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We implement fermions on 2D dynamical random triangulation and
determine the spectrum of the Dirac operator. We study the dependence
of the spectrum on the hopping parameter and use finite size analysis to
determine critical exponents. The results for regular, for Euclidean and for
Lorentzian lattices are briefly presented.
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1. Introduction

In this paper we study properties of the Dirac operator on 2D: regular,
Euclidean and Lorentzian lattices. An explicit construction of the Dirac–
Wilson and Majorana–Wilson operators on a randomly triangulated plane
was introduced in [1]. However this construction was based on a global
frame. Such an approach works only for lattices embedded in a flat back-
ground. It is possible to generalize the construction by introduction a field of
local frames [2–7]. This makes possible to put fermions on a curved manifold
with any topology.

The paper is organized as follows: first we recall the definition of the
model of fermions interacting with gravity. Then we show the analytical
result obtained for regular lattice. Next we present results of Monte-Carlo
simulations for Euclidean and for Lorentzian lattices.

2. The model

To construct a model of fermions interacting with gravity one has to
properly define fermion field on a curved space. The basic difficulty comes
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from the fact that on such a space generally there is no global frame. There-
fore it is impossible to introduce global directions one can associate gamma
matrices with. This difficulty can be overcome by introduction a set of local
orthonormal frames. This makes possible to define a spin connection that
can be used to parallel transport and to calculate derivatives of spinors.
When the curved space is represented by a dynamical triangulation this
leads to the following Dirac–Wilson action [5]:

S = −2K
∑

〈ij〉

Ψ̄iHijΨj +
∑

i

Ψ̄iΨi =
∑

i,j

Ψ̄iDijΨj . (1)

The fermionic fields Ψi are located in the centers of triangles, the sum 〈ij〉
goes over oriented pairs of neighboring triangles, and K is a hopping pa-
rameter. The hopping operator Hij and the Dirac–Wilson operator Dij are
defined by use of relative positions of local frames in triangles i and j [5].
To get a partition function of the model one has to integrate over fermion
field and sum over dynamical triangulations from some class T :

Z =
∑

T∈T

∫ ∏

i

dΨ̄idΨi e−ST =
∑

T∈T

ZT . (2)

The integral over fermion field on a given triangulation defines the partition
function ZT , which provides a weight of triangulation T in the ensemble. The
definition of T depends on a model. We consider here three different cases.
At first we consider only flat regular lattice build of equilateral triangles.
There is no summation over triangulations. In the second case fermions
interact with Euclidean gravity. The sum goes over all triangulations of
spherical topology. In the third case we consider Lorentzian, torodoidal
lattices with causal structure.

It is convenient to introduce Majorana–Wilson D̂ operator defined as:

D̂ = iǫD , (3)

where ǫ is antisymmetric tensor. It can be shown, that Majorana–Wilson
operator is represented by hermitian matrix [6]. Therefore all its eigenval-
ues are real. We analyze scaling of the lowest eigenvalue to deduce some
properties of the geometry.

3. Regular lattice

On the beginning let us consider Dirac operator on a regular flat lattice
build of equilateral triangles. The spectra of Dirac–Wilson and Majorana–
Wilson operators can be calculated analytically. Diagonalization of action
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matrix (1) leads to the following eigenvalues:

λ = 1 ± K
√

3

√
w ± i

√
4 − (w − 1)2 , (4)

where:

w = cos(p1) + cos(p2) + cos(p1 − p2) . (5)

The distribution of eigenvalues on a finite lattice with periodic boundary
conditions is shown in figure 1. In this case momenta admit the values
p1,2 = 2π

L (k1,2 + 1

2
), where k1,2 are integer numbers and L is linear extent

of the lattice. Adding 1/2 to the k1,2 corresponds to antiperiodic boundary
conditions. Spectrum in figure 1 was evaluated for the hopping parameter
K = 1/3. For this value the oval shape formed by eigenvalues touches with
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Fig. 1. Eigenvalues of the Dirac–Wilson operator on a 2D regular lattice build of 800

equilateral triangles with periodic boundary conditions. The hopping parameter is

equal to K = 1/3.

the left edge the origin (0, 0). The smallest modules of eigenvalues corre-
spond to momentum p1 = p2 = π/L for which w = 1 + 2 cos(π/L). When
the lattice size goes to infinity L → ∞, parameter w → 3 and the small-
est eigenvalue approaches origin. For antiperiodic boundary conditions zero
eigenvalue appears in the spectrum for every lattice size when p1 = p2 = 0
and w = 3. Similarly one can find eigenvalues of the Majorana–Wilson

operator D̂:

λ̂ = ±
√

1 + K2(w + 6) ±
√

(K2(w − 3) + 4)2 + 36K2 − 16 . (6)

It can be shown that for real K and w ∈ [−3, 3] function (6) is equal zero
only for K = 1/3 and w = 3. Thus critical value of the hopping parameter
K on a regular lattice equals Kcr = 1/3. When K 6= Kcr spectrum of the
Majorana–Wilson operator is truncated up to some point — the smallest
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eigenvalue that appears in the spectrum. This is a mass gap M . The scaling
of the M at critical point is given by:

M ≃ π

3L
. (7)

4. Euclidean lattice

Let us now replace regular lattice with a set of fluctuating dynamical
lattices. In this chapter we consider interaction of fermions with Euclidean
gravity. Therefore the class T in (2) is a set of all spherical triangulations.
The weight for each triangulation is given by ZT . A typical spectrum of
the Dirac–Wilson operator is shown in figure 2 (left). When one changes
hopping parameter K the spectrum rescales around point (1, 0) without
noticeable shape change. One can find a pseudocritical value K = K∗ for
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Fig. 2. The average spectrum of the Dirac–Wilson operator on: Euclidean lattice

with N = 64 triangles for the hoping parameter K = 0.364 (left figure), Lorentzian

lattice with N = 64 triangles and the hopping parameter K = 0.3486 (right figure).

which the claw-shaped left end of the spectrum crosses imaginary axis. For
this value the smallest (i.e. the smallest module) eigenvalues, which appear
in the spectrum are minimal. Similar effect can be seen when studying
spectrum of the Majorana–Wilson operator. Let us define a mass gap M as
a mass center of the smallest eigenvalue density distribution ρ0(λ):

M =

∫
dλλρ0(λ) . (8)

The function M(K) has minimum M∗ at pseudocritical hopping parameter
value K∗. The values K∗ and the smallest mass gaps M∗ for different lattice
sizes N are shown in figure 3. We fit standard scaling functions to data
points:

M∗(N) =
b

N
1

dH

(
1 +

t

N

)
, (9)
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K∗(N) = K∞ − a

Nκ
. (10)

Exponent dH is a lattice Hausdorff dimension. A typical linear extent of the
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Fig. 3. Minimal mass gap M∗ (a) and pseudocritical value K∗ (b) scaling with

lattice size N . The curves represent the best fit to the (9) and (10) formula:

1/dH = 0.348(4), b = 0.80(2), t = 5.7(5) and K∞ = 0.3756(16), κ = 1.3(30),

a = 0.9(5).

lattice scales as L = N1/dH . When a particle mass is equal to zero L sets
the typical correlation length. Its inverse defines a mass M . Thus we have
M ∼ 1/L = 1/N1/dH . Additional finite size correction t/N gives significant
improvement of the fit. We get the following parameter values: dH = 2.87(3),
b = 0.80(2), t = 5.7(5). The best fit of the formula (10) leads to values
K∞ = 0.3756(16), κ = 1.03(30) and a = 0.9(5). The corresponding curves
are plotted in figure 3. The critical hopping parameter K∞ is in agreement
with analytically calculated value Kcr = 0.37461 . . . [5].

5. Lorentzian lattice

In case of 2D Lorentzian gravity the sum in (2) goes over all triangula-
tions which have a time sliced structure [8, 9]. Each time slice consists of a
random number of vertices Vt on a circle. Vertices on a neighboring slices t
and t + 1 are connected by Vt + Vt+1 time-like links making Vt + Vt+1 trian-
gles. Each triangle has one space-like edge on a constant time line and two
time-like edges. From technical reasons each lattice is periodic in temporal
direction. Index t runs periodically in a range t = 1, . . . T . Typical Dirac–
Wilson operator spectrum is shown in figure 2 (right). Comparing this with
analogous spectrum on Euclidean lattice some differences can be seen for
large eigenvalues. Those differences come from the fact that Euclidean and
Lorentzian lattices have distinct properties on small length scales. The be-
havior of the small eigenvalues is in both cases similar. When the hopping
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parameter K changes, the spectrum rescales around (1, 0) point like in Eu-
clidean case. Repeating procedure described in the previous chapter we can
examine scaling of the smallest eigenvalues of the Majorana–Wilson opera-
tor. We consider here gravity interacting with two kinds of field, one with
central charge c = 1/2, and the other with central charge c = 4. We use the
properties of the Majorana–Wilson operator spectrum to probe the fractal
properties of the geometry. The dependence of the smallest mass gap on a
lattice size is shown in figure 4. We fit the scaling formula:

M∗(N) = aN−1/dH (11)

and get the parameter values: a = 2.04(4) and dH = 2.11(5) for c = 1/2 and
a = 2.88 and dH = 1.77 for c = 4.
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Fig. 4. Minimal mass gap M∗ of fermionic particle as a function of lattice volume

N for lattices with conformal charge c = 1/2 (upper line) and c = 4 (lower line).

The fit M∗(N) = aN−1/dH gives a = 2.04(4) and dH = 2.11(5) for c = 1/2 and

a = 2.88(4) and dH = 1.77(3) for c = 4.

6. Summary

We performed Monte-Carlo simulations to get a spectrum of the Dirac–
Wilson operator for fermions interacting with 2D Euclidean gravity and
with 2D Lorentzian gravity. The influence of lattice dynamic on fermions
can be seen in a shape of the spectrum of Dirac operator but also in a
critical value of the hopping parameter. This value is different than the
one calculated for regular lattice. We examine the behavior of the smallest
eigenvalues. This eigenvalues define a mass gap related to inverse of the
correlation length and to long-range fermion excitations. Critical exponent
controlling the mass gap scaling reveals fractal properties of the geometry.
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Hausdorff dimension values calculated for: Euclidean gravity, Lorentzian
gravity interacting with central charge c = 1/2 and with charge c = 4, equal
respectively: dH = 2.87(3), dH = 2.11(5) and dH = 1.77(3). That seems
to be in agreement with values 3, 2 and 3/2. The Hausdorff dimension 3
for Euclidean gravity is predicted by theoretical calculations for fermionic
particle immersed in a fractal Euclidean gravity background. The value 2
results from canonical dimension of the Lorentzian gravity and reflects the
fact that Lorentzian geometry below c = 1 barrier does not develop fractal
structure. The last value 3/2 is connected with scaling of the lowest momenta
on a bubble which arises on a Lorentzian lattice above c = 1 barrier [7].
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