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We describe a matrix analogy of the log-normal random walk, in the
large N (size of the matrix) limit. In particular, we present an exact
result for the infinite product of random matrices, corresponding to the
multiplicative diffusion triggered by Ginibre–Girko ensemble. We observe
the emergence of a “topological phase transition”, when a hole develops in
the complex eigenvalue spectrum, after some critical diffusion time τcrit is
reached.
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1. Introduction

Random matrix theory represents a powerful tool in several statistical
problems, when the degrees of freedom could be encoded as elements of
certain ensembles of large matrices. Examples of applications of random
matrix theory (RMT) in physics range from interpretation of complex spec-
tra of energy levels in atomic and nuclear physics [1], studies of disordered
systems [2,3], chaotic behavior [4], Euclidean Quantum Chromodynamics [5]
and supersymmetric Yang–Mills theories [6] to quantum gravity [7–9]. Pro-
gressively developed methods of RMT turned out to be also useful in other
sciences such as meteorology [10], image processing [11], population ecol-
ogy [12] or economy [13–15].

Most of the applications of random matrices correspond to the case, when
the dynamics of the systems is assumed to be “static”. On the other hand
one often considers systems which evolve w.r.t. some external parameter τ
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(“time”). The “time parameter” can represent either real time or another
parameter like length or surface of some samples, or the inverse of the tem-
perature, or rapidity etc. The infinitesimal, matrix-valued increments could
be of additive or multiplicative nature, and the matrices may be in general
complex, hermitian, unitary etc, generated by various probability distribu-
tions.

Such processes constitute a rich class of stochastic evolutions, but analyt-
ical results in the “dynamical” random matrix theory are still rather scarce,
although numerous applications exist. Some solved or partially solved ex-
amples in physics include the localization of electronic wave functions in
random potentials [2, 17], applications of infinite product of random matri-
ces (hereafter PRM) to the analysis of chaotic dynamical systems [16,18–20],
dynamics of Yang–Mills theory on various manifolds [21], and evolution of
linear chains of interacting hermitian matrices [22]. There are also several
examples of multiplicative, matrix-valued processes in applied physics and
interdisciplinary research, ranging from the studies of stability of large eco-
and social- systems [12], adaptive algorithms and the analysis of system
performance under the influence of external noises [23] to image compres-
sion [24, 25] and communication via antenna arrays [26, 27].

In this talk we present an effective calculational technique for study-
ing products of random matrices in the large N limit, and use these tools
to derive the properties of the natural matrix valued generalization of the
geometric (multiplicative) diffusion type process. The scalar versions of
these processes, leading to log-normal distributions are ubiquitous in vari-
ous fields [28].

In particular, we are interested in properties of the matrix-valued evolu-

tion operator defined as

Y (τ) = lim
M→∞

[(

1 + µ
τ

M
+ σ

√

τ

M
X1

)(

1 + µ
τ

M
+ σ

√

τ

M
X2

)

. . .

. . .

(

1 + µ
τ

M
+ σ

√

τ

M
XM

)]

, (1)

where µ is some deterministic “drift” matrix and the stochastic matrices
Xi belong to identical independent random matrix ensembles, belonging to
Girko–Ginibre ensembles, i.e. complex Gaussian ensembles. In particular
we will be studying the eigenvalue distribution of Y (τ):

ρτ (z) =
1

N

〈

tr δ(2) (z − Y (τ))
〉

, (2)

where the average is taken over stochastic N by N matrices Xi appearing
in the definition of Y (τ) and δ(2) is a complex Dirac delta function.
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If the variable Xi would be a random number from Gaussian distribution
and µ would be also a number, we would recover the conventional (scalar)
multiplicative (geometric) random walk in one dimension in the presence
of some external (constant) drift force. The process belongs to the class of
(Markovian) Ito diffusion processes, whose stochastic variable y undergoes
an evolution

dy

y
= µdτ + σdxτ . (3)

In the above stochastic differential equation (SDE), dxτ represents the Wiener
process (integral of the Gaussian white-noise), respecting

〈dxτ 〉 = 0 ,
〈

dx2
τ

〉

= dτ . (4)

We use here small letters in our notation to avoid confusion with similar, but
matrix-valued entries, represented by capital letters. After averaging y(τ)
over the independent identical distributions (iid) of the Gaussian variables
xi and taking the limit M → ∞, we recover1 the well known solution for
the probability density of y(τ):

p(y, τ |y0, 0) =
1

y
√

2πσ2τ
exp

[

−(log(y/y0) − µτ + 1
2σ2τ)2

2σ2τ

]

(5)

with y restricted to positive values.
A direct analogue of the scalar solution (5) is the τ -dependent eigenvalue

distribution (2). In this talk we would like to describe methods developed
in [44] leading to the determination of (2).

The problem is much harder than in the scalar case. Indeed in order
to understand the statistical properties of the spectra of the operator Y (τ)
as a function of evolution time τ we have to overcome two problems: first,
since the matrices Xi in general do not commute, we are dealing with a
‘path ordered product’. Second, even if the matrices Xi are hermitian, their
product is not, i.e. the spectrum in general disperses into the complex plane,
showing — as later pointed out in this talk — some rather unusual feature
described as a “topological phase transition”. Namely the support of the
eigenvalue distribution changes from a simply-connected two-dimensional
island to a two-dimensional island with a hole.

We will solve the evolution problem of operator (1) in three steps, which
we call diagrammatization, complex replication and cyclization, respectively.

1 The log-normal distribution y(τ ) is easy to infer looking at the form of the product.
Taking the logarithm, expanding and using the central limit theorem we immediately
see, that the r.h.s. tends to the Gaussian distribution.
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In order to make this presentation self-contained, in the next section we
recall the diagrammatical formalism for hermitian RMM, basically in order
to define our notation and conventions. Then, we address the problem of
finding the eigenvalue distribution of nonhermitian random matrix ensem-
bles, with complex spectrum, and we recall our earlier construction (complex
replication), originating from the extension of diagrammatic methods to the
non-hermitian case [31,32]. As an example we will use the complex Gaussian
non-hermitian random matrix model, considered in this paper as a source
of the matrix diffusion.

Finally, as the third step, we will introduce a trick named by us (borrow-
ing from chemistry2) cyclization, which will allow us to linearize the problem
of studying the spectral properties of infinite product (1).

Last chapter concludes the paper and points some other interesting con-
sequences of the formalism presented here.

2. Diagrammatization

A key problem in random matrix theories is to find the distribution of
eigenvalues λi, in the large N (size of the matrix H) limit, i.e.

ρ(λ) =
1

N

〈

N
∑

i=1

δ(λ − λi)

〉

, (6)

where the averaging 〈. . .〉 is done over the ensemble of N × N random her-
mitian matrices generated with probability

P (H) ∝ e−NTrV (H). (7)

The eigenvalues of course lie on the real axis. By introducing the resolvent
(Green’s function)

G(z) =
1

N

〈

Tr
1

z − H

〉

. (8)

with z = z1N and by using the standard relation

1

λ ± iε
= P.V.

1

λ
∓ iπδ(λ) . (9)

the spectral function (6) can be derived from the discontinuities of the
Green’s function (8)

2 Cyclization — formation of cyclic structures (rings) in a chemical compound.
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1

2πi
lim
ε→0

(G(λ − iε) − G(λ + iε)) =
1

N
〈Tr δ(λ − H)〉

=
1

N

〈

N
∑

i=1

δ(λ − λi)

〉

= ρ(λ) . (10)

There are several ways of calculating Green’s functions for HRMM
[1, 3, 9]. Here we follow the diagrammatic approach, after [29]. A start-
ing point of the approach is the expression allowing for the reconstruction
of the Green’s function from all the moments 〈TrHn〉,

G(z) =
1

N

〈

Tr
1

z−H

〉

=
1

N

〈

Tr

[

1

z

+
1

z

H
1

z

+
1

z

H
1

z

H
1

z

+· · ·
]〉

=
1

N

∑

n

1

zn+1
〈TrHn〉 . (11)

The reason why the above procedure works correctly for hermitian matrix
models is the fact that the Green’s function is guaranteed to be holomorphic

in the whole complex plane except at most on one or more 1-dimensional
intervals. We will use the diagrammatic method to evaluate efficiently the
sum of the moments on the right hand side. We will now restrict ourselves
to the well known case of a random hermitian ensemble with a Gaussian
distribution.

The first step is to introduce a generating function with a matrix-valued
source J :

Z(J) =

∫

dHe−
N

2
(TrH2)+TrH·J , (12)

where we integrate over all N2 elements of the matrix H. All moments
follow directly from Z(J) through the relation

〈TrHn〉 =
1

Z(0)
Tr

(

∂

∂J

)n

Z(J)
∣

∣

∣

J=0
(13)

and are straightforward to calculate, since in the Gaussian case the partition
function (12) reads Z(J) = exp 1

2N TrJ2. Accordingly, the lowest nonzero
expectation value is

〈Ha
b Hc

d〉 =
∂2Z(J)

∂Jb
a∂Jd

c

|J=0 =
1

N

∂Jc
dZ(J)

∂Jb
a

|J=0 =
1

N
δc
bδ

a
d (14)
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and the next non-vanishing expectation value reads

〈Ha
b Hc

dH
e
fHg

h〉 =
1

N2

(

δc
bδ

a
dδg

f δe
h + δa

hδb
gδ

c
f δd

e + δa
fδb

eδ
c
hδd

g

)

. (15)

The key idea in the diagrammatic approach is to associate to the expres-
sions for the moments, like the one above, a graphical representation fol-
lowing from a simple set of rules. The power of the approach is that it
enables to perform a resummation of the whole power series (11) through
the identification of the structure of the relevant graphs.

We depict the “Feynman” rules in Fig. 1, similar to the standard large
N diagrammatics for QCD [30]. The 1/z = 1/zδb

a in (11) is represented by
a horizontal straight line. The propagator (14) is depicted as a double line.1z �ba , b ac d hHabHcdi = 1N �cb�ad

Fig. 1. Large N “Feynman” rules for “quark” and “gluon” propagators.

The diagrammatic expansion of the Green’s function is visualized in
Fig. 2, where one connects the vertices with the double line propagators
in all possible ways. Each “propagator” brings a factor of 1/N , and each
loop a factor of δa

a = N . From the three terms, corresponding to (15)
contributing to

〈

tr H4
〉

only the first two are presented in Fig. 2 (the third
and the fourth diagram). The diagram corresponding to the third term in
(15) represents a non-planar contribution which is suppressed as 1/N2 and
hence vanishes when N → ∞. In general, only planar graphs survive the
large N limit.= + + + + : : :
Fig. 2. Diagrammatic expansion of the Green’s function up to the O(H4) terms.

The resummation of (11) is done by introducing the self-energy Σ com-
prising the sum of all one-particle irreducible graphs (rainbow-like). Then
the Green’s function reads

G(z) =
1

z − Σ(z)
. (16)

In the large N limit the equation for the self energy Σ, follows from
resumming the rainbow-like diagrams of Fig. 2. The resulting equation
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(“Schwinger–Dyson” equation of Fig. 3) encodes pictorially the structure
of these graphs and reads

Σ =
1

N
TrG1 =

N

N
G = G . (17)

Equations (16) and (17) give immediately G(z−G) = 1 which can be solved
to yield

G∓(z) =
1

2
(z ∓

√

z2 − 4) . (18)

Only the G− is a normalizable solution, with the proper asymptotic behavior
G(z) → 1/z in the z → ∞ limit. From the discontinuity (cut), using (10),
we recover Wigner’s semicircle [33] for the distribution of the eigenvalues for
hermitian random matrices

ρ(λ) =
1

2π

√

4 − λ2. (19)

� =
Fig. 3. Schwinger–Dyson equation for rainbow diagrams.

3. Complex replication

The main difficulty in the treatment of non-hermitian random matrix
models is the fact that now the eigenvalues accumulate in two-dimensional

domains in the complex plane and the Green’s function is no longer holo-
morphic. Therefore the power series expansion (11) no longer captures the
full information about the Green’s function. In particular the eigenvalue dis-
tribution is related to the non-analytic (non-holomorphic) behavior of the
Green’s function:

1

π
∂z̄G(z) = ρ(z) . (20)

This phenomenon can be easily seen even in the simplest non-hermitian
ensemble — the Ginibre–Girko one [34,35], with non-hermitian matrices X,
and measure

P (X) = e−NTrXX†

. (21)
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It is easy to verify that all moments vanish 〈trXn〉 = 0, for n > 0 so the
expansion (11) gives the Green’s function to be G(z) = 1/z (diagrammati-
cally this follows from the fact that the propagator < Xa

b Xc
d > vanishes and

hence the self-energy Σ = 0). The true answer is, however, different. Only
for |z| > 1 one has indeed G(z) = 1/z. For |z| < 1 the Green’s function is
nonholomorphic and equals G(z) = z̄.

The above difficulty was first addressed in mathematical papers. Brown
[36] defined a measure for complex ensembles as

µX =
1

2π

(

∂2

(∂ℜλ)2
+

∂2

(∂ℑλ)2

)

log det(X − λ) , (22)

where

det(X − λ) = exp

[

1

N
Tr log

√

(X − λ)(X† − λ∗)

]

(23)

is known in mathematics as Fuglede–Kadison determinant. For some recent
results on Brown measure we refer to [37, 38].

Physicists have addressed the problem of measure, exploiting the analogy
to two-dimensional electrostatics [4, 35, 39]. Let us define the “electrostatic
potential”

F =
1

N
Tr ln[(z −M)(z̄ −M†) + ε2] . (24)

Then

lim
ε→0

∂2F (z, z̄)

∂z∂z̄
= lim

ε→0

1

N

〈

Tr
ε2

(|z−M|2 +ε2)2

〉

=
π

N

〈

∑

i

δ(2)(z−λi)

〉

≡ πρ(x, y) (25)

represents Gauss law, where z = x + iy. The last equality follows from the
representation of the complex Dirac delta

πδ(2)(z − λi) = lim
ε→0

ε2

(ε2 + |z − λi|2)2
. (26)

In the spirit of the electrostatic analogy we can define the Green’s function
G(z, z̄), as an “electric field”

G ≡ ∂F

∂z
=

1

N
lim
ε→0

〈

Tr
z̄ − X†

(z̄−X†)(z−X) +ε2)

〉

. (27)
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Then Gauss law reads

∂z̄G = πρ(x, y) (28)

leading to the eigenvalue density ρ(z, z̄).
Both constructions (Brown measure, Green’s function (27)) are however

difficult to use in practical calculation.
Instead of working ab initio with the object (27), and in view of applying

diagrammatic methods it is much more convenient to proceed differently —
as we will now discuss.

Following [31] we define the matrix-valued resolvent through

Ĝ =
1

N

〈

TrB2

(

z − X iε
iε z̄ − X†

)−1
〉

=
1

N

〈

TrB2

(

A B
C D

)〉

≡
(

G11 G11
G11 G11

)

(29)

with

A =
z̄ − X†

(z̄ − X†)(z − X) + ε2
,

B =
−iε

(z − X)(z̄ − X†) + ε2
,

C =
−iε

(z̄ − X†)(z − X) + ε2
,

D =
z − X

(z − X)(z̄ − X†) + ε2
(30)

and where we introduced the ‘block trace’ defined as

TrB2

(

A B
C D

)

2N×2N

≡
(

Tr A Tr B
Tr C Tr D

)

2×2

. (31)

Then, by definition, the upper-right component G11, is equal to the Green’s
function (27).

The block approach has several advantages. First of all it is linear in
the random matrices X allowing for a simple diagrammatic calculational
procedure. Let us define 2N by 2N matrices

Z =

(

z iε1
iε1 z̄

)

, H =

(

X 0
0 X†

)

. (32)
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Then the generalized Green’s function is given formally by the same defini-
tion as the usual Green’s function G,

G =
1

N

〈

TrB2
1

Z −H

〉

. (33)

What is more important, also in this case the Green’s function is completely
determined by the knowledge of all matrix-valued moments

〈

TrB2 Z
−1HZ

−1H . . . Z−1
〉

. (34)

This last observation allows for a diagrammatic interpretation. The Feyn-
man rules are analogous to the hermitian ones, only now one has to keep
track of the block structure of the matrices, e.g. single straight lines will now
be associated with a matrix factor Z−1. We will now demonstrate the above
procedure by solving diagrammatically the complex Gaussian Random Ma-
trix Model.

As an example of the complex replication procedure outlined above, we
consider the Ginibre–Girko ensemble, defined by the measure

P (X) ∝ e−NTrXX†

. (35)

In this case the double line propagators are

〈Xa
b Xc

d〉 = 〈X†a
bX

†c
d〉 = 0 ,

〈Xa
b X†c

d〉 = 〈X†a
bX

c
d〉 =

1

N
δa
dδb

c . (36)

As previously, we introduce a self-energy Σ̃, (but which is now matrix-
valued), in terms of which we get a two by two matrix expression

G = (Z − Σ̃)−1 , (37)

where the 2 by 2 matrix Z reads

Z =

(

z iε
iε z̄

)

. (38)

The resummation of the rainbow diagrams for Σ̃ is more subtle, but follows
easily from the structure of the propagators (36). The analogue of (17) is
now:

Σ̃ ≡
(

Σ11 Σ11̄

Σ1̄1 Σ1̄1̄

)

=

(

0 G11̄

G1̄1 0

)

. (39)
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The two by two matrix equations (37)–(39) completely determine the prob-
lem of finding the eigenvalue distribution for the Girko–Ginibre ensemble.
Inserting (39) into (37) we get:

(

G11 G11
G11 G11

)

=
1

|z|2 − G11̄G1̄1
·
(

z̄ G11
G11 z

)

. (40)

Note that at this moment we can safely put to zero the regulators ε. Looking
at the off-diagonal equation

G11̄ =
G11̄

|z|2 − G11̄G1̄1
(41)

we see that there are two solutions: one with G11̄ = 0, and another with
G11̄ 6= 0. The first one leads to a holomorphic Green’s function, and a
straightforward calculation gives

G(z) =
1

z
. (42)

The second one is nonholomorphic, imposing the condition

|z|2 − b2 = 1 , (43)

where we denoted G11̄G1̄1 ≡ b2, hence

G(z, z̄) = z̄ (44)

which leads, via the Gauss law, to

ρ(x, y) =
1

π

∂

∂z̄
G(z, z̄) =

1

π
. (45)

Both solutions match at the boundary b2 = 0 , which in this case reads
zz̄ = 1. In such a simple way we recovered the results of Ginibre and Girko
for the complex non-hermitian ensemble. The eigenvalues are uniformly
distributed on the unit disk |z|2 < 1.

This example illustrates more general properties of the matrix valued
generalized Green’s function. Each component of the matrix carries impor-
tant information about the stochastic properties of the system. There are
always two solutions for G11, one holomorphic, another non-holomorphic.
The second one leads, via Gauss law, to the eigenvalue distribution. The
shape of the “coastline” bordering the “sea” of complex eigenvalues is deter-
mined by the matching conditions for the two solutions, i.e. it is determined
by imposing on the non-holomorphic solution for b2 the equation b2 = 0.
G11̄G1̄1 ≡ b2 is also related to the properties of eigenvector statistics in the
nonhermitian random matrix model [42]. For other important features of the
explained above diagrammatic method, their link to Free Random Variables
calculus [40, 41] and more complex examples see [31, 42, 43].
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4. Cyclization

We consider now the product of an arbitrary number of matrices (1). To
see the pattern, let us look briefly at the case of three matrices

Y3 =

(

1 +

√

τ

3
X1

)(

1 +

√

τ

3
X2

)(

1 +

√

τ

3
X3

)

≡ A1A2A3 , (46)

where X1,X2,X2 again belong to the Girko–Ginibre ensemble.
Our approach again follows from a very simple exact relation between

the eigenvalues of a product of N ×N matrices A1A2A3 and the eigenvalues
of a block matrix

B3 =





0 A1 0
0 0 A2

A3 0 0





3N×3N

. (47)

Indeed if {λi} are the eigenvalues of A1A2A3 then the eigenvalues of the

block matrix are {λ1/3
i , λ

1/3
i · e

2πi

3 , λ
1/3
i · e

4πi

3 }. This is an exact relation
for any N and follows from the relation between the resolvents (here the
matrices Ai are of finite size and fixed i.e. no averaging)

GB3
(w) =

1

3N
tr

1

w − B3
, GA1A2A3

(z) =
1

N
tr

1

z − A1A2A3
(48)

namely
wGB3

(w) = zGA1A2A3
(w3 ≡ z) . (49)

This is due to the cyclic structure of the block matrix (47). Obviously, only
multiplicities of the cubic powers of B3 contribute to the trace.

The relation between the eigenvalues now follows from the location of
the finite number of poles of both functions.

We can thus safely calculate the eigenvalue density for the block matrix
B3 using diagrammatic methods and then extract the density for the product
through

ρA1A2...AM
(z, z̄) =

1

π
∂z̄GA1A2...AM

=
1

M

ww̄

zz̄
ρBM

(w, w̄) , (50)

where M = 3 and wM = z and ρBM
(w, w̄) = 1

π∂w̄GB(w, w̄).
To extract only the moments involving powers of the triples A1A2A3, we

construct an auxiliary 6N by 6N Green’s function, triplicating the A1A2A3
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products by rewriting them as cyclic block matrices:

G(w) =

〈





























w −1 0 0 0 0
0 w −1 0 0 0
−1 0 w 0 0 0
0 0 0 w̄ 0 −1

0 0 0 −1 w̄ 0
0 0 0 0 −1 w̄















−
√

τ

3

















0 X1 0 0 0 0
0 0 X2 0 0 0

X3 0 0 0 0 0

0 0 0 0 0 X†
3

0 0 0 X†
1 0 0

0 0 0 0 X†
2 0

































−1

6N×6N

〉

, (51)

where we separated the “deterministic” part from the “random one”. Intro-
ducing now the block-trace operation tr B6, we obtain a 6 by 6 auxiliary
Green’s function g(w) = tr B6G(w). In such a way we again managed to
linearize the problem, at the cost of increasing the size of the matrices.

The generalization for arbitrary M is now straightforward. For

YM =

(

1 +

√

τ

M
X1

)(

1 +

√

τ

M
X2

)

. . .

(

1 +

√

τ

M
XM

)

(52)

we define an auxiliary 2MN by 2MN Green’s function of the form

G(w) =

〈

(

W −
√

τ
M X

−
√

τ
MX † W

†

)−1
〉

. (53)

The structure of the blocks in this matrix originates from complex replication
method introduced in the previous chapter. Each of the blocks is then farther
linearized using the cyclic properties of the matrices, i.e. blocks read

W =











w −1 0 . . . 0
0 w −1 . . . 0
. . . . . . . . . . . . . . .
0 0 . . . w −1

−1 0 . . . 0 w











MN×MN

(54)

and

X =











0 X1 0 . . . 0
0 0 X2 . . . 0
. . . . . . . . . . . . . . .
0 0 . . . 0 XM−1

XM 0 . . . 0 0











MN×MN

(55)
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are themselves NM by NM matrices, i.e. each of the listed elements in W

and in X is itself an N by N matrix, either diagonal, denoted by a bold
symbol, or a random entry Xi, otherwise an N by N block of zeroes.

We take now a block-trace operation tr BM , where we trace each N by
N block of the 2MN by 2MN matrix G(w) separately. In such a way, we
obtain a 2M by 2M auxiliary Green’s function

g(w) ≡



















g11 . . . g1M g11̄ . . . g1M̄
...

. . .
...

...
. . .

...
gM1 . . . gMM gM 1̄ . . . gMM̄
g1̄1 . . . g1̄M g1̄1̄ . . . g1̄M̄
...

. . .
...

...
. . .

...
gM̄1 . . . gM̄M gM̄ 1̄ . . . gM̄M̄



















2M×2M

=
1

N
TrBMG(w) . (56)

As before we define a 2M by 2M matrix of self-energies Σ̃ij

g(w) =

[(

W 0
0 W†

)

− Σ̃

]−1

, (57)

where W is a result of block-tracing W . We can now diagrammatically
analyze the content of the matrix Σ̃. As previously, only “double line”

propagators
〈

XiX
†
i

〉

Xi

for i = 1, . . . ,M are different from zero. Therefore,

from all of the 4M2 elements of the matrix Σ̃ only 2M are different from
zero. Due to the symmetries we get

Σ11̄ = . . . = ΣMM̄ = αg1̄1 = αgM̄M ≡ αg ,

Σ1̄1 = . . . = ΣM̄M = αg11̄ = αg1M̄ ≡ αg̃ , (58)

where the factor α = τ/M comes from the propagator in the corresponding
set of Schwinger–Dyson equations as in the previous chapter.

Inserting now the matrix Σ̃ with entries (58) we arrive at a 2M by 2M
matrix equation for the elements of the Green’s function. First, we solve it
for g and g̃. Second, using the solutions, we calculate g11. Third, using (50)
we get an explicit equation for the spectral density

ρ(x, y) =
1

π

1

M

ww̄

zz̄
∂w̄g11(w, w̄) , (59)

where z = x + iy. For arbitrary M , the algebra is rather involved. Luckily,
both the block and the cyclic structure of the main entries W and Σ̃ make
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taking an inverse of the 2M by 2M matrix possible. The inverse of a cyclic
matrix is a cyclic matrix, and its explicit form can be obtained from the
solution of an associated recurrence relation, e.g. using the transfer matrix
techniques.

We skip here the intermediate calculations, referring to the original pa-
per [44]. We present here the final solution of the shape of the curve border-
ing the complex eigenvalues as a function of the evolution time τ . Explicit
solution for the boundary is surprisingly simple and reads

τ

2

(

r2 − 1

ln r

)

= r2 + 1 − 2r cos φ , (60)

where we used polar decomposition z = r exp iφ. We would like to stress,
that in the limit of infinitely many products (i.e. M → ∞) the shape of
the boundary acquired a new symmetry — (60) is invariant under inversion
operation r → 1/r. This symmetry is responsible for the appearance of a
structural change of the spectrum — provided τ is sufficiently large, two

boundaries, related by inversion in the radial variable, appear. We describe
this structural change of the complex spectrum as a “topological phase tran-
sition”. The spectral density as a function of t could be easily inferred from
the formulae in [44].

As a confirmation of our analytical predictions, we performed some nu-
merical simulations. Figure 4 shows the evolution of the boundary for several
sample evolution times τ = 0.5, 1, 1.5, 2, 3, 4, 5, 6, 8, 12. To present the whole
set of the boundaries on the same figure, each boundary is rescaled by a
corresponding factor exp(−τ/2). We would like to note here that the ef-
fect of rescaling is equivalent to the non-rescaled process with drift µ = 1.
One can see how the original ellipse-like shape (innermost figure) evolves
through a twisted-like shape to the set of double-ring structures. The inner
ring, always containing the origin, is so small on the scale of the Fig. 4 that
it is not visible. At τ = 4, corresponding to the curve with an inner loop,
we observe a topological phase transition. The support of the spectrum is
no longer simply connected, for τ ≥ 4 it is annulus-like, i.e. eigenvalues are
expelled from the central region. For even larger times, the outside rim of
the annulus approaches the circle, and the inner one shrinks to the point
z = 0 in the τ = ∞ limit. Indeed for large τ the radius of the inner ring
behaves like

r(τ) ∼ e−
τ

2 . (61)

The outer boundary then forms approximately a circle with the radius eτ/2.
To visualize the repulsion of the eigenvalues from the region around z = 0 we
performed higher statistics simulations for τ = 4. corresponding to Fig. 5.
Note that the eigenvalue distributions are quite high for small z and the size



4850 E. Gudowska-Nowak et al.

-1 -0.5 0.5 1 1.5

-1

-0.5

0.5

1

Fig. 4. Evolution of the rescaled (see text) contour of non-holomorphic domain in
the eigenvalue spectrum of the Ginibre–Girko multiplicative diffusion as a function
of several times τ .
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Fig. 5. Comparison of the analytical contour for the eigenvalue spectrum of
Ginibre–Girko multiplicative diffusion at evolution time τ = 4., versus the high-
statistics numerical simulation of the spectrum.

of the inner ring is indeed very small. Therefore it is quite difficult to observe
numerically the exact exclusion of eigenvalues from the marked region.

Figure 6 shows the comparison of numerically generated eigenvalues ver-

sus the analytical prediction of the shape of the support of eigenvalues of the
“evolution operator”. Again, the same rescaling by exp(−τ/2) was applied.
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Fig. 6. Comparison of the analytical contour for the eigenvalue spectrum of
Ginibre–Girko multiplicative diffusion at evolution time τ = 1., versus the numer-
ical simulation of the spectrum. The generated ensemble consisted of 60 matrices,
each for N = M = 100. Note that the vertical axis is located at x = 1 and not at
x = 0. The origin lies outside the figure.

5. Conclusions

We have introduced a natural generalization of the concept of geometric
random walk (‘geometric diffusion’) in the space of large, non-commuting
matrices. Using diagrammatic methods combined with ‘complex replication’
and ‘cyclization’ tricks, we obtained an explicit solution for the evolution of
the spectral domain in the case of Ginibre–Girko type of diffusion.

We observed, that the spectrum develops a surprising feature, namely a
region without eigenvalues appears within the spectrum after a finite nonzero
evolution time has elapsed, thus changing its topological properties. We can
thus describe this behavior as a topological phase transition. This points
at the appearance of a particular repulsion mechanism for sufficiently large
evolution times, which, under the unfolding procedure, will turn out most
probably to be of a novel universal class.

One of the motivations for this work was to propose a general formalism,
which can provide a straightforward method of analyzing spectral proper-
ties of multivariate diffusion-like processes, with the idea that our method
could be used in different branches of theoretical physics and interdisci-
plinary applications. The particular diffusion process discussed here could
be generalized for other cases of matrix-valued random processes [44, 45].

Last but not least, the presented formalism can be viewed as a start-
ing point for establishing a direct link [45] to the diffusion processes based
on Free Random Variables techniques [40, 41, 46], allowing for several new
surprising analogies between the classical and non-commutative probability
calculi.
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