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We present the one and two-loop quantum corrections to the earlier
proposed string theory whose world-sheet action measures the linear sizes
of the surfaces by the square root of the extrinsic curvature. We find in this
model the usual conformal anomaly. Moreover, the one-loop perturbative
analysis shows that the dynamics of this model is determined by a reduced
number of degrees of freedom compared to the usual string. We point out
that this model does not receive any quantum corrections around its clas-
sical trajectory. Finally we show that the constraint, relating the induced
metric with the string fields, is enforced by radiative corrections and it does
not allow the generation of the Polyakov–Kleinert smooth string.

PACS numbers: 11.10.Gh, 02.40.Ky, 11.27.+d, 11.25.–w

1. One-loop perturbative analysis

The world-sheet action to be studied is the following:

S = m

∫

d2ζ
√

g
√

(∆(g)Xµ)2 , (1)

where m is a constant with the dimension of a mass, Xµ(ζ) parameterizes
the string in a Minkowskian D dimensional flat space-time with the metric
ηµν = diag(1,−1,−1, . . .). The induced metric of the string is

gab = ∂aX
µ∂bXµ . (2)

In (1) ∆(g)Xµ is defined as

∆(g)Xµ =
1√
g
∂a

(√
ggab∂bXµ

)

, (3)
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where g = det(gab). The second fundamental form K is defined through the
relations:

Ki
abn

i
µ = ∂a∂bXµ − Γ c

ab∂cXµ = Da∂bXµ ,

ni
µnjµ = δij ,

ni
µ∂bX

µ = 0 , (4)

where ni
µ are D − 2 normals, Da indicates the covariant derivative respect

to the connection Γ , a, b = 1, 2; µ = 0, 1, . . . ,D − 1; i, j = 1, 2, . . . ,D − 2.
The D−2 2×2 symmetric matrices Ki

ab are known as extrinsic curvature
and they satisfy the Gauss–Codazzi [1] equations which in the flat space
becomes

R = K2 − Tr(KiKi) , DaK
i
bc = DbK

i
ac , (5)

R being the intrinsic scalar curvature of the surface, Ki ≡ Ki
a
a
,Tr(KiKj) ≡

Ki
a
b
Kj

b
a

and the covariant derivative Da satisfies

Dan
i
µ = −Ki

ab∂
bXµ. (6)

By these definitions the action (1) takes the following forms up to surface
terms

S = m

∫

d2ζ
√

g
√

(D2Xµ)2 = m

∫

d2ζ
√

g
√

K2. (7)

It is called gonihedric model and it was proposed for the first time in [2] and
studied on the lattice in [3]. It differs from the models considered in the
previous studies [4–7], because the action has the dimension of length. It
is proportional to the linear size of the surface similar to the path integral
action. This is in contrast with the previous proposals where the extrinsic
curvature term is a dimensionless functional.

The model is invariant under two-dimensional general coordinate trans-
formations. The higher derivatives behavior of the action S brings about
new ghosts states which are hard to interprete and there is no proof that
these ghosts are identical to the ghosts of the usual string. In this work we
will perform a pure perturbative analysis of the model around its classical
trajectory. The parametrization invariance allows us to consider just normal
fluctuations

δXµ = ξiniµ , (8)

upon this action.
Our aim will be now the expansion of (1) around the solutions of the

classical equations of motion for X up to quadratic fluctuations ξs in order
to get the one loop quantum corrections to (1).
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Due to (8) the metric changes as

δgab = DaX
µDbδXµ + DaδX

µDbXµ + DaδX
µDbδXµ

= −2ξiKi
ab + Daξ

iDbξ
i + Ki

acK
jc

bξ
iξj , (9)

and the change of the inverse metric up to quadratic fluctuations is

δgab = −gacδgcdg
db + gacδgcdg

deδgefgfb

= 2ξiKiab − DaξiDbξi + 3Kia
lK

jblξiξj . (10)

The (quadratic) change of the area element amounts to

δ
√

g =
√

g

[

1

2
gabδgab −

1

4
gabδgbcg

cdδgda +
1

8
(gabδgab)

2

]

= −ξiKi +
1

2
DcξiDcξ

i +
1

2
Rijξiξj , (11)

where Rij ≡ KiKj − Tr(KiKj) has a trace which is the scalar curvature.
The variation of the connection up to linear terms is

δΓ c
ab = Da∂bδX

µDcXµ + Da∂bX
µDcδXµ . (12)

In fact
δΓ c

ab = δ(gcdΓabd) , (13)

but from (4)
Γabd = ∂a∂bX

µ∂dXµ (14)

and due to (9) we easily get (12), which amounts to

δΓ c
ab = Ki

abD
cξi − Dbξ

iKic
a − Daξ

iKic
b − ξiDaK

ic
b . (15)

Let us make now the variation of the Laplacian of Xµ. The relevant terms
for our aim are the following:

δD2Xµ = gabDa∂bδX
µ + δgabDa∂bX

µ − gabδΓ c
ab∂cX

µ

+ δgabDaDbδX
µ − gabδΓ c

ab∂cδX
µ , (16)

using (5), (8), (9), (10), (12) we obtain

δD2Xµ =
[

D2ξi + ξj Tr(KiKj) + ξlξj Tr(K lKjKi) − DaξjDbξjKi
ab

+ 2ξjKjabDaDbξ
i − KjDcξjDcξ

i + 2Daξ
jKjacDcξ

i

+ ξjDcKjDcξ
i
]

niµ − KiDdξiDdX
µ . (17)
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Therefore, the variation of the gonihedric action amounts to

δS = m

∫

d2ζ
√

g

[

−ξiKi
√

K2 +
Ki

√
K2

D2ξi +
Ki

√
K2

Tr(KiKj)ξj

]

(18)

+
m

2

∫

d2ζ
√

g

[

1√
K2

D2ξiΠ ijD2ξj +
2√
K2

ξjD2ξiΠ il Tr(K lKj)

+
1√
K2

ξi Tr(KiK l)Π lm Tr(KmKj)ξj +
√

K2DcξiΠ ijDcξ
j

− ξi K
iKj

√
K2

D2ξj + 4ξj Kjab

√
K2

KiDaDbξ
i +

4√
K2

KjacKiDaξ
jDcξ

iKi

− 2√
K2

KiKiabDaξ
jDbξ

j +
2√
K2

ξjKiDcKjDcξ
i

+
2Ki

√
K2

Tr(KiK lKj)ξlξj − K2

√
K2

Tr(KiKj)ξiξj

+
K2

√
K2

KiKjξiξj − 2
KiK l

√
K2

ξiξj Tr(K lKj)

]

+ O(ξ3) , (19)

where we have defined

Π ij = δij − KiKj

K2
, (20)

with the following features:

Π2 = Π , Π ijKi = 0 . (21)

From (18) one can immediately recognize that the equation of motion for X
is given by

D2

(

Ki

√
K2

)

= Ki
√

K2 − Ki

√
K2

Tr(KiKj) . (22)

We will make the following approximation:

DaK
i = 0 (23)

which reduces (22) to

Ki Tr(KiKj) = K2Kj , Ki 6= 0 . (24)

We will consider the short wavelength fluctuations around the classical tra-
jectory given by (24). They are dominated by the term

1√
K2

D2ξiΠ ijD2ξj . (25)
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Because Π ij is not invertible the propagator can be defined only for the
D − 3 components of the ξ field which are not zero modes of Π. In order
that the path integral on ξ fields is well defined the zero modes of the ξ fields
must decouple. In order to prove this decoupling at this order we make the
following decomposition:

ξi = ξi
0 + ξi

1 , (26)

where
ξi
1 ≡ Π ijξj , (27)

and due to (21)
ξi
0(ζ) = Kif(ζ) , (28)

where f is an arbitrary function of the world-sheet. By substituting (27)
and (28) in (19) and using (21) we easily get

δS =
m

2

∫

d2ζ
√

g

[

1√
K2

D2ξr
1D

2ξr
1 +

2√
K2

D2ξr
1 Tr(KrKs)ξs

1

+
√

K2Dcξ
r
1D

cξr
1 −

2√
K2

KiKi
abD

aξr
1D

bξr
1

]

− m

2

∫

d2ζ
√

g
√

K2

[

K2fD2f + 2KiKi
abD

afDbf
]

+ m

∫

d2ζξiGijξj , (29)

where

Gij =
1

2
√

K2
Tr(KiK l)Π lm Tr(KmKj)+

1

2
√

K2
Tr(KjK l)Π lm Tr(KmKi)

+
K l

√
K2

Tr(KiKjK l) +
K l

√
K2

Tr(KjKiK l)−
√

K2 Tr(KiKj)

+
√

K2KiKj − KiK l

√
K2

Tr(K lKj) − KjK l

√
K2

Tr(K lKi) , (30)

and 1 ≤ r ≤ D − 3.
It is easy to prove that using (24)

KiGij =
2K lKi Tr(KjKiK l) − 2Ki(K2)2√

K2
. (31)

Since three general symmetric matrices A, B, C have the following feature
[8]:

Tr(ABC) = −Tr(BAC) + Tr(A)Tr(BC) + Tr(B)Tr(AC)

+ Tr(C)Tr(AB) − Tr(A)Tr(B)Tr(C) , (32)
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we get

GijKj = 0 . (33)

It implies that in (29) we have

ξiGijξj = ξr
1G

rsξs
1 . (34)

Moreover, integrating by part and due to the symmetry under permutation
of i and Lorentz invariance we have

∫

d2ζ
√

gKiKi
abD

afDbf = −1

2

∫

d2ζ
√

gK2fD2f. (35)

The results (34) and (35) imply that in the quadratic expansion of the go-
nihedric action the zero modes of Π ij decouple, therefore, only the D − 3
degrees of freedom ξr

1 propagate. It could be related to some extra unknown
gauge symmetry at the moment under investigations. Therefore, we can
assert that the free propagator is

〈ξr(−p)ξs(p)〉 = −i

√
K2

p4
δrs . (36)

We will use the dimensional regularization and due to [9]

∫

dnp

(2π)n
1

p4
= 0 . (37)

We can conclude that the terms containing fewer than two derivatives in ξ
are irrelevant in the ultraviolet. Thus integrating out the ξ1 fields leads to
the additional one-loop action

S1 = −(D − 3)Tr ln(D2) − L√
K2

∫

d2ζ
√

gR . (38)

where L =
∫

(d2p/(2π)2) (1/p2).

Tr ln(D2) is the usual conformal anomaly [10]. Due to the Gauss–Bonnet
theorem we have got a divergency which is field independent, therefore, in
agreement with [11] the theory does not get radiative corrections. Moreover,
we have got the usual conformal anomaly at quantum level, whose coefficient
is proportional to (D − 3), the number of degrees of freedom determining
the one-loop dynamics of this model.
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2. Two-loop perturbative analysis in conformal gauge

The perturbative two-loop expansion following the previous approach
will be given in a forthcoming paper. Now we will focus our attention on
the two loop calculation in the conformal gauge in which

gab = ρηab . (39)

In the following we will quote the results proved in [12].
We consider g and X as independent variables by adding to (1) the term

Sλ = −m

∫

d2ζλab(∂aX
µ∂bXµ − gab) , (40)

where λab is a Lagrangian multiplier field for the constraint (2).
We split all fields into a sum of classical solution of their equations of

motion plus a quantum correction (fast variables), it amounts to considering

Xµ = Xµ
0

+ Xµ
1

, (41)

ρ = ρ0 + ρ1 , (42)

λab = λab
0 + λab

1 . (43)

The investigation about the saddle point for the Lagrangian multiplier
is performed by considering the ansatz

λab
0 = λ

√
ggab = ληab , (44)

where the conformal gauge has been used and λ is a constant field.
In order to integrate out the fast fluctuations we expand Xµ

1
fields in

tangential and normal components φa, ξi

X1µ = φaēaµ + ξin̄i
µ ,

n̄iµēa
µ = 0 , ēµ

a ēa
µ = 2ρ0 .

The fluctuations of the Lagrange multiplier is decomposed à la Polyakov
[4] as

λab
1 (p) = ω(p)

(

ηab − papb

p2

)

+ (paf b + pbfa − (p · f)ηab) . (45)

The interested reader can find the detailed integration of the fast variables
ξ, ϕ, ω and f in [12]. Here we would like to remark that
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• The longitudinal fields ϕs do not propagate. Their free propagator
is zero and the vertices structure is such that one cannot construct
proper bubble vacuum with propagating ϕs fields.

• The only physical components of X1 fields are the normal fluctuations
ξs. Their short wave-length fluctuations are still dominated by (25)
but including the cubic and quartic interactions to perform calculations
till two-loop order the decoupling of the zero modes of the operator
Π ij does not seem to be evident. We will deserve more about this
point. Concerning now we have used the mass-term for ξs fields with
mass proportional to λ in order to break the ξ kernel degeneration.
The contributions to the effective action coming only from ξs fields at
two-loop order are given by

−(D − 3)(D − 5)

32π2

(

λ

m

)2

ln2

(

λ

M

)
∫

d2ζ
√

g
√

K2 . (46)

From the point of view of the previous discussed extra symmetry this
result is not very encouraging because it seems assert that not all
D − 3 degrees of freedom give contributions at two loop order for the
renormalization of the parameter m.

• The observed decoupling at one loop between the degrees of freedom
ξs and the components of λ1 is not more present when the cubic vertex
fξξ is included. The contribution to the effective action give a term
breaking the stability of the model, amounting to

(D − 3)

16π2

λ

m
ln2

(

λ

M

)
∫

d2ζ
√

gK2 , (47)

the Polyakov–Kleinert smooth string.

The finite effective action till two-loop order is given by

Seff = m

[

1 + a
λ

m

(

ln

(

λ

M

)

− 1

)

+ b

(

λ

m

)2

ln2

(

λ

M

)

]

×
∫

d2ζ
√

g
√

K2 +
a

4π

λ

m
ln2

(

λ

M

)
∫

d2ζ
√

gK2 , (48)

where a = (D − 3)/(4π) and b = −[(D − 3)(D − 5)]/(32π2). Eq. (48) has
a nontrivial saddle point for λ = M . Perturbations around this saddle point
do not add any quantum corrections to the model and avoid in particular
the appearance of the Polyakov–Kleinert term.
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3. Conclusion

The one and two-loop perturbative analysis of the gonihedric model has
shown that this model does not receive any quantum corrections around
its classical trajectory. In particular the finite effective action exhibits a
non-trivial saddle point enforcing the relation between g and X at quantum
level. Moreover, there are strong indications about the existence of an extra
gauge symmetry which reduces the number of the physical degrees of freedom
compared to the usual string. The results of the two-loop analysis do not
seem to agree with this decoupling, maybe because it was performed by
adding extra degrees of freedom as the Lagrangian multiplier. It might be
that a pure perturbative analysis could again show the previous decoupling.
A non-trivial test in order to understand the number of the physical degrees
of freedom of the model could be the calculation of the static quark-antiquark
potential in this model. In fact its subleading 1/R term has an universal
coefficient depending on the number of the degrees of freedom of the string
model and not on the details of their interactions. Therefore, for this model
it should be proportional to D − 3.
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