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In a given market, financial covariances capture the intra-stock cor-
relations and can be used to address statistically the bulk nature of the
market as a complex system. We provide a statistical analysis of three
SP500 covariances with evidence for raw tail distributions. We study the
stability of these tails against reshuffling for the SP500 data and show that
the covariance with the strongest tails is robust, with a spectral density in
remarkable agreement with random Lévy matrix theory. We study the in-
verse participation ratio for the three covariances. The strong localization
observed at both ends of the spectral density is analogous to the local-
ization exhibited in the random Lévy matrix ensemble. We discuss two
competitive mechanisms responsible for the occurrence of an extensive and
delocalized eigenvalue at the edge of the spectrum: (a) the Lévy charac-
ter of the entries of the correlation matrix and (b) a sort of off-diagonal
order induced by underlying inter-stock correlations. (b) can be destroyed
by reshuffling, while (a) cannot. We show that the stocks with the largest
scattering are the least susceptible to correlations, and likely candidates
for the localized states. We introduce a simple model for price fluctuations
which captures behavior of the SP500 covariances. It may be of importance
for assets diversification.
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1. Introduction

A number of phenomena in nature are characterized by a coexistence
of different scales, usually described by power law distributions. This is
the case of most phase transitions where at the critical point the correlation
functions are scale invariant, as well as most fluid phases in highly developed
turbulence where the velocity fluctuations are sensitive to a variety of eddies.
Power law distributions are also encountered in a number of biophysical
settings as well as financial markets [1].

Stable random phenomena with power law behaviors are usually de-
scribed by Lévy distributions, a consequence of the central limit theorem for
scale-free processes. The simplest example is a random walk with a power
law distribution for single independent steps, where the relative probabili-
ties at different times are scale free. These phenomena lead to anomalous
diffusion and intermittency as encountered in charge transport in amor-
phous semiconductors, moving interfaces in porous media, spin glasses, tur-
bulence [2| and phase changes in chiral QCD [3].

Recently, it was pointed out that current market covariances are Gaus-
sian noise driven with possible consequences for the assessment of correla-
tions in portfolio evolution and optimization [4]. In particular, it was shown
that the lower part of eigenvalue distribution of the SP500 covariance ma-
trix constructed from the daily returns normalized by the local volatility,
is Gaussian noise dominated. In this paper we confirm some of these ob-
servations, but suggest that an alternative covariance constructed from the
daily returns normalized to the initial price displays Lévy noise throughout
the spectrum. The latter is more robust against reshuffling and certainly
requires a random Lévy matrix description. This observation is overall con-
sistent with a recent observation we made in the context of free random
Lévy matrices [6].

The outline of the paper is as follows: in Section 2, we introduce the
concept of financial correlation matrices, and empirically analyze their sta-
tistical content. We show that all covariances display power law tails, albeit
with different indices. In Section 3 we discuss the issue of inter-stock corre-
lations and we define reshuffling of the price series and investigate its effects
on the covariance matrices. We find that the covariance with the largest tails
is the least sensitive to this process. This is discussed in Section 4, where
we analyze the corresponding spectral densities and show that the results of
random Lévy matrices apply remarkably well to the covariance that is stable
under reshuffling. In Section 5, we analyze the bulk eigenvector content of
the all covariances and parallel them with the results of reshuffling and Lévy
random matrix theory. The larger the tails, the stronger the localization
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seen in the participation ratios and the stock scattering. In Section 6, we
formulate a simple model of price fluctuations, which reproduces most of the
experimentally observed features of the SP500 covariances. Our conclusions
are in Section 7.

2. Financial covariances

One of the central problems in financial investment is the assessment of
risk. Standard lore suggests that risk can be reduced through assets diver-
sification, with Markowitz’s portfolio analysis as one of the corner-stones in
assets allocation and diversification [1]. The key to Markowitz’s analysis is
the concept of a covariance matrix. In this section we define and empiri-
cally analyze the distribution of entries and also correlations as captured in
certain SP500 covariance matrices, with comparison to results from random
Lévy matrices. Throughout, we will use price return data from the SP500
daily quotations of N = 406 stocks over the period of T'+ 1 = 1309 days
from 01.01.1991 till 06.03.1996 (ignoring dividends).

2.1. SP500 covariances

Consider the covariance matrix constructed from the raw returns nor-
malized by the initial price:

T T
1 1 my; My
Cii=—= MMy = — — . 1

AN Z wtty = Z T0i Toj (1)

t=1 t=1
The raw returns my; of stock ¢ (out of a total of N) at time ¢, labeled by an
integer (t =1,...7T) are evaluated at fixed time intervals in a given market

as

my = 0x(t) — 67s (2)

where: dz;(t) = z;(t + 1) — z;(t). The mean 6z; = >, dz;(t)/T is sub-
tracted!.

The choice of the normalization My; = my;/xo; to the initial price pre-
serves the nature of the tails and is scale invariant. The use of the relative
returns instead of the logarithm of the ratio of the consecutive returns, is
motivated by the additive rather than multiplicative character of the price
series.

In the following, we will argue that the C' covariance matrix is able
to reveal a fat-tail nature of the price change fluctuations, contrary to the

! In fact, all results presented in the paper would not change almost at all, and would
not affect any conclusion, if the mean were not subtracted.
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covariances G and J, defined below. From the point of view of preserving
power law tails, as a normalization one could alternatively use the prices,
Zri, at any random time 7. However, from the calculational point of view
involving the integrated return or the portfolio risk, the choice of the initial
price is most convenient.

Commonly, the following covariance is used in the analysis:

1 T Mg M4
Gij=7 ) J—J—j (3)
t=1
where now the normalization is given by the volatility (variance) o; with
02 = >, m%/T. In the presence of fat tails, i.e. if the distribution has
a power-law behavior p(¢) ~ 7172 a < 2, the variance itself has a fat
tail distribution with an index «/2 and the average variance does not exist.
Obviously, in this case the use of ¢ as a normalization will bias the analysis.

Alternatively, in place of o;, one may use the quantity r; =), |my;|/T"

T
1 mtimtj
Ji = — E — 4
*J T —1 T Tj ( )

For 1 < a < 2, r; has a well defined large T" limit. However, in practice, for
finite 7', this normalization, similarly as the one for G, obscures the effects
of large price-change fluctuations.

A common feature of the quantities My; = my;/xo; for C and My =
myi/oi, My = my;/r; for G and J, is that they are invariant with respect
to change in the monetary unit. They exhibit, however, a different scale
behavior for large £. The raw cumulative probability P (§) (P~ (§)) defined
as a probability that My is less (greater) than ¢, calculated for all ¢ and ¢,
is expected to pick up the smallest power of the tail, ~ +A, £~ (for
gains/losses), present in the sample. In Fig. 1 we show the cumulative
probabilities (a) P-(¢) and (b) Ps(§) for C. The data in the figure are
compared with the power laws with: a_ = 1.78 and A_ = 2.4- 1073 and
ay =218 Ay = 1.35-1073. The values are given without errors. The SP500
data set does not allow for an accurate determination of the fit parameters.
The given values have a qualitative meaning. The fact that they are close
to 2 signals the presence of fat tails of the underlying distribution. Indeed,
the presence of fat-tails will be confirmed by the following analysis of the
covariance matrices.

Repeating the same for G we find much thinner tails with the following
exponents: a— = 3.8 and oy = 4.5, and for J: a_ = 3.5 and ay = 4.3.

Clearly, the normalization to either the variance (volatility), o;, or the
range 7; tends to affect the raw tail distributions, with a quenching to-
wards the Gaussian distribution. This is expected, since the fluctuations are
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Fig.1. (a) — The cumulative distribution P. (&) for My = my;/zo: as in C and
the best fit to the power law. (b) — The same for P- (§).

roughly normalized to the typical fluctuation. This is not the case in C),
where the raw tail is retained.

Let us introduce yet another covariance matrix which will be convenient
in the further analysis. We will construct it from the signs s;; = sgn my;:

1 T
Sij =7 > siisy; (5)
t=1
We use in our analysis a three-valued sign function: sgn = —1,0,1. For all

assets the average

1 T
(i) = 7 > s 0 (6)
t=1

and the successive entries in the historically ordered row sy; are essentially
uncorrelated.

3. Correlations

By construction, the financial covariance matrix is composed of intra-
assets (here stocks) correlations, and therefore tells us how closely assets
move in time-evolving market. The microscopic nature of these correla-
tions is so far unknown. However, a quantitative understanding can still be
achieved statistically. The source of the correlations is two-fold: real correla-
tions between assets and statistical fluctuations. The statistical fluctuations
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disappear in the 7' = oo limit. For finite T', however, even in the absence of
any real correlations, the non-diagonal entries are non-zero. In the Gaussian
universality they fall-off as 1/v/T.

As a measure of correlations between distinct companies i # j one can
use a distribution p(Cjj;). Similar distributions can be constructed for G
and S.

Consider first correlations of pure signs. In Fig. 2(a), we show the dis-
tribution (solid line) of S;;’s histogrammed over all pairs 7 # j. We observe
a strong asymmetry towards positive correlations with a maximum around
0.1, indicating that assets have a tendency to move collectively in the same
trend: up or down.

This pronounced asymmetry is present in correlations for all other co-
variances C, J, G. We show in Fig. 2(b) the distribution of correlations
for C. The correlations between signs are inherited by all other covariances.
We shall discuss possible consequences of this behavior in the Section 6. The
inter-stock (inter-sign) correlations can be easily destroyed by a procedure
of reshuffling described below. Indeed, we see in Fig. 2 (dashed line) that
after reshuffling the spectra become symmetric.

: — 3.10% :
15 | 1 b
210" i )
N 10 | > g ©
Q IR ] 4
51 ¢ I |
01 0 01 02 03 0 2.10
ZZS]' Z:Cij
(a) (b)

Fig.2. (a) — The distribution of correlations of signs S before (solid line) and
after reshuffling (dashed line). (b) — The same for C.

3.1. Reshuffling

Let us introduce the abovementioned procedure to remove the inter-stock
correlations from the data. Having done this, we will be able to concentrate
on the issue of the stochastic nature of the price fluctuations.
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The price changes 0z;(t) enter the covariance matrix in the historical
order. This order, in particular preserves inter-stock correlations. We can
suppress the inter-stock correlations in the data, by introducing a random
time ordering to the time history for each asset. More precisely, for each
asset, 7, we can generate a random permutation of t-indices PO ¢ -
' = PU(t) and instead of the historical ordered rows of returns we can
use: 0xz(t) = 0z;(t'), to define: mj, = 02';(t) — 6&; and the corresponding
covariance matrices C’, J' G', and S’. The permutations for different rows,
P®_ PO are random and mutually independent. Such a reshuffling does
not change the information content of the individual asset rows, because
successive entries in the historical ordered row, dx;(t) and ox;(t + 1), are
uncorrelated for typical time intervals on a market. Thus, the reshuffling
affects only the inter-row information content destroying any correlations.
Hence we expect that the reshuffled data set should reflect pure stochastic
nature. Indeed, it does. In Fig. 2 we show for example the effect of reshuffling
on the inter-stock correlations. The asymmetry disappears.

4. Spectra

In this section we discuss the spectral density associated with the covari-
ance matrices defined above. The spectral density plays an important role
in risk assessment [1,4].

The results will be presented as histograms of eigenvalues A. We will
sort of unify the scale on the A-axis by plotting histograms as a function of
a quantity \/I" where I" is defined as:

1 1 9
F:NTrC:ﬁ;Mti7 (7)
1

and analogously for G, J and S. For a covariance of Gaussian numbers,
the constant I' approaches a T-independent constant in the limit T — oo
while for a covariance of power-law distributed numbers with 1 < a < 2,
it behaves as I' = I'T?/*"1 where I' is a T-independent constant. We
will explain this scaling in more detail in the section about random Lévy
matrices. It is easy to see that by construction I' = 1 for G and S. The
histograms of eigenvalues A/ I" for the SP500 data are presented in Fig. 3. Let
us make here two points: the histograms for G and S are almost identical.
All spectra have a few large eigenvalues. In the next section using Random
Gaussian Matrices (RGM) we will define the scale which will tell us which
eigenvalues can be treated as large.

There are potentially two sources of large eigenvalues in the spectrum:
inter-stock correlations and fat-tails. In the next sections we will discuss
methods to pinpoint the two effects. In the right block of Fig. 4 we plot
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Fig.3. The eigenvalue histograms for C,G,J and S. For G and S we present
also the Gaussian fit (8). In the inlets we show the same histograms but in a
range embracing all eigenvalues. To make the smallest picks visible we artificially
enhanced them by setting in inlets the logarithmic scale on the vertical axis. Notice
that except the one for C all plots have the same ranges.

the eigenvalue density of the G’ and S’ covariances. The spectra for G’
and S’ are again almost identical. In comparison with the spectra for the
historically ordered data set, right block of Fig. 3, we see that the large
eigenvalues disappear: the largest eigenvalue of G' was 41.95, and for G’
after reshuffling 2.77. Moreover, the G’ and S’ spectra fit very well to the
curve:

o) ~ 3V Ain) G~ ) ®

with Apin = 0.20, Apax = 2.43, predicted by Random Gaussian Matrices
(RGM) in the large N limit [7]. In general for the asymmetry parameter
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Fig.4. The same as in Fig. 3 but for reshuffled data set. The histograms are
averaged over 20 random reshufflings.

a =T /N, the formula predicts Amax,min = (1 £ 1/4/a)?, which in particular
fora =T/N = 1308/406 ~ 3.22, yields the values given above. These values
are used in the curve plotted in Fig. 4. This agreement clearly indicates
that the normalization to the volatility o; used in G brings the signal to the
Gaussian universality.

It is worth noting that if one attempts to fit the RGM result to the
eigenvalue histograms for a correlated data set one generally obtains values
for Amin, Amax which deviate from the predicted ones. For example, for
G and S for the historically ordered we get Apax = 2.22, Apin = 0.11
and Apax = 2.09, Anin = 0.14, respectively, This deviation comes as a
compensation for the appearance of large eigenvalues which lie far away and
corresponds to asymmetry parameters a = 2.5 and a = 2.9, respectively.

As shown in Fig. 4, the large eigenvalues survive reshuffling in C' covari-
ances. Moreover, the position of the larger eigenvalues is relatively stable



4756 7. BURDA ET AL.

under reshuffling. In fact, in each of 20 random reshufflings used in the plot,
the three larger eigenvalues normalized by the scale I', always land in the
same histogram bin of the size 0.015.

The fact that there are large eigenvalues in the reshuffled spectrum can
be attributed to the presence of heavy tails in the probability distributions
for price fluctuations. The behavior of the spectra can be understood, as we
will see below, in terms of Random Lévy Matrix (RLM) theory.

4.1. C versus RLM

We want to compare eigenvalue spectra of C and C’ with the ones ob-
tained from an ensemble of Random Lévy Matrices (RLM) [8]. We generate
Lévy matrices (RLM) as follows. We choose N x T' elements of a matrix
M;y; as independent random numbers from a Lévy distribution. We find the
eigenvalues of the matrix Cj; = 1/T ), My;M;;. We can repeat this many
times collecting the eigenvalues in a common histogram.

Wil NT
(a) (b)

Fig.5. (a) — Cumulative eigenvalue distribution for the SP500 data for the histor-
ically ordered data set compared with the one for reshuffled data and (b) — with
the one of a randomly generated Lévy matrix.

Here we would like to mention, that there exists an alternative con-
struction of random matrix ensembles, based on the concept of free random
variables [9]. We call this realization Free Lévy Matrices (FLM) [5]. En-
sembles of FLM, are, contrary to RLM, invariant under rotations. They are
more easily tractable using analytical methods. On the other side, due to
the invariance of the measure, the eigenvectors do not show interesting cor-
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relations like in the case of RLM, which we discuss in the next sections. In
the rest of this paper, we do not discuss FLM, and we refer for comparison
between the FLM and RLM ensembles to [6].

As an illustration, in our numerical experiment we generated RLM with
an asymmetry a = T'/N = 3.22 adjusted to the asymmetry of the SP500 data
set being presently considered. The choice of the asymmetry will become
clear in the next subsection. As the distribution for the matrix elements
M,; we took a symmetric Lévy distribution with o = 1.7 close to the value
emerging from the analysis of the tail behavior of the cumulative probability
P(€).

In Fig. 5 we compare the cumulative distributions of eigenvalues for C
and C’, and the random matrix result for fixed asymmetry a = 3.22 and
size N = 406. We see that the large eigenvalues in the spectrum C' survive
reshuffling. The spectrum of RLM and of the reshuffled SP500 data set
exhibit similar large eigenvalue behavior.

4.2. Scaling in RLM
Assume that My; are power-law distributed: p(¢) ~ £~17%. Define:

1
Cij= Te Z My; My 9)
t

with the normalization factor 1/7% whose exponent o may differ from 1.
We will argue that a natural candidate for o is 0 = 2/a.
Let us split C' into a diagonal D and off-diagonal A parts

We can use the Central Limit Theorem for Lévy universality to obtain the
distribution of the entries in C' in the large T' limit. We get

D,L' ~ TQ/a_Udi s Aij ~ Tl/a—aaij ; (11)

where d; and a;; are T" independent constants, distributed with the stable
Lévy distributions. For the diagonal elements d; we expect a distribution
with an index «/2 and the skewness parameter § = 1, while the off-diagonal
elements a;; will be distributed with a symmetric distribution with an in-
dex a. To assess the importance of the off-diagonal entries on the spectrum,
we use the standard perturbation theory. For that, we write

Cij = TQ/a_UCij = T2/a_a (dzdw + T_l/aaij> (12)

and expand ¢;; = d;d;; + €a;; in € = 1/T1/°‘. In zeroth order the eigenvalues
of C;; are just d;. The first order corrections are zero because the matrix A;;
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is off-diagonal. Generically, for a random matrix, d;’s are not degenerate, so
up to the second order, the eigenvalues of C'; are

CL2

2
g2 i —2/a ij
No=d;i +e 'EAdjidi—lerT E,idj—di' (13)
J(#9) J(#4)

There are N — 1 terms in the sum, each of order unity. Thus the sum
contributes a factor proportional to IV, say = s; /N, and we have:

N =d; + Sz‘NT72/a . (14)

The off-diagonal terms compete with the diagonal ones for N ~ T2/®. In
our case, a = 1.7, N/T?/® ~ 1/3. The range of the spectrum of C will not
grow with 7" for o = 2/a.

The normalization constant I' = (Tr C')/N, which we have introduced
previously for the experimental covariances, behaves for RLM with
l<a<2as ' =IT**7 Again it simplifies for the choice o = 2/av.

5. States

In this section we analyze the eigenvector content of the three covariances
using the inverse participation ratios and the stock scattering. We show that
the covariances with larger tails are more stable under reshuffling the SP500
data, with localized states at the edge of the spectrum.

5.1. Inverse participation ratios

To better understand the nature of large-eigenvalues in the SP500 data,
we now turn to the eigenvector content. For that we use the inverse partic-
ipation ratio

N
Yi=> Vi, (15)
=1

where V), is a normalized ? eigenvector:

N
Y V=1 (16)
=1

of C to the eigenvalue A. We can distinguish the ‘mixed’ states with Y, =~
1/N =~ 0 and ‘pure’ states with Y ~ 1.

2 This implicitly assumes that the entries Vy; are at least power law distributed with
index a > 1.
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Fig. 6. Inverse participation ratios for for the SP500 covariances, for the historically

ordered data (crosses) and for the reshuffled data (triangles). In the lower right
figure we compare the distribution of the reshuffled data (triangles) and of Random
Lévy Matrix (circles).

In Figs. 6 we display the inverse participation ratios for the three co-
variances C, G and J for the raw SP500 data (triangles) and reshuffied
SP500 data (pluses). Additionally, in the fourth insert we compare the in-
verse participation ratio for C’ (triangles) and for RLM with index o = 1.5.
The large eigenvalues are localized for J and C with intermediate and large
participation ratio, respectively. For G and J the largest eigenvalue states
are ‘mixed’ while for C' they are ‘pure’. Large eigenvalue pure states are
present also in the C’ covariance! This is clearly displayed by the data. The
inverse participation ratio as a function of eigenvalue for C’ has the same
character as RLM.

The Lévy randomness has an equally strong effect on the large part
of the distribution as the inter-stock correlations. Also, in the G and J
covariances reshuffling ‘breaks’ the clustering, removing from the spectrum
large eigenvalues.
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Concerning the lower part of the spectrum, it is interesting to note that
it is characterized by smaller participation ratios than the large eigenvalue
part. The exception is G for which the part with small eigenvalues has larger
inverse participation ratio. On the other hand, the low eigenvalue parts of
the G and C show a similar behavior. In fact, one expects that the shape
of the lower part of the spectra for RLM and RGM to be strongly related
to the asymmetry of the matrices rather than to the type of randomness.
Indeed, for matrices with asymmetry a < 1, the spectra exhibit exact zero
eigenvalue states (zero modes).

5.2. Stock scattering

In analogy to the inverse participation ratio we define a quantity:
P=> Wy (17)
A

which measures how many eigenstates are mixed in a pure stock state . We
will refer to it as the stock scattering. Again we have the normalization:

> Vi=1. (18)
A

The inverse 1/P; tells us how many eigenstates are influenced by the stock i.
In Fig. 7 we show the value of P; for the consecutive 406 stocks (horizon-
tal) with 0 < P; < 1 (vertical), for each of the three covariances discussed

J
S \O‘L i et oo ]
G
[ Lo |
4T1J.TT.,,&J;LM l ‘H MJL “ "vJ{U},L ﬂ\ \_J

Fig. 7. Stock scattering for the SP500 covariances for the historically ordered data
(lines) and the reshuffled data (dots).
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in this work, at the same scale to facilitate the comparison. Clearly, the
normalization to unit volatility drives P; towards Gaussian noise. We have
checked that the effects of reshuffling is to enhance the localization of cer-
tain stocks (without much affecting the original ones), in agreement with the
participation ratio analysis. The stock scattering of C' provides a relatively
simple filter for those stocks that localize in a market, and are likely to drive
the large tail behavior of the covariance matrix.

6. Model

Collecting all experimental evidence for the SP500 data we are led to the
conjecture, that the returns normalized to the initial price My = my;/xo;
undergo fluctuations which can be well described by a randomness of the
type:

My = sgny; - &t (19)

where sgn,; is a random matrix of correlated signs and §;; are identical inde-
pendent distributed numbers from the Lévy universality. Indeed, as shown
in Fig. 2 the sign correlations are present in all covariances. Additionally,
one can check that the substitution of signs of dx;(¢) by random signs has
the same effect on spectra of the SP500 covariances as reshuffling.

Moreover, the spectra of eigenvalues of G and S are almost identical
and can be seen from the Fig. 3 and from the comparison of a few largest
eigenvalues which are 6.89, 7.27 and 41.95 for G and 5.48, 7.43 and 43.25
for S. This tells us that the information about the inter-stock correlations
present in G is already present in S. Thus, as long as the long tails are
suppressed, as in G, the absolute value of the fluctuations does not matter.

The absolute value of the changes matters, however, if we do not in-
troduce any superfluous normalizations and expose the covariance? to large
price fluctuations as in C. In this case, the correlations of signs play a sec-
ondary role, since even when one decorrelates them by reshuffling, the large
eigenvalues stay in the spectrum.

Similarly as under reshuffling, the spectrum of C' does not change its
character and the largest eigenvalues are quite stable, if one uses randomly
generated signs instead of those inherited from the historical data.

The randomness given by the formula (19) captures many experimentally
observed features of the real data. It should be treated, however, as zeroth
order approximation. In a more involved analysis, one should introduce

3 One can define other covariances, like for example, the one constructed from instan-
taneous returns: My = My /T, or My = logdx;(t + 1)/6x;:(¢), which similarly to
C, would preserve information about the power-law tails. As a consequence, for in-
stance, their spectra would behave in the same way under the reshuffling as the one
of C.
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some corrections to the conjecture which for example can take into account
the possibility of correlations between sign and absolute value of the price
changes. Indeed, the data show the existence of such correlations.

7. Conclusions

We have carried an empirical analysis of the covariance matrices char-
acterizing daily price returns from the SP500 market. We have shown that
a specific covariance (returns normalized to the stock initial price) exhibits
matrix entries with almost stable Lévy tails. A comparative study shows
that only this covariance is stable under reshuffling, with a spectrum in re-
markable agreement with the one extracted from an ensemble of random
Lévy matrices with commensurate sizes and asymmetry. An analysis of the
corresponding participation ratio shows large localized and almost ‘pure’
states. This is not the case of the other covariances (returns normalized
to the stock mean volatility or range), which are characterized by ‘mixed’
states with one characteristically large and delocalized eigenvalue reminis-
cent of Yang’s ODLRO [10]. The stock content of the localized states is best
displayed using the stock scattering.

In nearly Gaussian markets, the risk is usually assessed by minimiz-
ing the variance of a pertinent market policy, say an investment portfolio,
using the empirical market covariance as suggested by Markowitz [11]. Re-
cently, it was pointed out that the low-lying eigenvalues of the empirical
market covariance are Gaussian noise dominated (information free), imply-
ing that standard Markowitz’s theory for risk assessment is flawed [4]. In
non-Gaussian markets, the potential for large asset fluctuations may require
using an alternative to Markowitz’s theory through the use of value-at-risk
or tail-covariance [1], each of which requiring the covariance matrix.

In the present work we have shown that eigenvalues of a market covari-
ance follow the theoretical distribution of eigenvalues of almost randomly
generated Lévy matrices. The empirical market covariance reflects on a
state of maximum entropy in the generalized sense of Dyson for random
Lévy matrices. Our observations may be relevant for assets diversification
and risk management.

This work was supported in part by the US DOE DE-FG02-88ER40388,
the Polish State Committee for Scientific Research (KBN) 2 P03B 096 22
(2002-2004), the Hungarian FKFP 220/2000, and by the EC ITHP HPRN-
CT-1999-00161 grants.
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