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We present the one and two-loop quantum corrections to the earlier
proposed string theory whose world-sheet action measures the linear sizes
of the surfaces by the square root of the extrinsic curvature. We find in this
model the usual conformal anomaly. Moreover, the one-loop perturbative
analysis shows that the dynamics of this model is determined by a reduced
number of degrees of freedom compared to the usual string. We point out
that this model does not receive any quantum corrections around its clas-
sical trajectory. Finally we show that the constraint, relating the induced
metric with the string fields, is enforced by radiative corrections and it does
not allow the generation of the Polyakov—Kleinert smooth string.

PACS numbers: 11.10.Gh, 02.40.Ky, 11.27.+d, 11.25.-w

1. One-loop perturbative analysis

The world-sheet action to be studied is the following:

S=m / ¢/ (Alg) X002, (1)

where m is a constant with the dimension of a mass, X,(¢) parameterizes
the string in a Minkowskian D dimensional flat space-time with the metric
N = diag(1, —1,—1,...). The induced metric of the string is

Jab = 0 X" Op X, . (2)
In (1) A(g)X, is defined as
Al9)X, = =0, (Vaa™ D X,.) . 3)
V9
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where g = det(gqp). The second fundamental form K is defined through the
relations:

K'an!, = 0a0,Xy — Iap0:Xy = Da0y X,

ninj” = oY,
n, X" =0, (4)

where nL are D — 2 normals, D, indicates the covariant derivative respect
to the connection I', a,b=1,2; p=0,1,...,D—1;4,5=1,2,...,D — 2.
The D—2 2x2 symmetric matrices K i » are known as extrinsic curvature
and they satisfy the Gauss—Codazzi [1] equations which in the flat space
becomes
R=K2-Te(K'K"Y),  DyK'=DyK'g, (

(@)
~

R being the intrinsic scalar curvature of the surface, K = K*," Tr(K'K7) =

K iabK 7,* and the covariant derivative D, satisfies

Dgnl, = —K',0" X", (6)

By these definitions the action (1) takes the following forms up to surface

terms
S = m/dQC\/gx/(DQX“)Q = m/d%\/g\/ﬁ. (7)

It is called gonihedric model and it was proposed for the first time in [2] and
studied on the lattice in [3]. It differs from the models considered in the
previous studies [4-7|, because the action has the dimension of length. It
is proportional to the linear size of the surface similar to the path integral
action. This is in contrast with the previous proposals where the extrinsic
curvature term is a dimensionless functional.

The model is invariant under two-dimensional general coordinate trans-
formations. The higher derivatives behavior of the action S brings about
new ghosts states which are hard to interprete and there is no proof that
these ghosts are identical to the ghosts of the usual string. In this work we
will perform a pure perturbative analysis of the model around its classical
trajectory. The parametrization invariance allows us to consider just normal
fluctuations

§XH = ¢, (8)

upon this action.

Our aim will be now the expansion of (1) around the solutions of the
classical equations of motion for X up to quadratic fluctuations £s in order
to get the one loop quantum corrections to (1).
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Due to (8) the metric changes as
0gap = DaX‘qu(;XH + DaCSX‘quXM + Da(;XMDb(;XH
= —28'K'ap + Daf' Dyt + K' o KI9EE7 (9)
and the change of the inverse metric up to quadratic fluctuations is
09" = —9°69cag™ + 9*°69cag™0gesg”"
— 2§iKiab o DagiDbgi + 3KialKjbl£i€j ) (10)

The (quadratic) change of the area element amounts to

1 1 1
VG = V3|50 — 79000 0aa + (9 09as)*
_ _glK’L + §DC€ch€z + §R1J£"L£] , (11)

where RY = K'KJ — Tr(K'K7) has a trace which is the scalar curvature.
The variation of the connection up to linear terms is

0 = Da0pd X' DX, + Da 0y X' D6 X, . (12)
In fact
6T e = 6(9“Topa) , (13)
but from (4)
I'pg = 0,0, X" 0g X, (14)

and due to (9) we easily get (12), which amounts to
5FCab - Kiachgi - DbgiKica - DagiKicb - giDaKiCb- (15)

Let us make now the variation of the Laplacian of X*. The relevant terms
for our aim are the following:

SD?XH = g®D 0,0 X" + g D,y XH — g®6T5 0. X
+ 89D, Dy XH — g®6T5 0.0 X (16)

using (5), (8), (9), (10), (12) we obtain
OD?XH = D%+ ¢ Tr(K'KY) + €6 Te(K'KIK?) — D¢/ DY K,

+ 2€jKjabDan€i . KJDC(:-]DC(;:’L + 2Da€jKjaCDC£i
+ ¢DKID.£' n' — K'DU¢' Dy X" . (17)
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Therefore, the variation of the gonihedric action amounts to

S:m/dQC\/g[—{‘K’ K? = §’+m (K'K7)& | (18)

+ 0 / dQC\/_[ Nre D¢ + Ji(_zsfb%in“Tr(K’Kj)
+ \/—_251' Te(K'KYIT™ Te(K™K7)& + vV K2DE T D&
.y ;ng 459‘[5;2
@KZKW)DG@ Dyéd +
2K*

VK?

2 P KzKl i )
Tk KJ££J—2W€€]TI"(KZK9) +0(8%), (19)

where we have defined

K'D,Dyé" + KI“K'D, &' DK

Vv K2
2 . A ,
— K DKIDg!

(KK KI)eled f% (K KT)Ee)

+

K'KJ
K2’

17— §i
with the following features:
nm*=ma, IM7K'=0. (21)

From (18) one can immediately recognize that the equation of motion for X
is given by

D? (j%) = K'VK? — \/LK_Q Tr(K'KY). (22)
We will make the following approximation:
D,K"=0 (23)
which reduces (22) to
K'Tr(K'K7) = K?°K7,  K'#0. (24)

We will consider the short wavelength fluctuations around the classical tra-
jectory given by (24). They are dominated by the term

¢1(_2 RIKIIZ (25)
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Because IT% is not invertible the propagator can be defined only for the
D — 3 components of the £ field which are not zero modes of II. In order
that the path integral on £ fields is well defined the zero modes of the £ fields
must decouple. In order to prove this decoupling at this order we make the
following decomposition:

£ =¢&+6, (26)
where A o
G=1veg, (27)
and due to (21)
&(¢) = K'f(0), (28)

where f is an arbitrary function of the world-sheet. By substituting (27)
and (28) in (19) and using (21) we easily get
65 _ m dQC\/_ 1 D2§TD2€T+LD2§TTI,(KTKS)€S
5 g NS 1 1 VK2 1 1
2

@KibiD“&IDbsi}

_ % / d*¢\/gVK? [KQfDQf + 2KiKiabDabef}

+ v KQDC&{DCgln -

+m / el (29)
where

g 1 ) . 1 . )
GY = — — Tr(K'KYIT"™ Tr(K™K?) 4+ —— Tr(KKY "™ Tr (K™K
i O T (RTR) 2y T (R R I (K )
l y K! o L
Ve Tr(K'K/KY) + Nic Tr(K/K'KY)— VK2 Tr(K'KY)

KKl . KIK!
+ VKKK — - Tr(K'K7) — -
VK VK

+

Tr(K'KY), (30)

and 1 <r <D -—3.
It is easy to prove that using (24)
2K'K' Tr(KIK'KY) — 2K (K?)?
VK? '

Since three general symmetric matrices A, B, C have the following feature

[8]:

K'GY = (31)

Tr(ABC) = —Tr(BAC) + Tr(A) Tr(BC) + Tr(B) Tr(AC)
+ Tr(C) Tr(AB) — Tr(A) Tr(B) Tr(C) (32)
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we get
GYKI =0. (33)

It implies that in (29) we have
EGUE =[G (34)

Moreover, integrating by part and due to the symmetry under permutation
of ¢ and Lorentz invariance we have

/ d*¢\/gK' KD f Db f = —% / d*¢\/gK*fD*f. (35)

The results (34) and (35) imply that in the quadratic expansion of the go-
nihedric action the zero modes of IT% decouple, therefore, only the D — 3
degrees of freedom £} propagate. It could be related to some extra unknown
gauge symmetry at the moment under investigations. Therefore, we can
assert that the free propagator is

(€ (-p)€*(p)) = i\%—QWs : (36)

We will use the dimensional regularization and due to [9]

d'p 1

We can conclude that the terms containing fewer than two derivatives in £
are irrelevant in the ultraviolet. Thus integrating out the &; fields leads to
the additional one-loop action

S; = —(D — 3) TrIn(D?) — d*¢C\/gR. (38)

7=l
K2
where L = [(d?p/(27)?) (1/p?).

TrIn(D?) is the usual conformal anomaly [10]. Due to the Gauss-Bonnet
theorem we have got a divergency which is field independent, therefore, in
agreement with [11] the theory does not get radiative corrections. Moreover,
we have got the usual conformal anomaly at quantum level, whose coefficient

is proportional to (D — 3), the number of degrees of freedom determining
the one-loop dynamics of this model.
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2. Two-loop perturbative analysis in conformal gauge

The perturbative two-loop expansion following the previous approach
will be given in a forthcoming paper. Now we will focus our attention on
the two loop calculation in the conformal gauge in which

Gab = PNab - (39)

In the following we will quote the results proved in [12].
We consider g and X as independent variables by adding to (1) the term

Sy = m/dQC)\ab(aaX'uabX,u - gab) ) (40)

where A% is a Lagrangian multiplier field for the constraint (2).
We split all fields into a sum of classical solution of their equations of
motion plus a quantum correction (fast variables), it amounts to considering

XM = X§+ X7, (41)
p = po+p1, (42)
A = \ab o zgb (43)

The investigation about the saddle point for the Lagrangian multiplier
is performed by considering the ansatz

X = Aag™ = M, (44)

where the conformal gauge has been used and A is a constant field.
In order to integrate out the fast fluctuations we expand X1 fields in
tangential and normal components ¢¢, &*

_ ja= i=1
Xy = ¢%eap + &'y,
i =a __ —L=a __
n'e; =0, eney = 2p0.

The fluctuations of the Lagrange multiplier is decomposed a la Polyakov
[4] as

a,b
A () = w(p) <77“b -2 ) G P — (e ). (45)

The interested reader can find the detailed integration of the fast variables
&, ¢, wand fin [12]. Here we would like to remark that
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e The longitudinal fields s do not propagate. Their free propagator

is zero and the vertices structure is such that one cannot construct
proper bubble vacuum with propagating s fields.

The only physical components of X7 fields are the normal fluctuations
¢s. Their short wave-length fluctuations are still dominated by (25)
but including the cubic and quartic interactions to perform calculations
till two-loop order the decoupling of the zero modes of the operator
IT'7 does not seem to be evident. We will deserve more about this
point. Concerning now we have used the mass-term for &s fields with
mass proportional to A in order to break the £ kernel degeneration.
The contributions to the effective action coming only from &s fields at
two-loop order are given by

D —332)7(5 ) <i>21n2 (%) /d%\/@x/ﬁ. (46)

m

From the point of view of the previous discussed extra symmetry this
result is not very encouraging because it seems assert that not all
D — 3 degrees of freedom give contributions at two loop order for the
renormalization of the parameter m.

The observed decoupling at one loop between the degrees of freedom
&s and the components of A; is not more present when the cubic vertex
fE&E is included. The contribution to the effective action give a term
breaking the stability of the model, amounting to

(D=3) A, (%)/d%\/ﬁf@? (47)

1672 m

the Polyakov—Kleinert smooth string.

The finite effective action till two-loop order is given by

Set = m

1ol <1n (%) - 1) b <%)2m2 (%)]
X / 42\ [gVK? + %%m? (%) / d2¢JgK? (48)

where a = (D — 3)/(47) and b = —[(D — 3)(D — 5)]/(3272). Eq. (48) has
a nontrivial saddle point for A = M. Perturbations around this saddle point
do not add any quantum corrections to the model and avoid in particular
the appearance of the Polyakov—Kleinert term.
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3. Conclusion

The one and two-loop perturbative analysis of the gonihedric model has
shown that this model does not receive any quantum corrections around
its classical trajectory. In particular the finite effective action exhibits a
non-trivial saddle point enforcing the relation between g and X at quantum
level. Moreover, there are strong indications about the existence of an extra
gauge symmetry which reduces the number of the physical degrees of freedom
compared to the usual string. The results of the two-loop analysis do not
seem to agree with this decoupling, maybe because it was performed by
adding extra degrees of freedom as the Lagrangian multiplier. It might be
that a pure perturbative analysis could again show the previous decoupling.
A non-trivial test in order to understand the number of the physical degrees
of freedom of the model could be the calculation of the static quark-antiquark
potential in this model. In fact its subleading 1/R term has an universal
coefficient depending on the number of the degrees of freedom of the string
model and not on the details of their interactions. Therefore, for this model
it should be proportional to D — 3.
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