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We present a simple construction of a probability measure on rooted
infinite planar trees as a limit of a sequence of uniform measures on finite
trees. We compute the conditional probability measure on the set of trees
containing a given finite tree and use this to determine the distribution
of the number of vertices at a given distance from the root, and thereby
the Hausdorff dimension associated with this measure. The construction
can be generalised to other ensembles of infinite discrete structures. We
indicate, in particular, how it can be adapted in a straight forward manner
to obtain a probability measure on infinite planar surfaces by using a certain
correspondence between quadrangulated surfaces and so-called well labelled
trees. The Hausdorff dimension of this measure turns out to be 4. Details
of these latter results will appear elsewhere.

PACS numbers: 02.10.Ox, 04.60.Pp, 05.40.Fb

1. Introduction

Suppose we have a canonical ensemble of manifolds, or other geometric
objects endowed with a metric, whose statistical distribution is given by
a uniform probability measure µV on manifolds of fixed total volume V .
Denoting by Nr(M) the volume of a spherical shell of radius r and thickness
1 cantered at some distinguished point of the manifold M , the Hausdorff
dimension dH of the ensemble is commonly characterised by

〈Nr〉V ∼ rdH−1 for 1 << r << V
1

dH , (1)

where 〈·〉V denotes the average over manifolds with respect to µV , see e.g. [1]
Ch. 4. Clearly, in order to fix dH uniquely by (1), one must consider in some

∗ Presented at the Workshop on Random Geometry, Kraków, Poland, May 15–17, 2003.
† MaPhySto — a Network in Mathematical Physics and Stochastics, funded by The

Danish National Research Foundation.

(4795)



4796 B. Durhuus

way or other the limiting behaviour as V → ∞. There are, indeed, several
different ways to accomplish this. One way is to consider a grand canonical
version of the ensemble in question and relating dH to the critical exponent
of the mass, defined as the exponential decay rate of a suitable two-point
function. This has been implemented for random trees in [2], determining
dH to be 2, and for random planar triangulations (two-dimensional pure
gravity) in [3], where it was argued that dH = 4. Another possible route is
to consider the limiting behaviour of the radius RV , considered as a random
variable on the ensemble of manifolds with total volume V , as V → ∞.
Showing that the limit

lim
V →∞

V
− 1

dHRV = R

exists as a finite random variable on some probability space can then be taken
as a manifestation of (1). For the case of trees it is well known [12] that with
dH = 2 the limit above exists and is proportional to the maximal height of
the so-called Brownian excursion. For the case of quadrangulated surfaces
the existence of the limit with dH = 4 has recently been demonstrated in [9].

In both of the preceding interpretations it is implicitly assumed that

(1) holds also for r ∼ V
1

dH , and the obtained value of dH can be seen as
characterising the asymptotic behaviour of the global volume of manifolds
as a function of their linear extent. A more straight forward and local
interpretation of (1) is to consider the limit µ∞ of the finite volume measures
as V → ∞ realized on a space of manifolds with infinite volume, if possible,
and defining dH by

〈Nr〉∞ ∼ rdH−1 as r → ∞ . (2)

In [4] such a limiting measure for triangulated planar surfaces was con-
structed, and in [5] it was established that

Nr ∼ r3 as r → ∞ ,

up to possible logarithmic corrections, for almost all triangulations with
respect to this measure. Although, strictly speaking, this does not imply
(2), it clearly carries similar information.

In this paper we shall adapt the method of [4] to the case of trees and
construct by simple combinatoric arguments a limiting uniform probability
measure on infinite trees and prove (2) with dH = 2. A different, but closely
related, discussion of this limiting measure appears in [11]. We also indicate
how the method can be simply generalised to so-called well labelled trees
and how this leads to a proof of (2) with dH = 4 for quadrangulated planar
surfaces.
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This article is organised as follows. In Section 2 we give a simple illus-
tration of the general method by applying it to infinite random walks in Z

d

emerging from some fixed point and showing how it produces the well known
uniform probability measure on such walks. In Section 3 we construct the
uniform measure on infinite rooted planar trees and compute the distribu-
tion of the number of points at a given distance from the root. In particular,
it follows that the branches attached to some fixed finite tree are indepen-
dently distributed, and that the Hausdorff dimension of the measure is 2.
In Section 4 we define the notion of a well labelled planar tree and explain
how the results of the previous section extend to the class of such trees.
Moreover, the implications of this result for infinite planar quadrangulated
surfaces are explained.

2. Random walks in Z
d

Let Ω be the set of simple random walks starting at 0 in Z
d, that is

Ω =

(

∞
⋃

N=0

ΩN

)

∪Ω∞ ,

where Ω∞ is the set of infinite sequences (ω0, ω1, . . .) in Z
d such that

|ωi+1 − ωi| = 1 and ω0 = 0, and similarly ΩN is the set of finite sequences
(ω0, . . . , ωN ) subject to the same relations, where | · | denotes the Euclidean
norm in Z

d.
For each ω ∈ Ω and each non-negative integer r we let Br(ω) denote the

first r steps of ω or, more precisely,

Br(ω) = (ω0, . . . , ωs) ,

where s = r, if ω ∈ Ω∞ or if ω ∈ ΩN and N ≥ r, and s = N otherwise.
Clearly, if ω, ω′ ∈ Ω, then ω = ω′ if and only if Br(ω) = Br(ω

′) for all r,
whereas, if ω 6= ω′, there exists a largest r = R such that BR(ω) = BR(ω′) in
which case we define the distance between ω and ω′ to be d(ω, ω′) = 1

R+1 . It
is a trivial matter to verify that this defines a metric d on Ω. Alternatively,
we may write

d(ω, ω′) = inf

{

1

r + 1
| Br(ω) = Br(ω

′) , r ∈ N0

}

,

where N0 denotes the set of non-negative integers.
A first thing to note is that Ω is a compact metric space: To see this,

let ωn, n ∈ N, be any sequence in Ω. For each r ∈ N0 the set Ωr is finite.
Hence, there is a subsequence ωni , i ∈ N, such that Br(ω

ni) is constant as
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a function of i. Applying a standard diagonal argument we can choose this
subsequence such that Bi(ω

nj ) = Bi(ω
ni) for all i ≤ j. It follows that this

sequence determines a unique element ω ∈ Ω such that Bi(ω) = Bi(ω
ni) for

all i ∈ N. Hence, in particular, ωni → ω as i→ ∞ which proves the claim.
We remark that, under the canonical identifications

ΩN = {±1, . . . ,±d}N , Ω∞ = {±1, . . . ,±d}N ,

it is clear that the topology defined by the metric d on ΩN or Ω∞ is the
standard product topology. In particular, these spaces are compact by Ty-
chonoff’s theorem. However, the set

⋃∞
N=0ΩN of finite walks is not compact,

being a discrete, dense subset of Ω whose boundary is Ω∞.
Let now νN be the uniform probability measure on ΩN ⊂ Ω, i.e. the nor-

malised counting measure on ΩN . In the limit N → ∞ these measures define
a uniform probability measure on Ω∞, stated more precisely as follows.

Theorem 2.1 Considering νN as a measure on Ω we have

νN → ν as N → ∞ ,

where ν is a Borel probability measure concentrated on Ω∞. We call ν the
uniform probability measure on Ω∞.

Here convergence is understood in the weak sense, that is

∫

Ω

fdνN →
∫

Ω

fdν

as N → ∞ for all bounded continuous functions f on Ω.
Proof: We shall make use here and in the proof of the corresponding

result for trees in the next section of a standard fact concerning weak con-
vergence of measures that can be found e.g. in [6], and which may be stated
as follows. Suppose ρN , N ∈ N, is a sequence of probability measures on
a metric space M and suppose that U is a family of both open and closed
subsets of M such that

(i) any finite intersection of sets in U belongs to U ,

(ii) any open subset of M may be written as a finite or countable union of
sets from U ,

(iii) the sequence ρN (A), N ∈ N, is convergent for all sets A ∈ U .
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Then the sequence ρN , N ∈ N, is weakly convergent provided it is tight,
that is if for each ε > 0 there exists a compact subset C of M such that

ρN (M \ C) < ε for all N . (3)

In fact, the last condition ensures by Theorem 6.1 of [6] that there exists a
convergent subsequence ρNi , i ∈ N. Calling its limit ρ we get from Theo-
rem 2.1 in [6] that ρNi(A) → ρ(A) as i→ ∞ for all A ∈ U , since A has empty
boundary. Combining this with (iii) above we conclude that ρN (A) → ρ(A)
as N → ∞ for all A ∈ U and Theorem 2.2 in [6] then implies ρN → ρ.

In the present case the tightness property is automatic since our metric
space Ω is compact. Thus we only need to provide a family U with the
desired properties. For this purpose let Bs(ω0) be the open ball in Ω of
radius s > 0 centred at ω0 ∈ Ω,

Bs(ω0) = {ω ∈ Ω | d(ω, ω0) < s} .

Since the positive values assumed by d form a discrete set (the inverse natural
numbers) it is clear that these balls are both open and closed. We claim that

U =

{

B 1
r
(ω) | r ∈ N, ω ∈

∞
⋃

N=0

ΩN

}

satisfies properties (i)–(iii) above. Property (i) follows from the easily veri-
fiable fact that any two balls in Ω are either disjoint or one is contained in
the other. Property (ii) follows since the set

⋃∞
N=0ΩN of finite walks is a

dense countable subset of Ω. Finally, to verify property (iii), let ω0 ∈ ΩN0 .
For 1 ≤ r ≤ N0 one has

B 1
r
(ω0) ∩ΩN = {ω ∈ ΩN | Br(ω) = Br(ω0)} .

If r ≤ N0 and N ≥ N0 this gives

νN (B 1
r
(ω0)) = (2d)−r ,

whereas, if r,N > N0, we have B 1
r
(ω0)∩ΩN = ∅. In both cases νN (B 1

r
(ω0))

converges as N → ∞ and the proof is complete.

Remark 2.2 Under the identification Ω∞ = {±1, . . . ,±d}N we see that
B 1

r
(ω0), for r ≤ N0, is identified with the cylinder set consisting of sequences

whose first r + 1 elements coincide with those of ω0. The last part of the
proof above shows that

ν(B 1
r
(ω0)) = (2d)−r ,
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from which we conclude, not surprisingly, that

ν = ⊗∞
i=1ν

(i) ,

where ν(i) denotes the uniform probability measure on the i’th copy of
{±1, . . . ,±d}.

3. Random planar trees

In the following we shall use the notation Γ for the set of rooted planar
trees, where the root vertex is assumed to have order 1. This last condition
is not essential for the following, but will turn out convenient. Trees are
here allowed to be infinite, but vertices are of finite order. The adjective
planar means that trees are assumed embedded into the plane R

2 such that
no links intersect except possibly at vertices, and we identify trees that can
be mapped onto each other by an orientation preserving homeomorphism
of the plane. A more precise combinatorial definition is as follows. Once a
fixed orientation of R

2 is chosen the set of vertices at (graph) distance i from
the root in a given rooted planar tree τ has a natural ordering. This can
be obtained e.g. by choosing a righthanded coordinate system for R

2 and
mapping the tree into R

2 such that the vertices at distance i from the root
are mapped onto the vertical line through (i, 0) and then ordering according
to their second coordinate. We call this ordered set Di = (xi1, . . . , xini).
In particular, D0 = x0 consists of the root x0 alone and D1 = x1 con-
sists of the unique vertex x1 connected to x0. The links in the tree are
specified by mappings φi : Di → Di−1 preserving the ordering, i.e. the
links in τ are given by (xik, xi−1φi(k)), 1 ≤ k ≤ ni. It is clear that any
(finite or infinite) sequence (D0,D1,D2, . . .) of finite non-empty pairwise
disjoint ordered sets, where D0,D1 are one-point sets, together with orien-
tation preserving maps (φ1, φ2, . . .) as above uniquely specifies a rooted pla-
nar tree. Moreover, two such trees given by {(D0,D1,D2, . . .), (φ1, φ2, . . .)}
and {(D′

0,D
′
1,D

′
2, . . .), (φ

′
1, φ

′
2, . . .}), respectively, are identical if and only

if there exist order preserving bijective maps ψi : Di → D′
i such that

φ′i = ψi−1 ◦ φi ◦ ψ−1
i for all i.

We have

Γ =

(

∞
⋃

N=1

ΓN

)

∪ Γ∞ ,

where ΓN consists of trees with maximal vertex distance from the root equal
to N , i.e. Di = ∅ for i > N but DN 6= ∅, and Γ∞ consists of infinite trees.
We say that τ ∈ ΓN has radius ρ(τ) = N and ρ(τ) = +∞ for τ ∈ Γ∞.
Furthermore, for a finite tree τ , we denote by |τ | the number of links in τ ,
and otherwise set |τ | = +∞.
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For r ∈ N0 and τ ∈ Γ with distance classes Di(τ) we define the ball
Br(τ) of radius r in τ to be the subtree of τ generated by D0(τ), . . . ,Dr(τ),
if r < ρ(τ), and equal to τ otherwise. By analogy with the random walk
case, see also [4, 11], we define a metric on Γ by

d(τ, τ ′) = inf

{

1

r + 1
| Br(τ) = Br(τ

′) , r ∈ N0

}

and corresponding balls

Bs(τ0) = {τ ∈ Γ | d(τ, τ0) < s} .

Remark 3.1 The following facts are easy to verify:

• The set
⋃∞

N=0 ΓN of finite trees is a countable dense subset of Γ .

• For s > 0 and τ0 ∈ Γ the ball Bs(τ0) is both open and closed and

τ ∈ Bs(τ0) ⇒ Bs(τ) = Bs(τ0).

In particular, two balls are either disjoint or one is contained in the
other.

• Γ is not compact: Let τn be the (unique) tree of radius 2 with n + 2
vertices. Then d(τn, τm) = 1 for n 6= m and hence τn, n ∈ N, has no
convergent subsequence.

On the other hand, the subset Γ (M) consisting of trees with vertex
degrees bounded by M < +∞ is seen to be compact by the same
argument as for random walks given in the previous section.

As a substitute for compactness we shall use the following result.

Proposition 3.2 Let Kr, r ∈ N, be a sequence of positive numbers.
Then the subset

C =

∞
⋂

r=1

{τ ∈ Γ | |Br(τ)| ≤ Kr}

of Γ is compact.

Proof: Let τn, n ∈ N, be any sequence in C. For each r ∈ N the set {τ ∈
Γr | |τ | ≤ Kr} is finite. Hence there exists a subsequence τni , i ∈ N, such
that Br(τni) is constant as a function of i. Applying a diagonal argument
we may choose this subsequence such that Bi(τnj ) = Bi(τni) for all i ≤ j.
It follows that this subsequence determines a unique tree τ ∈ C such that
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Bi(τ) = Bi(τni) for all i ∈ N. In particular, τni → τ as i → ∞, which
completes the proof.

Let now µN be the normalised uniform measure on

Γ ′
N = {τ ∈ Γ | |τ | = N} , N ∈ N.

It is well known, see e.g. [1] that the number of trees in Γ ′
N is given by

CN =
(2N − 2)!

N !(N − 1)!

such that
µN (τ) = C−1

N for τ ∈ Γ ′
N , µN (Γ \ Γ ′

N ) = 0 .

Theorem 3.3 Considering µN as a measure on Γ we have

µN → µ as N → ∞ ,

where µ is a Borel probability measure concentrated on Γ∞. We call µ the
uniform probability measure on Γ∞.

Proof: By Remark 3.1 the family of balls

V =
{

B 1
r
(τ) | r ∈ N, |τ | < +∞

}

fulfils (i) and (ii) in the proof of Theorem 2.1. Hence it will suffice to prove
that the sequence µN , N ∈ N, is tight and that µN (A) converges as N → ∞
for A ∈ V.

We first prove tightness. By Proposition 3.2 it is sufficient to show that
for each ε > 0 and r ∈ N there exists Kr > 0 such that

µN ({τ ∈ Γ | |Br(τ)| > Kr}) < ε (4)

for all N . Replacing ε by ε/2r in (4) and choosing Kr correspondingly,
Proposition 3.2 gives the desired compact set C fulfilling (3).

We proceed to show (4) by induction on r.
The case r = 1 is trivial so let us consider first r = 2, in which case |Br(τ)|

equals the valency of the neighbour x1 of the root x0. Clearly, there is a
bijective correspondence between trees τ with |B2(τ)| = k+ 1 and elements
in Γ k, given by mapping τ onto the ordered set (τ1, . . . , τk) of branches at
x1 different from the root link (x0, x1). Since |τ | = |τ1| + · · · + |τk| + 1 we
get

µN ({τ ∈ Γ | |B2(τ)| = k + 1})

= C−1
N

∑

N1+···+Nk=N−1

k
∏

i=1

CNi ≤ k
∑

N1+···+Nk=N−1

N1≥(N−1)/k

C−1
N

k
∏

i=1

CNi . (5)
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Using the well known facts (see e.g. [1]) that

CN ∼ N−3/24N

and

Z(x) =
∞
∑

N=1

CN t
N =

1

2

(

1 −
√

1 − 4x
)

, x ≤ 1

4
,

we obtain

µN ({τ ∈ Γ | |B2(τ)| = k + 1}) ≤ c · k5/2Z
(

1
4

)k−1
= 2c · k5/22−k , (6)

where the constant c is independent of N . Clearly, (4) follows for r = 2 by
choosing K2 large enough.

Now assume (4) holds for a given r ≥ 2. For any K > 0 we then have

µN ({τ ∈ Γ | |Br+1(τ)| > K})
≤ ε+ µN ({τ ∈ Γ | |Br+1(τ)| > K, |Br(τ)| ≤ Kr}) .

Since the set of different balls Br(τ) with |Br(τ)| ≤ Kr is finite, it suffices
to show that

µN ({τ ∈ Γ | |Br+1(τ)| > K, Br(τ) = τ0}) → 0 (7)

as K → ∞, uniformly in N for any fixed τ0 ∈ Γr. This is obtained in a
similar fashion as for r = 2:

Let R = ♯Dr(τ0) be the number of vertices in τ0 at maximal distance r
from the root. Any τ ∈ Γ with Br(τ) = τ0 and |Br+1(τ)| = K is obtained
by attaching a sequence (τ1, . . . , τk) of trees in Γ at their roots to (some of)
those R vertices in τ0, where k = K − |τ0|. Since there are

(

k +R− 1

R− 1

)

≤ KR−1

(R− 1)!
(8)

different ways of attaching a given sequence in prescribed order, and |τ | =
|τ0| + |τ1| + · · · + |τk|, we get

µN ({τ ∈ Γ | |Br+1(τ)| = K, Br(τ) = τ0})

≤ KR−1

(R− 1)!
C−1

N

∑

N1+···+Nk=N−|τ0|

k
∏

i=1

CNi ≤ c′ ·KR+3/22−K ,

where the last inequality follows in the same way as (6), the constant c′

being independent of N and K. Clearly this finishes the proof of (7), and
hence of the tightness of µN , N ∈ N.
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It remains to prove that µN (B 1
r
(τ1)) converges as N → ∞ for all r ∈ N

and finite τ1 ∈ Γ . For this purpose, assume that B 1
r
(τ1) 6= ∅ and set τ0 =

Br(τ1) ∈ Γr. Then

B 1
r
(τ1) = {τ ∈ Γ | Br(τ) = τ0} .

Let v1, . . . , vR denote the vertices in τ0 at maximal distance r from the root.
Then any τ ∈ B 1

r
(τ1) is obtained by attaching a sequence (τ1, . . . , τR) of R

trees in Γ to τ0 such that the root link of τi is identified with the link in τ0
with endpoint vi. This gives

µN (B 1
r
(τ1) = C−1

N

∑

N1+···+Nk=N+R−N0

R
∏

i=1

CNi , (9)

where Ni = |τi|. Each term in this sum has Ni ≥ (N +R−N0)/R for some
i = 1, . . . , R. For fixed A > 0 we can bound the sum of terms for which in
addition Nj ≥ A, for some j 6= i, by

R2
∑

N1+···+NR=N+R−N0
N1≥(N+R−N0)/R, N2≥A

C−1
N

R
∏

i=1

CNi

≤ cst ·R2 · 4N0−R
∑

N3,...,NR≥1
N2≥A

(

NR

N +R−N0

)3/2

N
−3/2
2

R
∏

i=3

CNi4
−Ni

≤ cst ·A−1/2Z
(

1
4

)R−2 ≤ cst ·A−1/2 , (10)

where the constants depend on τ0 but are independent of A and N .
The remaining contribution to µN (B 1

r
(τ1)) can, for (N+R−N0)/R > A,

be written as

R
∑

i=1

∑

N1+···+NR=N+R−N0
Nj≤A, j 6=i

C−1
N

R
∏

i=1

CNi

N→∞−→ R

(

A
∑

n=1

CN4−n

)R−1

4R−N0 .

Letting A→ ∞ and using (10), we finally get

µN ({τ ∈ Γ | Br(τ) = τ0}) N→∞−→ R · Z(1
4)R−14R−N0 = 2R · 2R · 4−N0 (11)

proving the claimed convergence.
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Thus we have established the existence of µ. That µ is concentrated on
Γ∞ is clear, since the set of finite trees is countable, each of its elements
having vanishing µ-measure. This finishes the proof of Theorem 3.3.

As noted in the proof, any ball of radius r ∈ N in Γ is of the form

A(τ0) = {τ ∈ Γ | Br(τ) = τ0} ,

where τ0 ∈ Γr, and can be identified homeomorphically with ΓR, where
R = R(τ0) is the number of vertices at maximal distance r from the root.
We have already computed the µ- volume of A(τ0) in Eq. (11) above. In
the same way, the vanishing of the expressions in (10), as A → ∞, yields a
closed form of the conditional probability measure dµ(τ1, . . . , τR|A(τ0)) on
A(τ0). This may be expressed as follows.

Corollary 3.4 For τ0 ∈ Γr we have

µ(A(τ0)) = R · 2R+1 · 4−|τ0| (12)

and

dµ(τ1, . . . , τR|A(τ0)) = µ(A(τ0))
−1

R
∑

i=1

dµ(τi)
∏

j 6=i

dρ(τj) , (13)

where the measure ρ is concentrated on finite trees and defined by

ρ(τ) = 4−|τ | ,

i.e. ρ is the (unnormalised) grand canonical measure on Γ \Γ∞ at the critical
point 1

4 in the language of [1].

Remark 3.5 It follows from (13) and the fact that ρ is concentrated on
finite trees whereas µ is concentrated on infinite trees that with probability
1 only one of the branches τ1, . . . , τR is infinite. The probability that a given
branch τi is infinite is R−1, and the probability measure when conditioned
on the set

Ai(τ0) = {τ ∈ A(τ0)|τi is infinite}
is given by

dµ(τ1, . . . , τR|Ai(τ0)) = 4|τ0|2−R−1dµ(τi)
∏

j 6=i

dρ(τj) . (14)

In particular, τ1, . . . , τR are independently distributed.
Furthermore, it follows that the measure µ is concentrated on the set

of trees τ which contain exactly one simple infinite path s, the spine of τ ,
originating at the root x0, and τ is obtained by attaching finite branches to
the vertices of the spine.
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As an application we compute next the probability distribution of the
number

dr(τ) = ♯Dr(τ)

of vertices at distance r from the root.

Proposition 3.6 For r ≥ 2 and d ∈ N we have

µ({τ | dr(τ) = K}) =
K

r2

(

1 − 1

r

)K−1

, (15)

and

µ({τ | dr(τ) ≥ K}) =

(

1 +
K − 1

r

)(

1 − 1

r

)K−1

. (16)

Proof: The second formula is an immediate consequence of the first one.
In order to prove (15), we first note that the number of trees τ0 ∈ Γr with
prescribed values di(τ0) = Ki, i = 0, 1, . . . , r, equals

(

K1 +K0 − 1

K0 − 1

)(

K2 +K1 − 1

K1 − 1

)

· . . . ·
(

Kr +Kr−1 − 1

Kr−1 − 1

)

.

Here K0 = K1 = 1 and Kr = R(τ0). It follows from (12) that

µ({τ | dr(τ) = K})

= K2−K−1
∑

K2,...,Kr−1

(

K3 +K2 − 1

K2 − 1

)

. . .

(

K +Kr−1 − 1

Kr−1 − 1

)

4−(K2+...+Kr−1)

which also holds for r = 2 provided the empty sum is set to 1. Applying
repeatedly the binomial formula

∞
∑

K=1

(

L+K − 1

K − 1

)

xK =
x

(1 − x)L+1
,

this expression reduces to

K

2

z2
1 − z2

· z3
1 − z3

· . . . · zr−1

1 − zr−1
(2zr)

K , (17)

where the numbers z2, z3, . . . are defined recursively by

z2 =
1

4
, zi+1 =

1

4(1 − zi)
.
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The solution of this recursion relation is seen to be

zi =
1

2
− 1

2i
,

which gives
z2

1 − z2
· z3
1 − z3

· . . . · zr−1

1 − zr−1
=

2

r(r − 1)
.

Inserting this expression into (17) yields Eq. (15).

From (15) we obtain the average size of the spherical shells Dr(τ) and
balls Br(τ).

Theorem 3.7 For r ≥ 1 we have

〈dr〉µ = 2r − 1 , (18)

and
〈|Br|〉µ = r2 , (19)

where 〈·〉µ denotes the average value with respect to µ.

Proof: The case r = 1 is obvious. By (15) we get for r ≥ 2

〈dr〉µ =

∞
∑

K=1

K2

r2

(

1 − 1

r

)K−1

= r−2

(

r2 +

(

1 − 1

r

)

2r3
)

= 2r − 1 .

The second identity (19) follows by summing the former from 1 to r.

As a consequence we finally have

Corollary 3.8 The Hausdorff dimension of µ is dH = 2.

4. Random planar quadrangulations

In this section we briefly outline an extension of the preceding results to
random planar quadrangulations via so-called well labelled trees. Detailed
results can be found in [8].

A well labelled planar tree is a rooted planar tree τ whose vertices are la-
belled by positive integers such that the root has label 1 and such that labels
of neighbouring vertices differ by ±1 or 0. In [9,10] a bijective map between
finite well labelled planar trees and finite quadrangulations of the 2-sphere
with a marked oriented link has been constructed. In this correspondence
the root link is not assumed to have order 1. Instead, the trees are assumed
to have a marked oriented link, the root link, whose ends are called the first
and second root vertex, respectively. It suffices for our purposes to note the
following properties of this map:
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(a) The vertices in a finite well labelled tree and the vertices in the corre-
sponding quadrangulated surface except one marked vertex (the initial
vertex of the marked link) can be canonically identified.

(b) The label of a vertex in a well labelled tree equals the distance in the
corresponding quadrangulation from the vertex to the marked vertex.

(c) The mapping is local in such a way that it can be extended to infinite
well labelled trees with the property that each label occurs only finitely
many times. The image of such an infinite well labelled tree is then
an infinite quadrangulation of a domain in the plane, see [8].

The generating function for the number D
(1)
N of planar quadrangulated

surfaces with N quadrangles, and hence of the number of well labelled trees
with N links, has been computed in [14] and is given by

W (1)(x) =

∞
∑

N=0

DNx
N =

18x− 1 + (1 − 12x)
3
2

54x2
, for x ≤ 1

12 , (20)

which gives

D
(1)
N = 2 · 3N (2N)!

N !(N + 2)!
. (21)

Note that we have included in W (1)(x) the contribution D0 = 1 from the
tree with only one vertex.

We also introduce the notion of a k-labelled tree, differing from that of
a well labelled tree only in that the first root is assumed to have label k

instead of 1. Let D
(k)
N denote the number of k-labelled trees with N links

and W (k) the corresponding generating function. It is then easy to see that

all D
(k)
N have the same asymptotic behaviour as N → ∞ given by (21)

D
(k)
N ∼ N− 5

2 12N . (22)

The function W (k)(x) can be related to the generating function Z(k)(x)
for the number of k-labelled trees with N links and first root vertex of order
1 by decomposing a tree at its first root into trees with first root vertex of
order 1. This gives

W (k)(x) =
1

1 − Z(k)(x)
, x ≤ 1

12
. (23)

We shall only need the value of Z(k) (and W (k)) at the critical point x = 1
12 .

By abuse of notation we set

Z(k) .= Z(k)

(

1

12

)

.
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For k = 1 Eqs. (20) and (23) give Z(1) = 1
4 . On the other hand, one has

the recursion relation

Z(k)(x) =
x

1 − Z(k−1)
+

x

1 − Z(k)
+

x

1 − Z(k+1)
, k ≥ 1 , (24)

which is obtained by decomposing the sum over trees defining Z(k) according
to the order and label of their second root x1, and where the first term should
be omitted for k = 1. This determines Z(k) for all k ∈ N and one easily
verifies that the solution is

Z(k) =
1

2
− 1

k(k + 3)
(25)

Remark 4.1 The relation (24) has also been considered in [7] and its
solution found for arbitrary x ≤ 1

12 with Z(1)(x) given by (20) and (23). We
shall, however, not need this more general result for our purposes.

One can now turn the space W(k) of k-labelled trees into a metric space
in a similar way as done previously for Γ and, using the results (22) and (25),
the proof of the existence theorem for the measure µ in the previous section
can be carried over to the present situation with only modest changes, see [8].
We formulate the result as follows.

Theorem 4.2 Let µ
(k)
N denote the uniform probability measure on the

set of k-labelled trees with N links. Considering this as a measure on W(k)

we have
µ

(k)
N → µ(k) as N → ∞ ,

where µ(k) is a Borel probability measure concentrated on the space W(k)
∞

of infinite k-labelled trees. We call µ(k) the uniform probability measure on

W(k)
∞ .

Likewise one obtains a factorised form of conditional probability mea-
sures analogous to, but slightly more involved than, that of Corollary 3.4.
In particular, one finds that the measure is supported on trees with exactly
one simple infinite path, the spine, originating at the first root vertex, and
that the branches attached to the spine are independently distributed.

As mentioned at the beginning of this section, in order to interprete µ(1)

as a measure on quadrangulated surfaces, it is crucial that it is supported
on well labelled trees in which each label occurs only finitely many times.
Letting Nk denote the number of occurrences of label k, one of the main
results of [8] is that the average value of Nk is finite and fulfils

〈Nk〉µ(1) ∼ k3 . (26)
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In particular, this establishes thatNk is indeed finite almost surely for each k.
Moreover, as a consequence of property (b) of the mapping from well labelled
trees to quadrangulated surfaces, the average value 〈Nk〉µ(1) is nothing but
the average value of the number of vertices at distance k from the marked
vertex, and hence (26) shows that dH = 4.

As a final result of [8] we mention that trees with exactly one infinite spine
and finitely many occurrences of each label correspond to quadrangulated
planar surfaces with exactly one boundary component. Similarly, it was
found in [4] that the measure constructed there for triangulated surfaces is
supported on infinite surfaces with exactly one boundary component.

5. Concluding remarks

Random trees are frequently discussed by probabilists in terms of stochas-
tic processes, the so-called Galton–Watson processes. Thus, the uniform
measure µN on planar trees with N links considered in Section 3 may be
viewed as the measure obtained by conditioning the Galton–Watson process
with geometric offspring distribution

pn = 2−n−1 , n ∈ N0 ,

on the event that the total progeny equals N . The limiting behaviour of
a general Galton–Watson process conditioned in this way, as N → ∞, has
been studied in [13] but from a different point of view than here. It would
be interesting to apply the methods used in this article to more general
ensembles of random planar trees.

Similarly, the measures µ
(k)
N may be viewed as originating from a multi-

type Galton–Watson process and one may envisage various corresponding
generalisations of the results in Section 4.

I wish to thank Philippe Chassaing and Thórdur Jónsson for many help-
ful comments and collaboration.
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