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We study the complex |ψ|4 theory in three dimensions and compare our
numerical results with a recently proposed mean-field like approximation.
The mean-field result, which predicts a first-order phase transition in parts
of the phase diagram, cannot be confirmed. To get a closer look inside this
discrepancy, we introduce a generalized Hamiltonian with an additional
fugacity term. With this modification we can show that the complex |ψ|4

theory can indeed be tuned to undergo a first-order phase transition by
varying the strength of the new term in the generalized Hamiltonian.

PACS numbers: 02.70.Lq, 64.60.–i, 74.20.De

1. Introduction

Since long the Ginzburg–Landau model has been considered as paradigm
for studying critical phenomena using field-theoretic techniques [1]. Pertur-
bative calculations of critical exponents and amplitude ratios of the Ising,
XY, Heisenberg, . . . spin models and the concept of universality relied heav-
ily on this field-theoretic formulation [2]. Even though the spin models con-
tain only directional fluctuations, while for n-component Ginzburg–Landau
fields with n ≥ 2 directional and size fluctuations seem to be equally impor-
tant, the two descriptions are completely equivalent. This equivalence can
easily be proved for superfluids with n = 2 where the spin model reduces to
an XY model [3]. Therefore it appeared as a surprise when, on the basis of an
approximate variational approach to the two-component Ginzburg–Landau
model, Curty and Beck [4] recently predicted for certain parameter ranges
the possibility of first-order phase transitions induced by phase fluctuations.
In several papers [5–9] this quasi-analytical [10] prediction was tested by
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Monte Carlo simulations and, as the main result, apparently confirmed nu-
merically. If true, these findings would have an enormous impact on the
theoretical description of many related systems such as superfluid helium,
superconductors, certain liquid crystals and possibly even the electroweak
standard model of elementary particle physics [11, 12].

In view of these potentially important implications for a broad variety
of different fields we performed independent Monte Carlo simulations of
this model in two and three dimensions [13] in order to test whether the
claim of phase fluctuation induced first-order transitions is a real effect or
not. As the main message of our study: it is not! Rather, our results
clearly support the conventional opinion that the nature of the transition
in the parameterization of the Ginzburg–Landau model used by Curty and
Beck [4] is of second order. In turn this implies, of course, that the variational
approximation employed in Ref. [4] is less reliable than originally thought in
view of the apparent numerical confirmations. As we pointed out in Ref. [13],
the complex |ψ|4 model can be modified to undergo a first-order transition
by adding an additional fugacity term. In this work we study this model
in three dimensions by means of Monte Carlo simulations, with particular
emphasis placed on the order of the transitions as a function of the new
fugacity term.

The remainder of the paper is organized as follows. In Sec. 2 we first
recall the definition of the model and the observables. We then discuss the
simulation techniques and present the results of our simulations in Sec. 3.
In Sec. 4 we conclude with a brief summary of the main results.

2. Model and observables

Following the standard two-component Ginzburg–Landau theory, we de-
fine the Hamiltonian

H[ψ] =

∫

ddr

[

α|ψ|2 +
b

2
|ψ|4 +

γ

2
|∇ψ|2

]

, γ > 0 , (1)

where ψ(~r) = |ψ(~r)|eiφ(~r) is a complex field, and α, b and γ are coeffi-
cients independent of the temperature derived from a microscopic model.
In order to carry out the Monte Carlo simulations we put the model (1)
on a d-dimensional hypercubic lattice with spacing a. Adopting the nota-
tion of Ref. [4] we normalize the Hamiltonian by setting ψ̃ = ψ/

√

(|α|/b)
and ~u = ~r/ξ, where ξ2 = γ/|α| is the mean-field correlation length at zero
temperature. The normalized lattice Hamiltonian is thus given by

H[ψ̃] = kBṼ0

N
∑

n=1





σ̃

2
(|ψ̃n|

2 − 1)2 +
1

2

d
∑

µ=1

|ψ̃n − ψ̃n+µ|
2



 , (2)
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where we have removed a constant term, µ denotes the unit vector along
the µ-axes, and N = Ld is the total number of sites. Only two parameters
remain,

σ̃ =
a2

ξ2
, Ṽ0 =

1

kB

|α|

b
γad−2 , (3)

where furthermore Ṽ0 can be used to set the scale of the (dimensionless)
temperature. The partition function Z is

Z =

∫

DψDψ̄e−H/T̃ , (4)

where T̃ = T/Ṽ0 is the reduced temperature and
∫

DψDψ̄ stands short for
integrating over all possible complex field configurations.

In Ref. [13] we have shown that the disagreement mentioned above is
caused by an incorrect treatment of the Jacobian which emerges from the
complex measure in (4) when transforming the field representation to polar

coordinates, ψ̃n = Rn(cos(φn), sin(φn)). When updating in the simulations

the modulus Rn = |ψ̃n| and the angle φn, we have to rewrite the partition
function (4) as

Z =

2π
∫

0

Dφ

∞
∫

0

RDRe−H/T̃ , (5)

where R ≡
∏N

n=1Rn is the Jacobian of this transformation. While math-
ematically indeed trivial (and properly taken into account in Ref. [4]), the
fact that the integration measure for Rn is non-uniform may easily be over-
looked when coding the actual update proposals for the modulus in the
Monte Carlo simulation program. In fact, if we ignore the Jacobian and
simulate the model (5) (erroneously) without the R-factor, then we obtain
a completely different behaviour than with the proper integration measure,
see Fig. 1. As already mentioned above these results reproduce [14] those
in Refs. [5, 9], and from this data one would indeed conclude evidence for a
first-order phase transition when σ is small. With the correct measure, on
the other hand, we have checked that no first-order signal shows up down
to σ = 0.01.

To treat the measure in Eq. (5) properly one can either use the identity

RDR = DR2/2N and update the squared moduli R2
n = |ψ̃n|

2 according to
a uniform measure, or one can introduce an effective Hamiltonian,

Heff = H − T̃ κ
N

∑

n=1

logRn , (6)
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Fig. 1. Left plot: Mean square amplitude of the 3D Ginzburg–Landau model on

a 153 cubic lattice for different values of the parameter σ = 0.25, . . . , 3.0, using

the incorrect Jacobian in the polar coordinates representation (5) (see text). Right

plot: The same quantities with the proper integration measure.

with κ ≡ 1 and work directly with a uniform measure for Rn. The omission
of the R-factor in (5) corresponds to setting κ = 0. It is well known [11]
that the nodes Rn = 0 correlate with core regions of vortices in the dual
formulation of the model. The Jacobian factor R (or equivalently the term
−

∑

logRn in Heff) tends to suppress field configurations with many nodes
Rn = 0. If the R-factor is omitted, the number of nodes and hence vortices is
relatively enhanced. It is thus at least qualitatively plausible that in this case
a discontinuous, first-order “freezing transition” to a vortex dominated phase
can occur, as is suggested by a similar mechanism for the XY model [11,15]
and defect models of melting [16, 17].

In our simulations of the three-dimensional (3D) generalized Ginzburg–
Landau model (6) described in detail in the next section we have measured
among other quantities the energy density e = 〈H〉/N , the specific heat
cv = (〈H2〉 − 〈H〉2)/N , and in particular the mean square amplitude

〈|ψ̃|2〉 =
1

N

N
∑

n=1

〈|ψ̃n|
2〉 , (7)

which will serve as the most relevant quantity for comparison with previous
work [4–9]. For further comparison and in order to determine the critical
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temperature, the helicity modulus,

Γµ =
1

N

〈

N
∑

n=1

|ψ̃n||ψ̃n+µ| cos(φn − φn+µ)

〉

−
1

NT̃

〈[

N
∑

n=1

|ψ̃n||ψ̃n+µ| sin(φn − φn+µ)

]2〉

, (8)

was also computed. Notice that the helicity modulus Γµ is a direct measure
of the phase correlations in the direction of µ. In the infinite-volume limit,
Γµ is zero above Tc and different from zero below Tc. To complete the picture
we furthermore measured the vortex-line density v. The standard procedure
to calculate the vorticity of each plaquette is by considering the quantity

m∗p =
1

2π
([φ1 − φ2]2π + [φ2 − φ3]2π + [φ3 − φ4]2π + [φ4 − φ1]2π) , (9)

where [α]2π stands for α modulo 2π: [α]2π = α + 2πn, with n an integer
such that α+2πn ∈ (−π, π], hence m∗p = n12 +n23 +n34 +n41. The symbol
∗p denotes the link dual to a given plaquette p. If m∗p 6= 0, there exists
a vortex line which is assigned to the object dual to the given plaquette.
The vortex “charge” m∗p can take three values: 0,±1 (the values ±2 have a
negligible probability). The vortex-line density is defined as

v =
1

N

∑

∗p

|m∗p| . (10)

We further analyzed the Binder cumulant,

U =
〈(~m2)2〉

〈~m2〉2
, (11)

where

~m =
1

N

N
∑

n=1

ψ̃n (12)

is the magnetization per lattice site of a given configuration. For notational
simplicity we will omit in the rest of the paper the tilde on ψ, σ, and T .
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3. Simulation techniques and results

Let us now turn to the description of the Monte Carlo update procedures
used by us. We employed the single-cluster algorithm [18] to update the
direction of the field [19], similar to simulations of the XY spin model [20].
The modulus of ψ is updated with a Metropolis algorithm [21,22]. Here some
care is necessary to treat the measure in (4) or (5) properly (see [13]). Per
measurement we performed one sweep with the Metropolis algorithm and
m single-cluster updates. For all simulations the number of cluster updates
was chosen roughly proportional to the linear lattice size L, a standard
choice for 3D systems as suggested by a simple finite-size scaling analysis.
We performed simulations for lattices with linear lattice size L = 10, 15,
20, and 30, respectively, subject to periodic boundary conditions. For each
simulation point we thermalized with 500 to 1 000 sweeps and averaged the
measurements over 10 000 sweeps. All error bars are computed with the
Jackknife method [23].

First we investigated the size dependence of the model by simulating
different lattice sizes for κ = 0 and κ = 1 at fixed σ = 0.25. As can be seen
in Fig. 2, there is only a small dependence on the variation of the lattice size
for the energy and the mean square amplitude. The same conclusion can be
drawn by looking at other quantities such as the helicity modulus (8) and
the vortex-line density (10), see Fig. 3. On the basis of these results, we do
not expect a change of the behaviour for significant larger lattices, therefore
we used moderate lattice sizes for our further investigations.

The remarkable difference between the curves for the different values of
κ leads us to the question of the order of the phase transitions. One possible
method to distinguish between phase transitions of first and second order is
to look at histograms of the energy or magnetization close to the transition
point [24]. For σ = 0.25 and κ = 0 we find a double-peak structure for the

energy and the mean square amplitude as well for the mean modulus |ψ| =
1
N

∑N
n=1 |ψn| shown in Fig. 4. The pronounced dip over more than 20 orders

of magnitude is a clear indication for two coexisting phases, therefore we
conclude that for κ = 0 the model undergoes a first-order phase transition.
For κ = 1, on the other hand, we find a single-peak structure for all three
quantities, see Fig. 4. These results support the conventional opinion that
the complex |ψ|4 model undergoes a second-order phase transition.

To get a more precise idea of the κ dependence of the generalized model
(6) and especially to determine the phase transition line, we performed sim-
ulations for κ = 0 to 1 in steps of 0.1 and additionally κ = 0.85 and 0.95
at fixed σ = 0.25. In Fig. 5 we show for all values of κ the mean square
amplitudes as a function of the temperature which indicate that there is
indeed a region with first-order phase transitions (κ small) and another one
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Fig. 2. Left plots: Energy density e and mean square amplitude 〈|ψ|2〉 on various

cubic lattices with σ = 0.25 and κ = 0. Right plots: The same quantities with

κ = 1.

with second-order phase transitions (κ → 1). In order to locate and check
the order of the phase transitions we used for various κ values a variant of
the multicanonical scheme [25, 26]. Instead of flattening the histogram of
the energy or magnetization, here we sampled the system with weight fac-
tors for the mean modulus. With this simulation technique we overcome the
difficulty of sampling the rare events between the two peaks of the modulus
distribution close to a first-order phase transition, cf. Fig. 4. Moreover, with
this simulation scheme we can examine a wide range in the parameter space
with only one simulation by applying reweighting techniques. For several
values of κ in the first-order region the transition point was then estimated



4734 E. Bittner, W. Janke

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.05  0.1  0.15  0.2

Γ
µ

T

10
15
20
30

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2

Γ
µ

T

10
15
20
30

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0  0.05  0.1  0.15  0.2

<
v
>

T

10
15
20
30

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  0.5  1  1.5  2

<
v
>

T

10
15
20
30

Fig. 3. Left plots: Helicity modulus Γµ and vortex-line density 〈v〉 on various cubic

lattices with σ = 0.25 and κ = 0. Right plots: The same quantities with κ = 1.

by reweighting the distribution for the modulus to the temperature T0 where
the two peaks are of equal height. In the region of second-order transitions
we used single-cluster updates combined with the Metropolis algorithm and
found the location of the phase transition by looking at the crossing point
of the Binder parameter for different lattices sizes L. In the right plot of
Fig. 5 we show a preliminary phase diagram for σ = 0.25, where the boxes
in the plot mark the transition points we have found. The tricritical point
is roughly estimated to occur around κ ≈ 0.8. Its precise location has not
yet been determined; this will be left for an interesting, albeit technically
rather involved future project.
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Fig. 4. Left plot: Histogram of the mean modulus |ψ| on a 43 lattice for σ = 0.25

and κ = 0 at the temperature T0 ≈ 0.0572 where both maxima are of equal height.

Right plot: Histogram for the same quantity and lattice size for σ = 0.25 and κ = 1

at T = 1.1 close to the phase transition.
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the generalized complex |ψ|4 model for σ = 0.25. The transitions for κ < κt are of

first order, and the transitions for κ > κt are of second order. The point κt at the
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4. Summary

The possibility of a phase fluctuation induced first-order phase transi-
tion in the standard Ginzburg–Landau model as suggested by approximate
variational calculations by Curty and Beck [4] cannot be confirmed by our
numerical simulations. Instead of this we show that the three-dimensional
Ginzburg–Landau model can be modified to undergo a first-order transition
in a way similar to Ref. [27] by varying the coefficient κ of an additional
−

∑

logRn term in the generalized Hamiltonian (6). As in Ref. [27] this
can be understood by duality arguments. The extra term reduces the ratio
of core energies of vortex lines of vorticity two versus those of vorticity one,
and this leads to the same type of transition as observed in defect melting of
crystals. We presented a first sketch of the phase diagram of the generalized
complex |ψ|4 model in the κ − T plane and located roughly the tricritical
point for one value of the parameter σ. The precise determination of the
tricritical point and a study of the tricritical line as a function of κ and σ
would be an interesting future project.

E.B. thanks the EU-Network HPRN-CT-1999-000161 “Discrete Random
Geometries: From Solid State Physics to Quantum Gravity” for a postdoc-
toral grant.
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