the left) shows. It may be
plausible that the spatial decay behavior is somehow distorted by the NC
geometry; what is perhaps more surprising is that this effect shrinks and the
decay moves closer to an exponential as λ increases (so that the NC effects
are expected to be enhanced), see Fig. 4 (on the right). This observation
might be explained in the light of the pole structure described in Ref. [13].

j~xj
C(~x)

1614121086420

10.10.010.001 j~xj
C(~x)

876543210

10.10.010.0010.00011e-05
λ = 0.06, m2

= −0.015 λ = 2, m2
= −0.3

Fig. 4. Decay of the spatial correlator C(~x) at N = 35 in the disordered phase,

close to the ordering phase transition. On the left we see a clear deviation from the

exponential decay. At larger λ (on the right) the standard exponential behavior is

approximated.

Turning now to the striped phase, the pattern with stripes parallel to
one of the axes can be visualized well by plotting C(x1, 0) and C(0, x2). In
Fig. 5 we show two examples where the cuts through a configuration of two
stripes parallel to an axis (on the left) resp. two diagonal stripes (on the
right) can easily be recognized.

verti
al to the stripesparallel to the stripes

j~xj
C(~x)

35302520151050

1.20.80.40-0.4-0.8
verti
al to the stripesparallel to the stripes

j~xj
C(~x)

50454035302520151050

1.20.80.40-0.4-0.8
λ = 0.6, m2

= −0.7 λ = 6, m2
= −4

Fig. 5. The profile of C(x1, 0) and C(0, x2) at N = 35 for two stripes parallel to an

axis (left) and two diagonal stripes, as they occur at stronger coupling (right).
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Now we want to consider the correlations in the direction of the Euclidean
time. More precisely, we consider the correlators of two fields φ̃(~p, t) at the
same momentum ~p but at different times. For instance, Fig. 6 on the left
shows

G(τ) := 〈φ̃(~p = ~0, t)φ̃(~p = ~0, t+ τ)〉 (3.3)

in the disordered phase, close to the phase transition. Since the time direc-
tion is commutative, we rather expect here the usual behavior, and indeed
these correlators follow neatly the exponential with periodic boundary con-
ditions, i.e. a cosh shape. This shape allows us to extract the energy at rest
— or effective mass — in the exponentially dominated sector (not too close
to the center) as

E(~p = ~0) = − ln
G(τ + 1)

G(τ)
. (3.4)

By varying τ we find a convincing plateau, see Fig. 6 on the right.

�
G(~m=
~ 0;�)

35302520151050

1
0.1

0.01 �
E(~p=~
0)

121086420

0.40.30.20.10
Fig. 6. On the left: the temporal correlator G(τ), defined in Eq. (3.3), at N = 35,

λ = 0.29, m2 = −0.11. On the right we show the rest energy extracted at different

values of τ according to Eq. (3.4), which has a clear plateau.

We can now repeat this procedure also at non-vanishing momenta ~p,
which finally yields the full dispersion relation E(~p). We still stay in the
disordered phase, close to the ordering transition. If we are close to the uni-
form order (small λ), the dispersion has its usual linear shape (up to lattice
corrections) as in the commutative case, see Fig. 7 on the left. However, the
shape changes if we move to the vicinity of the striped phase, see Fig. 7 on
the right. Now the rest energy increases, since the effects of UV/IR mixing
set in. In the large N double scaling limit it is expected to diverge. The
minimum moves to a finite value of the momentum, which corresponds to
the stripe patterns shown in Fig. 3. If we enlarge the lattice, we expect
the dispersion relation to stabilize if the axes are taken in physical units (an

exception is of course the close vicinity of ~p = ~0). The required rescaling of
the axes determines the physical lattice spacing a. A clear hint that such
a stabilization can indeed be achieved is the preliminary Fig. 8 — for the
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~p 2
E2

10.80.60.40.20

10.80.60.40.20 ~p 2
E2

0.50.40.30.20.10

0.60.50.40.30.20.10
N = 45, λ = 0.035, N = 55, λ = 55,

m2
= −0.009 m2

= −15

Fig. 7. The dispersion relation E2(~p 2) in the disorder phase, close to the ordering

transition. On the left: at weak coupling — above the uniform phase — it takes the

standard shape known from the commutative world, including the lattice correction

(dashed line). On the right: at strong coupling (above the striped phase) the rest

energy increases and the energy minimum moves to finite momenta. The line is

a four parameter fit to the one loop prediction [24]. Although we are still in the

disordered phase, the system already feels the trend towards a stripe formation.

N = 55N = 45N = 35N = 25

(~p=a) 2
(E(~p)=a)2

10.80.60.40.20

5.554.543.532.521.51
Fig. 8. The dispersion relations at different sizes N and physical lattice spacings a.

The product Na2 = 100 is kept constant, which corresponds to the prescription of

the double scaling limit. We see that the rest energy seems to diverge at large N ,

whereas the shape of the rest of the dispersion relation stabilizes.

corresponding definition of the a (which also stabilizes the spatial correlator)
we refer to Ref. [25]. We see here in particular that the energy minimum
stabilizes in physical units, which means that at large N we find an infinite
number of stripes with a stable average width, which can be denoted as a
zebra pattern. (Of course, this also includes the interference of stripes in
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several directions; this is what we meant by checker-field pattern.) Once
this is fully demonstrated, we have established the continuum limit and the
final confirmation of the existence of the striped phase, as conjectured by
Gubser and Sondhi [15].

We finally remark that the occurrence of stripes in the lattice formulation was

also observed in the case of two NC dimensions [20–22] and in four dimensions [25].

In both cases, this observation is not trivial from the theoretical point of view: since

such a phase breaks the translational invariance spontaneously, one may wonder

if it can possibly exist in d = 2 at all [15], cf. Section 2. However, there is no

contradiction with the Mermin-Wagner Theorem because the proof of the latter

assumes locality and an IR regular behavior, which is both not provided here. In

d = 4, on the other hand, the situation might be special because we are dealing with

the critical dimension in view of the renormalization group [16], and an exciting

question would be if there are any news about triviality once Θ enters the game.

4. Conclusions

We have presented results from a numerical study of the λφ4 model in
3d Euclidean space, where the two spatial directions are NC, whereas the
Euclidean time is commutative. The system was first lattice discretized and
then mapped onto a dimensionally reduced matrix model. On each time
lattice point one obtains a Hermitian N × N matrix, where N × N is the
spatial lattice volume. We denote the physical (i.e. dimensionful) lattice
space as a. The double scaling limit N → ∞, at Na2 = constant describes
the limit of an infinite volume in the continuum at a finite non-commutativity
parameter θ. This means that the UV limit and the thermodynamic limit
are intertwined in this case, as a consequence of UV/IR mixing.

We find a phase diagram which stabilizes for N & 25. The ordered
regime splits into a uniform and a striped phase, which is consistent with the
conjecture by Gubser and Sondhi. We discussed the order parameter, which
is able to detect different types of stripe patterns. The spatial correlators
in the disordered phase decay in some irregular way (fast but in general not
exponential), whereas the correlators in time direction — at fixed spatial
momentum — do decay exponentially. Based on the latter property we can
determine the dispersion relation, which reveals the UV/IR mixing again.
At large λ the energy minimum drifts away from zero, in accordance with
the occurrence of stripe patterns in the ground state. The Θ -deformed
dispersion relation at large λ seems to be IR divergent. Hence the short-
ranged non-locality has once again also long range manifestations.

As an outlook we hope to identify a similar dispersion relation for the
photon, which would be of immediate phenomenological interest, as we out-
lined in Section 1. We repeat that the experimental search for bounds on
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Θ based on a possible frequency dependence of the speed of light rely so far
on a one loop calculation [11] (with an uncertain behavior at higher loops).
Therefore a non-perturbative result would certainly be valuable. A first step
in that direction was the study of Wilson loops in the 2d NC U(1) gauge
theory [26].

It is a pleasure to thank J. Ambjørn, S. Catterall, F. Iachello, D. Lüst,
Y. Makeenko and R. Szabo for useful comments. The computations were
performed at the PC clusters at Humboldt Universität and Freie Universität,
Berlin.
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