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QCD can be described in a certain kinematical regime by an effective
string theory. This string must couple to background chiral fields in a
chirally invariant manner, thus taking into account the true chirally non-
invariant QCD vacuum. By requiring conformal symmetry of the string
and the unitarity constraint on chiral fields we reconstruct the equations
of motion for the latter ones. These provide a consistent background for
the propagation of the string. By further requiring locality of the effec-
tive action we recover the Lagrangian of non-linear sigma model of pion
interactions. The prediction is unambiguous and parameter-free. The esti-
mated chiral structural constants of Gasser and Leutwyler fit very well the
phenomenological values.

PACS numbers: 12.39.Fe, 11.25.Pm, 12.40.Nn

1. Introduction

I report here on work done jointly with J. Alfaro, A. Andrianov, L. Balart
and A. Dobado. I should thank them for a long and enjoyable collaboration.
I shall try to convince you that the collaboration has been fruitful too.

The history of attempts to describe hadrons in the framework of a string
theory encompasses already more than 30 years (see [1–8] as well as the
reviews [9–11]). Commonly cited arguments to justify the string description
of QCD are the dominance of planar gluon diagrams in the largeNc limit [12],
being interpreted as the world-sheet of a string, the expansion in terms of
surfaces built out of plaquettes in strong-coupling lattice QCD [13], and the
manifest success of Regge phenomenology [10, 14].
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There is a well motivated agreement, based on arguments of universal-
ity and renormalization group ideas, that in a certain kinematic regime the
Nambu–Goto or, equivalently, the Polyakov string must provide a satisfac-
tory effective description of the flux-tube linking one quark and an antiquark.
Unfortunately this cannot be the whole story as it has been known for a long
time that the hadronic amplitudes derived from such type of strings, if taken
at face value, are not physically consistent. To remind the reader about their
pitfalls we recall the original Veneziano amplitude [1], which can be derived
from Nambu–Goto string and supposedly describes the scattering amplitude
of four pions (once conveniently embellished by Chan–Paton group factors).
One can show that in this amplitude the scalar resonance is a tachyon and
the vector state (which we should identify with the rho particle) is mass-
less. Finally, such an amplitude does not have the appropriate Adler zero,
i.e. the property that at s = t = 0 the pion scattering amplitude vanishes,
as required by chiral symmetry. The Veneziano amplitude completely fails
to provide an accurate description of the lowest-lying resonances in QCD,
although it reproduces a good deal of the higher resonance behavior (for in-
stance, the linear Regge behaviour for large values of the principal quantum
number n is compatible with the partonic model and asymptotic freedom).

It seems very reasonable to assume that the main reason for the presence
of a tachyon in the spectrum, the wrong chiral properties, and in fact many
of the undesirable properties of the Veneziano amplitude lies in a wrong
choice of the vacuum [15]. Finding the ‘correct’ vacuum of string theory
in four dimensions seems however a hopelessly difficult task that can be
tackled only with the techniques of string field theory — if at all. Even
more difficult it seems to find the ‘correct’ vertex operators implementing
the different excitations, assuming that they exist at all. Therefore we have
to be a lot more modest and resort to some indirect methods.

A way to take into account all the non-perturbative properties of the
QCD vacuum and excitations was suggested in [16] and developed in [17].
One can assume that in QCD chiral symmetry breaking takes place and the
massless (in the chiral limit) pseudoscalar mesons form the background of the
QCD vacuum in which the string propagates. The string itself is assumed to
contain all the other (massive) excitations of QCD. The massless pion fields
can be collected in a unitary matrix U(x) belonging to SU(2) group (here
we consider non-strange Goldstone mesons only). It describes excitations
around the non-perturbative vacuum induced by chiral symmetry breaking.
From the string point of view U(x) is nothing but a collection of couplings
involving the string variable xµ(τ, σ). It has to be coupled to the boundary
of the string where flavor is attached. Our goal is to find a consistent string
propagation in this non-perturbative background.
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This procedure is not very different from what string practitioners ad-
vocate to derive the stringy corrections to, say, Einstein equations. One
assumes that the condensation of string modes produces some non per-
turbative solution for the background metric Gµν(x) and require — and
this is the essential ingredient — conformal invariance of the string prop-
agation around this background. The background solution is then found
self-consistently and perturbatively as an expansion in powers of the inverse
string tension. Standard vertex operator methods work only in linear per-
turbations around flat space, on the contrary. Indeed an essential property
of string theory is conformal invariance. Since it must hold when perturb-
ing the string around any vacuum we demand the new coupling to chiral
fields, living on the boundary, which will be described in the next section to
preserve this invariance.

Our proposal is thus to introduce the general reparametrization-invariant
boundary interaction to chiral fields and derive all the divergences induced
by this interaction. We shall need additional dimensional operators in the
boundary action to renormalize divergences. From the condition of vanishing
β functions for U(x) the equations of motion for chiral fields are obtained in
the low-momentum (derivative) expansion. We consistently implement the
unitarity constraint on the chiral fields and locality of the chiral Lagrangian
and finally calculate the O(p4) terms of the Gasser and Leutwyler [18] effec-
tive Lagrangian without any additional assumptions or free parameters to
adjust. A strikingly good correspondence with the phenomenological values
is found when this procedure is followed to the end.

2. Attaching pions to the QCD string

The hadronic string in the conformal gauge is described by the following
conformal field theory action which has four dimensional Euclidean space-
time as target space

Wstr =
1

4πα′

∫

d2+ǫσ

(

ϕ

µ

)−ǫ

∂ixµ∂ixµ , (2.1)

where for ǫ = 0 one takes xµ = xµ(τ, σ), −∞ < τ < ∞, 0 < σ < ∞,
i = τ, σ, µ = 1, ..., 4. The conformal factor ϕ(τ, σ) is introduced to restore
the conformal invariance in 2 + ǫ dimensions. The Regge trajectory slope
(related to the inverse string tension) is known to be universal α′ ≃ 0.9
GeV−2 [19].
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We would like to couple in a chiral invariant manner the matrix in flavor
space U(x) containing the meson fields to the string degrees of freedom while
preserving general covariance in the two dimensional coordinates and con-
formal invariance under local scale transformations of the two-dimensional
metric tensor.

Since the string variable x does not contain any flavor dependence, we
introduce two dimensionless Grassmann variables (‘quarks’) living on the
boundary of the string sheet: ψL(τ), ψR(τ). They transform in the funda-
mental representation of the light flavor group (SU(2) in the present pa-
per). A local Hermitean action Sb =

∫

dτLf is then introduced on the
boundary σ = 0 to describe the interaction with background chiral fields
U(x(τ)) = exp(iπ(x)/fπ), where the normalization scale is set to fπ ≃ 93
MeV, the weak pion decay constant.

The boundary Lagrangian is chosen to be reparameterization invariant
and in its minimal form reads

Lf =
1

2
i
(

ψ̄LU(1 − z)ψ̇R − ˙̄ψLU(1 + z)ψR

+ψ̄RU
+(1 + z∗)ψ̇L − ˙̄ψRU

+(1 − z∗)ψL

)

, (2.2)

herein and further on a dot implies a τ derivative: ψ̇ ≡ dψ/dτ . It can be seen
that this is the most general form of the boundary Lagrangian compatible
with all the symmetries.

A further restriction is obtained by requiring CP invariance,

U ↔ U+, ψL ↔ ψR. (2.3)

The above Lagrangian is CP symmetric for z = −z∗ = ia. The fulfillment
of this symmetry happens to be crucial to preserve conformal symmetry in
the presence of the added boundary interaction.

Now we expand the function U(x) in powers of the string coordinate field
xµ(τ) = x0µ + x̃µ(τ) around a constant x0,

U(x) = U(x0) + x̃µ(τ)∂µU(x0) +
1

2
x̃µ(τ)x̃ν(τ)∂µ∂νU(x0) + . . . , (2.4)

and look for the potentially divergent one particle irreducible diagrams. The
two-fermion, N -boson vertex operators are generated by the expansion (2.4),
from the generating functional Zb = 〈exp(iSb)〉 and Eq. (2.2). Each addi-
tional loop comes with a power of α′. One can find a resemblance to the
familiar derivative expansion of chiral perturbation theory [18].

The free fermion propagator is

〈ψR(τ)ψ̄L(τ ′)〉 = 〈ψL(τ)ψ̄R(τ ′)〉† = U−1(x0)θ(τ − τ ′). (2.5)
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The free boson propagator projected on the boundary is

〈xµ(τ)xν(τ ′)〉 = δµν∆(τ − τ ′) = −2δµνα
′ ln(|τ − τ ′|µ). (2.6)

The normalization of the string propagator is inferred [17] from the definition
of the kernel of the N -point tachyon amplitude for the open string [9]. In
dimensional regularization one uses ∆(0) ∼ α′/ǫ and ∆′(0) = 0.

To implement the renormalization process we perform a loop (equivalent
to a derivative) expansion, we then proceed to determine the counterterms
required to make the theory finite and, finally, we impose the condition of
a vanishing beta functional for the coupling U(x) to ensure the absence of
conformal anomaly.

3. Renormalization at one and two loops

3.1. One-loop renormalization

Using the above set of Feynman rules one arrives at the one-loop diver-
gent part of the propagator

−θ(A−B)U−1δUU−1, δU ≡ ∆(0)

[

1

2
∂2

µU −
3 + z2

4
∂µUU

−1∂µU

]

. (3.1)

This divergence is eliminated by introducing an appropriate counterterm
U → U + δU . Conformal symmetry is restored (the beta-function is zero) if
the above contribution vanishes, δU = 0.

Let us find out for which value of z this variation of U is compatible with
its unitarity.

δ(UU+) = U · δU+ + δU · U+ = 0. (3.2)

A simple calculation shows that this takes place for z = ±i. The local
classical action which has δU = 0 as equation of motion is

W (2) =
f2

π

4

∫

d4xtr
[

∂µU∂µU
+
]

, (3.3)

i.e. the well known non-linear sigma model of pion interactions.
We have thus found the chiral action induced by the QCD string. It

has all the required properties of locality, chiral symmetry and proper low
momentum behavior (Adler zero) and describes massless pions. However fπ,
the overall normalization scale, cannot be predicted from these arguments.

Before proceeding to a full two loop calculation we have to check whether
the minimal Lagrangian (2.2) is sufficient to renormalize also the vertices
containing the boson legs. It turns out that it is not.
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To obtain the divergences for vertices with external boson lines we in-
troduce an external background boson field x̄µ and split xµ = x̄µ + ηµ. The
free propagator for the fluctuating field ηµ coincides with the one for xµ.

The total one-loop divergence in the vertex with two fermions and one
boson line can be represented by the following vertex operator in the La-
grangian

i

2

(

ψ̄LΦ
(1)ψ̇R − ˙̄ψLΦ

(2)ψR

)

+ h.c., Φ(1,2) ≡ x̄µ(τ)(1 ∓ z) [∂µ (δU) ∓ φµ] .

(3.4)
The terms proportional to derivatives of δU are automatically eliminated by
the renormalization of the one-loop propagator. But the part proportional to
φµ remains and to absorb these divergences new counterterms are required.
The latter ones can be parameterized with three bare constants g1, g2 and
g3, which are real if the CP symmetry for z = −z∗ holds

∆Lbare =
i

8
(1 − z2)ψ̄L

(

(g1 − zg2)∂ν U̇U
−1∂νU − (g1 + zg2)∂νUU

−1∂ν U̇

+2zg3∂νUU
−1U̇U−1∂νU

)

ψR + h.c. (3.5)

Renormalization is accomplished by the subtraction

gi = gi,r − ∆(0). (3.6)

The constants gi,r are finite, but in principle scheme dependent. The coun-
terterms are of higher dimensionality than the original Lagrangian (2.2)
and the couplings gi are of dimension α′. Since (2.2) was the most gen-
eral coupling permitted by the symmetries of the model, one concludes that
conformal symmetry seems to be broken by these boundary couplings al-
ready at tree level. However in spite of the fact that the new couplings
are dimensional, it turns out that their contribution into the trace of the
energy-momentum tensor vanishes once the requirements of unitarity of U
and CP invariance are taken into account. Therefore conformal invariance
at the world-sheet level is not broken at the order we are working. We refer
the reader to the original work [17] for a more detailed discussion on this
point.

The appearance of new vertices does however change the fermion propa-
gator. One obtains from such terms the following contribution to the prop-
agator

θ(A−B)
1

16
∆(0)(1 − z2)U−1

{

2(g1,r − z2g2,r)∂ρUU
−1∂µ∂ρUU

−1∂µU

−(1 + z)(g1,r + zg2,r)∂ρUU
−1∂µUU

−1∂ρ∂µU
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−(1 − z)(g1,r − zg2,r)∂ρ∂µUU
−1∂ρUU

−1∂µU

+4z2g3,r∂ρUU
−1∂µUU

−1∂ρUU
−1∂µU

}

U−1

≡ −θ(A−B)∆(0)U−1δ(4)UU−1 . (3.7)

One should add this divergence to the one-loop result, thereby modifying
the U field renormalization and equations of motion

δ̄U = ∆(0)

[

1

2
∂2

µU −
3 + z2

4
∂µUU

−1∂µU + δ(4)U

]

= 0. (3.8)

This is one source of O(p4) terms and we shall see that there is yet another
contribution at the two loop order.

As to the other vertices it can be proven [17] that any diagram with
an arbitrary number of external boson lines and two fermion lines, i.e. any
vertex of those generated by the perturbative expansion of (2.2) is rendered
finite by the previous counterterms. This completes the renormalization
program at one loop.

3.2. Two-loop renormalization of the propagator

There are 10 two-loop one-particle irreducible diagrams contributing to
the fermion propagator that have been analytically calculated in [17]. The
divergences in the propagator consist of the double divergent part, propor-
tional to ∆2(0), and of the single divergent contributions, proportional to
∆(0). A substantial part of these divergences are eliminated by performing
the one-loop renormalization. The structure of the double pole divergences
is compatible with renormalization group arguments.

Some single-pole divergences remain however. Namely, there are diver-
gences linear in ∆(0) which come from irreducible two-loop diagrams with
maximal number of vertices. These divergences are

−∆(0)U−1δ
(4)
2−lU

−1 ≡ c∆(0)
[

U−1∂ρUU
−1∂µUU

−1∂µUU
−1∂ρUU

−1

−U−1∂ρUU
−1∂µUU

−1∂ρUU
−1∂µUU

−1
]

, (3.9)

with c = α′(1 − z2)2/8 = α′/2 for z = ±i. This term survives after adding
all the counterterms. It must therefore modify the equation of motion (3.8)

at the next order in the α′ expansion, δ(4)U → δ(4)U + δ
(4)
2−l. Its presence

allows for non zero solutions for the coupling constants gi and therefore for
nonzero values for the Gasser–Leutwyler O(p4) coefficients.

In addition all one-loop counterterms, when inserted into one-loop di-
agrams contribute to order (α′)2, of course. Their contribution has been
discussed in the previous subsection.
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4. Local integrability of the equations of motion

The equation of motion, δU = 0, can be derived from the dimension-
two local action (3.3), involving a unitary matrix U(x), only for z = ±i.
If the four-derivative part of the equations of motion can be derived from
dimension-four operators in a local effective Lagrangian then certain con-
straints are to be imposed on constants gi,r.

Such a Lagrangian has only two terms compatible with the chiral sym-
metry

L(4) = f2
πtr

(

K1∂µU∂ρU
+∂µU∂ρU

+ +K2∂µU∂µU
+∂ρU∂ρU

+
)

. (4.1)

Other terms containing ∂2
µU are reduced to the set (4.1) with the help of

the lowest-order equations of motion.
The variation of the previous Lagrangian must saturate the dimension-

four component of the equations of motion. From this we identify the low-
energy constants with the coupling constants arising from the equations of
motion (3.8) supplemented with (3.9) and after applying the O(p2) equations
of motion. Then one obtains the following set of coefficients for the various
chiral field structures

−2(2K1 +K2) =
1

16
(1 − z2)(1 ± z)(g1,r ± zg2,r),

−4K2 =
1

8
(1 − z2)(−g1,r + z2g2,r), 2[(1 − z2)K1 +K2] = −c;

−2z2K2 = 0, 4[K1 +K2] = −
1

4
(1 − z2)z2g3,r + c. (4.2)

For z2 = −1 only one solution is possible,

K2 = 0, K1 = −
1

4
c = −

α′

8
, g1,r = −g2,r = −g3,r = 4c. (4.3)

Thus, comparing Eq. (4.1) with the usual parameterization of the Gasser
and Leutwyler Lagrangian [18],

L1 =
1

2
L2 = −

1

4
L3 = −

1

2
K1f

2
π =

f2
πα

′

16
. (4.4)

For α′ = 0.9 GeV−2 and fπ ≃ 93 MeV it yields L2 ≃ 0.9 ·10−3 which is quite
a satisfactory result [20].

The relation L1 = 1/2L2 = −1/4L3 was established earlier in bosoniza-
tion models [21] and in the chiral quark model [22] by means of a derivative
expansion of quark determinant. However at that time its possible connec-
tion with a string description of QCD was not recognized. The first attempt
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to derive the chiral coefficients from the Veneziano-type dual amplitude was
undertaken in [23] where a similar relation was found but with different
numerical values for the Li. However the specific choice of dual amplitude
in [23] cannot be derived from any known string theory.

Another check comes from the compatibility of the unitarity of U and the
equations of motion at the two-loop level. It turns out that if one accepts
arbitrary real coefficients in the set of dimension-four operators then the
only solution compatible with the unitarity is given by the parameterization
with constants K1 and K2.

In conclusion, there is only one solution that is compatible with the
requirements of unitarity of the U matrix, locality of the action, chiral in-
variance, CP symmetry and conformal invariance, and this solution is the
one presented above. We find this unicity quite remarkable.

5. Further developments

We are considering at present the coupling to external left and right
gauge fields. The issue is not totally straightforward because gauge invari-
ance is hard to control since the Taylor expansion of the U field does not
correspond to an expansion in covariant derivatives.

The direct generalization of our action (2.2) would amount to the re-
placement

d

dt
→

d

dt
+ iẋµAµ, (5.1)

where Aµ is actually a matrix in flavor space. This approach has the problem
that we have mentioned: the new divergences that appear have coefficients
that are not gauge invariant. Interpreting these coefficients of the beta
function as equations of motion of the corresponding sigma model, they are
gauge-fixed equations.

This is not too surprising; the propagator — which is the object we are
renormalizing — is a bilocal object and thus is not gauge invariant. To solve
this technical difficulty we shall work with ‘dressed’ propagators, involving
fields ψL and ψR that do not actually transform under electromagnetic gauge
transformations. This is actually equivalent, after a field redefinition, to
work with the action (2.2) with the replacement

U → Ũ ≡ e−iΦUeiΦ , (5.2)

where

Φ =

t
∫

t0

dt′ẋµ(t′)Aµ(x(t′)). (5.3)
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Then

Ũ(x) = Ũ(x0) + x̃µ[Dµ, Ũ ] +
1

2
x̃µx̃ν [Dµ, [Dν , Ũ ]] + ...

+
i

2

t
∫

t0

dt′ẋµxν [Fµν , Ũ ] + ... (5.4)

In this way it is quite simple to reproduce the covariant equations of motion
at the leading order, which derive from the Lagrangian

W (2) =
f2

π

4

∫

d4xtr
[

DµUDµU
+
]

. (5.5)

We are actively working in the determination of L9 and L10 which again
involves a two-loop calculation. One could even hope to determine spectral
functions, such as ΠV A.

Another issue of interest is the extension to the odd-parity sector of the
effective QCD action, that is to say the anomaly sector. In order to obtain
the parity-odd WZW Lagrangian relevant for the case of three flavors one
possibility would be to extend the boundary fermion action supplementing
one-dimensional fermions with true spinor degrees of freedom. Another pos-
sibility is to include some topological terms in the world-sheet action (such
as the self-intersection number that involves the ǫ-symbol). This issue is
under active investigation now. We have results for 2D QCD that seem
to provide a satisfactory answer; the extension to four dimensions appears
trickier.

6. Conclusions

In our talk we have reported on a simplified, but hopefully not unrealis-
tic, model of the QCD string. Requiring its conformal invariance around a
chirally non-invariant vacuum leads to the Gasser and Leutwyler Lagrangian.
However the bosonic string action used here is of course not totally satis-
factory. For instance, it does not prevent large Euclidean world sheets from
crumpling [24], something that looks very unphysical. It does not also de-
scribe correctly the high-temperature behavior of large N QCD [25] either.
To correct some of these shortcomings a proper QCD-induced string must
be modified [24,26] suitably by including operators breaking manifestly con-
formal symmetry on the world-sheet for large strings. Nevertheless we are
concerned here with the low-energy string properties and therefore do not
expect that the strategy and technique to derive the chiral field action needs
any significant changes to be adjusted to a modified QCD string action.
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A further modification to the model would be to include the quark
masses. This has to be done in a way that the conformal invariance of
the string is preserved.

Many other open questions can be formulated in connection with this
work. For instance, we are obtaining the pion scattering amplitude in a
momentum expansion. Is there any way of getting a closed expression similar
to the Veneziano amplitude? If the present approach is correct we already
know that it does not correspond to the expansion of any Γ function, since
we get rational coefficients. What function then? What is the role of crossing
in this approach? Can the conformal factor (ϕ) dependence be related to
ΛQCD? What is the connection to the parton model?

Clearly a lot of work remains to be done. This novel approach seems
quite promising to us. So far we have not encountered any ambiguities, up
to overall normalization scale (actually fπ), the approach is quite unique and
yields an unexpected good agreement with phenomenology so we believe it
certainly deserves further investigation.

We express our gratitude to the organizers of the Workshop on Ran-
dom Geometry Krakow 2003 for a most enjoyable atmosphere and hospi-
tality. The research contained in this talk is supported by projects MCyT
FPA2001-3598 and CIRIT 2001SGR-00065 and the European Networks EU-
RODAPHNE and EUROGRID, as well as by Grant RFFI 01-02-17152,
Russian Ministry of Education Grant E00-33-208, the Program Universities

of Russia: Fundamental Investigations (Grant 992612) and project INTAS
2000-587.
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