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We review recent results concerning finite size corrections to the Ising
model free energy in lattices with non-trivial topology and curvature. From
conformal field theory considerations two distinct universal terms are ex-
pected, a logarithmic term determined by the system curvature and a scale
invariant term determined by the system shape and topology. Both terms
have been observed numerically, using the Kasteleyn Pfaffian method, for
lattices with topologies ranging from the sphere to that of a genus two sur-
face. The constant term is shown to be expressible in terms of Riemann
theta functions while the logarithmic correction reproduces the theoretical
prediction by Cardy and Peschel for singular metrics.
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1. Introduction

Finite size corrections provide the shortest bridge between the critical
behavior of a lattice model and the conformal field theory description of
its universality class. The simplest example of such a connection being the
dependence of finite size corrections on the model central charge for a strip
geometry [1]. In more general geometries, the universal part of the free
energy will depend sensitively on the lattice shape, topology and curvature.
For a two dimensional system, characterized by a length scale L, the free
energy at criticality and for fixed shape has a large L expansion [2| of the
form

F=fol?+ fyL+CInL+ D +o(1), (1)

where C' and D are universal, the logarithmic term coefficient C' being de-
termined by the system curvature and the constant term D by its topology
and shape.

* Presented at the Workshop on Random Geometry, Krakow, Poland, May 15-17, 2003.
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In a series of recent papers [3-5] the author and collaborator have studied
these terms for the Ising model on lattices with topologies ranging from the
sphere to that of a genus two surface. In this talk we will review these results
using as examples the square lattice with spherical topology, Fig. 1, and the
square lattice embedded on a genus two surface, Fig. 2.
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Fig. 1. Two lattices with spherical topology: the cube and the L-shaped lattice,
characterized by integer sizes M;. Conical singularities are related with the corners
where three or five faces meet.
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Fig.2. The genus two lattice which can be seen has a toroidal lattice with an
additional handle in the bulk. The boundary edge identifications are given by the
letters. The two octagonal faces are marked in dashed line.
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While it would be desirable to explicitly evaluate C' and D in the lattices
scaling limit, progress along this direction has been hindered by difficulties
in evaluating the free energy. Closed form expressions for the Ising model
free energy are known only for a small number of finite size lattices: the
torus [6], the cylinder [7] and some non-orientable [8] geometries, where
translational invariance permits the use of Fourier transforms. Progress can
be made however by using the Kasteleyn formalism to express the parti-
tion function as a linear combination of determinants of adjacency matrices.
These determinants can then be evaluated numerically for large lattice sizes
and arbitrary lattice geometry.

The paper is organized in the following way:

In Section 2 we review the Kasteleyn method for the evaluation of the
Ising model partition function on general two dimensional lattices.

In Section 3 we discuss the constant term D for lattices embedded on a
genus g surface. Careful numerical studies showed that D can be expressed
in terms of Riemann theta functions, defined below in the text, with half-
integer characteristic k

49

D~D Y |6 0)2). (2)

k=1

This result is reminiscent of multi-loop calculations in string theory [9,10]
with D reproducing the modular invariant partition function of the ¢ = %
conformal field theory on a genus g surface. The lattice shape and coupling
constants determine the g X g matrix (2. This matrix is the period matrix of
a Riemann surface related with the lattice continuum limit. In Section 4 we
study the dependence of {2 on the lattice shape using a discrete formulation
of Riemann surface theory.

In Section 5 we discuss the logarithmic term C' for both spherical and
higher genus lattices. From a conformal field theory point of view it is
known [2]| that this term is sensitive to the smoothness of the system. For a
smooth system it is related with the total curvature by

C=—gecx (3)

with x = 2 — 2¢ being the system Euler characteristic and ¢ the central
charge. By opposition, the contribution from a conical singularity with
deficit angle ¢ =27 — 0 is

cy= 22 (1 - (%”)) (1)

and not a term proportional to € as one would expect from a delta function
in the curvature. For the scaling limit of a specific lattice the distinction
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between the two cases depends on the order in which the limit of singular
curvature and the thermodynamic limit are taken. We will show that, for
the lattices of Figs. 1 and Fig. 2, C is given by the sum over all conical
singularities in the lattice of the contribution (4). Similar results have been
reported by Gonzalez [11].

Finally in Section 6 we present our conclusions and discuss open problems
and avenues for future research.

2. The Kasteleyn formalism

Consider a lattice, or more properly a graph, G drawn without super-
position of edges on a surface of genus ¢g. Assigning a coupling constant
to each edge and placing an Ising spin at each vertex we can defined the
Ising model on G. Kasteleyn [12,13| showed that its partition function can
be expressed as a linear combination of the Pfaffians of 49 antisymmetric
matrices. This result provides the starting point for the study of the Ising
model on non-trivial geometries. In this section we provide a brief descrip-
tion of the Kasteleyn method, for further details and proofs we refer the
interested reader to references [3,12,13].

Given a graph embedded on a genus g surface, the Kasteleyn method to
obtain the Ising model partition function consists of essentially three steps:

First step: replace each vertex of the original lattice by a cluster of ver-
tices, called the decoration graph, that depends on the vertex coordination
number. A possible choice of the decoration graph for vertices with three,
four and five nearest neighbors is shown in Fig. 3. The order by which the
exterior edges connect to the decoration is not important, meaning that the
decoration graphs can be rotated. The resulting decorated lattice will be
denoted by Gg4. Its edges are assigned weights: 1 to the internal edges of
the decorations and a weight w = tanh K to the edges inherited from the
lattice G, with K being the Ising coupling constant on that edge in units of
KpT.

Second step: orientate the edges of G4 by assigning to each edge a di-
rection, represented graphically by an arrow. The internal edges of the
decorations have already an orientation as given in Fig. 3. The remaining
edges, inherited from the original lattice G, are oriented according to the
Kasteleyn rule: in such a way that all lattice faces have an odd number
of clockwise oriented edges. An example of an orientation satisfying the
Kasteleyn condition is shown in Fig. 4 for a genus two lattice.

For any lattice G4 there are many different edge orientations that sat-
isfying the Kasteleyn condition. Two lattice edge orientations are said to
be equivalent if they can be related one to the other by a series of arrow
reversals, in which the orientations of all the edges meeting at a given ver-
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Fig.3. The vertex decorations for vertices with three, four and five nearest neigh-
bors.

tex are reversed. It can be shown [3,12, 13| that for a genus g lattice there
are precisely 49 un-equivalent Kasteleyn orientations, matching the number
of spin structures on the corresponding continuum free fermion description.
Let a;,b; with ¢ = 1,...,g be closed paths on the dual lattice forming a
canonical basis of the embedding surface first homology group; then the 49
un-equivalent Kasteleyn orientations can be generated from an initial Kaste-
leyn orientation by reversing the orientation of the edges crossed by a choice
of such loops.

Third step: label the vertices of the decorated graph G4 with an integer
from 1 to M. To each Kasteleyn edge orientation associate a M x M
adjacency matrix A with entries A;; that vanish if vertices ¢ and j are not
connected by an edge and take a value £z if vertices ¢ and j are connected
by an edge of weight z, the sign being determined by the edge orientation.
Schematically

z ifij
Aij=3 —z ifj i . (5)
0 otherwise
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Fig.4. The A(0000) Kasteleyn edge orientation of the decorated genus two lattice
with integer sizes (M;) = (2,4, 3,3,2). The remaining fifteen Kasteleyn orientations
are obtained from this one by reversing the orientations of all edges crossed by a
selection of the a;, b; loops.

The Ising model partition function on the graph G is then given by
Z(K) = 2™V (cosh K)™ Z o P Ay ( (6)

where Ny and Ny are the numbers of vertices and edges in G and we assume
that all edges have the same coupling constant K. The sum runs over
representatives of the 49 un-equivalent Kasteleyn orientations. The «; take
values +1 and are completely determined by the arrow parity of non-trivial
topology loops a;, b; along lattice edges, see [3| for details.
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This completes our description of the Kasteleyn method. We have re-
duced the evaluation of the Ising model partition function to the calculation
of determinants of adjacency matrices, using that Pf A; = v/det A; for an
antisymmetric matrix.

3. The constant term D on higher genus lattices

Consider the genus two lattice shown in Fig. 2, it can be seen as a torus
with an additional handle on the bulk and it is characterized by five integer
sizes M;. Locally it is equivalent to the flat square lattice except around
the two octagonal faces. These faces in the continuum limit will correspond
to conical singularities on a otherwise flat system. To study the finite size
corrections we evaluate the free energy on a sequence of lattices with fixed
shape and increasing size. This is done by taking lattice dimensions of the
form M; = m; L with fixed m; and increasing L. The coupling constants are
fixed for all edges to the square lattice isotropic critical value

sinh 2K, = 1. (7)

Following the discussion of the previous section, the partition function
on a genus two lattice can be evaluated in terms of sixteen determinants
of adjacency matrices. These matrices and the associated Kasteleyn edge
orientations can be labeled as A(na,,nj ,nay,ng,) with ny = 0,1. The
starting edge orientation A(0000) is shown in Fig. 4 and an orientation
with n, = 1 is obtained from the corresponding orientation with n, = 0
by reversing the orientation of all the edges crossed by the cycle x. To
make connection with the theta function characteristics and allow for more
compact equations we will also use the alternative notations

niz ni
Al g mam) = 4| b | = ®
nal naz

with the integer label given by i = 16 — 8na, — 4nj — 2na, —n;,.
In terms of these orientations, the Ising model partition function on the
genus two lattice is given by

(8]
ZO(Pl*P2*P3*P4*P5+P6+P7+P8*P9

+Pio+ P11+ Pi2 — Pig + Pia + Pis + Pisg) , 9)

7 =

where P; = Pf A; and «p is the size dependent pre-factor in (6). Closed
form expressions for these Pfaffians are difficult to obtain since the lattice
is not translationally invariant but they can be evaluated numerically for
relatively large lattice sizes.
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To factor out the bulk term fy and the logarithmic correction C' we can,
as in the toroidal case [14], consider ratios of adjacency matrix determinants
to the largest among the sixteen. These ratios are found to converge to well
defined values for large lattice size Ny, see Fig. 5 for an example. More
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Fig.5. Ratios of determinants R? for the genus two lattice with shape (m;) =
(11111) in function of the number of lattice points N and the theta function ratios
6? for period matrices evaluated using two different first homology group basis,
A and B. The ratio R13 corresponds to an odd characteristic theta function and
vanishes in the large Ny limit.

precisely, we find that in the L — oo limit the ratios of determinants satisfy
at criticality

Rizdetﬂg D Je[ 2 oo .

w3 D], Tl o
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for the 16 combinations of ¢, = 0,1 and with the label ¢ defined below
equation (8). The genus two Riemann theta functions are defined by the
quickly converging series

e [ g } (2,2)= > exp[ir(n+ )" 2n + a) + 27i(n + o) (z + B)]
nez?
(11)

where a, 3, z and n are 2-vectors half-integers, complex numbers and inte-
gers respectively. Six of the sixteen theta functions in (10) are odd functions
of z and therefore vanish at the origin. The corresponding ratios of deter-
minants are found to vanish in the large Ny limit.

The 2 x 2 period matrix {2 is a symmetric, complex valued matrix with
a positive definite imaginary part. It is determined by the lattice shape and
coupling constants, its value in (10) can be obtained directly by numerically
fitting the ratios of determinants or from first principles, as we will see in
the next section, by using discrete holomorphy methods. For locally square
lattices, {2 is found to be purely imaginary

| (o
2 = 12
! [ (e (29 ] ’ (12)

this is not the case for triangular lattices where the period matrix is in general
complex [4]. The same property is observed on toroidal lattices where the
modular parameter is imaginary for squared lattices [14] and complex for
triangular lattices [15].

In Table I these results are illustrated for the lattice with shape (m;) =
(1,1,1,1,1). The fifteen determinant ratios are shown, both the largest
lattice size evaluation and the L — oo extrapolation obtained using a fit
with a quadratic polynomial in 1/Ny. These ratios are compared with ratios
of theta functions

()[ c1/2 /2 ] 0.0)

d1/2  do)2
O (16-8d; —4e1 —2da—c2) (§2) = 00 (13)
[0 o

with a period matrix obtained by a suitable numerical fitting procedure. The
precision to which the two sets of numbers agree is remarkable, typically a
precision from 10™* to 1076.
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TABLE 1

Comparison between ratios of determinants R; and ratios of theta functions 6; for
the genus two lattice with shape (m;) = (11111). Ratios of determinants are given
both for the largest Ny evaluation and for the Ny — oo extrapolation. The theta
function ratios are for a numerically fitted period matrix and for a period matrix
evaluated according to the procedure of Section 4.

i | RZ(4Ny =5184) RZ?(Ny —oo) | 67(fit)  07(eval)
1 0.066121 0.066386 0.066378 0.066794
2 0.000012 1.4 x 1076 0.000000 0.000000
3 0.000009 1.3 x 106 0.000000 0.000000
4 0.000009 1.3 x 10~ 0.000000 0.000000
5 0.000005 1.1 x 1077 0.000000 0.000000
6 0.924624 0.925554 0.925550 0.924957
7 0.000288 0.000287 0.000286 0.000301
8 0.857835 0.859467 0.859457 0.858464
9 0.000012 1.4 x 1076 0.000000 0.000000
10 0.066121 0.066386 0.066378 0.066794
11 0.074001 0.074171 0.074164 0.074742
12 0.074001 0.074171 0.074164 0.074742
13 0.000005 1.1x 1077 0.000000 0.000000
14 0.924624 0.925554 0.925550 0.924957
15 0.008069 0.008077 0.008072 0.008249
16 1.000000 1.000000 1.000000 1.000000

21 212 {259

fit value 1.704 —1.408 2.816

evaluated value 1.701 —1.403 2.806

4. Discrete holomorphy and the period matrix

The matrix {2 in Eq. (10) can be seen as the period matrix of a Rie-
mann surface related with the lattice continuum limit. In this section we
study the dependence of this matrix on the lattice shape using a discrete
formulation of holomorphy. The basic idea is to formulate Riemann surface
theory on a discrete setting by using finite difference operators [3,4,16,17].
These operators act on quantities defined on the lattice p-elements: vertices,
oriented edges and faces that we will call respectively the lattice functions,
differentials and volume forms.

A lattice function f is determined by its value on the lattice vertices and
can be represented by a Ny-vector f[n] : n = 1,..., Ny after an integer
labeling of the lattice Ny vertices is chosen.

A lattice differential w is determined by its value on the lattice oriented
edges. Referring to a fixed drawing of the lattice, we define horizontal edges
to be oriented from left to right and vertical edges from bottom to top.
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Fig.6. The lattice functions f, differentials w and volume forms 7 and the finite
difference operators acting on them.

A lattice differential is then represented by a Ny x 2-matrix w[n|p] : n =
1,...,Ny; p = 1,2 where [n|1] stands for the horizontal edge immediately
right of vertex n and [n|2] for the vertical edge immediately above n, see
Fig. 7. The integral of a lattice differential w along a path of lattice edges
C is the sum of the values that w takes on the edges included in C

Ju="% £ulnly (14)
C

[n[p]eC

with a minus sign for edges with opposite orientation to that of the path.

A lattice volume form 7 takes values on the lattice faces and is repre-
sented by a (Ny — 2)-vector n[g] : ¢ = 1,..., Ny — 2 after a labeling of the
Ny — 2 lattice faces is chosen. The integral of a lattice volume form 7 over a
given lattice area A is the sum of the values that 1 takes on all faces included
in A.

up(n) right(m’)
[ 1]
maf 7 up(m) -
left(n right(n) ‘12
® AT [ [2
m up(m’)
down(n) right(m)

Fig. 7. The labeling of vertices, edges and faces for squared and octagonal faces.

It is important to relate the labeling of vertices, edges and faces. Vertices
and edges are already related by the labeling introduced above, to relate
vertices with faces we introduce some additional notation: if ¢ is a lattice
squared face then ¢ is its lower left vertex, if ¢ is an octagonal face then
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G1 and §o correspond to the two vertices that can be seen as its lower left
vertices, see Fig. 2. Conversely for a given vertex n we denote by n the
lattice face of which n is a lower left vertex.

We now define the finite difference operators acting on these quantities,
which are lattice versions of the exterior derivative, the co-derivative and
the Hodge star operator, see Fig. 6.

The lattice exterior derivative d is a linear operator defined by

(df)[n1] = flright(n)] - fln],
(df)[nl2] = flup(n)] = fln],
(dw)fg] = Y (wld] +wlright(¢:)[2] — wlup(q:)|1] — w[@i[2]) (15)

i

with ¢=1,2 for octagonal faces and i=1 for squared faces. The functions
right(n), left(n), up(n) and down(n) give the label of the vertex immediately
right, left, above and below of the vertex n.

The lattice co-derivative § is the operator defined as

(0w)[n] = wlleft(n)|1] — w[n|1] + w[down(n)|2] — w[n|2],

(6n) (1) = nfi] ~ nldown(n)], (16)
() [nl2) = nllefe(n)] ], (17)

where left(n) stands for the face given by the tilde of the vertex left(n) and
similarly for down(n).
The discrete Hodge star acting on lattice differentials is defined as

(xw)[n|1] = —w[down(n)|2],
(xw)[n|2] = wlleft(n)[1]. (18)

These discrete operators are defined in such a way that they satisfy
most of the usual properties of their continuum counterparts: the lattice
exterior derivative satisfies a discrete version of Stokes theorem; we have
that dd = 66 = 0 and the two operators are adjoint of each other under
the trivial inner product of lattice functions, differentials and volume forms.
These properties are exact for all lattices at finite size. Such is not the case
for some important properties of the discrete Hodge star operator that, as
we will see below, are only satisfied in the limit of large lattice size.

In exact analogy with the continuum definitions, a lattice differential is
said to be harmonic if it is both closed and co-closed,

(dw)[qg] =0 g=1,...,Np

Guw)n] =0, n=1,... Ny ’ (19)

w 1s harmonic = {
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where the conditions must be met for all N lattice faces and all Ny lattice
vertices. In general, on a genus g lattice, the system of equations (19) has 2g
linearly independent solutions. Notice that the number of unknowns w(n|p]
minus the number of equations is already

Ng — Ny —Np = —x=2g—2, (20)

where Np is the number of lattice faces and x is the Euler characteristic of
the lattice. Two additional solutions are provided by constant differentials
with independent vertical and horizontal components. That these are the
only solutions follows from the fact that a harmonic differential, discrete
or continuum, is completely determined by its periods along the lattice, or
surface, non-trivial loops and there are only 2¢g such loops in a genus g
lattice.

Finally a lattice differential is said to be holomorphic if it is harmonic
and it satisfies xw = —iw. We then need to require the lattice Hodge star
to be an endomorphism on the space of harmonic differentials and to satisfy
*x = —1. Unfortunately these two properties are only approximately verified
on a finite size lattice, see [3] for details. Except for some specially symmetric
lattices, one expects these properties to be exact only in the large Ny limit.

As in continuum Riemann Surface theory, the lattice period matrix can
be defined it terms of the lattice holomorphic differentials. We start by
solving the linear system of equations (19) for the lattice harmonic differen-
tials. There will be 2g independent solutions spanning a 2¢ linear space that
can be decomposed, almost precisely, in two sub-spaces of holomorphic and
anti-holomorphic lattice differentials by means of the projection operators
(14 %) (1 — %)

2

P = and P = (21)
We then look for a basis of the holomorphic sub-space {I}:k=1...,g}
with normalization

/Fz = O, (22)

ag

/Fl = O, (23)

by,

where the integrals are along a choice a;, b; of closed paths of lattice edges

representing a basis of the embedding surface first homology group.
Equation (23) gives our evaluation of the finite size period matrix. De-

tailed numerical studies [3,4] showed the resulting matrix to be a complex,
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symmetric matrix with a positive definite imaginary part. For any lattice of
the form shown in Fig. 2, the fixed shape Ny — oo limit of this matrix re-
produces with excellent precision the period matrix {2 in equation (10). The
lattice period matrix depends however on the choice of the first homology
group basis but different period matrices for the same lattice will be related
by a modular transformation on the limit of large lattice size.

In Fig. 5 four ratios of determinants of adjacency matrices are plotted,
in function of the lattice size Ny, together with theta function ratios (13)
for period matrices evaluated with two different basis of the first homology
group. The basis A is similar to the one shown in Fig. 4 while the basis
B has the a; and b; loops interchanged from Fig. 4. We see that, for each
ratio, the three values converge to a common value on the large Ny limit.
In Table I numerical values are given for the determinant and theta function
ratios. The theta function ratios are shown both for a period matrix fitted
numerically to the ratios of determinants and the L — oo extrapolated
lattice period matrix evaluated using the procedure described in this section.
Numerical values for the entries of the two period matrices agree within
1%, the difference being due to the difficulty in the making the L — oo
extrapolations.

The method introduced in this section to evaluate lattice period matrices
can be generalized to the anisotropic squared lattice 3] and the general
triangular lattice [4].

5. The logarithmic term C

We now consider the logarithmic term for both the spherical lattices of
Fig. 1 and the genus two lattice of Fig. 2. The toroidal lattice will also be
considered for illustration purposes.

The Ising model free energy can be expressed in terms of the determi-
nants of one, four and sixteen adjacency matrices for the spherical, toroidal
and genus two lattice respectively. Again we will consider sequences of lat-
tices with fixed shape m; and increasing size M; = m;L at the isotropic
critical coupling (7). For the higher genus lattices we learned from (10) that
the different adjacency matrix determinants converge rapidly to a common
bulk term times a topology and shape determined factor,

Pf A;(Ny) = 0; Z(Ny), (24)

where the ©; are constants for large enough lattice size Ny. It follows that
since the logarithmic correction is entirely due to the Z term,

49
(67)) ~
~F=1In (E E ai9i> +1nZ, (25)
i=1
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it can be equivalently evaluated from any non-vanishing Pfaffian. For this
purpose it is convenient to introduce the auxiliary quantities

49
Fi(Ny) = —In (%ain Ai) = F(Ny) +In (Z Z’ﬁ’f) . (26)
k:1 3 K3

where ¢ labels one of the 49 un-equivalent Kasteleyn orientations. In the
thermodynamic limit F; differs from F' only by a constant.

The logarithmic correction C' can be found by subtracting to the lattice
free energy the leading volume term fy, that is known [14] to be

26,1

fo +5In2 (27)

77
for the squared lattice, with G being the Catalan constant. In Fig. 8 the
residual free energy F' — foNv is plotted as function of the logarithm of the
lattice size, (log Nv)/2, for lattices with the various geometries. A clear
linear behavior is observed and the difference between positive, zero and
negative curvature is patent for the spherical, toroidal and genus two lattice.
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Fig.8. The residual free energy in function of the logarithm of the lattice size Ny
for various lattices. For the torus and genus two lattice only one Pfaffian term F;
is considered. The uncertainties on the values are smaller than the symbols used.
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For each lattice we evaluate a series of values converging to C' by doing
linear regressions on sets of four lattices with consecutive increasing sizes.
Examples of values obtained are shown in Table II. We find convergence to
a well defined value of C, the rate of convergence depending on the shape
of the lattice, being fastest for the more symmetric lattices. The fact that
the two spherical lattices, the cube and the L-shaped lattice, have different
logarithmic corrections C' already points out that this correction cannot be
explained by the smooth metric contribution equation (3) but it is given
by a sum over the conical singularities contributions of equation (4). The
Cy corrections for vertices where three, five and eight squared faces meet
are listed on Table III. While the singularities of the genus two lattice are
located at the octagonal faces we can by duality see them as vertices where
eight faces meet. The total logarithmic correction C' is obtained by summing
the Cy contributions for all singularities occurring in a lattice. As shown in
Table II, this reproduces the numerical values of C' with high accuracy. The
validity of equation (4) for all the lattices considered is clearly established
from the numerical results.

TABLE 11

The logarithmic correction C for lattices with various topologies. A sequence of
fits of four consecutive lattices of increasing size is seen to converge smoothly to
the predicted value. For a more complete set of data see [5].

lattice: cube L-shaped torus (++) genus 2 (——+4—)
shape: (111) (121)  (11111) (11) (11111)
fits —0.19468 —0.19043 —0.20531 0.00080 0.12858
—0.19463 —0.19142 —0.20573 0.00062 0.12786
—0.19459 —0.19201 —0.20571 0.00050 0.12735
—0.19456 —0.19240 —0.20567  0.00041 0.12698

expected: —0.19444 —0.20556 0 0.125
TABLE III

The deficit angle, spanning angle and conical singularity contribution for vertices
with various coordination numbers.

# squares € 0 Cy
3 w/2  3mw/2 —0.024306
5 —7/2  5mw/2 0.01875
8 —2m 4 0.0625
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It should be remarked that the conical singularity behavior is related with
the large scale structure of the lattice and not the small scale structure. In [4]
it was shown that a vertex where more, or less, than four faces meet does
not necessarily constitute a conical singularity. Conical singularity behavior
on the finite size corrections is observed when a regular lattice is folded at
large scale into a conical shape spanning an angle 6.

6. Conclusions

In this talk we reviewed recent research on finite size corrections, the
universal terms, of the Ising model free energy in lattices with curvature.
While these terms are well understood from a conformal field theory point
of view they are not usually studied in the scaling limit of specific lattice
geometries. Using the Kasteleyn method and numerical evaluation of the
adjacency matrix determinants it was possible to study a number of different
geometries consisting of regular lattices folded around conical singularities.

The scale invariant term D was shown to be a modular invariant quantity
expressed in term of Riemann theta functions, the dependence on the lattice
shape and coupling constants being realized through a period matrix (2. This
result provides a lattice regularized picture of the classical winding part of
the partition function in multi-loop calculations in string theory [9,10]. The
study of the exact dependence of the period matrix on the lattice shape
provides also a testing ground for ideas of discrete holomorphy.

On the other hand the study of the logarithmic term C' gave a first
answer to the long standing question, posed by Cardy and Peschel in [2], to
which of the two forms (3) or (4) for the logarithmic correction is observed
in specific lattice models. We found that for the regular lattices with conical
singularities considered in this paper, the logarithmic correction is given by
a sum over conical singularities contribution of the form (4).

It is natural to ask what kind of lattice would have a logarithmic term
given by equation (3), the smooth metric contribution. Such a lattice should
have its curvature spread over the all lattice with the local curvature being
non-zero everywhere but vanishing in the continuum limit. It is not clear
how this can be accomplished or what the criticality condition should be
for such a lattice. In this paper we have discussed a number of non-usual
lattices boundary conditions but it seems that to obtain (3) one must also
consider lattices with non-usual structure or a non-usual limiting procedure.
One thing is clear, since a continuum result must have a well defined regu-
larization procedure, such lattices must exist.

This work was partially supported by the EU grant HPRN-CT-1999-
00161. Most of the work described in this talk was done in collaboration
with Barry McCoy.
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